KR102038814B1 - 임피던스 추정 장치 - Google Patents

임피던스 추정 장치 Download PDF

Info

Publication number
KR102038814B1
KR102038814B1 KR1020180080018A KR20180080018A KR102038814B1 KR 102038814 B1 KR102038814 B1 KR 102038814B1 KR 1020180080018 A KR1020180080018 A KR 1020180080018A KR 20180080018 A KR20180080018 A KR 20180080018A KR 102038814 B1 KR102038814 B1 KR 102038814B1
Authority
KR
South Korea
Prior art keywords
complex impedance
battery
temperature
impedance
component
Prior art date
Application number
KR1020180080018A
Other languages
English (en)
Other versions
KR20190022312A (ko
Inventor
야스마사 오구마
데츠야 오사카
신고 츠다
가즈아키 우츠미
도키히코 요코시마
다이키치 무코야마
Original Assignee
도요타 지도샤(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타 지도샤(주) filed Critical 도요타 지도샤(주)
Publication of KR20190022312A publication Critical patent/KR20190022312A/ko
Application granted granted Critical
Publication of KR102038814B1 publication Critical patent/KR102038814B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(과제) 전지의 임피던스를 정확하게 추정한다.
(해결 수단) 임피던스 추정 장치 (100) 는, 상이한 복수의 온도에서 취득된 전지 (10) 의 복소 임피던스의 소정 주파수에 있어서의 값 (Z0) 과, 복소 임피던스가 취득되었을 때의 전지의 온도 (T0) 에 기초하여, 복소 임피던스의 소정 주파수에 있어서의 값과, 전지의 온도의 역수의 관계를 나타내는 기울기 함수를 도출하는 도출 수단 (130) 과, 기울기 함수를 사용하여, 전지의 원하는 온도에 대응하는 복소 임피던스의 소정 주파수에 있어서의 값을 추정하는 추정 수단 (140) 을 구비한다.

Description

임피던스 추정 장치{IMPEDANCE ESTIMATING APPARATUS}
본 발명은, 차량 등에 탑재되는 전지의 임피던스를 추정하는 임피던스 추정 장치의 기술 분야에 관한 것이다.
이 종류의 장치에서는, 예를 들어 전지의 충전량을 알기 위해서 임피던스가 추정된다. 예를 들어 특허문헌 1 에서는, 주파수가 상이한 2 개 이상의 복소 임피던스를 이은 직선의 기울기 각도로부터, 전지의 충전량을 검출한다는 기술이 제안되어 있다.
또, 특허문헌 2 에서는, 입력한 사각형파 신호에 대한 응답 신호를 푸리에 변환하고, 산출된 주파수 특성에 기초하여 전기 화학 셀의 임피던스 특성을 산출한다는 기술이 개시되어 있다. 특허문헌 3 에서는, 축전 장치 내의 이온이 추종하기 어려운 주파수의 신호로 내부 임피던스를 측정하고, 측정값으로부터 축전 장치 내부의 온도를 산출한다는 기술이 개시되어 있다. 특허문헌 4 에서는, 전지의 온도 및 충전율의 변화에서 기인하는 내부 임피던스에 대한 영향을 보정하고, 소정의 온도 및 충전율에 있어서의 내부 임피던스를 추정한다는 기술이 개시되어 있다.
국제 공개 2013/114669호 일본 공개특허공보 2014-126532호 국제 공개 2013/018641호 일본 공개특허공보 2008-157757호
전지의 임피던스는, 전하 이동 등에서 기인하기 때문에, 온도 의존성이 매우 크다. 이 때문에, 상기 특허문헌에 기재되어 있는 기술을 사용하여 정확하게 전지의 임피던스를 추정하기 위해서는, 전지의 온도를 기준이 되는 온도로 하고 나서 (즉, 소정의 온도 조건하에서) 추정 처리를 실행하는 것이 요망된다.
그러나, 전지의 온도는 그 사용 상황에 따라 변화하기 때문에, 예를 들어 차량에 탑재된 전지의 임피던스를 차량의 주행 중에 추정하고자 하는 경우, 전지의 온도를 기준이 되는 온도로 하고 나서 추정 처리를 실행하는 것은 곤란하다. 따라서, 상기 특허문헌에 기재되어 있는 기술을 이용하는 경우, 전지의 온도 변동에서 기인하여, 정확한 임피던스를 검출할 수 없다는 기술적 문제점이 발생할 수 있다.
본 발명은, 상기 문제점을 감안하여 이루어진 것으로, 전지의 임피던스를 정확하게 추정하는 것이 가능한 임피던스 추정 장치를 제공하는 것을 과제로 한다.
본 발명의 일 양태에 관련된 임피던스 추정 장치는, 상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 소정 주파수에 있어서의 값과, 상기 복소 임피던스가 취득되었을 때의 상기 전지의 온도에 기초하여, 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값과, 상기 전지의 온도의 역수의 관계를 나타내는 기울기 함수를 도출하는 도출 수단과, 상기 기울기 함수를 사용하여, 상기 전지의 원하는 온도에 대응하는 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값을 추정하는 추정 수단을 구비한다.
본 발명의 다른 양태에 관련된 임피던스 추정 장치는, Cole-Cole 플롯의 이온 확산에 귀속되는 영역보다 고주파수측의 주파수 영역에 있어서, 상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 복수의 주파수에 있어서의 값과, 상기 복소 임피던스가 취득되었을 때의 상기 전지의 온도에 기초하여, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값과, 상기 전지의 온도의 역수의 관계를 나타내는 복수의 기울기 함수를 도출하는 도출 수단과, (i) 상기 복수의 기울기 함수를 사용하여, 상기 복소 임피던스의 원호 성분을 형성하는 상기 복수의 주파수에 있어서의 실수 성분을 추정함과 함께, 상기 복수의 기울기 함수 중 상기 복소 임피던스의 원호 성분의 정점 주파수에 대응하는 기울기 함수를 사용하여, 상기 정점 주파수에 있어서의 허수 성분을 추정하고, (ii) 상기 추정한 실수 성분 및 허수 성분으로부터, 상기 복소 임피던스의 원호 성분을 추정하고, (iii) 상기 추정한 원호 성분으로부터, 상기 전지의 원하는 온도에 대응하는 상기 복소 임피던스의 값을 추정하는 추정 수단을 구비한다.
도 1 은 제 1 실시형태에 관련된 임피던스 추정 장치의 구성을 나타내는 블록도이다.
도 2 는 20 ℃, 25 ℃, 30 ℃ 의 온도 조건하에서 측정한 복소 임피던스의 파형을 나타내는 그래프이다.
도 3 은 40 ℃, 45 ℃, 50 ℃ 의 온도 조건하에서 측정한 복소 임피던스의 파형을 나타내는 그래프이다.
도 4 는 제 1 실시형태에 관련된 임피던스 추정 장치의 동작의 흐름을 나타내는 플로 차트이다.
도 5 는 복소 임피던스의 절대값과 온도의 역수의 관계를 나타내는 그래프이다.
도 6 은 복소 임피던스의 실수 성분과 온도의 역수의 관계를 나타내는 그래프이다.
도 7 은 복소 임피던스의 허수 성분과 온도의 역수의 관계를 나타내는 그래프이다.
도 8 은 상이한 SOC 에서 측정된 복소 임피던스의 값과 온도의 역수의 관계를 나타내는 그래프이다.
도 9 는 Cole-Cole 플롯의 원호 성분을 부분적으로 확대하여 나타내는 그래프이다.
도 10 은 제 2 실시형태에 관련된 임피던스 추정 장치의 동작의 흐름을 나타내는 플로 차트이다.
도 11 은 원호 성분에 대응하는 주파수대에 있어서의 복소 임피던스의 실수 성분과 온도의 역수의 관계를 나타내는 그래프이다.
도 12 는 원호 성분에 대응하는 주파수대에 있어서의 복소 임피던스의 허수 성분과 온도의 역수의 관계를 나타내는 그래프이다.
도면을 참조하면서, 본 발명의 임피던스 추정 장치의 실시형태에 대해 설명한다.
<제 1 실시형태>
제 1 실시형태에 관련된 임피던스 추정 장치 (100) 에 대해 설명한다. 이하에서는, 임피던스 추정 장치 (100) 가, 차량의 배터리 (10) 의 임피던스를 추정하는 장치로서 구성되어 있는 경우를 예로 들어 설명한다.
(1) 장치 구성
먼저, 제 1 실시형태에 관련된 임피던스 추정 장치 (100) 의 구성에 대하여, 도 1 을 참조하여 설명한다. 도 1 은 제 1 실시형태에 관련된 임피던스 추정 장치 (100) 의 구성을 나타내는 블록도이다.
도 1 에 나타내는 바와 같이, 제 1 실시형태에 관련된 임피던스 추정 장치 (100) 는, 차량의 배터리 (10) 에 전기적으로 접속된 전자 유닛으로, 배터리 (10) 의 임피던스 (요컨대, 복소 임피던스) 를 추정하는 장치로서 구성되어 있다. 또한, 배터리 (10) 는, 후술하는 부가 기재에 있어서의 「전지」의 일 구체예로, 예를 들어 리튬 이온 전지 등의 충전 가능한 액계 이차 전지로서 구성되어 있다.
임피던스 추정 장치 (100) 는, 그 내부에 실현되는 논리적인 또는 물리적인 처리 블록으로서, 임피던스 취득부 (110), 온도 취득부 (120), 기울기 함수 산출부 (130), 임피던스 추정부 (140) 을 구비하여 구성되어 있다.
임피던스 취득부 (110) 는, 배터리 (10) 의 복소 임피던스를 취득 가능하게 구성되어 있다. 임피던스 취득부 (110) 는, 예를 들어 배터리 (10) 에 대해 주파수를 변화시키면서 교류 전압을 인가함으로써, 복소 임피던스를 취득한다. 또한, 복소 임피던스의 취득 방법에는 기존의 기술을 적절히 채용할 수 있기 때문에, 여기에서의 상세한 설명은 생략한다. 임피던스 취득부 (110) 에서 취득된 배터리 (10) 의 복소 임피던스는, 기울기 함수 도출부 (130) 에 출력되는 구성으로 되어 있다.
온도 취득부 (120) 는, 배터리 (10) 의 온도 (바람직하게는 전극의 온도) 를 취득 가능하게 구성되어 있다. 온도 취득부 (120) 는 특히, 임피던스 취득부 (110) 가 배터리 (10) 의 복소 임피던스를 취득했을 때의 온도를 취득한다. 또한, 온도의 취득 방법에는 기존의 기술을 적절히 채용할 수 있기 때문에, 여기에서의 상세한 설명은 생략한다. 온도 취득부 (120) 에서 취득된 배터리 (10) 의 온도는, 기울기 함수 도출부 (130) 에 출력되는 구성으로 되어 있다.
기울기 함수 산출부 (130) 는, 후술하는 부가 기재에 있어서의 「도출 수단」의 일 구체예로, 임피던스 취득부 (110) 에서 취득한 배터리 (10) 의 복소 임피던스와, 온도 취득부 (120) 에서 취득한 배터리 (10) 의 온도의 관계를 나타내는 기울기 함수를 도출한다. 기울기 함수에 대해서는 이후에 상세히 서술하지만, 배터리 (10) 의 복소 임피던스와, 배터리 (10) 의 온도의 역수가 직선적인 관계가 되는 것을 나타내는 함수이다. 기울기 함수 산출부 (130) 에서 산출된 기울기 함수는, 임피던스 추정부 (140) 에 출력되는 구성으로 되어 있다.
임피던스 추정부 (140) 는, 후술하는 부가 기재에 있어서의 「추정 수단」의 일 구체예로, 기울기 함수 산출부 (130) 에서 도출된 기울기 함수를 이용하여, 소정의 기준 온도에 있어서의 배터리 (10) 의 복소 임피던스를 추정한다. 보다 구체적으로는, 임피던스 취득부 (110) 에서 취득된 복소 임피던스로부터, 배터리 (10) 가 소정의 기준 온도였던 경우에 취득되었을 값을 추정한다. 임피던스 추정부 (140) 에서 추정된 복소 임피던스의 값은 장치 외부로 출력되고, 예를 들어 배터리 (10) 의 현재의 상태 (예를 들어, SOC (State Of Charge) 나 SOH (State Of Health) 등) 를 추정하기 위한 파라미터로서 사용된다.
(2) 복소 임피던스의 온도 의존성과 문제점
다음으로, 배터리 (10) 의 복소 임피던스의 온도 의존성에 대하여, 도 2 및 도 3 을 참조하여 설명한다. 도 2 는 20 ℃, 25 ℃, 30 ℃ 의 온도 조건하에서 측정한 복소 임피던스의 파형을 나타내는 그래프이다. 또 도 3 은 40 ℃, 45 ℃, 50 ℃ 의 온도 조건하에서 측정한 복소 임피던스의 파형을 나타내는 그래프이다. 또한, 도 2 및 도 3 에 나타나 있는 데이터는, 배터리 (10) 의 SOC 가 95 % 일 때에 측정된 것이다.
도 2 및 도 3 에 나타내는 바와 같이, 배터리 (10) 의 온도가 20 ℃, 25 ℃, 30 ℃ 및 40 ℃, 45 ℃, 50 ℃ 의 상태에서 취득된 복소 임피던스를 복소 평면 상에 각각 플롯하면, 온도가 낮아질 때마다 우측으로 슬라이드하는 다른 곡선으로서 그려진다. 이것은, 배터리 (10) 의 복소 임피던스가 큰 온도 의존성을 갖고 있는 것을 나타내고 있다. 복소 임피던스의 온도 의존성은, 배터리 (10) 내부의 전하 이동이나 리튬 이온의 확산에서 기인하고 있다.
이와 같이 배터리 (10) 의 복소 임피던스는, 측정시의 배터리 (10) 의 온도에 따라 크게 변화한다. 이 때문에, 복소 임피던스를 이용하여 배터리 (10) 의 상태를 추정하고자 하는 경우, 소정의 기준 온도에서 측정한 복소 임피던스를 이용하는 것이 바람직하다. 즉, 미리 정한 온도 조건하에서 측정된 복소 임피던스를 이용하는 것이 바람직하다. 그러나, 배터리 (10) 의 온도를 소정의 기준 온도로 하고 나서 측정을 실시하는 것은 용이하지 않다. 특히, 배터리 (10) 가 탑재된 차량의 주행 중에는, 충전 및 방전 동작에서 기인하여 배터리 (10) 의 온도가 오르내기기 때문에, 배터리 (10) 를 기준 온도로 유지하는 것은 매우 곤란하다.
상기 서술한 문제에 대한 대책으로서 임의의 온도에서 취득한 복소 임피던스를, 기준 온도에서 취득된 복소 임피던스로 변환 (보정) 한다는 방법이 생각된다. 그러나, 기존의 기술을 이용하여 복소 임피던스를 변환하고자 하는 경우, Fitting 해석 등의 비교적 고도이고 또한 복잡한 처리가 요구되게 된다. 따라서, 예를 들어 주행하는 차량 등에 있어서 실시간으로 복소 임피던스를 측정하는 경우, 그때마다 복소 임피던스를 기준 온도에 대응하는 값으로 변환하는 것은 용이하지 않다.
본 실시형태에 관련된 임피던스 추정 장치 (100) 는, 상기와 같은 문제점을 해결하기 위해서 이하에 상세히 서술하는 동작을 실행한다.
(3) 동작 설명
제 1 실시형태에 관련된 임피던스 추정 장치 (100) 가 실행하는 처리에 대하여, 도 4 를 참조하여 설명한다. 도 4 는 제 1 실시형태에 관련된 임피던스 추정 장치의 동작의 흐름을 나타내는 플로 차트이다.
도 4 에 있어서, 제 1 실시형태에 관련된 임피던스 추정 장치의 동작시에는, 먼저 복수의 온도 조건하에서 복수의 복소 임피던스를 취득한다 (스텝 S11). 보다 구체적으로는, 배터리 (10) 의 복소 임피던스가 임피던스 취득부 (110) 에 의해 취득됨과 함께, 그 때의 배터리 (10) 의 온도가 온도 취득부 (120) 에 의해 취득되어 간다.
취득된 배터리 (10) 의 복소 임피던스는, 주파수마다 분리할 수 있고, 이하의 처리에서는, 소정 주파수에 있어서의 복소 임피던스가 취득된다. 이 경우, 소정 주파수에 있어서의 복소 임피던스의 절대값, 실수 성분 (요컨대, 실수부) 및 허수 성분 (요컨대, 허수부) 이 취득된다. 또한, 여기에서의 「소정 주파수」는, Cole-Cole 플롯한 복소 임피던스의 기울기 성분 (즉, 도 2 및 도 3 의 직선 부분) 에 대응하는 주파수이다.
취득된 배터리 (10) 의 복소 임피던스 (이하, 그 값을, Z0 으로 표기한다) 및 복소 임피던스를 취득했을 때의 배터리 (10) 의 온도 (이하, 그 값을, T0 으로 표기한다) 는, 기울기 함수 산출부 (130) 에 입력되고, 복소 임피던스를 추정하기 위한 기울기 함수가 도출된다. 기울기 함수 산출부 (130) 는, 배터리 (10) 의 소정 주파수에 있어서의 복소 임피던스의 값 Z0 과, 복소 임피던스가 취득되었을 때의 배터리 (10) 의 온도 T0 을, 미리 기억된 수식 (후술하는 수식 (1)) 에 대입한다 (스텝 S12).
본원 발명자가 연구하는 바에 의하면, 소정 주파수에 있어서의 복소 임피던스의 값 Z 와, 배터리 (10) 의 온도 T 사이에는 하기 수식 (1) 의 관계가 성립하는 것이 판명되어 있다.
logZ = A × (1/T) + B … (1)
따라서, 실제로 취득한 배터리 (10) 의 복소 임피던스의 값 Z0 및 온도 T0 을 수식 (1) 에 대입한 후, 기울기 A 및 절편 B 를 구하면 (스텝 S13), 배터리 (10) 의 복소 임피던스의 값 Z 및 온도 T 의 관계를 나타내는 기울기 함수를 도출할 수 있다.
이와 같이 하여 도출된 기울기 함수는, 임피던스 추정부 (140) 에 출력되고, 원하는 온도에 대응하는 복소 임피던스의 값 Z 를 추정하기 위해서 이용된다. 구체적으로는, 임피던스 추정부 (140) 는, 기울기 함수에 있어서의 T 에 소정의 기준 온도를 대입하고, 소정의 기준 온도에 대응하는 복소 임피던스의 값 Z 를 산출한다 (스텝 S14).
(4) 기울기 함수의 도출 방법
다음으로, 상기 서술한 기울기 함수의 구체적인 도출 방법에 대하여, 도 5 내지 도 8 을 참조하여 설명한다. 도 5 는 복소 임피던스의 절대값과 온도의 역수의 관계를 나타내는 그래프이고, 도 6 은 복소 임피던스의 실수 성분과 온도의 역수의 관계를 나타내는 그래프이다. 또, 도 7 은 복소 임피던스의 허수 성분과 온도의 역수의 관계를 나타내는 그래프이고, 도 8 은 상이한 SOC 에서 측정된 복소 임피던스의 값과 온도의 역수의 관계를 나타내는 그래프이다. 또한, 도 5 내지 도 8 각각의 가로축의 수치는, 온도 T 를 절대 온도로 계산한 경우의 수치이다.
도 5 내지 도 7 에 나타내는 바와 같이, 기울기 함수는, 복소 임피던스의 절대값 |Z|, 실수 성분 Z' 및 허수 성분 Z" 의 각각을 사용하여 복수 종류 도출된다. 즉, 절대값 |Z| 에 대한 기울기 함수와, 실수 성분 Z' 에 대한 기울기 함수와, 허수 성분 Z" 에 대한 기울기 함수가 따로 따로 도출된다. 단, 반드시 절대값 |Z|, 실수 성분 Z' 및 허수 성분 Z" 의 전부에 대해 기울기 함수가 도출되지 않아도 되고, 절대값 |Z|, 실수 성분 Z' 및 허수 성분 Z" 의 적어도 1 개에 대해 기울기 함수를 도출하도록 해도 된다.
도 5 에 있어서, 배터리 (10) 의 온도 T 가 20 ℃ ∼ 50 ℃ 의 범위 내에서 측정된 복소 임피던스의 절대값 |Z|는, 온도 T 의 변동에 대해 직선적으로 변화한다. 구체적으로는, 동일 주파수에 대응하는 점을 이은 직선 (도면 중의 파선 참조) 을 그릴 수 있다. 이와 같이, 복소 임피던스의 절대값 |Z|와, 그 값이 취득되었을 때의 온도 T 를 사용하면, 그것들을 플롯한 점을 이은 근사 직선을 구함으로써, 복소 임피던스의 절대값 |Z|에 대한 기울기 함수를 도출할 수 있다.
도 6 에 있어서, 배터리 (10) 의 온도 T 가 20 ℃ ∼ 50 ℃ 의 범위 내에서 측정된 복소 임피던스의 실수 성분 Z' 도, 도 5 로 나타낸 절대값 |Z|와 동일하게, 온도 T 의 변동에 대해 직선적으로 변화한다. 따라서, 복소 임피던스의 실수 성분 Z' 와, 그 값이 취득되었을 때의 온도 T 를 사용하면, 그것들을 플롯한 점을 이은 근사 직선을 구함으로써, 복소 임피던스의 실수 성분 Z' 에 대한 기울기 함수를 도출할 수 있다.
도 7 에 있어서, 배터리 (10) 의 온도 T 가 20 ℃ ∼ 50 ℃ 의 범위 내에서 측정된 복소 임피던스의 허수 성분 Z" 도, 도 5 에서 나타낸 절대값 |Z|및 도 6 에서 나타낸 실수 성분 Z' 와 동일하게, 온도 T 의 변동에 대해 직선적으로 변화한다. 따라서, 복소 임피던스의 허수 성분 Z" 와, 그 값이 취득되었을 때의 온도 T 를 사용하면, 그것들을 플롯한 점을 이은 근사 직선을 구함으로써, 복소 임피던스의 허수 성분 Z" 에 대한 기울기 함수를 도출할 수 있다.
도 8 에서는, 상이한 SOC (즉, 95 %, 60 %, 10 %) 에서 배터리 (10) 의 복소 임피던스의 값 Z0 및 온도 T0 이 취득된 경우의 각 그래프에, 동일한 기울기 함수에 대응하는 직선을 중첩하여 도시하고 있다. 그러면, 절대값 |Z|, 실수 성분 Z' 및 허수 성분 Z" 의 각 그래프에서, 동일 주파수에 대응하는 복수의 점이 직선에 의해 이어져 있는 것을 알 수 있다.
이것은, SOC 가 서로 상이한 상황하에서도, 절대값 |Z|, 실수 성분 Z' 및 허수 성분 Z" 의 각각에서 동일한 기울기 함수가 도출되는 것을 나타내고 있다.
단, 허수 성분 Z" 에 대해서는, SOC 10 % 시의 데이터에 있어서 크게 직선으로부터 어긋나 있는 부분이 있다. 요컨대, 허수 성분 Z" 에 대해서는, 측정시의 상황에 따라 무시할 수 없는 오차가 발생할 가능성이 있다. 따라서, 산출하고자 하는 임피던스의 값 Z 가, 절대값 |Z| 및 실수 성분 Z' 만으로도 충분한 상황하에서는, 절대값 |Z|및 실수 성분 Z' 의 적어도 일방에 대해서만 기울기 함수를 도출하도록 (즉, 허수 성분 Z" 에 대해서는 기울기 함수를 도출하지 않도록) 해도 된다.
또한, 도 5 내지 도 7 에 나타내는 예에서는, 복수의 점을 이은 근사 직선으로서 기울기 함수를 도출하고 있는데, 이미 기울기 함수의 기울기 A 또는 절편 B 중 어느 것이 이미 알려진 경우에는, 1 개의 점으로부터라도 근사 직선 (즉, 기울기 함수) 을 도출할 수 있다. 바꿔 말하면, 기울기 함수의 기울기 A 또는 절편 B 가 이미 알려진 것이면, 복수의 복소 임피던스의 값 Z0 및 온도 T0 을 취득할 필요는 없고, 1 쌍의 복소 임피던스의 값 Z0 및 온도 T0 만으로부터라도 기울기 함수를 도출할 수 있다.
단, 복수의 점을 이용하지 않는 경우에는, 배터리 (10) 의 복소 임피던스 및 온도를 측정할 때의 측정 오차의 영향이 커지는 것이 상정된다. 구체적으로는, 복수의 점을 이용하여 노이즈의 영향을 제거할 수 없게 된다. 이 때문에, 1 점으로부터 기울기 함수를 도출하는 경우에는, 측정 정밀도가 보증되는 온도에서 측정된 데이터를 사용한다. 또한, 「측정 정밀도가 보증되는 온도」란, 측정 정밀도가 저하되는 원인이 되는 사상이 발생하고 있을 가능성이 낮다고 생각되는 상황에 대응한 배터리 (10) 의 온도이다.
예를 들어, 배터리 (10) 는, 온도 변화에 의해 내부에 온도 편차가 발생하는 경우가 있어, 온도 T 를 정확하게 측정할 수 없게 되는 경우가 있다. 따라서, 이와 같은 상황하에서 측정된 데이터를 이용하면, 정확한 기울기 함수를 도출할 수 없다. 따라서, 1 점으로부터 기울기 함수를 도출하는 경우에는, 배터리 (10) 의 내부에 온도 편차가 발생하지 않은 상황에서 측정된 데이터를 사용하는 것이 바람직하다. 또한, 배터리 (10) 의 내부에 온도 편차가 발생하지 않은 상황의 일례로는, 배터리 (10) 를 탑재하고 있는 차량의 기동 직후 등을 들 수 있다.
(5) 기술적 효과
이상 설명한 바와 같이, 제 1 실시형태에 관련된 임피던스 추정 장치에 의하면, 배터리 (10) 의 복소 임피던스의 값 Z 와 온도 T 의 역수의 관계를 나타내는 기울기 함수를 이용함으로써, 원하는 온도에 대응하는 복소 임피던스의 값 Z 를 비교적 간단하게 추정할 수 있다. 따라서, 예를 들어 어떠한 온도 조건하에서 측정한 복소 임피던스라도, 소정의 기준 온도에 대응하는 복소 임피던스의 값 Z 로 변환할 수 있다. 바꿔 말하면, 배터리 (10) 의 온도를 실제로 소정의 기준 온도로 하지 않아도, 배터리 (10) 가 소정의 기준 온도인 경우에 측정될 복소 임피던스의 값 Z 를 알 수 있다. 이 결과, 복소 임피던스의 값 Z 를 사용한 배터리 (10) 의 상태 추정 등을 바람직하게 실시할 수 있다.
또한, 도출한 기울기 함수는, 배터리 (10) 의 구성이 바뀌지 않으면 변화하지 않는다. 즉, 배터리 (10) 가 새로운 것으로 교환되지 않는 한, 동일한 기울기 함수를 이용하여 복소 임피던스를 추정하는 것이 가능하다. 따라서, 한 번 기울기 함수를 도출하면, 그때마다 새로운 기울기 함수를 도출할 필요는 없다.
만일, 복수 종류의 배터리 (10) 의 복소 임피던스를 추정하는 경우에는, 복수 종류의 배터리 (10) 의 각각에 대응하는 복수의 기울기 함수를 이용하면 된다. 이 경우, 기울기 함수는 배터리 (10) 의 종류가 변경된 타이밍에서 새롭게 도출되어도 되고, 미리 복수 종류의 배터리 (10) 에 대응하는 복수의 기울기 함수를 도출하여 기억해 두고, 그 중에서 적절히 이용하여야 할 기울기 함수를 선택하도록 해도 된다.
기억된 복수의 기울기 함수로부터 이용하여야 할 기울기 함수를 선택하기 위해서는, 측정 정밀도가 보증되는 온도 조건하에서, 배터리 (10) 의 복소 임피던스의 값 Z 를 측정하면 된다. 이와 같이 하여 측정된 복소 임피던스의 값 Z 와 온도 T 는 측정 정밀도가 높고 정확한 값이기 때문에, 이들의 값을 대입하여 성립하는 기울기 함수를 찾아내면, 이용하여야 할 기울기 함수 (즉, 그 때의 배터리 (10) 에 대응한 기울기 함수) 를 적절히 선택할 수 있다.
<제 2 실시형태>
다음으로, 제 2 실시형태에 관련된 임피던스 장치에 대해 설명한다. 또한, 제 2 실시형태는, 상기 서술한 제 1 실시형태와 비교하여 일부의 동작이 상이할 뿐이고, 그 밖의 부분에 관해서는 대체로 제 1 실시형태와 동일하다. 이 때문에, 이하에서는 제 1 실시형태와 상이한 부분에 대해 상세하게 설명하고, 다른 중복되는 부분에 대해서는 적절히 설명을 생략하는 것으로 한다.
(1) 원호 성분에 대응하는 주파수대
먼저, 제 2 실시형태에 관련된 임피던스 추정 장치가 대상으로 하는 복소 임피던스의 주파수대에 대하여, 도 9 를 참조하여 설명한다. 도 9 는, Cole-Cole 플롯의 원호 성분을 부분적으로 확대하여 나타내는 그래프이다.
도 9 에 나타내는 바와 같이, Cole-Cole 플롯한 복소 임피던스는, 제 1 실시형태에 관련된 임피던스 추정 장치에서 추정한 주파수대인 기울기 성분 (즉, 비교적 주파수가 낮은 직선적인 성분) 외에, 원호 성분 (즉, 비교적 주파수가 높은 주파수의 곡선적인 성분) 을 포함하고 있다 (도면 중의 확대 부분 참조).
Cole-Cole 플롯의 복소 임피던스에 있어서의 원호 성분은, 배터리 (10) 의 이온 확산에 귀속되는 영역보다 고주파수측의 주파수 영역에 위치하고 있다. 제 2 실시형태에 관련된 임피던스 추정 장치에서는, 이 원호 성분에 상당하는 주파수대의 복소 임피던스를 추정한다. 또한, 이하에서는, 추정하고자 하는 원호 성분의 정점 주파수 (즉, 원호 부분이 가장 높은 부분에 상당하는 주파수) 가 100 ㎐ 인 경우를 예로 설명을 진행한다.
(2) 동작 설명
제 2 실시형태에 관련된 임피던스 추정 장치가 실행하는 처리에 대하여, 도 10 을 참조하여 설명한다. 도 10 은, 제 2 실시형태에 관련된 임피던스 추정 장치의 동작의 흐름을 나타내는 플로 차트이다.
도 10 에 있어서, 제 2 실시형태에 관련된 임피던스 추정 장치는, 복수의 온도 조건하에서, 배터리 (10) 의 복소 임피던스의 값 Z0 및 복소 임피던스 측정시의 배터리 (10) 의 온도 T0 을 취득한다 (스텝 S21).
계속해서, 기울기 함수 산출부 (130) 는, 배터리 (10) 의 소정 주파수에 있어서의 복소 임피던스의 값 Z0 과, 복소 임피던스가 취득되었을 때의 배터리 (10) 의 온도 T0 을, 미리 기억된 수식 (전술한 수식 (1)) 에 대입하여 (스텝 S22), 기울기 A 및 절편 B 를 구함으로써 (스텝 S23), 기울기 함수를 도출한다.
또한, 제 2 실시형태에 있어서 기울기 함수를 도출하기 위해서 실행되는 처리는, 제 1 실시형태에 있어서 실행되는 처리와 거의 동일하다 (도 4 의 스텝 S11 내지 S13 을 참조). 단, 제 2 실시형태에서는, 복소 임피던스의 실수 성분 Z' 및 허수 성분 Z" 에 대한 2 종류의 기울기 함수가 도출된다. 또, 제 1 실시형태에서는, 소정 주파수에 관한 기울기 함수를 1 개 산출하면 되는 데에 반하여, 제 2 실시형태에서는, 원호 성분에 상당하는 주파수대에 포함되는 복수의 주파수의 각각에 대응하는 복소 임피던스의 실수 성분 Z' 에 대한 기울기 함수가 각각 산출된다. 즉, 복소 임피던스의 실수 성분 Z' 에 대한 기울기 함수는 복수 개 도출된다. 한편으로, 복소 임피던스의 허수 성분 Z" 에 대한 기울기 함수는, 원호 성분의 정점 주파수 (여기에서는 100 ㎐) 에 대응하는 것이 1 개 도출된다.
여기서, 복소 임피던스의 허수 성분 Z" 에 대한 기울기 함수를, 정점 주파수에 대응하는 것만 도출하는 이유에 대하여, 도 11 및 도 12 를 참조하여 설명한다. 도 11 은 원호 성분에 대응하는 주파수대에 있어서의 복소 임피던스의 실수 성분과 온도의 역수의 관계를 나타내는 그래프이다. 도 12 는 원호 성분에 대응하는 주파수대에 있어서의 복소 임피던스의 허수 성분과 온도의 역수의 관계를 나타내는 그래프이다.
도 11 에 나타내는 바와 같이, 원호 성분의 복소 임피던스의 실수 성분 Z' 는, 온도 T 의 변동에 대해 직선적으로 변화한다. 즉, 도 6 에 나타낸 기울기 성분의 복소 임피던스의 실수 성분 Z' 와 동일하게 변화한다. 이 때문에, 복소 임피던스의 실수 성분 Z' 에 대해서는, 제 1 실시형태와 동일하게 기울기 함수를 이용함으로써, 원호 성분에 대응하는 복수의 주파수의 각각에 대해 정확한 값을 추정할 수 있다. 따라서, 복소 임피던스의 실수 성분 Z' 에 대한 기울기 함수는, 원호 성분에 대응하는 복수의 주파수의 각각에 대해 복수 개 도출된다.
한편, 도 12 에 나타내는 바와 같이, 원호 성분의 복소 임피던스의 허수 성분 Z" 는, 온도 T 의 변동에 대해 직선적으로 변화하지 않는다 (도면 중의 실선 참조). 즉, 도 7 에 나타낸 기울기 성분의 복소 임피던스의 허수 성분 Z" 와는 상이한 변화를 한다. 이 때문에, 복소 임피던스의 허수 성분 Z" 에 대해서는, 제 1 실시형태와 동일하게 기울기 함수를 이용하였다고 해도, 원호 성분에 대응하는 복수의 주파수의 각각에 대해 정확한 값을 추정할 수 없다. 단, 원호 성분의 정점 주파수에 대응하는 복소 임피던스의 허수 성분 Z" 에 대해서는, 온도 T 의 변동에 대해 직선적으로 변화한다 (도면 중의 파선 참조). 이 때문에, 정점 주파수에 한정하면, 기울기 함수를 이용하여 정확한 값을 추정할 수 있다. 따라서, 복소 임피던스의 허수 성분 Z" 에 대한 기울기 함수는, 정점 주파수에 대응하는 것만이 도출된다.
도 10 으로 되돌아와, 임피던스 추정부 (140) 는, 복수 개의 복소 임피던스의 실수 성분 Z' 에 대한 기울기 함수를 사용하여, 소정의 기준 온도에 대응하는 복소 임피던스의 실수 성분 Z' 를, 복수의 주파수 각각에 대해 추정한다. 또, 임피던스 추정부 (140) 는, 원호 성분의 정점 주파수에 대응하는 복소 임피던스의 허수 성분 Z" 에 대한 기울기 함수를 사용하여, 소정의 기준 온도에 대응하는 허수 성분 Z" 를 추정한다. 그리고, 추정한 임피던스의 실수 성분 Z' 및 허수 성분 Z" 를 사용하여, 복소 임피던스의 원호 성분 (구체적으로는, Cole-Cole 플롯의 원호 성분의 형상) 을 추정한다 (스텝 S24).
또한, 복소 임피던스의 실수 성분 Z' 에 대해서는, 원호 성분에 상당하는 복수의 주파수에 대해 각각 추정되고 있지만, 복소 임피던스의 허수 성분 Z" 에 대해서는, 원호 성분의 정점 주파수에 대응하는 1 개의 값밖에 추정되어 있지 않다. 바꿔 말하면, 복소 임피던스의 허수 성분 Z" 에 대해서는, 원호 성분에 상당하는 복수의 주파수 전부에 대응하는 값이 추정되어 있지 않다. 그러나, 원호 성분의 대략의 형상 (즉, 도 9 에 나타내는 바와 같은 상측 방향의 원호와 같은 형상이 되는 것) 은 이미 알고 있기 때문에, 복수의 주파수에 대응하는 복수의 복소 임피던스의 실수 성분 Z' 와, 정점 주파수에 대응하는 1 개의 복소 임피던스의 허수 성분 Z" 만 판명되고 있으면, 그것으로부터 정확하게 원호 성분의 형상을 추정할 수 있다.
임피던스 추정부 (140) 는, 이와 같이 하여 추정한 소정의 기준 온도에 대응하는 복소 임피던스의 원호 성분을 이용하여, 원호 성분에 상당하는 임의의 주파수의 복소 임피던스의 값 Z 를 추정한다 (스텝 S25).
(3) 기술적 효과
이상 설명한 바와 같이, 제 2 실시형태에 관련된 임피던스 추정 장치에 의하면, Cole-Cole 플롯의 원호 성분에 상당하는 주파수대의 복소 임피던스를 추정할 수 있다. 원호 성분에 상당하는 주파수대에서는, 이미 설명한 바와 같이, 임피던스의 허수 성분 Z" 에 대해 기울기 함수를 도출할 수 없는 부분이 있다 (즉, 기울기 함수로 나타내는 직선적인 관계가 성립하지 않는 부분이 있다). 그러나, 기울기 함수를 이용 가능한 정점 주파수의 허수 성분 Z" 를 이용하면, 복소 임피던스의 원호 성분의 형상을 추정할 수 있다. 이 결과, 바람직하게 원하는 온도에 대응하는 복소 임피던스를 추정하는 것이 가능해진다.
<부가 기재>
이상 설명한 실시형태로부터 도출되는 발명의 각종 양태를 이하에 설명한다.
(부가 기재 1)
부가 기재 1 에 기재된 임피던스 추정 장치는, 상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 소정 주파수에 있어서의 값과, 상기 복소 임피던스가 취득되었을 때의 상기 전지의 온도에 기초하여, 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값과, 상기 전지의 온도의 역수의 관계를 나타내는 기울기 함수를 도출하는 도출 수단과, 상기 기울기 함수를 사용하여, 상기 전지의 원하는 온도에 대응하는 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값을 추정하는 추정 수단을 구비한다.
부가 기재 1 에 기재된 임피던스 추정 장치에 의하면, 상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 소정 주파수에 있어서의 값과, 복소 임피던스가 취득되었을 때의 전지의 온도에 기초하여 기울기 함수가 도출된다. 이 기울기 함수는, 복소 임피던스의 소정 주파수에 있어서의 값과, 전지의 온도의 역수의 관계를 나타내는 함수로서 도출된다. 따라서, 기울기 함수를 이용하면, 전지의 원하는 온도에 대응하는 복소 임피던스의 소정 주파수에 있어서의 값을 추정할 수 있다. 바꿔 말하면, 실제의 전지의 온도에 의하지 않고, 소정의 온도 조건하에서의 복소 임피던스를 추정하는 것이 가능해진다.
(부가 기재 2)
부가 기재 2 에 기재된 임피던스 추정 장치에서는, 상기 도출 수단은, 상기 복소 임피던스의 절대값 및 실수 성분의 적어도 일방을, 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값으로서 사용한다.
부가 기재 2 에 기재된 임피던스 추정 장치에 의하면, 복소 임피던스의 절대값 및 실수 성분의 적어도 일방을 사용함으로써, 예를 들어 복소 임피던스의 허수 성분을 사용하는 경우와 비교하여, 상대적으로 높은 정밀도로 전지의 복소 임피던스를 추정하는 것이 가능하다.
(부가 기재 3)
부가 기재 3 에 기재된 임피던스 추정 장치에서는, 상기 기울기 함수는, 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값을 Z, 상기 전지의 온도를 T 로 하면, 기울기 A 및 절편 B 를 포함하는 하기 수식 logZ = A × (1/T) + B 로서 나타낸다.
부가 기재 3 에 기재된 임피던스 추정 장치에 의하면, 기울기 함수가 1 차 함수로서 도출되기 때문에, 매우 용이하게 전지의 복소 임피던스를 추정하는 것이 가능하다.
(부가 기재 4)
부가 기재 4 에 기재된 임피던스 추정 장치에서는, 상기 도출 수단은, 상기 기울기 A 또는 상기 절편 B 의 일방이 이미 알려진 경우, 측정 정밀도가 보증되는 상기 전지의 온도와, 그 측정 정밀도가 보증되는 상기 전지의 온도에서 취득된 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값을 사용하여, 상기 기울기 A 또는 상기 절편 B 의 타방을 산출한다.
부가 기재 4 에 기재된 임피던스 추정 장치에 의하면, 측정 정밀도가 보증되는 전지의 온도와, 측정 정밀도가 보증되는 전지의 온도에서 취득된 복소 임피던스의 소정 주파수에 있어서의 값을 사용함으로써, 정확한 기울기 A 또는 절편 B 를 산출할 수 있다.
(부가 기재 5)
부가 기재 5 에 기재된 임피던스 추정 장치는, 상기 추정 수단은, 상기 도출 수단이 미리 도출한 복수 종류의 전지의 각각에 대응하는 복수의 상기 기울기 함수를 기억하고 있고, 측정 정밀도가 보증되는 상기 전지의 온도와, 그 측정 정밀도가 보증되는 상기 전지의 온도에서 취득된 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값에 기초하여, 상기 기억하고 있는 복수의 상기 기울기 함수 중에서, 상기 복소 임피던스의 상기 소정 주파수에 있어서의 값의 추정에 사용하는 상기 기울기 함수를 결정한다.
부가 기재 5 에 기재된 임피던스 추정 장치에 의하면, 측정 정밀도가 보증되는 전지의 온도와, 측정 정밀도가 보증되는 전지의 온도에서 취득된 복소 임피던스의 소정 주파수에 있어서의 값에 기초하여, 복소 임피던스를 추정하고자 하는 전지의 종류에 따른 적절한 기울기 함수가 결정된다. 따라서, 복수 종류의 전지 (보다 구체적으로는, 상이한 기울기 함수가 도출되는 복수의 전지) 가 복소 임피던스의 추정 대상이 되는 경우라도, 정확하게 전지의 복소 임피던스를 추정할 수 있다.
(부가 기재 6)
부가 기재 6 에 기재된 임피던스 추정 장치는, Cole-Cole 플롯의 이온 확산에 귀속되는 영역보다 고주파수측의 주파수 영역에 있어서, 상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 복수의 주파수에 있어서의 값과, 상기 복소 임피던스가 취득되었을 때의 상기 전지의 온도에 기초하여, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값과, 상기 전지의 온도의 역수의 관계를 나타내는 복수의 기울기 함수를 도출하는 도출 수단과, (i) 상기 복수의 기울기 함수를 사용하여, 상기 복소 임피던스의 원호 성분을 형성하는 상기 복수의 주파수에 있어서의 실수 성분을 추정함과 함께, 상기 복수의 기울기 함수 중 상기 복소 임피던스의 원호 성분의 정점 주파수에 대응하는 기울기 함수를 사용하여, 상기 정점 주파수에 있어서의 허수 성분을 추정하고, (ii) 상기 추정한 실수 성분 및 허수 성분으로부터, 상기 복소 임피던스의 원호 성분을 추정하고, (iii) 상기 추정한 원호 성분으로부터, 상기 전지의 원하는 온도에 대응하는 상기 복소 임피던스의 값을 추정하는 추정 수단을 구비한다.
부가 기재 6 에 기재된 임피던스 추정 장치에 의하면, Cole-Cole 플롯의 이온 확산에 귀속되는 영역보다 고주파수측의 주파수 영역에 있어서, 전지의 복소 임피던스가 추정된다. 구체적으로는, 먼저 기울기 함수를 사용하여, 복소 임피던스의 원호 성분을 형성하는 복수 주파수에 있어서의 실수 성분과, 복소 임피던스의 원호 성분의 정점 주파수에 있어서의 허수 성분으로부터, 원하는 전지의 온도에 대응하는 복소 임피던스의 원호 성분이 추정된다. 그리고, 추정된 원호 성분으로부터, 전지의 원하는 온도에 대응하는 복소 임피던스의 소정 주파수에 있어서의 값이 추정된다.
Cole-Cole 플롯의 이온 확산에 귀속되는 영역에서는, 복소 임피던스의 실수 성분에 대해서는, 복소 임피던스의 값과, 전지의 온도의 역수의 관계가 일정해진다 (즉, 기울기 함수에 있어서의 기울기가 일정해진다). 그 한편으로, 복소 임피던스의 허수 성분에 대해서는, 복소 임피던스의 값과, 전지의 온도의 역수의 관계가 일정해지지는 않는다 (즉, 기울기 함수에 있어서의 기울기가 일정해지지는 않는다). 단, 복소 임피던스의 허수 성분에 대해서도, 복소 임피던스의 원호 성분의 정점 주파수에 있어서의 값에 대해서는, 복소 임피던스의 값과, 전지의 온도의 역수의 관계가 일정해진다 (즉, 기울기 함수에 있어서의 기울기가 일정해진다).
따라서, 복소 임피던스의 원호 성분을 형성하는 복수 주파수에 있어서의 실수 성분과, 복소 임피던스의 원호 성분의 정점 주파수에 있어서의 허수 성분을 사용하면, 전지의 원하는 온도에 대응하는 복소 임피던스의 원호 성분을 정확하게 추정할 수 있다. 원호 성분을 정확하게 추정할 수 있으면, 그것으로부터 용이하게 복소 임피던스의 값을 추정할 수 있다.
본 발명은, 청구범위 및 명세서 전체로부터 판독할 수 있는 발명의 요지 또는 사상에 반하지 않는 범위에서 적절히 변경 가능하고, 그러한 변경을 수반하는 임피던스 추정 장치도 또한 본 발명의 기술 사상에 포함된다.
10 : 배터리
100 : 임피던스 추정 장치
110 : 임피던스 취득부
120 : 온도 취득부
130 : 기울기 함수 산출부
140 : 임피던스 추정부

Claims (6)

  1. Cole-Cole 플롯의 이온 확산에 귀속되는 영역보다 고주파수측의 주파수 영역에 있어서,
    상이한 복수의 온도에서 취득된 전지의 복소 임피던스의 복수의 주파수에 있어서의 값과, 상기 복소 임피던스가 취득되었을 때의 상기 전지의 온도에 기초하여, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값과, 상기 전지의 온도의 역수의 관계를 나타내는 복수의 기울기 함수를 도출하는 도출 수단과,
    (i) 상기 복수의 기울기 함수를 사용하여, 상기 복소 임피던스의 원호 성분을 형성하는 상기 복수의 주파수에 있어서의 실수 성분을 추정함과 함께, 상기 복수의 기울기 함수 중 상기 복소 임피던스의 원호 성분의 정점 주파수에 대응하는 기울기 함수를 사용하여, 상기 정점 주파수에 있어서의 허수 성분을 추정하고, (ii) 상기 추정한 실수 성분 및 허수 성분으로부터, 상기 복소 임피던스의 원호 성분을 추정하고, (iii) 상기 추정한 원호 성분으로부터, 상기 전지의 원하는 온도에 대응하는 상기 복소 임피던스의 값을 추정하는 추정 수단을 구비하는 것을 특징으로 하는 임피던스 추정 장치.
  2. 제 1 항에 있어서,
    상기 도출 수단은, 상기 복소 임피던스의 절대값 및 실수 성분의 적어도 일방을, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값으로서 사용하는 것을 특징으로 하는 임피던스 추정 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 복수의 기울기 함수는, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값을 Z, 상기 전지의 온도를 T 로 하면, 기울기 A 및 절편 B 를 포함하는 하기 수식
    logZ = A × (1/T) + B
    로서 나타내는 것을 특징으로 하는 임피던스 추정 장치.
  4. 제 3 항에 있어서,
    상기 도출 수단은, 상기 기울기 A 또는 상기 절편 B 의 일방이 이미 알려진 경우, 측정 정밀도가 보증되는 상기 전지의 온도와, 그 측정 정밀도가 보증되는 상기 전지의 온도에서 취득된 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값을 사용하여, 상기 기울기 A 또는 상기 절편 B 의 타방을 산출하는 것을 특징으로 하는 임피던스 추정 장치.
  5. 제 1 항에 있어서,
    상기 추정 수단은,
    상기 도출 수단이 미리 도출한 복수 종류의 전지의 각각에 대응하는 상기 복수의 기울기 함수를 기억하고 있고,
    측정 정밀도가 보증되는 상기 전지의 온도와, 그 측정 정밀도가 보증되는 상기 전지의 온도에서 취득된 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값에 기초하여, 상기 기억하고 있는 상기 복수의 기울기 함수 중에서, 상기 복소 임피던스의 상기 복수의 주파수에 있어서의 값의 추정에 사용하는 상기 복수의 기울기 함수를 결정하는 것을 특징으로 하는 임피던스 추정 장치.
  6. 삭제
KR1020180080018A 2017-08-24 2018-07-10 임피던스 추정 장치 KR102038814B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161206A JP6881156B2 (ja) 2017-08-24 2017-08-24 インピーダンス推定装置
JPJP-P-2017-161206 2017-08-24

Publications (2)

Publication Number Publication Date
KR20190022312A KR20190022312A (ko) 2019-03-06
KR102038814B1 true KR102038814B1 (ko) 2019-10-31

Family

ID=62981022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180080018A KR102038814B1 (ko) 2017-08-24 2018-07-10 임피던스 추정 장치

Country Status (5)

Country Link
US (1) US20190064278A1 (ko)
EP (1) EP3457151B1 (ko)
JP (1) JP6881156B2 (ko)
KR (1) KR102038814B1 (ko)
CN (1) CN109425834B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806002B2 (ja) 2017-08-24 2020-12-23 トヨタ自動車株式会社 温度推定装置
KR102581184B1 (ko) * 2023-01-26 2023-09-21 주식회사 민테크 임피던스 추정 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250905A (ja) * 2005-03-14 2006-09-21 Fuji Heavy Ind Ltd バッテリ管理システム
US20160103184A1 (en) * 2014-10-09 2016-04-14 Denso Corporation Battery state estimation apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642092B2 (ja) * 1995-10-12 2005-04-27 日産自動車株式会社 電気自動車用二次電池の内部抵抗検出システム及びそれを用いた内部抵抗検出方法
US5859537A (en) * 1996-10-03 1999-01-12 Dacco Sci, Inc. Electrochemical sensors for evaluating corrosion and adhesion on painted metal structures
JP3771526B2 (ja) * 2002-10-21 2006-04-26 株式会社日立製作所 二次電池評価方法および蓄電装置
JP4495141B2 (ja) 2006-12-25 2010-06-30 古河電気工業株式会社 バッテリ状態判定方法、バッテリ状態判定装置及びバッテリ電源システム
JP4805101B2 (ja) * 2006-11-21 2011-11-02 古河電気工業株式会社 バッテリ状態推定方法、バッテリ状態監視装置及びバッテリ電源システム
CN101666861B (zh) * 2009-04-24 2012-10-31 深圳市普禄科智能检测设备有限公司 一种基于多频点交流放电法的蓄电池检测装置及方法
JP4898934B2 (ja) 2010-03-29 2012-03-21 株式会社Ubic フォレンジックシステム及びフォレンジック方法並びにフォレンジックプログラム
US8521497B2 (en) * 2010-06-03 2013-08-27 Battelle Energy Alliance, Llc Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices
JP5543608B2 (ja) 2010-10-05 2014-07-09 株式会社ニフコ 流体分配バルブ並びにこれを備えた流体供給システム及びその制御方法
CN103080712B (zh) 2011-08-01 2015-01-14 阿尔卑斯绿色器件株式会社 蓄电装置温度测定方法
EP2811310B1 (en) 2012-01-31 2019-05-15 Primearth EV Energy Co., Ltd. State of charge detection device
CN102866362B (zh) * 2012-09-27 2015-04-15 重庆大学 电动汽车动力电池阻抗特性测量方法
JP6226261B2 (ja) 2012-12-27 2017-11-08 学校法人早稲田大学 電気化学システム
JP5744957B2 (ja) * 2013-04-12 2015-07-08 プライムアースEvエナジー株式会社 電池状態判定装置
EP3021127A4 (en) * 2013-07-10 2017-05-03 Alps Electric Co., Ltd. Method for estimating state of electricity storage device
JP6227309B2 (ja) * 2013-07-17 2017-11-08 矢崎総業株式会社 電池状態検出装置
US10094882B2 (en) * 2014-12-26 2018-10-09 Denso Corporation Apparatus for predicting power parameter of secondary battery
CN106289566B (zh) * 2016-07-19 2018-12-11 清华大学 一种基于电化学阻抗对二次电池内部温度估算的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250905A (ja) * 2005-03-14 2006-09-21 Fuji Heavy Ind Ltd バッテリ管理システム
US20160103184A1 (en) * 2014-10-09 2016-04-14 Denso Corporation Battery state estimation apparatus

Also Published As

Publication number Publication date
JP2019039761A (ja) 2019-03-14
EP3457151B1 (en) 2020-05-13
BR102018016479A2 (pt) 2019-03-26
CN109425834B (zh) 2021-08-20
US20190064278A1 (en) 2019-02-28
CN109425834A (zh) 2019-03-05
KR20190022312A (ko) 2019-03-06
JP6881156B2 (ja) 2021-06-02
EP3457151A1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
CN106461732B (zh) 用于估计电池的健康状态的方法
JP6806002B2 (ja) 温度推定装置
JP6657967B2 (ja) 状態推定装置、状態推定方法
US10288693B2 (en) State of charge estimator and methods of making and using the same
US10718817B2 (en) Battery state estimating apparatus
KR101992561B1 (ko) 전지 상태 추정 장치
KR102557731B1 (ko) 배터리의 순간 개방 회로 전압 프로파일의 추정 방법 및 장치
EP3021127A1 (en) Method for estimating state of electricity storage device
CN108627771B (zh) 电池状态推测装置
JP5535963B2 (ja) 劣化推定装置、劣化推定方法、及びプログラム
KR101901837B1 (ko) 정밀한 유도 전력 측정을 위한 모바일 장치 테스터 및 그 보정 유닛
JP2019070621A (ja) 二次電池システム
KR102038814B1 (ko) 임피던스 추정 장치
JP6834849B2 (ja) インピーダンス推定装置
JP2016099251A (ja) 二次電池状態検出装置および二次電池状態検出方法
US11035902B2 (en) Advanced fuel gauge
JP2016065844A (ja) 電池システム用制御装置および電池システムの制御方法
US10067193B2 (en) Method and apparatus for determining a constant current limit value
RU2698473C1 (ru) Оборудование оценки импеданса
KR101546324B1 (ko) 2차전지 충전상태 예측장치 및 방법
KR102009729B1 (ko) 표집에 의해 부하 신호의 최대 전압값을 판별하기 위한 방법
JP2018045932A (ja) 二次電池の検査方法
JP2019211290A (ja) バッテリ容量推定装置、およびバッテリ容量推定方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right