KR102007263B1 - Bi-directional electrically conductive module - Google Patents

Bi-directional electrically conductive module Download PDF

Info

Publication number
KR102007263B1
KR102007263B1 KR1020170124334A KR20170124334A KR102007263B1 KR 102007263 B1 KR102007263 B1 KR 102007263B1 KR 1020170124334 A KR1020170124334 A KR 1020170124334A KR 20170124334 A KR20170124334 A KR 20170124334A KR 102007263 B1 KR102007263 B1 KR 102007263B1
Authority
KR
South Korea
Prior art keywords
hole
conductive
pin
elastic spring
insulating body
Prior art date
Application number
KR1020170124334A
Other languages
Korean (ko)
Other versions
KR20190036004A (en
Inventor
문해중
이은주
Original Assignee
주식회사 이노글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노글로벌 filed Critical 주식회사 이노글로벌
Priority to KR1020170124334A priority Critical patent/KR102007263B1/en
Priority to PCT/KR2017/012930 priority patent/WO2019066135A1/en
Publication of KR20190036004A publication Critical patent/KR20190036004A/en
Application granted granted Critical
Publication of KR102007263B1 publication Critical patent/KR102007263B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Connecting Device With Holders (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

본 발명은 양방향 도전성 모듈 및 그 제조방법에 관한 것이다. 본 발명에 따른 양방향 도전성 모듈은 절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와, 각각의 상기 관통홀의 상부 영역에 충진되고, 도전성을 갖는 도전성 분말을 포함하는 충진제가 충진되어 형성되는 도전성 충진부와, 각각의 상기 관통홀의 하부 영역에 수용되고, 상기 도전성 충진부와 전기적으로 접촉되는 도전핀을 포함하고; 각각의 상기 관통홀은 상부 방향으로 개방된 상부 관통홀과, 상기 상부 관통홀의 내경보다 작은 내경을 갖는 하부 관통홀과, 상기 상부 관통홀과 상기 하부 관통홀 간의 내경의 차이로 인한 단차에 의해 형성되는 단차부을 포함하며; 각각의 상기 도전핀은 상기 하부 관통홀에 삽입되는 기둥부와, 상기 기둥부의 상부로부터 반경 방향 외측으로 연장되는 연장부를 포함하는 것을 특징으로 한다. 이에 따라, 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능하게 된다.The present invention relates to a bidirectional conductive module and a method of manufacturing the same. The bidirectional conductive module according to the present invention includes an insulating body having a plurality of through holes formed in an insulating material, and having a plurality of through holes penetrated in an up and down direction, and filled in an upper region of each of the through holes, and including conductive powder having conductivity. A conductive filler formed by filling a filler, and a conductive pin accommodated in a lower region of each of the through holes and electrically contacting the conductive filler; Each of the through holes is formed by an upper through hole opened in an upward direction, a lower through hole having an inner diameter smaller than the inner diameter of the upper through hole, and a step due to a difference in the inner diameter between the upper through hole and the lower through hole. Including a stepped portion; Each of the conductive pins may include a pillar portion inserted into the lower through hole and an extension portion extending radially outward from an upper portion of the pillar portion. Accordingly, the electrical characteristics are improved while overcoming the limitations of the fine pitch and the thickness, and the manufacturing is possible by a simple manufacturing method.

Description

양방향 도전성 모듈 및 그 제조방법{BI-DIRECTIONAL ELECTRICALLY CONDUCTIVE MODULE}Bidirectional conductive module and its manufacturing method {BI-DIRECTIONAL ELECTRICALLY CONDUCTIVE MODULE}

본 발명은 양방향 도전성 모듈 및 그 제조방법에 관한 것으로서, 보다 상세하게는 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능한 양방향 도전성 모듈 및 그 제조방법에 관한 것이다.The present invention relates to a bidirectional conductive module and a method for manufacturing the same, and more particularly, to overcome the limitations of the fine pitch and thickness, the electrical characteristics are improved, and a bidirectional conductive module and a method for manufacturing the same can be manufactured by a simple manufacturing method will be.

반도체 소자는 제조 과정을 거친 후 전기적 성능의 양불을 판단하기 위한 검사를 수행하게 된다. 반도체 소자의 양불 검사는 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 반도체 테스트 소켓(또는 콘텍터 또는 커넥터)을 반도체 소자와 검사회로기판 사이에 삽입한 상태에서 검사가 수행된다. 그리고, 반도체 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.After the semiconductor device is manufactured, the semiconductor device performs a test to determine whether the electrical performance is poor. The positive test of the semiconductor device is performed by inserting a semiconductor test socket (or a contactor or a connector) formed between the semiconductor device and the test circuit board so as to be in electrical contact with a terminal of the semiconductor device. The semiconductor test socket is also used in a burn-in test process during the manufacturing process of the semiconductor device, in addition to the final positive inspection of the semiconductor device.

반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 간격도 미세화되는 추세이고, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다.With the development and miniaturization of semiconductor device integration technology, the size and spacing of terminals of semiconductor devices, that is, leads, are also miniaturized. Accordingly, there is a demand for a method of forming minute spacing between conductive patterns of test sockets.

그런데, 기존의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 반도체 테스트 소켓을 제작하는데 한계가 있었다. 도 1 내지 도 3은 한국공개특허 제10-2011-0065047호에 개시된 종래의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓의 예를 나타낸 도면이다.However, the conventional Pogo-pin type semiconductor test socket has a limitation in manufacturing a semiconductor test socket for testing a semiconductor device to be integrated. 1 to 3 are diagrams showing an example of a conventional Pogo-pin type semiconductor test socket disclosed in Korean Patent Laid-Open No. 10-2011-0065047.

도 1 내지 도 3을 참조하여 설명하면 기존이 반도체 테스트 소켓(1100)은 반도체 디바이스(1130)의 단자(1131)와 대응되는 위치에 상하방향으로 관통공(1111)이 형성된 하우징(1110)과, 하우징(1110)의 관통공(1111) 내에 장착되어 반도체 디바이스(1130)의 단자(1131) 및 테스트 장치(1140)의 패드(1141)를 전기적으로 연결시키는 포고-핀(Pogo-pin)(1120)으로 이루어진다.1 to 3, the conventional semiconductor test socket 1100 includes a housing 1110 having a through hole 1111 formed in a vertical direction at a position corresponding to the terminal 1131 of the semiconductor device 1130, and Pogo-pins 1120 mounted in the through holes 1111 of the housing 1110 to electrically connect the terminals 1131 of the semiconductor device 1130 and the pads 1141 of the test apparatus 1140. Is done.

포고-핀(Pogo-pin)(1120)의 구성은, 포고-핀(Pogo-pin) 본체로 사용되며 내부가 비어있는 원통형 형태를 가지는 배럴(1124)과, 배럴(1124)의 하측에 형성되는 접촉팁(1123)과, 배럴(1124) 내부에서 접촉팁(1123)과 연결되어 수축과 팽창 운동을 하는 스프링(1122) 및 접촉팁(1123)과 연결된 스프링(1122) 반대편에 연결되어 반도체 디바이스(1130)와의 접촉에 따라 상하운동을 수행하는 접촉핀(1121)으로 구성된다.The configuration of the pogo-pin 1120 is a barrel 1124, which is used as a pogo-pin body and has a hollow cylindrical shape, and is formed below the barrel 1124. A semiconductor device connected to a contact tip 1123, a spring 1122 connected to the contact tip 1123 inside the barrel 1124 and contracting and expanding, and opposite to a spring 1122 connected to the contact tip 1123. It is composed of a contact pin 1121 to perform the vertical movement according to the contact with 1130.

이 때, 스프링(1122)은 수축 및 팽창을 하면서 접촉핀(1121)과 접촉팁(1123)에 전달되는 기계적인 충격을 흡수하면서 반도체 디바이스(1130)의 단자(1131)와 테스트 장치(1140)의 패드(1141)를 전기적으로 접속시켜 전기적인 불량여부를 검사하게 한다.At this time, the spring 1122 contracts and expands, while absorbing the mechanical shock transmitted to the contact pins 1121 and the contact tips 1123, the springs 1122 of the terminals 1131 and the test apparatus 1140 of the semiconductor device 1130. The pad 1141 is electrically connected to check whether there is an electrical failure.

그런데, 상기와 같은 기존의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓은 상하 방향으로의 탄성을 유지하기 위해 물리적인 스프링을 사용하게 되고, 배럴 내부에 스프링과 핀을 삽입하고, 배럴을 다시 하우징의 관통공 내부에 삽입하여야 하므로 그 공정이 복잡할 뿐만 아니라 공정의 복잡성으로 인해 제조 가격이 상승하는 문제가 있다.However, the conventional Pogo-pin type semiconductor test socket as described above uses a physical spring to maintain elasticity in the vertical direction, inserts the spring and the pin into the barrel, and Since the process has to be inserted into the through-hole of the housing again, the process is complicated and the manufacturing cost increases due to the complexity of the process.

뿐만 아니라, 상하 방향으로 탄성을 갖는 전기적 접촉 구조의 구현을 위한 물리적인 구성 자체가 미세 피치를 구현하는데 한계가 있으며, 근래에 집적화된 반도체 소자에는 적용하는데 이미 한계치까지 도달해 있는 실정이다.In addition, the physical configuration itself for the implementation of the electrical contact structure having elasticity in the vertical direction has a limit to implement the fine pitch, and the situation has already reached the limit to apply to the integrated semiconductor device in recent years.

포고-핀(Pogo-pin) 타입의 반도체 소자의 한계를 극복하고자 제한된 기술이, 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 PCR 소켓 타입의 반도체 테스트 소켓이다.In order to overcome the limitations of the pogo-pin type semiconductor device, the limited technology forms a perforated pattern in a vertical direction on a silicon main body made of an elastic silicon material, and then conductive powder inside the perforated pattern. It is a PCR socket type semiconductor test socket that fills the conductive pattern to form a conductive pattern.

그러나, PCR 타입의 반도체 테스트 소켓은 내부에 충진되는 도전성 분말의 이탈로 인한 수명의 단축 문제 등과 같이 PCR 타입의 반도체 테스트 소켓의 구조적 한계로 인해 갖는 문제점 또한 가지고 있다.However, the PCR-type semiconductor test socket also has a problem due to structural limitations of the PCR-type semiconductor test socket, such as a problem of shortening of life due to separation of conductive powder filled therein.

또한, PCR 타입의 반도체 테스트 소켓은 상하 방향으로의 두께의 제약을 받게 되는데, 대략 0.8mm~1.2mm 이상의 두께로 제작하게 되면 저항이 나오지 않아 도전 패턴으로의 기능을 수행하지 못하게 되는 단점이 있다.In addition, the PCR-type semiconductor test socket is subject to the constraint of the thickness in the vertical direction, there is a disadvantage in that the resistance does not come out to produce a thickness of about 0.8mm ~ 1.2mm or more does not function as a conductive pattern.

따라서, 미세 피치의 구현이 가능하면서도 상하 방향으로의 두께 제약을 동시에 극복할 수 있는 반도체 테스트 소켓의 개발이 요구되고 있다.Therefore, there is a demand for the development of a semiconductor test socket capable of realizing fine pitch while overcoming the thickness constraints in the vertical direction.

한편, 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓은 반도체 디바이스의 테스트 외에 두 디바이스를 전기적으로 연결하는 구조에서도 사용된다. 대표적인 예로, 하이-스피드의 CPU, 예컨대 대용량의 서버에 사용되는 CPU와 보드 사이에서 CPU의 핀과 보드의 단자 간을 연결하는 인터포저(Interposer)로 적용되고 있다.On the other hand, the pogo-pin type semiconductor test socket is used in a structure for electrically connecting two devices in addition to the test of the semiconductor device. As a representative example, a high-speed CPU, for example, an interposer connecting a pin of a CPU and a terminal of a board between a CPU and a board used in a large-capacity server.

대용량 서버에 사용되는 CPU이 경우, 일반 PC의 CPU 보다 면적이 넓고 핀의 수가 1000여개가 넘는 경우가 많아, 보드의 단자와 직접 접촉시키는 경우 접촉 불량이 발생할 수 있어, CPU와 보드 사이에서 포고-핀(Pogo-pin) 타입의 인터포저(Interposer)가 상하 방향으로 탄성적으로 두 디바이스를 연결하게 된다.In the case of a CPU used in a large-capacity server, the area of the CPU is larger than that of a general PC, and the number of pins is more than 1000, and if a direct contact is made with a terminal of a board, contact failure may occur. A pin-type interposer elastically connects the two devices in the vertical direction.

그런데, 포고-핀(Pogo-pin) 타입의 인터포저(Interposer)의 경우, 상술한 바와 같이, 피치의 한계로 인해 피치 간격이 좁아지는 CPU에 적용하는데 한계가 있을 뿐만 아니라, 상하 방향으로의 길이 한계로 인해 하이-스피드로 동작하는 CPU의 속도를 따라가기 어려운 문제점이 제기되고 있다.However, in the case of the Pogo-pin type interposer, as described above, there is a limitation in applying to a CPU in which the pitch interval is narrowed due to the limitation of the pitch, as well as the length in the vertical direction. Limitations raise the difficulty of keeping up with the speed of high-speed CPUs.

이에, 본 발명은 상기와 같은 문제점을 해소하기 위해 안출된 것으로서, 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능한 양방향 도전성 모듈 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, to overcome the limitations of the fine pitch and thickness, while improving the electrical characteristics, to provide a bidirectional conductive module and a method for manufacturing the same by a simple manufacturing method The purpose is.

상기 목적은 본 발명에 따라, 양방향 도전성 모듈에 있어서, 절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와, 각각의 상기 관통홀의 상부 영역에 충진되고, 도전성을 갖는 도전성 분말을 포함하는 충진제가 충진되어 형성되는 도전성 충진부와, 각각의 상기 관통홀의 하부 영역에 수용되고, 상기 도전성 충진부와 전기적으로 접촉되는 도전핀을 포함하고; 각각의 상기 관통홀은 상부 방향으로 개방된 상부 관통홀과, 상기 상부 관통홀의 내경보다 작은 내경을 갖는 하부 관통홀과, 상기 상부 관통홀과 상기 하부 관통홀 간의 내경의 차이로 인한 단차에 의해 형성되는 단차부를 포함하며; 각각의 상기 도전핀은 상기 하부 관통홀에 삽입되는 기둥부와, 상기 기둥부의 상부로부터 반경 방향 외측으로 연장되는 연장부를 포함하는 것을 특징으로 하는 양방향 도전성 모듈에 의해서 달성된다.According to the present invention, in the bidirectional conductive module, the object is provided with an insulating material, filled with an insulating body having a plurality of through holes penetrated in the vertical direction, and filled in the upper region of each of the through holes. A conductive filler formed by filling a filler including a conductive powder, and a conductive pin accommodated in a lower region of each of the through holes and electrically contacting the conductive filler; Each of the through holes is formed by an upper through hole opened in an upward direction, a lower through hole having an inner diameter smaller than the inner diameter of the upper through hole, and a step due to a difference in the inner diameter between the upper through hole and the lower through hole. Including a stepped portion; Each of the conductive pins is achieved by a bidirectional conductive module comprising a pillar portion inserted into the lower through hole and an extension portion extending radially outward from the top of the pillar portion.

여기서, 상기 연장부는 상기 단차부로부터 상부 방향으로 소정 간격 이격되어 상부 방향에서 가압될 때 하부 방향으로의 이동이 가능할 수 있다.Herein, the extension part may be moved downward in a downward direction when the extension part is spaced apart from the step part by a predetermined interval in the upper direction and pressed in the upper direction.

또한, 상기 연장부와 상기 단차부 사이의 이격 공간에는 상하 방향으로 복원력을 제공하는 탄성 스프링이 설치될 수 있다.In addition, an elastic spring may be installed in the spaced space between the extension part and the step part to provide a restoring force in the vertical direction.

그리고, 상기 상부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되어 상하 방향으로의 복원력을 제공하는 탄성 스프링을 더 포함할 수 있다.In addition, at least one region may be formed inside the insulating body to surround the upper through hole, and may further include an elastic spring that provides a restoring force in the vertical direction.

그리고, 상기 하부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되어 상하 방향으로의 복원력을 제공하는 탄성 스프링을 더 포함할 수 있다.In addition, at least one region may be formed inside the insulating body to surround the lower through hole, and may further include an elastic spring that provides a restoring force in the vertical direction.

한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 양방향 도전성 모듈의 제조방법에 있어서, (a) 복수의 금형 핀이 상향 돌출된 베이스 금형을 마련하는 단계와 - 각각의 상기 금형 핀은 상기 베이스 금형의 바닥면으로부터 돌출된 제1 핀부와, 상기 제1 핀부로부터 연장되되 상기 제1 핀부보다 직경이 작은 제2 핀부로 구성됨; (b) 절연성 재질의 액상을 상기 베이스 금형에 주입하여 경화시켜 절연성 본체를 형성하는 단계와; (c) 상기 절연성 본체를 상기 베이스 금형으로부터 이탈시키는 단계와 - 각각의 상기 금형 핀에 의해 상기 절연성 본체에 상하 방향으로 관통된 복수의 관통홀이 형성되고, 각각의 상기 관통홀은 상기 제2 핀부에 의해 형성되는 하부 관통홀과 상기 제1 핀부에 의해 형성되되 상기 하부 관통홀보다 내경이 넓은 상부 관통홀이 형성됨; (d) 상기 하부 관통홀의 내경에 대응하는 직경을 갖는 기둥부와, 상기 기둥부의 상부로부터 반경 방향 외측으로 연장된 연장부로 구성된 도전핀을 마련하는 단계와; (e) 상기 도전핀을 상기 상부 관통홀을 통해 삽입하여 상기 기둥부가 상기 하부 관통홀에 삽입되는 단계와; (f) 상기 상부 관통홀에 도전성을 갖는 도전성 분말을 포함하는 충진제를 충진하여 경화시켜 도전성 충진부를 형성하는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법에 의해서도 달성된다.On the other hand, the above object is, according to another embodiment of the present invention, in the manufacturing method of the bidirectional conductive module, (a) providing a base mold with a plurality of mold pins projecting upwards-each said mold pin is the base A first pin portion protruding from the bottom surface of the mold, and a second pin portion extending from the first pin portion and smaller in diameter than the first pin portion; (b) injecting a liquid of an insulating material into the base mold and curing the liquid to form an insulating body; (c) detaching the insulating body from the base mold, and a plurality of through holes penetrated vertically through the insulating body by respective mold pins, wherein each of the through holes is formed in the second fin part. An upper through hole formed by the lower through hole and the first pin part and having an inner diameter wider than the lower through hole is formed; (d) providing a conductive pin including a pillar portion having a diameter corresponding to the inner diameter of the lower through hole, and an extension portion extending radially outward from an upper portion of the pillar portion; (e) inserting the conductive pin through the upper through hole to insert the pillar portion into the lower through hole; (f) is also achieved by a method of manufacturing a bidirectional conductive module, comprising the step of filling and curing the filler including conductive powder having conductivity in the upper through hole to form a conductive filler.

여기서, 상기 (e) 단계에서는 상기 기둥부가 상기 상부 관통홀로부터 상기 하부 관통홀로 삽입되어 상기 하부 관통홀을 통해 상기 절연성 본체의 하부로 돌출되고; 상기 (f) 단계는 (f1) 상기 충진제가 상기 상부 관통홀에 충진되는 단계와, (f2) 상부 평판 금형이 상기 절연성 본체의 상부 표면에 접촉하여 각각의 상기 상부 관통홀의 상부가 차단되는 단계와, (f3) 하부 평판 금형이 상기 절연성 본체의 하부 표면에 접촉하여 상기 하부 관통홀을 통해 하부로 돌출된 상기 기둥부가 상부 방향으로 이동한 상태로 상기 충진제가 경화되는 단계를 포함하며; 상기 (f3) 단계에 의해 상기 연장부가 상기 상부 관통홀과 상기 하부 관통홀의 내경 차이로 인한 단차에 의해 형성되는 단차부으로부터 상부 방향으로 소정 간격 이격되어 형성될 수 있다.In the step (e), the pillar part is inserted into the lower through hole from the upper through hole and protrudes downward from the insulating body through the lower through hole; (F) step (f1) filling the upper through hole with the filler; (f2) the upper plate mold is in contact with the upper surface of the insulating body to block the upper portion of each upper through hole; (f3) curing the filler in a state in which the lower plate mold contacts the lower surface of the insulating body and the pillar portion protruding downward through the lower through hole is moved upwards; By the step (f3), the extension part may be formed to be spaced apart from the step part formed by the step due to the difference in the inner diameter of the upper through hole and the lower through hole at a predetermined interval in the upper direction.

그리고, 상기 (e) 단계에서 상기 도전핀의 삽입 전에 상기 상부 관통홀과 상기 하부 관통홀의 내경 차이에 의한 단차에 의해 형성된 단차부에 걸리도록 탄성 스프링을 삽입하며; 상기 도전핀의 상기 연장부와 상기 단차부 사이에 상기 탄성 스프링이 위치할 수 있다.And, in the step (e) before the insertion of the conductive pin is inserted into the elastic spring to be caught in the step portion formed by the step by the difference in the inner diameter of the upper through hole and the lower through hole; The elastic spring may be located between the extension part of the conductive pin and the stepped part.

또한, 상기 (b) 단계의 수행 전에 각각의 상기 제1 핀부를 감싸도록 각각의 상기 제1 핀부에 탄성 스프링을 끼우는 단계를 더 포함하며; 상기 (c) 단계에서는 상기 탄성 스프링이 상기 상부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성될 수 있다.And further comprising fitting an elastic spring to each of the first pin portions to surround each of the first pin portions before performing step (b); In the step (c), at least one region may be formed inside the insulating body so that the elastic spring surrounds the periphery of the upper through hole.

그리고, 상기 (b) 단계의 수행 전에 각각의 상기 제2 핀부를 감싸도록 각각의 상기 제2 핀부에 탄성 스프링을 끼우는 단계를 더 포함하며; 상기 (c) 단계에서는 상기 탄성 스프링이 상기 하부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성될 수 있다.And fitting an elastic spring to each of the second fin portions to surround each of the second fin portions before performing step (b); In the step (c), at least one region may be formed inside the insulating body so that the elastic spring surrounds the periphery of the lower through hole.

또한, 상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련될 수 있다.In addition, the elastic spring may be provided with at least one of carbon steel material, stainless steel material, tungsten material, plastic material.

그리고, 상기 탄성 스프링은 상기 절연성 본체 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함할 수 있다.The elastic spring may include a coil spring wound in an up and down direction in the insulating body.

그리고, 상기 도전핀은 베이스 본체의 표면에 도전성 재질의 도금을 통해 형성될 수 있다.The conductive pin may be formed by plating a conductive material on the surface of the base body.

그리고, 상기 베이스 본체는 섬유 재질 또는 BeCu 재질로 마련되고; 도전성 재질의 도금은 니켈 재질과 금 재질의 순차적 도금을 통해 형성될 수 있다.And, the base body is provided of a fiber material or BeCu material; Plating of the conductive material may be formed through sequential plating of nickel and gold.

상기와 같은 구성에 따라 본 발명에 따르면, 미세 피치와 두께의 한계를 극복하면서도 전기적 특성이 향상되며, 간단한 제조 방법에 의해 제조가 가능한 양방향 도전성 모듈 및 그 제조방법에 제공된다.According to the present invention according to the configuration as described above, the electrical properties are improved while overcoming the limitations of the fine pitch and thickness, and provided in a bidirectional conductive module and a method for manufacturing the same by a simple manufacturing method.

도 1 내지 도 3은 종래의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓을 설명하기 위한 도면이고,
도 4는 본 발명의 제1 실시예에 따른 양방향 도전성 모듈의 단면을 도시한 도면이고,
도 5a 내지 도 5f는 본 발명의 제1 실시예에 따른 양방향 도전성 모듈의 제조방법을 설명하기 위한 도면이고,
도 6은 본 발명의 제2 실시예에 따른 양방향 도전성 모듈의 단면을 도시한 도면이고,
도 7a 내지 도 7f는 본 발명의 제2 실시예에 따른 양방향 도전성 모듈의 제조방법을 설명하기 위한 도면이고,
도 8은 본 발명의 제3 실시예에 따른 양방향 도전성 모듈의 단면을 도시한 도면이고,
도 9a 및 도 9b는 본 발명의 제2 실시예에 따른 양방향 도전성 모듈의 동작 과정을 설명하기 위한 도면이다.
1 to 3 are diagrams for explaining a conventional Pogo-pin type semiconductor test socket,
4 is a cross-sectional view of a bidirectional conductive module according to a first embodiment of the present invention;
5A to 5F are views for explaining a method of manufacturing a bidirectional conductive module according to a first embodiment of the present invention;
6 is a cross-sectional view of a bidirectional conductive module according to a second embodiment of the present invention;
7A to 7F are views for explaining a method of manufacturing a bidirectional conductive module according to a second embodiment of the present invention.
8 is a cross-sectional view of a bidirectional conductive module according to a third embodiment of the present invention;
9A and 9B are diagrams for describing an operating process of the bidirectional conductive module according to the second embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다. 본 발명의 실시예들에 따른 양방향 도전성 모듈(100)은 종래의 포고-핀 타입의 반도체 테스트 소켓이나 PCR 타입의 반도체 테스트 소켓과 같이 반도체 소자(1)나 PCB, 웨이퍼의 양불 검사에 사용되며, 대용량 서버에 사용되는 CPU의 인터포저에도 적용될 수 있다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; Bi-directional conductive module 100 according to the embodiments of the present invention is used for the positive inspection of the semiconductor device 1, PCB, wafer, like the conventional pogo-pin type semiconductor test socket or PCR type semiconductor test socket, It can also be applied to CPU interposers used in large servers.

도 4는 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)의 단면을 도시한 도면이다. 도 4를 참조하여 설명하면, 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)은 절연성 본체(110), 복수의 도전성 충진부(130), 및 복수의 도전핀(120)을 포함한다.4 is a cross-sectional view of the bidirectional conductive module 100 according to the first embodiment of the present invention. Referring to FIG. 4, the bidirectional conductive module 100 according to the first embodiment of the present invention includes an insulating body 110, a plurality of conductive fillers 130, and a plurality of conductive pins 120. .

절연성 본체(110)는 절연성 재질로 마련되는데, 실리콘과 같은 탄성을 갖는 재질로 마련되는 것을 예로 한다. 여기서, 절연성 본체(110)에는 상하 방향으로 관통된 복수의 관통홀(111,112)이 형성된다.The insulating body 110 is provided with an insulating material, for example, is provided with a material having elasticity such as silicon. Here, the plurality of through holes 111 and 112 penetrated in the vertical direction are formed in the insulating body 110.

여기서, 본 발명의 제1 실시예에 따른 절연성 본체(110)의 각각의 관통홀(111,112)은, 도 4의 확대 영역 및 도 5c에 도시된 바와 같이, 상부 관통홀(111) 및 하부 관통홀(112)을 포함한다.Here, each through hole 111 and 112 of the insulating body 110 according to the first embodiment of the present invention, as shown in the enlarged region of FIG. 4 and FIG. 5C, the upper through hole 111 and the lower through hole, respectively. (112).

상부 관통홀(111)은 상부 방향으로 개방되고, 하부 방향으로 하부 관통홀(112)과 연통된다. 하부 관통홀(112)은 하부 방향으로 개방되고, 상부 방향으로 상부 관통홀(111)과 연통된다. 여기서, 하부 관통홀(112)의 내경은 상부 관통홀(111)의 내경보다 작게 마련된다. 그리고, 상부 관통홀(111)과 하부 관통홀(112) 간의 내경의 차이로 인한 단차에 의해 단차부(113)가 형성된다.The upper through hole 111 is open in the upper direction and communicates with the lower through hole 112 in the lower direction. The lower through hole 112 is opened in the lower direction and communicates with the upper through hole 111 in the upper direction. Here, the inner diameter of the lower through hole 112 is provided smaller than the inner diameter of the upper through hole 111. In addition, the stepped portion 113 is formed by the step due to the difference in the inner diameter between the upper through-hole 111 and the lower through-hole 112.

도전성 충진부(130)는 각각의 관통홀(111,112)의 상부 영역에 충된된다. 여기서, 도전성 충진부(130)는 도전성을 갖는 도전성 분말을 포함하는 충진제가 충진되어 형성되어 형성되는데, 종래의 PCR 타입의 반도체 테스트 소켓에 적용되는 충진제가 적용 가능하며, 이외에도 도전성을 갖는 다양한 형태, 예를 들어, 도전성 파이버, 도전성 와이어 등의 형태가 적용될 수 있음은 물론이다.The conductive filler 130 is filled in the upper region of each of the through holes 111 and 112. Here, the conductive filler 130 is formed by filling with a filler including conductive powder having conductivity, and can be applied to a conventional PCR-type semiconductor test socket, a variety of forms having conductivity, For example, forms of conductive fibers, conductive wires, and the like may be applied.

각각의 도전핀(120)은 관통홀(111,112)의 하부 영역에 수용되는데, 도전성 충진부(130)와 전기적으로 접촉된 상태를 유지한다. 이에 따라, 도전성 충진부(130)와 도전핀(120)이 상하 방향으로 하나의 도전 패턴을 형성하게 된다.Each of the conductive pins 120 is accommodated in the lower regions of the through holes 111 and 112 and maintains electrical contact with the conductive filling unit 130. As a result, the conductive filling unit 130 and the conductive pin 120 form one conductive pattern in the vertical direction.

여기서, 도전핀(120)은 하부 관통홀(112)에 삽입되는 기둥부(121)와, 기둥부(121)의 상부로부터 반경 방향 외측으로 연장되는 연장부(122)를 포함한다. 이를 통해, 기둥부(121)가 하부 관통홀(112)에 삽입된 상태에서 연장부(122)의 상부에서 하부 방향으로 도전핀(120)이 이동하더라도 관통홀(111,112)의 단차부(113)에 걸리는 형태가 되어 하부 방향으로의 이탈이 방지된다.Here, the conductive pin 120 includes a pillar portion 121 inserted into the lower through hole 112 and an extension portion 122 extending radially outward from an upper portion of the pillar portion 121. As a result, even when the conductive pin 120 is moved from the upper portion of the extension portion 122 to the lower portion in the state where the pillar portion 121 is inserted into the lower through hole 112, the stepped portion 113 of the through holes 111 and 112 is moved. It becomes the shape caught on and prevents the departure to the downward direction.

본 발명에서는 도전핀(120)이 도전핀(120) 형태의 베이스 본체의 표면에 도전성 재질의 도금을 통해 형성되는 것을 예로 하며, 베이스 본체는 섬유 재질이나 BeCu 재질로 마련되고, 니켈 재질 및 금 재질의 순차적인 도금을 통해 형성되는 것을 예로 한다.In the present invention, for example, the conductive pin 120 is formed by the plating of the conductive material on the surface of the base body in the form of the conductive pin 120, the base body is provided with a fiber material or BeCu material, nickel material and gold material For example, it is formed through the sequential plating of.

상기와 같은 구성에 따라 하나의 도전 패턴을 형성하는데 있어, 도전성 충진부(130)와 도전핀(120)을 이용함으로써, 도전성 충진부(130)가 반도체 소자(1)의 패키지 볼(Package ball)(1a, 도 9 참조)에 접촉하도록 하여 패키지 볼(1a)에 발생할 수 있는 스크래치(Scratch) 발생을 해소하고, 도전 패턴의 상하 방향으로의 두께를 도전핀(120)의 상하 방향으로의 길이로 해결함으로써, 기존의 포고-핀 타입의 반도체 테스트 소켓이 갖는 문제점인 미세 피치 구현의 제약을 해소함과 동시에 PCR 타입의 반도체 테스트 소켓이 갖는 문제점인 상하 방향으로의 두께 제약의 문제점을 해소할 수 있게 된다.In forming one conductive pattern according to the above configuration, by using the conductive filling unit 130 and the conductive pin 120, the conductive filling unit 130 is a package ball of the semiconductor device 1 (Package ball) (1a, see FIG. 9) to eliminate scratches that may occur in the package ball (1a), the thickness of the conductive pattern in the vertical direction to the length of the conductive pin 120 in the vertical direction By solving the above problem, the limitation of the micro pitch implementation, which is a problem of the conventional pogo-pin type semiconductor test socket, is solved, and the problem of the thickness limitation in the vertical direction, which is the problem of the PCR test semiconductor test socket, can be solved. .

여기서, 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)은, 도 4에 도시된 바와 같이, 하부 관통홀(112)의 주변을 감싸도록 적어도 일 영역이 절연성 본체(110) 내부에 형성되어 상하 방향으로 복원력을 제공하는 탄성 스프링을 포함할 수 있다. 이하에서는 제1 실시예에 따른 탄성 스프링을 다른 실시예와의 구별을 위해 '하부 탄성 스프링(140)'으로 정의하여 설명한다.Here, in the bidirectional conductive module 100 according to the first embodiment of the present invention, at least one region is formed inside the insulating body 110 to surround the periphery of the lower through hole 112, as shown in FIG. 4. It may include an elastic spring to provide a restoring force in the vertical direction. Hereinafter, the elastic spring according to the first embodiment will be described as 'lower elastic spring 140' in order to distinguish it from other embodiments.

도 4에서는 하부 탄성 스프링(140)의 전체가 절연성 본체(110)의 내부에 형성된 상태로 하부 관통홀(112)의 주변을 감싸도록 마련되는 것을 예로 하고 있으나, 제조 과정에서 일부가 관통홀(111,112) 측으로 노출되는 상태로 마련될 수 있음은 물론이다.4 illustrates that the entirety of the lower elastic spring 140 is formed to surround the periphery of the lower through hole 112 in a state formed inside the insulating body 110, but a part of the lower elastic spring 140 is formed in the through hole 111 and 112. Of course, it can be provided in a state exposed to the side.

여기서, 하부 탄성 스프링(140)은 상하 방향으로 복원력을 제공하도록 형성되는데, 도 4에 도시된 바와 같이, 하부 관통홀(112)의 주변의 절연성 본체(110) 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링 형태로 구성되는 것을 예로 한다.Here, the lower elastic spring 140 is formed to provide a restoring force in the vertical direction, as shown in FIG. 4, wound along the vertical direction in the insulating main body 110 around the lower through hole 112. Take the example of being configured in the form of a coil spring.

상기와 같은 구성에 따라, 후술할 테스트 과정에서 도전핀(120)의 연장부(122)가 관통홀(111,112)의 내부 단차부(113)에 접촉된 상태로 상부로부터 가압될 때, 절연성 본체(110)와 함께 하부 탄성 스프링(140)이 탄성적으로 이를 지지하여, 절연성 본체(110)의 변형을 방지하게 된다.According to the configuration as described above, when the extension 122 of the conductive pin 120 is pressed from the top in contact with the internal step portion 113 of the through holes 111 and 112 in the test process to be described later, the insulating body ( The lower elastic spring 140 along with 110 elastically supports it, thereby preventing deformation of the insulating body 110.

또한, 실리콘 재질의 절연성 본체(110)가 지속적인 검사 과정에서 복원력을 상실하는 문제점과 변형의 문제점 또한 함께 해소할 수 있어, 제품의 수명을 향상시킬 수 있게 된다.In addition, since the insulating body 110 of silicon material loses the restoring force and the problem of deformation during the continuous inspection process, the life of the product can be improved.

여기서, 본 발명에 따른 하부 탄성 스프링(140)은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 예로 하는데, 상하 방향으로 탄성적으로 지지할 수 있는 다른 재질로 마련될 수 있음은 물론이다.Here, the lower elastic spring 140 according to the present invention is an example that is provided with at least one of carbon steel material, stainless steel material, tungsten material, plastic material, to be provided with another material that can be elastically supported in the vertical direction Of course it can.

이하에서는, 도 5a 내지 도 5f를 참조하여 본 발명의 제1 실시예에 따른 양방향 도전성 모듈(100)의 제조 방법에 대해 설명한다.Hereinafter, a method of manufacturing the bidirectional conductive module 100 according to the first embodiment of the present invention will be described with reference to FIGS. 5A to 5F.

먼저, 도 5a에 도시된 바와 같이, 복수의 금형 핀(310)이 상향 돌출된 베이스 금형(300)을 마련한다. 여기서, 베이스 금형(300)에 형성된 복수의 금형 핀(310)은 양방향 도전성 모듈(100)의 관통홀(111,112)의 형상에 대응하도록 마련된다. 보다 구체적으로 설명하면, 각각의 금형 핀(310)은 베이스 금형(300)의 바닥면으로부터 돌출된 제1 핀부(312)와, 제1 핀부(312)로부터 연장되되 제1 핀부(312)보다 직경이 작은 제2 핀부(311)로 구성된다. 여기서, 제1 핀부(312)는 관통홀(111,112)의 상부 관통홀(111)에 대응하고, 제2 핀부(311)는 관통홀(111,112)의 하부 관통홀(112)에 대응하게 된다.First, as shown in FIG. 5A, a base mold 300 having a plurality of mold pins 310 protruding upward is provided. Here, the plurality of mold pins 310 formed in the base mold 300 are provided to correspond to the shape of the through holes 111 and 112 of the bidirectional conductive module 100. In more detail, each of the mold pins 310 extends from the first pin portion 312 and the first pin portion 312 protruding from the bottom surface of the base mold 300, but has a diameter greater than that of the first pin portion 312. This small second pin part 311 is comprised. Here, the first pin part 312 corresponds to the upper through hole 111 of the through holes 111 and 112, and the second pin part 311 corresponds to the lower through hole 112 of the through holes 111 and 112.

그런 다음, 각각의 금형 핀(310)의 제2 핀부(311)를 감싸도록 각각의 금형 핀(310)에 하부 탄성 스프링(140)을 끼운다. 그리고, 각각의 금형 핀(310)의 제2 핀부(311)에 하부 탄성 스프링(140)이 끼워진 상태에서, 도 5b에 도시된 바와 같이, 절연성 재질의 액상, 예컨대 액상의 실리콘을 베이스 금형(300)에 주입한 후, 고온에서 경화시켜 절연성 본체(110)를 형성한다. 본 발명에서는 150℃의 온도에서 15분 이상 고온 경화시키는 것을 예로 한다.Then, the lower elastic spring 140 is inserted into each mold pin 310 to surround the second fin portion 311 of each mold pin 310. In addition, as shown in FIG. 5B, in the state where the lower elastic spring 140 is inserted into the second pin part 311 of each mold pin 310, a liquid of an insulating material, for example, liquid silicone, is formed in the base mold 300. ), And then cured at a high temperature to form an insulating body 110. In the present invention, for example, curing at high temperature for more than 15 minutes at a temperature of 150 ℃.

경화가 완료되면, 절연성 본체(110)를 베이스 금형(300)으로부터 이탈시키면, 도 5c에 도시된 바와 같이, 복수의 관통홀(111,112)이 형성된 절연성 본체(110)가 제작된다. 여기서, 각각의 관통홀(111,112)은 제2 핀부(311)에 의해 형성되는 하부 관통홀(112)과, 제1 핀부(312)에 의해 형성되는 상부 관통홀(111)을 포함하게 되며, 하부 관통홀(112)의 내경이 상부 관통홀(111)의 내경보다 작게 형성된다. 또한, 하부 관통홀(112)의 주변을 하부 탄성 스프링(140)이 감싸는 형태로 절연성 본체(110)의 내부에 형성된다.When curing is completed, when the insulating main body 110 is separated from the base mold 300, as shown in FIG. 5C, an insulating main body 110 having a plurality of through holes 111 and 112 is formed. Here, each of the through holes 111 and 112 includes a lower through hole 112 formed by the second pin part 311 and an upper through hole 111 formed by the first pin part 312. The inner diameter of the through hole 112 is smaller than the inner diameter of the upper through hole 111. In addition, the lower elastic spring 140 surrounds the periphery of the lower through hole 112 and is formed in the insulating body 110.

그런 다음, 도 5d에 도시된 바와 같이, 도전핀(120)을 상부 관통홀(111)을 통해 삽입하여 기둥부(121)가 하부 관통홀(112)에 삽입되도록 한다. 이 때, 도전핀(120)의 연장부(122)가 관통홀(111,112)의 내부 단차부(113)에 걸리는 형태가 되어 제조 과정에서 관통홀(111,112) 하부로 이탈되는 것을 방지할 수 있게 된다.Then, as shown in Figure 5d, the conductive pin 120 is inserted through the upper through hole 111 so that the pillar portion 121 is inserted into the lower through hole 112. At this time, the extension portion 122 of the conductive pin 120 is in the form of being caught by the inner stepped portion 113 of the through holes 111 and 112 can be prevented from being separated below the through holes 111 and 112 in the manufacturing process. .

그리고, 도전핀(120)이 삽입된 후, 도 5e에 도시된 바와 같이, 도전성 분말을 포함하는 충진제, 예를 들어 액상의 실리콘과 도전성 분말이 혼합된 충진제를 각각의 상부 관통홀(111)에 충진한 후 경화시키게 되면 도전성 충진부(130)가 형성 가능하게 된다. 여기서, 충진제는 고온, 예를 들어 160℃ 이상의 고온에서 경화시키는 것을 예로 한다.After the conductive pin 120 is inserted, as shown in FIG. 5E, a filler including conductive powder, for example, a filler in which liquid silicon and conductive powder are mixed into each upper through hole 111. When filled and then cured, the conductive filler 130 may be formed. Here, the filler is an example of curing at a high temperature, for example, 160 ℃ or higher.

여기서, 본 발명에서는, 도 5f에 도시된 바와 같이, 충진제의 경화 과정에서, 충진제의 충진 후, 상부 평판 금형이 절연성 본체(110)의 상부 표면에 접촉하여 각각의 상부 관통홀(111)의 상부가 차단되도록 하고, 하부 평판 금형이 절연성 본체(110)의 하부 표면에 접촉하여 하부 관통홀(112)을 통해 하부로 돌출된 기둥부(121)가 상부 방향으로 이동한 상태로 충진제의 경화 과정을 진행할 수 있다.Here, in the present invention, as shown in Figure 5f, in the curing process of the filler, after filling the filler, the upper plate mold is in contact with the upper surface of the insulating body 110, the upper portion of each upper through hole 111 Is blocked, and the curing process of the filler is performed in a state in which the lower plate die contacts the lower surface of the insulating body 110 and the pillar portion 121 protruding downward through the lower through hole 112 moves upward. You can proceed.

따라서, 기둥부(121)가 하부 평판 금형에 의해 상부 방향으로 밀리게 되어, 연장부(122)와 단차부(113) 사이에는 이격 공간이 형성되는 상태로 도전성 충진부(130)의 경화가 진행 가능하게 된다. 이에 따라, 도전핀(120)의 연장부(122)는, 도 4의 확대 영역에 도시된 바와 같이, 관통홀(111,112)의 내부 단차부(113)로부터 상부 방향으로 소정 간격 이격되어 배치되는데, 이에 대한 상세한 설명은 후술한다.Therefore, the pillar portion 121 is pushed upward by the lower flat metal mold, and the hardening of the conductive filler 130 proceeds in a state where a space is formed between the extension portion 122 and the step portion 113. It becomes possible. Accordingly, as shown in the enlarged region of FIG. 4, the extension part 122 of the conductive pin 120 is spaced apart from the inner step portion 113 of the through holes 111 and 112 by a predetermined interval in an upward direction. Detailed description thereof will be described later.

이하에서는, 도 6을 참조하여 본 발명의 제2 실시예에 따른 양방향 도전성 모듈(100a)에 대해 상세히 설명한다. 여기서, 제2 실시예를 설명하는데 있어 제1 실시예에 대응하는 구성에 대한 상세한 설명은 생략할 수 있다.Hereinafter, the bidirectional conductive module 100a according to the second embodiment of the present invention will be described in detail with reference to FIG. 6. Here, in describing the second embodiment, a detailed description of the configuration corresponding to the first embodiment may be omitted.

본 발명의 제2 실시예에 따른 양방향 도전성 모듈(100a)은, 도 6에 도시된 바와 같이, 절연성 본체(110a), 복수의 도전성 충진부(130a), 및 복수의 도전핀(120a)을 포함한다. 여기서, 제2 실시예에 따른 절연성 본체(110a), 복수의 도전성 충진부(130a), 및 복수의 도전핀(120a)은 전술한 제1 실시예에 대응하는 바, 그 상세한 설명은 생략한다.As shown in FIG. 6, the bidirectional conductive module 100a according to the second embodiment of the present invention includes an insulating body 110a, a plurality of conductive filling parts 130a, and a plurality of conductive pins 120a. do. Here, the insulating main body 110a, the plurality of conductive filling parts 130a, and the plurality of conductive pins 120a according to the second embodiment correspond to the above-described first embodiment, and a detailed description thereof will be omitted.

본 발명의 제2 실시예에 따른 양방향 도전성 모듈(100a)은, 도 6에 도시된 바와 같이, 상부 관통홀(111a)의 주변을 감싸도록 적어도 일 영역이 절연성 본체(110a) 내부에 형성되어 상하 방향으로 복원력을 제공하는 탄성 스프링(이하, '상부 탄성 스프링(140a)'이라 함)을 포함할 수 있다.In the bidirectional conductive module 100a according to the second embodiment of the present invention, as shown in FIG. 6, at least one region is formed inside the insulating main body 110a so as to surround the upper through hole 111a. It may include an elastic spring (hereinafter referred to as 'upper elastic spring 140a') to provide a restoring force in the direction.

도 6에서는 상부 탄성 스프링(140a)의 전체가 절연성 본체(110a)의 내부에 형성된 상태로 상부 관통홀(111a)의 주변을 감싸도록 마련되는 것을 예로 하고 있으나, 제조 과정에서 일부가 상부 관통홀(111a) 측으로 노출되는 상태로 마련될 수 있음은 물론이다.In FIG. 6, the entire upper elastic spring 140a is formed to cover the periphery of the upper through hole 111a in a state formed inside the insulating body 110a, but a part of the upper elastic spring 140a is formed in the upper through hole ( Of course, it can be provided in a state exposed to the 111a) side.

여기서, 상부 탄성 스프링(140a)은 상하 방향으로 복원력을 제공하도록 형성되는데, 도 6에 도시된 바와 같이, 상부 관통홀(111a)의 주변의 절연성 본체(110a) 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링 형태로 구성되는 것을 예로 한다.Here, the upper elastic spring 140a is formed to provide a restoring force in the vertical direction. As shown in FIG. 6, the upper elastic spring 140a is wound along the vertical direction in the insulating main body 110a around the upper through hole 111a. Take the example of being configured in the form of a coil spring.

상기와 같은 구성에 따라, 후술할 테스트 과정에서 반도체 소자(1)의 볼(1a)이 도전성 충진부(130a)의 상부를 가압할 때 절연성 본체(110a)와 함께 상부 탄성 스프링(140a)이 탄성적으로 이를 지지하여, 절연성 본체(110a)의 변형을 방지하게 된다.According to the configuration as described above, when the ball 1a of the semiconductor device 1 presses the upper portion of the conductive filling portion 130a in a test process to be described later, the upper elastic spring 140a together with the insulating body 110a is burnt. By supporting it sexually, it prevents the deformation of the insulating body (110a).

또한, 실리콘 재질의 절연성 본체(110a)가 지속적인 검사 과정에서 복원력을 상실하는 문제점과 변형의 문제점 또한 함께 해소할 수 있어, 제품의 수명을 향상시킬 수 있게 된다.In addition, since the insulating body 110a of the silicon material loses the restoring force and the problem of deformation during the continuous inspection process, the life of the product can be improved.

여기서, 본 발명에 따른 상부 탄성 스프링(140a)은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 예로 하는데, 상하 방향으로 탄성적으로 지지할 수 있는 다른 재질로 마련될 수 있음은 물론이다.Here, the upper elastic spring 140a according to the present invention is provided with at least one of carbon steel material, stainless steel material, tungsten material, and plastic material, and may be provided with another material that can be elastically supported in the vertical direction. Of course it can.

이하에서는, 도 7a 내지 도 7f를 참조하여 본 발명의 제2 실시예에 따른 양방향 도전성 모듈(100a)의 제조 방법에 대해 설명한다.Hereinafter, a method of manufacturing the bidirectional conductive module 100a according to the second embodiment of the present invention will be described with reference to FIGS. 7A to 7F.

먼저, 도 7a에 도시된 바와 같이, 복수의 금형 핀(310a)이 상향 돌출된 베이스 금형(300a)을 마련한다. 여기서, 베이스 금형(300a)에 형성된 복수의 금형 핀(310a)은 제1 실시예에서와 마찬가지로, 제1 핀부(312a) 및 제2 핀부(311a)로 구성된다.First, as shown in FIG. 7A, a base mold 300a having a plurality of mold pins 310a protruding upward is provided. Here, the plurality of mold pins 310a formed in the base mold 300a are composed of the first fin portion 312a and the second fin portion 311a as in the first embodiment.

그런 다음, 각각의 금형 핀(310a)의 제1 핀부(312a)를 감싸도록 각각의 금형 핀(310a)에 상부 탄성 스프링(140a)을 끼운다. 그리고, 각각의 금형 핀(310a)의 제1 핀부(312a)에 상부 탄성 스프링(140a)이 끼워진 상태에서, 도 7b에 도시된 바와 같이, 절연성 재질의 액상, 예컨대 액상의 실리콘을 베이스 금형(300a)에 주입한 후, 고온에서 경화시켜 절연성 본체(110a)를 형성한다. 본 발명에서는 150℃의 온도에서 15분 이상 고온 경화시키는 것을 예로 한다.Then, the upper elastic spring 140a is inserted into each mold pin 310a to surround the first fin part 312a of each mold pin 310a. In the state where the upper elastic spring 140a is fitted to the first pin part 312a of each of the mold pins 310a, as shown in FIG. 7B, the base mold 300a is formed of an insulating material, for example, liquid silicone. ), And then cured at a high temperature to form an insulating body (110a). In the present invention, for example, curing at high temperature for more than 15 minutes at a temperature of 150 ℃.

경화가 완료되면, 절연성 본체(110a)를 베이스 금형(300a)으로부터 이탈시키면, 도 7c에 도시된 바와 같이, 복수의 관통홀(111a,112a)이 형성된 절연성 본체(110a)가 제작된다. 여기서, 제1 실시예에서와 마찬가지로, 각각의 관통홀(111a,112a)은 제2 핀부(311a)에 의해 형성되는 하부 관통홀(112a)과, 제1 핀부(312a)에 의해 형성되는 상부 관통홀(111a)을 포함하게 되며, 하부 관통홀(112a)의 내경이 상부 관통홀(111a)의 내경보다 작게 형성된다. 또한, 상부 관통홀(111a)의 주변을 상부 탄성 스프링(140a)이 감싸는 형태로 절연성 본체(110a)의 내부에 형성된다.When curing is completed, when the insulating main body 110a is separated from the base mold 300a, as shown in FIG. 7C, an insulating main body 110a having a plurality of through holes 111a and 112a is formed. Here, as in the first embodiment, each of the through holes 111a and 112a has a lower through hole 112a formed by the second fin part 311a and an upper through hole formed by the first fin part 312a. The hole 111a is included, and the inner diameter of the lower through hole 112a is smaller than the inner diameter of the upper through hole 111a. In addition, the upper elastic spring 140a surrounds the upper through hole 111a and is formed inside the insulating body 110a.

그런 다음, 도 7d에 도시된 바와 같이, 도전핀(120a)을 상부 관통홀(111a)을 통해 삽입하여 기둥부(121a)가 하부 관통홀(112a)에 삽입되도록 한다. 이 때, 도전핀(120a)의 연장부(122a)가 관통홀(111a,112a)의 내부 단차부(113a)에 걸리는 형태가 되어 제조 과정에서 관통홀(111a,112a) 하부로 이탈되는 것을 방지할 수 있게 된다.Then, as shown in Figure 7d, the conductive pin (120a) is inserted through the upper through hole (111a) so that the pillar portion 121a is inserted into the lower through hole (112a). At this time, the extension portion 122a of the conductive pin 120a is formed to be caught by the internal stepped portion 113a of the through holes 111a and 112a, thereby preventing separation from the lower portion of the through holes 111a and 112a during the manufacturing process. You can do it.

그리고, 도전핀(120a)이 삽입된 후, 도 7e에 도시된 바와 같이, 도전성 분말을 포함하는 충진제, 예를 들어 액상의 실리콘과 도전성 분말이 혼합된 충진제를 각각의 상부 관통홀(111a)에 충진한 후 경화시키게 되면 도전성 충진부(130a)가 형성 가능하게 된다. 여기서, 충진제는 고온, 예를 들어 160℃ 이상의 고온에서 경화시키는 것을 예로 한다.Then, after the conductive pin 120a is inserted, as shown in FIG. 7E, a filler including conductive powder, for example, a filler in which liquid silicon and conductive powder are mixed in each upper through hole 111a. When filled and then cured, the conductive filler 130a can be formed. Here, the filler is an example of curing at a high temperature, for example, 160 ℃ or higher.

여기서, 제1 실시예에서와 마찬가지로, 도 7f에 도시된 바와 같이, 충진제의 경화 과정에서, 충진제의 충진 후, 상부 평판 금형이 절연성 본체(110a)의 상부 표면에 접촉하여 각각의 상부 관통홀(111a)의 상부가 차단되도록 하고, 하부 평판 금형이 절연성 본체(110a)의 하부 표면에 접촉하여 하부 관통홀(112a)을 통해 하부로 돌출된 기둥부(121a)가 상부 방향으로 이동한 상태로 충진제의 경화 과정을 진행할 수 있다.Here, as in the first embodiment, as shown in FIG. 7F, in the curing process of the filler, after filling of the filler, the upper flat metal mold contacts the upper surface of the insulating body 110a to form respective upper through holes ( The filler of the pillar 121a protruding downward through the lower through-hole 112a by moving the upper flat portion of the 111a) in contact with the lower surface of the insulating body 110a is moved upward. The curing process can be carried out.

따라서, 기둥부(121a)가 하부 평판 금형에 의해 상부 방향으로 밀리게 되어, 연장부(122a)와 단차부(113a) 사이에는 이격 공간이 형성되는 상태로 도전성 충진부(130a)의 경화가 진행 가능하게 된다. 이에 따라, 도전핀(120a)의 연장부(122a)는, 도 6의 확대 영역에 도시된 바와 같이, 관통홀(111a,112a)의 내부 단차부(113a)로부터 상부 방향으로 소정 간격 이격되어 배치되는데, 이에 대한 상세한 설명은 후술한다.Accordingly, the pillar portion 121a is pushed upward by the lower flat metal mold, and curing of the conductive filler 130a proceeds in a state where a space is formed between the extension portion 122a and the step portion 113a. It becomes possible. Accordingly, as shown in the enlarged region of FIG. 6, the extension part 122a of the conductive pin 120a is spaced apart from the inner stepped part 113a of the through holes 111a and 112a by a predetermined interval in the upward direction. This will be described later.

한편, 도 8은 본 발명의 제3 실시예에 따른 양방향 도전성 모듈(100b)의 단면을 도시한 도면이다. 도 8에 도시된 제3 실시예는 제2 실시예의 변형 예로서, 제2 실시예에 따른 양방향 도전성 모듈(100b)의 구성에 대응한다. 즉, 본 발명의 제3 실시예에 따른 양방향 도전성 모듈(100b)은 절연성 본체(110b), 도전성 충진부(130b) 및 도전핀(120b)을 포함한다. 또한, 본 발명의 제3 실시예에 따른 양방향 도전성 모듈(100b)은 관통홀(참조번호 미도시)의 상부 관통홀(참조번호 미도시) 주변을 감싸도록 절연성 본체(110b) 내부에 형성되는 상부 탄성 스프링(140b)을 포함할 수 있다.8 is a cross-sectional view of the bidirectional conductive module 100b according to the third embodiment of the present invention. The third embodiment shown in FIG. 8 is a modification of the second embodiment and corresponds to the configuration of the bidirectional conductive module 100b according to the second embodiment. That is, the bidirectional conductive module 100b according to the third embodiment of the present invention includes an insulating body 110b, a conductive filling unit 130b, and a conductive pin 120b. In addition, the bidirectional conductive module 100b according to the third embodiment of the present invention has an upper portion formed inside the insulating main body 110b to surround the upper through hole (not shown) of the through hole (not shown). It may include an elastic spring (140b).

여기서, 본 발명의 제3 실시예에 따른 양방향 도전성 모듈(100b)은 도전핀(120)의 연장부(참조번호 미도시)와 관통홀(참조번호 미도시) 내부의 단차부(참조번호 미도시) 사이의 이격 공간에 배치되어 상하 방향으로의 복원력을 제공하는 내부 탄성 스프링(150b)을 더 포함할 수 있다.Here, the bidirectional conductive module 100b according to the third embodiment of the present invention may include a stepped portion (not shown) inside an extension part (not shown) of the conductive pin 120 and a through hole (not shown). It may further include an inner elastic spring (150b) disposed in the space between the space to provide a restoring force in the vertical direction.

이에 따라, 반도체 소자(1) 등의 테스트 과정에서 상부 방향에서 하부 방향으로 도전핀(120b)이 가압될 때 이를 탄성적으로 지지함과 동시에 복원력을 제공함으로써, 보다 안정적인 전기적 접촉을 가능하게 할 뿐만 아니라 복원력의 증가에 따라 제품의 수명을 향상시킬 수 있게 된다. 여기서, 내부 탄성 스프링(150b)은 도 7에 도시된 도전핀(120b)의 삽입 전에 먼저 상부 관통홀(참조번호 미도시)에 삽입될 수 있음은 물론이다.Accordingly, the conductive pin 120b is elastically supported when the conductive pin 120b is pressed from the upper direction to the lower direction during the test process of the semiconductor device 1, and provides a restoring force, thereby enabling more stable electrical contact. Rather, as the resilience increases, the service life of the product can be improved. Here, the inner elastic spring 150b may be inserted into the upper through hole (not shown) before inserting the conductive pin 120b shown in FIG. 7.

한편, 도 9a 및 도 9b는 본 발명의 실시예들에서 도전핀(120a)의 연장부(122a)와 관통홀(111a,112a)의 내부 단차부(113a) 사이의 이격 공간에 따른 효과를 설명하기 위한 도면이다. 도 9a 및 도 9b에 도시된 예에서는 본 발명의 제2 실시예에 양방향 도전성 모듈(100a)의 예를 나타내고 있다.Meanwhile, FIGS. 9A and 9B illustrate effects according to a separation space between the extension portion 122a of the conductive pin 120a and the internal step portion 113a of the through holes 111a and 112a in the embodiments of the present invention. It is a figure for following. 9A and 9B show an example of the bidirectional conductive module 100a in the second embodiment of the present invention.

본 발명의 제2 실시예에서의 설명에서와 같이, 도전핀(120a)의 기둥부(121a)의 하부 끝단은 검사회로기판(3)과의 접촉을 위해 하부 관통홀(112a)의 외부로 돌출되는 것이 바람직하다. 그러나, 제조 과정에서의 불량이나 오차, 설치나 이송 중에 도 9a의 A 영역에 나타난 바와 같이, 일부가 하부 관통홀(112a)의 내부에 위치하게 되면 접촉 불량으로 오류가 발생하게 된다.As described in the second embodiment of the present invention, the lower end of the pillar portion 121a of the conductive pin 120a protrudes out of the lower through hole 112a for contact with the test circuit board 3. It is desirable to be. However, as shown in the region A of FIG. 9A during the manufacturing process, such as a defect or error during the manufacturing process, when a part is located inside the lower through hole 112a, an error occurs due to a poor contact.

그러나, 도 9b에 도시된 바와 같이, 상부에서 반도체 소자(1)의 볼(1a)의 가압에 의해 도전핀(120a)의 연장부(122a)와 관통홀(111a,112a)의 내부 단차부(113a) 사이의 이격 공간으로, 도전핀(120a)이 이동 가능하게 됨으로써, 도전핀(120a)의 기둥부(121a)의 하부 말단이 안정적으로 검사회로기판(3)에 접촉 가능하게 된다.However, as shown in FIG. 9B, the extension 122a of the conductive pin 120a and the internal stepped portions of the through holes 111a and 112a are pressed by the ball 1a of the semiconductor device 1 from above. Since the conductive pins 120a are movable to the spaces between 113a, the lower ends of the pillar portions 121a of the conductive pins 120a can be stably contacted with the test circuit board 3.

비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although some embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that modifications may be made to the embodiment without departing from the spirit or spirit of the invention. . It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

100,100a,100b : 양방향 도전성 모듈
110,110a,110b : 절연성 본체 111,111a : 상부 관통공
112,112a : 하부 관통공 113,113a : 단차부
120,120a,120b : 도전핀 121,121a : 기둥부
122,122a : 연장부 130,130a,130b : 도전성 충진부
140 : 하부 탄성 스프링 140a,140b : 상부 탄성 스프링
150b : 내부 탄성 스프링 300,300a : 베이스 금형
310,310a : 금형 핀 311,311a : 제2 핀부
312,312a : 제1 핀부
100,100a, 100b: Bidirectional conductive module
110,110a, 110b: insulating body 111,111a: upper through hole
112,112a: Lower through hole 113,113a: Stepped portion
120,120a, 120b: Conductive pin 121,121a: Column part
122, 122a: Extension 130, 130a, 130b: Conductive Filling
140: lower elastic spring 140a, 140b: upper elastic spring
150b: internal elastic spring 300,300a: base mold
310,310a: Mold pin 311,311a: Second pin part
312,312a: first pin part

Claims (18)

양방향 도전성 모듈에 있어서,
절연성을 갖는 재질로 마련되고, 상하 방향으로 관통된 복수의 관통홀이 형성된 절연성 본체와,
각각의 상기 관통홀의 상부 영역에 충진되고, 도전성을 갖는 도전성 분말을 포함하는 충진제가 충진되어 형성되는 도전성 충진부와,
각각의 상기 관통홀의 하부 영역에 수용되고, 상기 도전성 충진부와 전기적으로 접촉되는 도전핀을 포함하고;
각각의 상기 관통홀은
상부 방향으로 개방된 상부 관통홀과,
상기 상부 관통홀의 내경보다 작은 내경을 갖는 하부 관통홀과,
상기 상부 관통홀과 상기 하부 관통홀 간의 내경의 차이로 인한 단차에 의해 형성되는 단차부를 포함하며;
각각의 상기 도전핀은
상기 하부 관통홀에 삽입되는 기둥부와,
상기 기둥부의 상부로부터 반경 방향 외측으로 연장되는 연장부를 포함하는 것을 특징으로 하는 양방향 도전성 모듈.
In the bidirectional conductive module,
An insulating body provided with an insulating material and having a plurality of through holes penetrated in the vertical direction;
A conductive filler filled in an upper region of each of the through holes and filled with a filler including conductive powder having conductivity;
A conductive pin received in a lower region of each of the through holes, the conductive pin being in electrical contact with the conductive filling portion;
Each of the through holes
An upper through hole opened in an upward direction,
A lower through hole having an inner diameter smaller than that of the upper through hole;
A stepped portion formed by a step due to a difference in inner diameter between the upper through hole and the lower through hole;
Each conductive pin is
A pillar portion inserted into the lower through hole;
And an extension extending radially outward from an upper portion of the pillar portion.
제1항에 있어서,
상기 연장부는 상기 단차부로부터 상부 방향으로 소정 간격 이격되어 상부 방향에서 가압될 때 하부 방향으로의 이동이 가능한 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 1,
The extension part is a bidirectional conductive module, characterized in that the movement in the lower direction when the pressure is pressed in the upper direction spaced apart from the step portion in the upper direction.
제2항에 있어서,
상기 연장부와 상기 단차부 사이의 이격 공간에는 상하 방향으로 복원력을 제공하는 탄성 스프링이 설치되는 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 2,
A bidirectional conductive module, characterized in that an elastic spring is provided in the spaced space between the extension and the step portion to provide a restoring force in the vertical direction.
제1항에 있어서,
상기 상부 관통홀의 주변을 감싸도록 상기 절연성 본체 내부에 형성되어 상하 방향으로의 복원력을 제공하는 탄성 스프링을 더 포함하는 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 1,
And a resilient spring formed inside the insulating body to surround the upper through hole to provide a restoring force in the vertical direction.
제1항에 있어서,
상기 하부 관통홀의 주변을 감싸도록 상기 절연성 본체 내부에 형성되어 상하 방향으로의 복원력을 제공하는 탄성 스프링을 더 포함하는 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 1,
And an elastic spring formed inside the insulating body to surround the lower through hole and providing a restoring force in an up and down direction.
제4항 또는 제5항에 있어서,
상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 특징으로 하는 양방향 도전성 모듈.
The method according to claim 4 or 5,
The elastic spring is a bidirectional conductive module, characterized in that provided with at least one of carbon steel material, stainless steel material, tungsten material, plastic material.
제4항 또는 제5항에 있어서,
상기 탄성 스프링은 상기 절연성 본체 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈.
The method according to claim 4 or 5,
The elastic spring is a bi-directional conductive module, characterized in that it comprises a coil spring of the form wound along the vertical direction inside the insulating body.
제1항에 있어서,
상기 도전핀은 베이스 본체의 표면에 도전성 재질의 도금을 통해 형성되는 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 1,
The conductive pin is a bidirectional conductive module, characterized in that formed on the surface of the base body by plating of a conductive material.
제8항에 있어서,
상기 베이스 본체는 섬유 재질 또는 BeCu 재질로 마련되고;
도전성 재질의 도금은 니켈 재질과 금 재질의 순차적 도금을 통해 형성되는 것을 특징으로 하는 양방향 도전성 모듈.
The method of claim 8,
The base body is made of a fiber material or a BeCu material;
Plating of the conductive material is a bidirectional conductive module, characterized in that formed through the sequential plating of nickel and gold.
양방향 도전성 모듈의 제조방법에 있어서,
(a) 복수의 금형 핀이 상향 돌출된 베이스 금형을 마련하는 단계와 - 각각의 상기 금형 핀은 상기 베이스 금형의 바닥면으로부터 돌출된 제1 핀부와, 상기 제1 핀부로부터 연장되되 상기 제1 핀부보다 직경이 작은 제2 핀부로 구성됨;
(b) 절연성 재질의 액상을 상기 베이스 금형에 주입하여 경화시켜 절연성 본체를 형성하는 단계와;
(c) 상기 절연성 본체를 상기 베이스 금형으로부터 이탈시키는 단계와 - 각각의 상기 금형 핀에 의해 상기 절연성 본체에 상하 방향으로 관통된 복수의 관통홀이 형성되고, 각각의 상기 관통홀은 상기 제2 핀부에 의해 형성되는 하부 관통홀과 상기 제1 핀부에 의해 형성되되 상기 하부 관통홀보다 내경이 넓은 상부 관통홀이 형성됨;
(d) 상기 하부 관통홀의 내경에 대응하는 직경을 갖는 기둥부와, 상기 기둥부의 상부로부터 반경 방향 외측으로 연장된 연장부로 구성된 도전핀을 마련하는 단계와;
(e) 상기 도전핀을 상기 상부 관통홀을 통해 삽입하여 상기 기둥부가 상기 하부 관통홀에 삽입되는 단계와;
(f) 상기 상부 관통홀에 도전성을 갖는 도전성 분말을 포함하는 충진제를 충진하여 경화시켜 도전성 충진부를 형성하는 단계를 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
In the manufacturing method of the bidirectional conductive module,
(a) providing a base mold from which a plurality of mold pins protrude upwards, each of the mold pins extending from a first pin portion protruding from a bottom surface of the base mold, the first pin portion being extended from the first pin portion; A second pin portion having a smaller diameter;
(b) injecting a liquid of an insulating material into the base mold and curing the liquid to form an insulating body;
(c) detaching the insulating body from the base mold, and a plurality of through holes penetrated vertically through the insulating body by respective mold pins, wherein each of the through holes is formed in the second fin part. An upper through hole formed by the lower through hole and the first pin part and having an inner diameter wider than the lower through hole is formed;
(d) providing a conductive pin including a pillar portion having a diameter corresponding to the inner diameter of the lower through hole, and an extension portion extending radially outward from an upper portion of the pillar portion;
(e) inserting the conductive pin through the upper through hole to insert the pillar portion into the lower through hole;
(F) a method of manufacturing a bi-directional conductive module comprising the step of filling and curing the filler comprising a conductive powder having conductivity in the upper through hole to form a conductive filler.
제10항에 있어서,
상기 (e) 단계에서는 상기 기둥부가 상기 상부 관통홀로부터 상기 하부 관통홀로 삽입되어 상기 하부 관통홀을 통해 상기 절연성 본체의 하부로 돌출되고;
상기 (f) 단계는
(f1) 상기 충진제가 상기 상부 관통홀에 충진되는 단계와,
(f2) 상부 평판 금형이 상기 절연성 본체의 상부 표면에 접촉하여 각각의 상기 상부 관통홀의 상부가 차단되는 단계와,
(f3) 하부 평판 금형이 상기 절연성 본체의 하부 표면에 접촉하여 상기 하부 관통홀을 통해 하부로 돌출된 상기 기둥부가 상부 방향으로 이동한 상태로 상기 충진제가 경화되는 단계를 포함하며;
상기 (f3) 단계에 의해 상기 연장부가 상기 상부 관통홀과 상기 하부 관통홀의 내경 차이로 인한 단차에 의해 형성되는 단차부로부터 상부 방향으로 소정 간격 이격되어 형성되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 10,
In the step (e), the pillar portion is inserted into the lower through hole from the upper through hole and protrudes to the lower portion of the insulating body through the lower through hole;
Step (f)
(f1) filling the upper through hole with the filler;
(f2) the upper plate mold contacts the upper surface of the insulated body so that an upper portion of each of the upper through holes is blocked;
(f3) curing the filler in a state in which the lower plate mold contacts the lower surface of the insulating body and moves the upper portion of the pillar portion projecting downward through the lower through hole;
The method of manufacturing the bi-directional conductive module, characterized in that by the step (f3) is extended from the step portion formed by the step difference due to the step difference due to the difference in the inner diameter of the upper through hole and the lower through hole spaced apart in the upper direction. .
제10항에 있어서,
상기 (e) 단계에서 상기 도전핀의 삽입 전에 상기 상부 관통홀과 상기 하부 관통홀의 내경 차이에 의한 단차에 의해 형성된 단차부에 걸리도록 탄성 스프링을 삽입하며;
상기 도전핀의 상기 연장부와 상기 단차부 사이에 상기 탄성 스프링이 위치하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 10,
Inserting an elastic spring to engage the stepped portion formed by the step due to the difference in inner diameter of the upper through hole and the lower through hole before inserting the conductive pin in step (e);
And the elastic spring is positioned between the extension part of the conductive pin and the stepped part.
제10항에 있어서,
상기 (b) 단계의 수행 전에 각각의 상기 제1 핀부를 감싸도록 각각의 상기 제1 핀부에 탄성 스프링을 끼우는 단계를 더 포함하며;
상기 (c) 단계에서는 상기 탄성 스프링이 상기 상부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 10,
Fitting an elastic spring to each said first fin portion to surround each said first fin portion before performing step (b);
In the step (c), at least one region is formed inside the insulating body so that the elastic spring surrounds the periphery of the upper through hole.
제10항에 있어서,
상기 (b) 단계의 수행 전에 각각의 상기 제2 핀부를 감싸도록 각각의 상기 제2 핀부에 탄성 스프링을 끼우는 단계를 더 포함하며;
상기 (c) 단계에서는 상기 탄성 스프링이 상기 하부 관통홀의 주변을 감싸도록 적어도 일 영역이 상기 절연성 본체 내부에 형성되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 10,
Fitting an elastic spring to each said second fin portion to surround each said second fin portion before performing step (b);
In the step (c), at least one region is formed inside the insulating body so that the elastic spring surrounds the periphery of the lower through hole.
제13항 또는 제14항에 있어서,
상기 탄성 스프링은 탄소강 재질, 스테인리스강 재질, 텅스텐 재질, 플라스틱 재질 중 적어도 어느 하나로 마련되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method according to claim 13 or 14,
The elastic spring is a method of manufacturing a bi-directional conductive module, characterized in that provided with at least one of carbon steel material, stainless steel material, tungsten material, plastic material.
제13항 또는 제41항에 있어서,
상기 탄성 스프링은 상기 절연성 본체 내부에서 상하 방향을 따라 감기는 형태의 코일 스프링을 포함하는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method according to claim 13 or 41,
The elastic spring is a method of manufacturing a bidirectional conductive module, characterized in that it comprises a coil spring of the form wound along the vertical direction inside the insulating body.
제10항에 있어서,
상기 도전핀은 베이스 본체의 표면에 도전성 재질의 도금을 통해 형성되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 10,
The conductive pin is a method of manufacturing a bidirectional conductive module, characterized in that formed on the surface of the base body by plating of a conductive material.
제17항에 있어서,
상기 베이스 본체는 섬유 재질 또는 BeCu 재질로 마련되고;
도전성 재질의 도금은 니켈 재질과 금 재질의 순차적 도금을 통해 형성되는 것을 특징으로 하는 양방향 도전성 모듈의 제조방법.
The method of claim 17,
The base body is made of a fiber material or a BeCu material;
Plating of the conductive material is a method of manufacturing a bidirectional conductive module, characterized in that formed through sequential plating of nickel and gold.
KR1020170124334A 2017-09-26 2017-09-26 Bi-directional electrically conductive module KR102007263B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170124334A KR102007263B1 (en) 2017-09-26 2017-09-26 Bi-directional electrically conductive module
PCT/KR2017/012930 WO2019066135A1 (en) 2017-09-26 2017-11-15 Bidirectional conductive module and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170124334A KR102007263B1 (en) 2017-09-26 2017-09-26 Bi-directional electrically conductive module

Publications (2)

Publication Number Publication Date
KR20190036004A KR20190036004A (en) 2019-04-04
KR102007263B1 true KR102007263B1 (en) 2019-08-07

Family

ID=65901525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170124334A KR102007263B1 (en) 2017-09-26 2017-09-26 Bi-directional electrically conductive module

Country Status (2)

Country Link
KR (1) KR102007263B1 (en)
WO (1) WO2019066135A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303184B1 (en) 2012-06-04 2013-09-09 에이케이이노텍주식회사 Contactor for testing semiconductor
KR101370409B1 (en) 2012-12-05 2014-03-07 에이케이이노텍주식회사 Semiconductor test socket
KR101781161B1 (en) 2015-11-19 2017-10-23 (주)티에스이 Test Socket

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640626B1 (en) * 2005-01-05 2006-10-31 삼성전자주식회사 POGO pin and test socket including the same
JP5986499B2 (en) * 2012-12-21 2016-09-06 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
KR101490501B1 (en) * 2013-11-12 2015-02-06 주식회사 아이에스시 Electrical test socket
EP3138583B1 (en) * 2014-04-30 2019-07-17 Airex Co., Ltd. Decontamination system
KR101735418B1 (en) * 2015-07-13 2017-05-16 주식회사 이노글로벌 Manufacturing method of semiconductor package test socket using plural moldpin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303184B1 (en) 2012-06-04 2013-09-09 에이케이이노텍주식회사 Contactor for testing semiconductor
KR101370409B1 (en) 2012-12-05 2014-03-07 에이케이이노텍주식회사 Semiconductor test socket
KR101781161B1 (en) 2015-11-19 2017-10-23 (주)티에스이 Test Socket

Also Published As

Publication number Publication date
WO2019066135A1 (en) 2019-04-04
KR20190036004A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
KR102007268B1 (en) By-directional electrically conductive module
KR100734296B1 (en) Socket pin having a self cleaning function and test apparatus including the socket pin
US20140340106A1 (en) Probe member for pogo pin
KR101806472B1 (en) Burn-in test socket having wire silicon rubber interposed between contact pin and semiconductor device
KR20080056978A (en) Pogo pin for semiconductor test device
KR101919881B1 (en) By-directional electrically conductive pattern module
US20030076123A1 (en) Socket apparatus and method for removably mounting an electronic package
KR101311752B1 (en) Contactor for testing semiconductor and manufacturing method thereof
KR102183498B1 (en) Electrically conductive pin using spring, test socket and interposer using the electrically conductive pin
KR102007263B1 (en) Bi-directional electrically conductive module
KR101961281B1 (en) By-directional electrically conductive module
KR102191698B1 (en) A test socket and maufacturing method thereof
KR20190022249A (en) Bi-directional electrically conductive module
KR101970695B1 (en) By-directional electrically conductive pin and by-directional electrically conductive pattern module using carbon fiber
KR20180070734A (en) By-directional electrically conductive and semiconductor test socket using the same
TWI635283B (en) Bidirectional conductive pin, bidirectional conductive pattern module, and method of manufacturing the same
KR101778608B1 (en) Micro contactor for connecting electronic signal
KR101962262B1 (en) By-directional electrically conductive pin using carbon fiber and by-directional electrically conductive socket using the same
KR102061669B1 (en) By-directional electrically conductive module
KR102153299B1 (en) By-directional electrically conductive pin, by-directional electrically conductive module and manufacturing method thereof
KR101678366B1 (en) Method for manufacturing elastic contactor
KR102147744B1 (en) Elastically contactable by-directional electrically conductive module
KR102158507B1 (en) Test socket and manufacturing method thereof
KR20190051909A (en) Bi-directional electrically conductive module
KR102191699B1 (en) Electrically conductive pin and electrically conductive module using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant