KR102037661B1 - 가스농도 정밀제어 시스템 - Google Patents
가스농도 정밀제어 시스템 Download PDFInfo
- Publication number
- KR102037661B1 KR102037661B1 KR1020170126105A KR20170126105A KR102037661B1 KR 102037661 B1 KR102037661 B1 KR 102037661B1 KR 1020170126105 A KR1020170126105 A KR 1020170126105A KR 20170126105 A KR20170126105 A KR 20170126105A KR 102037661 B1 KR102037661 B1 KR 102037661B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- flow rate
- value
- membrane
- offset
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/30—Controlling by gas-analysis apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0027—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/005—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Thermal Sciences (AREA)
- Water Supply & Treatment (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축 공기를 생성하고, 멤브레인에 유입되는 공기압을 유지하는 컴프레셔(10); 상기 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과하는 필터(20); 상기 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지하는 히터(30); 상기 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리하는 멤브레인(40); 상기 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절하는 컨트롤밸브(50); 및 상기 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장하는 저장탱크(60)를 포함하고, 상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있으며, 상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)와 가스농도 분석기(90)가 배치되며, 상기 유량계(80)는 측정한 측정 유량값(yf(t))을 상기 제1 비교기(C1)로 전달하고, 상기 제1 비교기(C1)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하고, 상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며, 상기 가스농도 분석기(90)는 측정한 측정가스 농도값(yg(t))을 제2 비교기(C2)로 전달하며, 상기 제2 비교기(C2)는 사전에 입력된 기준가스 농도값(rg(t))에서 상기 측정가스 농도값(yg(t))을 뺀 값(eg(t))을 제2 컨트롤러(72)로 전달하며, 상기 제2 컨트롤러(72)는 내장된 산술식인 Math & Scale로 스케일링함으로써 기준 유량값에 대한 오프셋(roffset(t))을 결정하여 상기 기준 유량값에 대한 오프셋(roffset(t))을 상기 제1 비교기(C1)로 전달하는 것을 특징으로 하는 가스농도 정밀제어 시스템에 관한 것이다.
Description
본 발명은 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축공기를 생성하고, 멤브레인에 유입되는 공기압을 유지하는 컴프레셔(10); 상기 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과하는 필터(20); 상기 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지하는 히터(30); 상기 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리하는 멤브레인(40); 상기 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절하는 컨트롤밸브(50); 및 상기 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장하는 저장탱크(60)를 포함하고, 상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있으며, 상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)와 가스농도 분석기(90)가 배치되며, 상기 유량계(80)는 측정한 측정 유량값(yf(t))을 상기 제1 비교기(C1)로 전달하고, 상기 제1 비교기(C1)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하고, 상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며, 상기 가스농도 분석기(90)는 측정한 측정가스 농도값(yg(t))을 제2 비교기(C2)로 전달하며, 상기 제2 비교기(C2)는 사전에 입력된 기준가스 농도값(rg(t))에서 상기 측정가스 농도값(yg(t))을 뺀 값(eg(t))을 제2 컨트롤러(72)로 전달하며, 상기 제2 컨트롤러(72)는 내장된 산술식인 Math & Scale으로 스케일링함으로써 기준 유량값에 대한 오프셋(roffset(t))을 결정하여 상기 기준 유량값에 대한 오프셋(roffset(t))을 상기 제1 비교기(C1)로 전달하는 것을 특징으로 하는 가스농도 정밀제어 시스템에 관한 것이다.
본 발명은 멤브레인을 이용한 가스 발생 장치에서 가스 농도를 정밀하게 제어하기 위해 발명된 가스농도 정밀제어 시스템에 관한 것이다.
통상 멤브레인을 이용한 가스발생장치에서 특정농도를 제어하는 방법은 멤브레인의 특성에 따라 온도와 압력 그리고 유량을 조절하는 방식으로 보다 세부적으로 멤브레인에 주입되는 공기의 압력과 온도가 일정하게 유지되는 경우 멤브레인에서 토출되는 유량을 조절함으로써 원하는 농도의 가스를 얻을 수 있다.
<특정 제조사의 자사 모델별 멤브레인 특성>
예를 들어, 상기 특정 제조사의 모델별 멤브레인 특성 표 1에서 PA3020N1이라는 모델을 통해 97[%] 순도의 질소를 생성하기 위해서는 멤브레인에 유입되는 공기의 조건을 55[℃], 9[bar]로 유지할 경우, 6.2 [Nm3/h]의 유량으로 멤브레인에 주입했을 때 2.2[Nm3/h]의 97[%] 질소를 얻을 수 있다. 이와 같이, 특정 농도로 원하는 양의 가스를 얻고자 할 경우, 먼저 상기 표를 통해 원하는 농도에서의 토출 유량을 고려하여 멤브레인을 선정한 후 선정된 멤브레인의 특성에 맞는 유량을 제어하면 된다.
이와 관련하여, 도 1은 멤브레인을 이용한 가스발생시스템의 개요도이고, 도 2는 도 1의 가스발생시스템에 적용되는 종래기술의 일실시예에 따른 가스농도 제어 방법을 나타내는 도면이다.
도 1을 참조하면, 종래기술의 일실시예에 따른 가스농도 제어 시스템은, 컴프레셔(10), 필터(20), 히터(30), 멤브레인(40), 컨트롤밸브(50), 및 저장탱크(60)를 포함한다.
상기 컴프레셔(10)는 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축공기를 생성하고, 멤브레인에 유입되는 공기압을 유지한다.
상기 필터(20)는 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과한다.
상기 히터(30)는 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지한다.
상기 멤브레인(40)은 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리한다.
상기 컨트롤밸브(50)는 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절한다.
상기 저장탱크(60)는 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장한다.
여기서, 상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있다.
도 2를 참조하면, 상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)가 배치되어 있는데, 유량계(80)는 측정한 측정 유량값(yf(t))을 비교기(C)로 전달, 즉 피드백하고, 상기 비교기(C)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 컨트롤러(70)로 전달한다.
상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며, 컨트롤러(70)가 컨트롤밸브(50)를 제어하여 배관을 흐르는 제1 가스의 유량을 조절함으로써 제1 가스의 순도 또는 농도의 조절을 이루려 하는 구성이다.
하지만, 수분이나 먼지로 인한 멤브레인(40)의 오염과 장시간 사용함으로써 발생하는 자연적인 노후화로 인해 멤브레인(40)의 특성이 변하게 되는 경우, 유입되는 유량만으로, 즉 측정한 측정 유량값(yf(t))만으로 단순 제어할 경우 원하는 농도를 얻지 못하게 된다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은 기존의 방식에서 유입되는 유량만을 피드백 받아 원하는 농도를 제어하는 것과 달리, 가스 분석기를 통해 농도값을 피드백 받아 유입되는 기준 유량값을 보정해주는 방식을 사용함으로써 멤브레인의 특성변화에 대응하는 농도제어를 하고자 하는 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 가스농도 정밀제어 시스템은 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축공기를 생성하고, 멤브레인에 유입되는 공기압을 유지하는 컴프레셔(10); 상기 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과하는 필터(20); 상기 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지하는 히터(30); 상기 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리하는 멤브레인(40); 상기 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절하는 컨트롤밸브(50); 및 상기 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장하는 저장탱크(60)를 포함하고, 상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있으며, 상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)와 가스농도 분석기(90)가 배치되며, 상기 유량계(80)는 측정한 측정 유량값(yf(t))을 상기 제1 비교기(C1)로 전달하고, 상기 제1 비교기(C1)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하고, 상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며, 상기 가스농도 분석기(90)는 측정한 측정가스 농도값(yg(t))을 제2 비교기(C2)로 전달하며, 상기 제2 비교기(C2)는 사전에 입력된 기준가스 농도값(rg(t))에서 상기 측정가스 농도값(yg(t))을 뺀 값(eg(t))을 제2 컨트롤러(72)로 전달하며, 상기 제2 컨트롤러(72)는 내장된 산술식인 Math & Scale로 스케일링함으로써 기준 유량값에 대한 오프셋(roffset(t))을 결정하여 상기 기준 유량값에 대한 오프셋(roffset(t))을 상기 제1 비교기(C1)로 전달하는 것을 특징으로 한다.
roffset(t) = ug(t) × Scaling factor이고, 여기서, 상기 Scaling factor는 실험적으로 얻어지는 값인 것을 특징으로 한다.
상기 제1 가스는 질소이고, 상기 제2 가스는 산소인 것을 특징으로 한다.
이상과 같이 본 발명은 가스 분석기를 통해 농도값을 피드백 받아 유입되는 기준 유량값을 보정해주는 방식을 사용함으로써 멤브레인의 특성변화에 대응하는 농도제어를 자동제어할 수 있는 효과가 있다.
본 발명의 기술적 효과들은 이상에서 언급한 기술적 효과들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 청구범위의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 멤브레인을 이용한 가스발생시스템의 개요도이다.
도 2는 도 1의 가스발생시스템에 적용되는 종래기술의 일실시예에 따른 가스농도 제어 방법을 나타내는 도면이다.
도 3은 도 1의 가스발생시스템에 적용되는 본 발명의 바람직한 실시예에 따른 가스농도 정밀제어 방법을 나타내는 도면이다.
도 2는 도 1의 가스발생시스템에 적용되는 종래기술의 일실시예에 따른 가스농도 제어 방법을 나타내는 도면이다.
도 3은 도 1의 가스발생시스템에 적용되는 본 발명의 바람직한 실시예에 따른 가스농도 정밀제어 방법을 나타내는 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 참고로, 본 발명을 설명하는 데 참조하는 도면에 도시된 구성요소의 크기, 선의 두께 등은 이해의 편의상 다소 과장되게 표현되어 있을 수 있다. 또, 본 발명의 설명에 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의한 것이므로 사용자, 운용자 의도, 관례 등에 따라 달라질 수 있다. 따라서, 이 용어에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내리는 것이 마땅하겠다.
또한, 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다. 아울러, 본 발명의 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
본 발명의 각 구성 단계에 대한 상세한 설명에 앞서, 본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위하여 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하며 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 멤브레인을 이용한 가스발생시스템의 개요도이고, 도 3은 도 1의 가스발생시스템에 적용되는 본 발명의 바람직한 실시예에 따른 가스농도 정밀제어 방법을 나타내는 도면이다.
도 1, 3을 참조하면, 본 발명의 바람직한 실시예에 따른 가스농도 정밀제어 시스템은, 컴프레셔(10), 필터(20), 히터(30), 멤브레인(40), 컨트롤밸브(50), 및 저장탱크(60)를 포함한다.
상기 컴프레셔(10)는 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축 공기를 생성하고, 멤브레인에 유입되는 공기압을 유지한다.
상기 필터(20)는 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과하며, 본 발명의 일 실시예에서는 하나의 필터로 도시되어 있지만 다른 실시예에서는 다수의 에어필터가 직렬로 연결되어 있는 구성도 가능하다. 또한, 상기 필터(20)의 전단과 후단에는 각각 압력계를 설치하여 필터(20)의 전단과 후단 사이의 압력 차이가 발생하면 이를 원격한 곳에 설치된 별도의 알람으로 전달하여 필터(20)에 대한 유지보수 시그널을 보낼 수 있도록 구성하는 것도 가능하다.
상기 히터(30)는 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지한다. 본 실시예에서, 상기 히터(30)는 내부에 히팅코일이 있고 인입단과 출력단 측에 온도계를 구비하여 히팅 온도를 측정 및 제어하도록 하는 구성도 가능하다.
상기 멤브레인(40)은 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리하는데, 멤브레인(40)의 내부에는 중공사막 다발이 설치되어 있어 상대적으로 투과속도가 느린 제1 가스는 중공사막을 투과하지 못하고 중공사막 다발의 중공부를 그대로 지나 컨트롤밸브(50)와 저장탱크(60) 쪽으로 공급되고, 상대적으로 투과속도가 빠른 제2 가스는 중공사막을 투과하여 분리된다.
상기 컨트롤밸브(50)는 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절한다.
상기 저장탱크(60)는 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장하는데, 제1 가스의 농도가 특정 농도 범위 내이면 제1 가스는 저장탱크(60)에 저장되지만, 제1 가스의 농도가 특정 농도 범위 밖이면 제1 가스는 솔레노이드밸브를 작동시켜 별도의 벤트(vent)부를 통해 배출시키는 것이 바람직하다.
여기서, 상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있다.
상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)와 가스농도 분석기(90)가 배치되는데, 예를 들어 유량계(80)와 가스농도 분석기(90)가 컨트롤밸브(50)의 하류측의 배관에 설치될 수도 있고, 컨트롤밸브(50)의 상류측의 배관에 설치될 수도 있으며, 유량계(80)는 컨트롤밸브(50)의 하류측의 배관에 설치되고 가스농도 분석기(90)는 컨트롤밸브(50)의 상류측의 배관에 설치되는 구성도 가능하다.
상기 유량계(80)는 측정한 측정 유량값(yf(t))을 상기 제1 비교기(C1)로 전달하고, 상기 제1 비교기(C1)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달한다.
상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며, 상기 가스농도 분석기(90)는 측정한 측정가스 농도값(yg(t))을 제2 비교기(C2)로 전달하며, 상기 제2 비교기(C2)는 사전에 입력된 기준가스 농도값(rg(t))에서 상기 측정가스 농도값(yg(t))을 뺀 값(eg(t))을 제2 컨트롤러(72)로 전달하며, 상기 제2 컨트롤러(72)는 내장된 산술식인 Math & Scale으로 스케일링함으로써 기준 유량값에 대한 차이값인 오프셋(roffset(t))을 결정하여 상기 기준 유량값에 대한 오프셋(roffset(t))을 상기 제1 비교기(C1)로 전달한다.
여기서, 상기 제1 비교기(C1)는 상기 기준 유량값에 대한 오프셋(roffset(t))을 전달받기 전에는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하지만 상기 기준 유량값에 대한 오프셋(roffset(t))을 전달받았을 때에는 상기 기준 유량값에다 상기 기준 유량값에 대한 오프셋(roffset(t))을 더한 값에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하며, 이와 같은 구성에 의해 시간 경과에 따라 멤브레인(40)이 노후화하거나 성능저하가 발생하여 멤브레인(40)이 걸러주는 제1 가스의 기준 유량값이 변화했을 때 상기 기준 유량값에다 상기 기준 유량값에 대한 오프셋(roffset(t))을 더한 값에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하여 이 값(ef(t))을 기준으로 제1 컨트롤러(71)가 컨트롤밸브(50)를 제어하여 배관을 흐르는 제1 가스의 유량을 조절함으로써 원하는 순도 또는 농도(예, 97%)의 제1 가스를 얻을 수 있게 된다.
상기 roffset(t) = ug(t) × Scaling factor이고, 여기서, 상기 Scaling factor는 실험적으로 얻어지는 값이다.
본 발명의 바람직한 실시예에서, 상기 제1 가스는 질소이고, 상기 제2 가스는 산소이지만, 본 발명은 이에 한정되는 것은 아니고 다른 실시예에서는 제1 가스가 질소이외의 다른 가스일 수 있고 제2 가스도 산소 이외의 다른 가스일 수 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용, 변형 및 개작을 행하는 것이 가능할 것이다. 이에, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
10 : 컴프레셔
20 : 필터
30 : 히터
40 : 멤브레인
50 : 컨트롤밸브
60 : 저장탱크
70, 71, 72 : 컨트롤러
80 : 유량계
90 : 가스농도 분석기
C, C1, C2 : 비교기
rf(t) : 기준 유량값
yf(t) : 측정 유량값
ef(t) : 기준 유량값(rf(t)) - 측정 유량값(yf(t))
rg(t) : 기준가스 농도값
yg(t) : 측정가스 농도값
eg(t) : 기준가스 농도값(rg(t)) - 상기 측정가스 농도값(yg(t))
roffset(t) : 기준 유량값에 대한 오프셋
20 : 필터
30 : 히터
40 : 멤브레인
50 : 컨트롤밸브
60 : 저장탱크
70, 71, 72 : 컨트롤러
80 : 유량계
90 : 가스농도 분석기
C, C1, C2 : 비교기
rf(t) : 기준 유량값
yf(t) : 측정 유량값
ef(t) : 기준 유량값(rf(t)) - 측정 유량값(yf(t))
rg(t) : 기준가스 농도값
yg(t) : 측정가스 농도값
eg(t) : 기준가스 농도값(rg(t)) - 상기 측정가스 농도값(yg(t))
roffset(t) : 기준 유량값에 대한 오프셋
Claims (3)
- 외부의 공기를 흡입한 후 압축하여 멤브레인에 공급하기 위한 압축 공기를 생성하고, 멤브레인에 유입되는 공기압을 유지하는 컴프레셔(10);
상기 컴프레셔(10)를 통해 유입되는 공기 내 수분, 먼지, 유분을 여과하며 다수의 에어필터가 직렬로 연결된 필터(20);
상기 필터(20)를 거쳐 나온 공기의 온도를 일정하게 유지하는 히터(30);
상기 히터(30)를 거쳐 나온 공기를 제1 가스와 제2 가스로 분리하는 멤브레인(40);
상기 멤브레인(40)에서 배출되는 상기 제1 가스의 유량을 조절하는 컨트롤밸브(50); 및
상기 컨트롤밸브(50)를 거친 특정 농도 범위의 제1 가스를 저장하는 저장탱크(60)를 포함하고,
상기 컴프레셔(10), 상기 필터(20), 상기 히터(30), 상기 멤브레인(40), 상기 컨트롤밸브(50), 및 상기 저장탱크(60)는 배관을 통해 서로 연결되어 있으며,
상기 컨트롤밸브(50)에 연결된 배관에는 유량계(80)와 가스농도 분석기(90)가 배치되며, 상기 유량계(80)는 측정한 측정 유량값(yf(t))을 제1 비교기(C1)로 전달하고, 상기 제1 비교기(C1)는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 제1 컨트롤러(71)로 전달하고,
상기 제2 가스는 상기 멤브레인(40)에서 분리되어 외부로 배출되며,
상기 가스농도 분석기(90)는 측정한 측정가스 농도값(yg(t))을 제2 비교기(C2)로 전달하며, 상기 제2 비교기(C2)는 사전에 입력된 기준가스 농도값(rg(t))에서 상기 측정가스 농도값(yg(t))을 뺀 값(eg(t))을 제2 컨트롤러(72)로 전달하며,
상기 제2 컨트롤러(72)는 내장된 산술식인 Math & Scale로 스케일링함으로써 기준 유량값에 대한 오프셋(roffset(t))을 결정하여 상기 기준 유량값에 대한 오프셋(roffset(t))을 상기 제1 비교기(C1)로 전달하며,
상기 제1 비교기(C1)는 상기 기준 유량값에 대한 오프셋(roffset(t))을 전달받기 전에는 사전에 입력된 기준 유량값(rf(t))에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하지만 상기 기준 유량값에 대한 오프셋(roffset(t))을 전달받았을 때에는 상기 기준 유량값에다 상기 기준 유량값에 대한 오프셋(roffset(t))을 더한 값에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하며, 이와 같은 구성에 의해 시간 경과에 따라 멤브레인(40)이 노후화하거나 성능저하가 발생하여 멤브레인(40)이 걸러주는 제1 가스의 기준 유량값이 변화했을 때 상기 기준 유량값에다 상기 기준 유량값에 대한 오프셋(roffset(t))을 더한 값에서 상기 측정 유량값(yf(t))을 뺀 값(ef(t))을 상기 제1 컨트롤러(71)로 전달하여 이 값(ef(t))을 기준으로 제1 컨트롤러(71)가 컨트롤밸브(50)를 제어하여 배관을 흐르는 제1 가스의 유량을 조절함으로써 원하는 순도 또는 농도의 제1 가스를 얻을 수 있으며,
roffset(t) = ug(t) ×Scaling factor이고,
여기서, 상기 Scaling factor는 실험적으로 얻어지는 값이며,
상기 제1 가스는 질소이고, 상기 제2 가스는 산소인 것을 특징으로 하는 가스농도 정밀제어 시스템.
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170126105A KR102037661B1 (ko) | 2017-09-28 | 2017-09-28 | 가스농도 정밀제어 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170126105A KR102037661B1 (ko) | 2017-09-28 | 2017-09-28 | 가스농도 정밀제어 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190036788A KR20190036788A (ko) | 2019-04-05 |
KR102037661B1 true KR102037661B1 (ko) | 2019-10-29 |
Family
ID=66104249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170126105A KR102037661B1 (ko) | 2017-09-28 | 2017-09-28 | 가스농도 정밀제어 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102037661B1 (ko) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA90813B (en) * | 1989-03-29 | 1991-03-27 | Boc Group Inc | Method of reducing the oxygen concentration in a psa nitrogen product stream |
KR100932202B1 (ko) | 2007-10-16 | 2009-12-16 | 이진기 | 질소발생기 |
KR101420082B1 (ko) * | 2012-07-24 | 2014-07-15 | 한국화학연구원 | 불화가스 분리 및 농축장치, 및 이를 이용한 불화가스 분리 및 농축방법 |
KR101722080B1 (ko) * | 2014-11-18 | 2017-03-31 | 플로우테크 주식회사 | 저장탱크 질소 공급 시스템 및 그 방법 |
KR101654172B1 (ko) * | 2014-12-08 | 2016-09-05 | 김정삼 | 레이저 절단기용 압축공기 공급시스템 |
-
2017
- 2017-09-28 KR KR1020170126105A patent/KR102037661B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20190036788A (ko) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3976574A (en) | Negative pressure control system | |
JP2789548B2 (ja) | 多段膜制御装置及び方法 | |
JP3683287B2 (ja) | 脱湿システムのための装置及び方法 | |
KR20220156677A (ko) | 초크 유동에 기반한 질량 유량 검증을 위한 방법들, 시스템들 및 장치 | |
US20190354120A1 (en) | Fluid control device and flow rate ratio control device | |
SE509424C2 (sv) | System för eliminering av gaser från en behållare som innehåller bikarbonatpulver och vatten | |
KR102037661B1 (ko) | 가스농도 정밀제어 시스템 | |
CN104784793B (zh) | 呼吸机及呼吸机的氧传感器自动校准方法 | |
SE501090C2 (sv) | Styrbar andningsventil | |
JP6363236B2 (ja) | ガス分離装置及び方法 | |
JP2019219821A (ja) | 流体制御装置、及び、流量比率制御装置 | |
CA2993880A1 (en) | Method for venting a dialyzer | |
CN104459760B (zh) | 一种方便快捷实现220Rn子体浓度稳定的220Rn室 | |
SE432300B (sv) | Anordning for dempning av pulseringar i en anleggning for forangning | |
EP0864818B1 (fr) | Procédé et installation de production d'air de qualité médicale | |
EP0642456A1 (fr) | Dispositif d'inertage d'un stockeur. | |
WO2019167389A1 (ja) | オゾン発生装置及びオゾン発生方法 | |
KR20200091270A (ko) | 질소 가스 제조 장치 | |
JPS5684606A (en) | Control device of ultrafiltration rate | |
JP6081348B2 (ja) | 多孔質膜評価装置および多孔質膜評価方法 | |
KR20210048313A (ko) | 정수기 및 정수기의 가압장치 제어방법 | |
SU551631A1 (ru) | Устройство дл стабилизации давлени воздуха | |
KR101498269B1 (ko) | 질소 발생기 | |
JP7252293B1 (ja) | 空気浄化システム | |
US11204347B2 (en) | Oxygen sensor test device and method of testing oxygen sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |