KR102005572B1 - 태양 전지 패널 - Google Patents

태양 전지 패널 Download PDF

Info

Publication number
KR102005572B1
KR102005572B1 KR1020190034703A KR20190034703A KR102005572B1 KR 102005572 B1 KR102005572 B1 KR 102005572B1 KR 1020190034703 A KR1020190034703 A KR 1020190034703A KR 20190034703 A KR20190034703 A KR 20190034703A KR 102005572 B1 KR102005572 B1 KR 102005572B1
Authority
KR
South Korea
Prior art keywords
solar cell
electrode layer
metal
layer
metal electrode
Prior art date
Application number
KR1020190034703A
Other languages
English (en)
Other versions
KR20190037209A (ko
Inventor
이진형
하정민
박상욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20190037209A publication Critical patent/KR20190037209A/ko
Application granted granted Critical
Publication of KR102005572B1 publication Critical patent/KR102005572B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 실시예에 따른 태양 전지 패널은, 제1 태양 전지 및 제2 태양 전지를 포함하는 복수의 태양 전지; 및 상기 제1 태양 전지와 상기 제2 태양 전지를 연결하는 복수의 배선재를 포함한다. 상기 제1 및 제2 태양 전지 각각은, 반도체 기판; 상기 반도체 기판의 전면 위에 위치하는 제1 패시베이션막; 상기 반도체 기판의 후면 위에 위치하는 제2 패시베이션막; 상기 반도체 기판의 전면 쪽에서 상기 제1 패시베이션막 위에 위치하는 제1 도전형 영역; 상기 반도체 기판의 후면 쪽에서 상기 제2 패시베이션막 위에 위치하는 제2 도전형 영역; 상기 제1 도전형 영역에 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 영역에 전기적으로 연결되는 제2 전극을 포함한다. 상기 복수의 배선재는 각기 100um 내지 500um의 직경 또는 폭을 가지며 상기 태양 전지의 일면 쪽에서 6개 이상 배치된다. 그리고 상기 복수의 배선재는 각기 솔더층에 의하여 상기 제1 태양 전지의 상기 제1 전극 및 상기 제2 태양 전지의 상기 제2 전극에 연결된다.

Description

태양 전지 패널{SOLAR CELL PANEL}
본 발명은 태양 전지 패널에 관한 것으로, 좀더 상세하게는, 전기적으로 연결된 복수의 태양 전지를 포함하는 태양 전지 패널에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예상되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양 전지는 태양광 에너지를 전기 에너지로 변환시키는 차세대 전지로서 각광받고 있다.
이러한 태양 전지는 복수 개가 리본에 의하여 직렬 또는 병렬로 연결되고, 복수의 태양 전지를 보호하기 위한 패키징(packaging) 공정에 의하여 태양 전지 패널의 형태로 제조된다.
종래에는 1.5mm 정도의 큰 폭을 가지는 리본을 사용하여 태양 전지를 연결하였다. 그러면, 리본의 큰 폭에 의하여 광 손실 등이 발생할 수 있으므로 태양 전지에 배치되는 리본의 개수가 적어야 한다. 예를 들어, 리본의 개수가 3개 정도였다. 이와 같이 리본의 개수가 적으면 광전 변환에 의하여 형성된 캐리어가 리본까지 이동할 때의 이동 경로가 커지므로 태양 전지 패널의 출력을 향상하는 데 한계가 있다.
한편, 리본은 다양한 방법으로 부착될 수 있다. 일 예로, 태양 전지의 전극과 리본 사이에 전도성 접착 필름을 위치시켜 열 압착하는 것에 의하여 태양 전지에 리본을 부착할 수 있다. 그러나 전도성 접착 필름은 가격이 비싸며 리본 각각에 부착 공정을 수행하여야 하므로 부착 공정이 복잡해지는 문제가 있었다. 특히, 광 손실 등을 고려하여 종래보다 작은 폭을 가지며 많은 개수로 부착되는 인터커넥터를 사용할 경우에는 전도성 접착 필름을 사용할 경우에 공정 비용 및 시간이 크게 증가될 수 있다.
본 발명은 출력을 향상할 수 있으며 간단한 공정에 의하여 제조될 수 있는 태양 전지 패널을 제공하고자 한다.
본 발명의 실시예에 따른 태양 전지 패널은, 제1 태양 전지 및 제2 태양 전지를 포함하는 복수의 태양 전지; 및 상기 제1 태양 전지와 상기 제2 태양 전지를 연결하는 복수의 배선재를 포함한다. 상기 제1 및 제2 태양 전지 각각은, 반도체 기판; 상기 반도체 기판의 전면 위에 위치하는 제1 패시베이션막; 상기 반도체 기판의 후면 위에 위치하는 제2 패시베이션막; 상기 반도체 기판의 전면 쪽에서 상기 제1 패시베이션막 위에 위치하는 제1 도전형 영역; 상기 반도체 기판의 후면 쪽에서 상기 제2 패시베이션막 위에 위치하는 제2 도전형 영역; 상기 제1 도전형 영역에 전기적으로 연결되는 제1 전극; 및 상기 제2 도전형 영역에 전기적으로 연결되는 제2 전극을 포함한다. 상기 복수의 배선재는 각기 100um 내지 500um의 직경 또는 폭을 가지며 상기 태양 전지의 일면 쪽에서 6개 이상 배치된다. 그리고 상기 복수의 배선재는 각기 솔더층에 의하여 상기 제1 태양 전지의 상기 제1 전극 및 상기 제2 태양 전지의 상기 제2 전극에 연결된다.
본 실시예에 따르면, 얇은 폭을 가지는 배선재를 많은 개수로 포함하여 캐리어의 이동 경로를 줄이는 것에 의하여 태양 전지 패널의 출력을 향상할 수 있다. 그리고 배선재가 원형의 단면을 가져 난반사에 의하여 광 손실을 최소화하여 출력을 좀더 향상할 수 있다. 이러한 배선재를 반도체 기판과 다른 결정 구조를 가지는 도전형 영역을 구비하는 태양 전지에 적용하여, 얇은 폭을 가지는 배선재의 얼라인 미스 등이 발생하는 경우에도 안정적으로 태양 전지에 전기적으로 연결되도록 할 수 있다.
이때, 배선재는 솔더층에 의하여 부착되어 간단한 구조 및 공정에 의하여 부착될 수 있다. 이때, 제1 및 제2 금속 전극층이 금속 입자과 가교 수지를 포함하여 솔더층이 제1 및 제2 금속 전극층으로 침투하여 발생할 수 있는 문제를 방지하여 신뢰성을 향상할 수 있다.
도 1은 본 발명의 실시예에 따른 태양 전지 패널을 도시한 사시도이다.
도 2는 도 1의 II-II 선을 따라 잘라서 본 단면도이다.
도 3은 도 1에 도시한 태양 전지 패널에 포함되며 배선재에 의하여 연결되는 제1 태양 전지와 제2 태양 전지를 개략적으로 도시한 사시도이다.
도 4는 도 3의 IV-IV 선에 따라 잘라서 본 단면도이다.
도 5는 도 1에 도시한 태양 전지 패널에 포함되는 태양 전지와 이에 형성된 배선재를 도시한 부분 단면도이다.
도 6은 도 1의 태양 전지 패널에 포함된 태양 전지를 도시한 평면도이다.
도 7은 도 1의 태양 전지 패널에 포함된 태양 전지와 이에 연결된 배선재를 도시한 평면도이다.
도 8은 본 발명의 다른 실시예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 9는 본 발명의 일 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 10은 본 발명의 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 11은 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 12는 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 13은 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다.
도 14는 실험예 1에서 부착된 금속 전극층과 배선재의 단면 사진이다.
도 15은 비교예 1에서 배선재에 태빙 공정을 수행하였으나 배선재가 부착되지 못하고 박리된 상태를 촬영한 사진이다.
도 16은 실험예 7에서 배선재를 박리한 후에 태양 전지를 촬영한 주사 전자 현미경(SEM) 사진이다.
도 17은 비교예 1에서 배선재를 박리한 후에 태양 전지를 촬영한 주사 전자 현미경 사진이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. 그리고 도면에서는 설명을 좀더 명확하게 하기 위하여 두께, 넓이 등을 확대 또는 축소하여 도시하였는바, 본 발명의 두께, 넓이 등은 도면에 도시된 바에 한정되지 않는다.
그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 태양 전지 패널을 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 태양 전지 패널을 도시한 사시도이고, 도 2는 도 1의 II-II 선을 따라 잘라서 본 단면도이다.
도 1 및 도 2를 참조하면, 본 실시예에 따른 태양 전지 패널(100)은 복수의 태양 전지(150)와, 복수의 태양 전지(150)를 전기적으로 연결하는 배선재(142)를 포함한다. 그리고 태양 전지 패널(100)은 복수의 태양 전지(150)와 이를 연결하는 배선재(142)를 둘러싸서 밀봉하는 밀봉재(130)와, 밀봉재(130) 위에서 태양 전지(150)의 전면에 위치하는 전면 기판(110)과, 밀봉재(130) 위에서 태양 전지(150)의 후면에 위치하는 후면 기판(120)을 포함한다. 이를 좀더 상세하게 설명한다.
본 실시예에서 복수 개의 태양 전지(150)는 배선재(142)에 의하여 전기적으로 직렬, 병렬 또는 직병렬로 연결될 수 있다. 배선재(142) 및 태양 전지(150)에 대해서는 추후에 좀더 상세하게 설명한다.
그리고 버스 리본(145)은 배선재(142)에 의하여 연결되어 하나의 열(列)을 형성하는 태양 전지(150)(즉, 태양 전지 스트링)의 배선재(142)의 양끝단을 교대로 연결한다. 버스 리본(145)은 태양 전지 스트링의 단부에서 이와 교차하는 방향으로 배치될 수 있다. 이러한 버스 리본(145)은, 서로 인접하는 태양 전지 스트링들을 연결하거나, 태양 전지 스트링 또는 태양 전지 스트링들을 전류의 역류를 방지하는 정션 박스(미도시)에 연결할 수 있다. 버스 리본(145)의 물질, 형상, 연결 구조 등은 다양하게 변형될 수 있고, 본 발명이 이에 한정되는 것은 아니다.
밀봉재(130)는, 배선재(142)에 의하여 연결된 태양 전지(150)의 전면에 위치하는 제1 밀봉재(131)와, 태양 전지(150)의 후면에 위치하는 제2 밀봉재(132)를 포함할 수 있다. 제1 밀봉재(131)와 제2 밀봉재(132)는 수분과 산소의 유입되는 것을 방지하며 태양 전지 패널(100)의 각 요소들을 화학적으로 결합한다. 제1 및 제2 밀봉재(131, 132)는 투광성 및 접착성을 가지는 절연 물질로 구성될 수 있다. 일 예로, 제1 밀봉재(131)와 제2 밀봉재(132)로 에틸렌초산비닐 공중합체 수지(EVA), 폴리비닐부티랄, 규소 수지, 에스테르계 수지, 올레핀계 수지 등이 사용될 수 있다. 제1 및 제2 밀봉재(131, 132)를 이용한 라미네이션 공정 등에 의하여 후면 기판(120), 제2 밀봉재(132), 태양 전지(150), 제1 밀봉재(131), 전면 기판(110)이 일체화되어 태양 전지 패널(100)을 구성할 수 있다.
전면 기판(110)은 제1 밀봉재(131) 상에 위치하여 태양 전지 패널(100)의 전면을 구성하고, 후면 기판(120)은 제2 밀봉재(132) 상에 위치하여 태양 전지(150)의 후면을 구성한다. 전면 기판(110) 및 후면 기판(120)은 각기 외부의 충격, 습기, 자외선 등으로부터 태양 전지(150)를 보호할 수 있는 절연 물질로 구성될 수 있다. 그리고 전면 기판(110)은 광이 투과할 수 있는 투광성 물질로 구성되고, 후면 기판(120)은 투광성 물질, 비투광성 물질, 또는 반사 물질 등으로 구성되는 시트로 구성될 수 있다. 일 예로, 전면 기판(110)이 유리 기판 등으로 구성될 수 있고, 후면 기판(120)이 TPT(Tedlar/PET/Tedlar) 타입을 가지거나, 또는 베이스 필름(예를 들어, 폴리에틸렌테레프탈레이트(PET))의 적어도 일면에 형성된 폴리불화비닐리덴(poly vinylidene fluoride, PVDF) 수지층을 포함할 수 있다.
그러나 본 발명이 이에 한정되는 것은 아니다. 따라서, 제1 및 제2 밀봉재(131, 132), 전면 기판(110), 또는 후면 기판(120)이 상술한 설명 이외의 다양한 물질을 포함할 수 있으며 다양한 형태를 가질 수 있다. 예를 들어, 전면 기판(110) 또는 후면 기판(120)이 다양한 형태(예를 들어, 기판, 필름, 시트 등) 또는 물질을 가질 수 있다.
도 3 내지 도 7을 참조하여 본 발명의 실시예에 따른 태양 전지 패널에 포함되는 태양 전지 및 배선재를 좀더 상세하게 설명한다.
도 3은 도 1에 도시한 태양 전지 패널(100)에 포함되며 배선재(142)에 의하여 연결되는 제1 태양 전지(151)와 제2 태양 전지(152)를 개략적으로 도시한 사시도이고, 도 4는 도 3의 IV-IV 선에 따라 잘라서 본 단면도이다. 도 5는 도 1에 도시한 태양 전지 패널(100)에 포함되는 태양 전지(150)와 이에 형성된 배선재(142)를 도시한 부분 단면도이다. 간략하고 명확한 도시를 위하여 도 3 및 도 4에서는 제1 및 제2 태양 전지(151, 152)에 대해서는 반도체 기판(160)과 전극(42, 44)을 위주로 개략적으로만 도시하였다.
도 3 내지 도 5를 참조하면, 복수 개의 태양 전지(150) 중에서 서로 이웃한 두 개의 태양 전지(150)(일 예로, 제1 태양 전지(151)와 제2 태양 전지(152))가 배선재(142)에 의하여 연결될 수 있다. 이때, 배선재(142)는, 제1 태양 전지(151)의 전면에 위치한 제1 전극(42)과 제1 태양 전지(151)의 일측(도면의 좌측 하부)에 위치하는 제2 태양 전지(152)의 후면에 위치한 제2 전극(44)을 연결한다. 그리고 다른 배선재(1420a)가 제1 태양 전지(151)의 후면에 위치한 제2 전극(44)과 제1 태양 전지(151)의 다른 일측(도면의 우측)에 위치할 다른 태양 전지의 전면에 위치한 제1 전극(42)을 연결한다. 그리고 또 다른 배선재(1420b)가 제2 태양 전지(152)의 전면에 위치한 제1 전극(42)과 제2 태양 전지(152)의 일측(도면의 좌측)에 위치할 또 다른 태양 전지의 후면에 위치한 제2 전극(44)을 연결한다. 이에 의하여 복수 개의 태양 전지(150)가 배선재(142, 1420a, 1420b)에 의하여 서로 하나의 열을 이루도록 연결될 수 있다. 이하에서 배선재(142)에 대한 설명은 서로 이웃한 두 개의 태양 전지(150)를 연결하는 모든 배선재(142, 1420a, 1420b)에 각기 적용될 수 있다.
배선재(142)가 제1 태양 전지(151)의 제1 전극(42)이 위치한 영역에서 제1 태양 전지(151)를 가로지른 후에 제2 태양 전지(152)의 제2 전극(44)이 위치한 영역에서 제2 태양 전지(152)를 가로질러 위치할 수 있다. 이와 같이 배선재(142)가 제1 및 제2 태양 전지(151, 152)보다 작은 폭(W1)으로(일 예로, 제1 또는 제2 전극(42, 44)의 버스바(도 6의 참조부호 423))에 대응하는 작은 면적으로) 제1 및 제2 태양 전지(151, 152)를 효과적으로 연결할 수 있다.
각 태양 전지(150)의 일면을 기준으로 볼 때 배선재(142)는 복수 개 구비되어 이웃한 태양 전지(150)의 전기적 연결 특성을 향상할 수 있다. 특히, 본 실시예에서는 배선재(142)가 기존에 사용되던 상대적으로 넓은 폭(예를 들어, 1mm 내지 2mm)을 가지는 리본보다 작은 폭(W1)을 가지면서 길게 이어지는 와이어로 구성되어, 각 태양 전지(150)의 일면 기준으로 기존의 리본의 개수(예를 들어, 2개 내지 5개)보다 많은 개수의 배선재(142)를 사용한다.
일 예로, 배선재(142)는 금속으로 이루어진 코어층(1427)과, 코어층(1427)의 표면에 얇은 두께로 코팅되며 솔더 물질을 포함하여 전극(42, 44)과 솔더링이 가능하도록 하는 솔더층(1423)을 포함할 수 있다. 일 예로, 코어층(1427)은 Ni, Cu, Ag, Al을 주요 물질(일 예로, 50wt% 이상 포함되는 물질, 좀더 구체적으로 90wt% 이상 포함되는 물질)로 포함할 수 있다. 솔더층(1423)은 주석, 납, 은, 비스무스, 인듐 중 적어도 하나를 포함하는 합금으로 구성될 수 있다. 일 예로, 솔더층(1423)이 Pb, Sn, SnIn, SnBi, SnBiPb, SnPb, SnPbAg, SnCuAg, SnCu 등으로 구성될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 코어층(1427) 및 솔더층(1423)이 다양한 물질을 포함할 수 있다.
이와 같이 기존의 리본보다 작은 폭(W1)을 가지는 와이어를 배선재(142)로 사용하면 재료 비용을 크게 절감할 수 있다. 그리고 배선재(142)가 리본보다 작은 폭(W1)을 가지므로 배선재(142)를 충분한 개수로 구비하여 캐리어의 이동 거리를 최소화함으로써 태양 전지 패널(100)의 출력을 향상할 수 있다.
또한, 본 실시예에 따른 배선재(142)를 구성하는 와이어는 라운드진 부분을 포함할 수 있다. 즉, 배선재(142)를 구성하는 와이어가 원형, 타원형, 또는 곡선으로 이루어진 단면 또는 라운드진 단면을 가질 수 있다. 이에 의하여 배선재(142)가 반사 또는 난반사를 유도할 수 있다. 이에 의하여 배선재(142)를 구성하는 와이어의 라운드진 면에서 반사된 광이 태양 전지(150)의 전면 또는 후면에 위치한 전면 기판(110) 또는 후면 기판(120) 등에 반사 또는 전반사되어 태양 전지(150)로 재입사되도록 할 수 있다. 이에 의하여 태양 전지 패널(100)의 출력을 효과적으로 향상할 수 있다. 그리고 이러한 형상의 배선재(142)를 쉽게 제조할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 배선재(142)를 구성하는 와이어가 사각형 등의 다각형의 형상을 가질 수 있으며 그 외의 다양한 형상을 가질 수 있다.
본 실시예에서 배선재(142)는 폭(또는 직경)(W1)이 100um 내지 500um일 수 있다. 본 명세서에서 배선재(142)의 폭(W1)이라 함은, 배선재(142)의 중심을 지나면서 태양 전지(150)의 두께 방향과 수직한 면에서 배선재(142) 또는 코어층(1427)의 폭 또는 직경을 의미할 수 있다. 참고로, 배선재(142)가 전극(42, 44)에 부착된 이후에는 코어층(1427)의 중심에 위치한 부분에서 솔더층(1423)이 매우 얇은 두께를 가지므로 솔더층(1423)이 배선재(142)의 폭(W1)에 큰 의미를 가지지 않는다.
이러한 폭(W1)을 가지는 와이어 형태의 배선재(142)에 의해서 태양 전지(150)에서 생성한 전류를 외부 회로(예를 들어, 버스 리본 또는 정션 박스의 바이패스 다이오드) 또는 또 다른 태양 전지(150)로 효율적으로 전달할 수 있다. 배선재(142)의 폭(W1)이 100um 미만이면, 배선재(142)의 강도가 충분하지 않을 수 있고, 전극(42, 44)의 연결 면적이 매우 적어 전기적 연결 특성이 좋지 않고 부착력이 낮을 수 있다. 배선재(142)의 폭(W1)이 500um를 초과하면, 배선재(142)의 비용이 증가하고 배선재(142)가 태양 전지(150)의 전면으로 입사되는 광의 입사를 방해하여 광 손실(shading loss)이 증가할 수 있다. 또한, 배선재(142)에서 전극(42, 44)과 이격되는 방향으로 가해지는 힘이 커져 배선재(142)와 전극(42, 44) 사이의 부착력이 낮을 수 있고 전극(42, 44) 또는 반도체 기판(160)에 균열 등의 문제를 발생시킬 수 있다. 부착력 등을 좀더 고려하여 배선재(142)의 폭(W1)을 250um 내지 500um로 할 수 있다. 이러한 범위에서 전극(42, 44)과의 부착력을 높이면서 출력을 향상할 수 있다.
본 실시예에서는 배선재(142)가 별도의 층, 필름 등에 삽입되거나 덮여지지 않은 상태로 태양 전지(150)의 전극(42, 44) 위에 솔더층(1423)에 의하여 각기 개별적으로 부착되어 고정될 수 있다. 이에 의하여 배선재(142)를 전극(42, 44)에 부착한 후에 전극(42, 44) 위에 위치한 솔더층(1423)이 특정한 형상을 가지게 되는데, 이에 대해서는 추후에 상세하게 설명한다.
이때, 배선재(142)의 폭(W1)은 핑거 라인(427)의 피치보다 작을 수 있고, 핑거 라인(427)의 폭보다 클 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 변형이 가능하다.
복수의 배선재(142)가 일정 간격으로 배치되고, 배선재(142)의 개수가 태양 전지(150)의 일면을 기준으로 6개 내지 38개(일 예로, 11개 내지 30개)일 수 있다. 배선재(142)의 개수가 6개 미만이면, 출력 향상을 크게 기대하기 어려울 수 있다. 그리고 배선재(142)의 개수가 일정 개수를 초과하여도 태양 전지 패널(100)의 출력이 더 이상 증가하기 어려울 수 있고 배선재(142)의 개수가 많아지면 태양 전지(150)에 부담을 줄 수 있다. 이를 고려하여 배선재(142)의 개수가 38개 이하일 수 있다. 이때, 태양 전지 패널(100)의 출력을 좀더 향상하기 위하여 배선재(142)의 개수가 11개 이상일 수 있고, 배선재(142)에 의한 부담을 줄일 수 있도록 배선재(142)가 30개 이하일 수 있다.
도 5를 참조하면, 본 실시예에 따른 태양 전지(150)는, 베이스 영역(10)을 포함하는 반도체 기판(160)과, 반도체 기판(160)의 전면 위에 형성되는 제1 패시베이션막(52)과, 반도체 기판(160)의 후면 위에 형성되는 제2 패시베이션막(54)과, 반도체 기판(160)의 전면 쪽에서 제1 패시베이션막(52) 위에 형성되는 제1 도전형 영역(20)과, 반도체 기판(160)의 후면 쪽에서 제2 패시베이션막(54) 위에 형성되는 제2 도전형 영역(30)과, 제1 도전형 영역(20)에 전기적으로 연결되는 제1 전극(42)과, 제2 도전형 영역(30)에 전기적으로 연결되는 제2 전극(44)을 포함할 수 있다. 이를 좀더 상세하게 설명한다.
반도체 기판(160)은 베이스 도펀트인 제1 또는 제2 도전형 도펀트가 낮은 도핑 농도로 도핑되어 제1 또는 제2 도전형을 가지는 결정질 반도체로 구성될 수 있다. 일 예로, 반도체 기판(160)은 단결정 또는 다결정 반도체(일 예로, 단결정 또는 다결정 실리콘)로 구성될 수 있다. 특히, 반도체 기판(160)은 단결정 반도체(예를 들어, 단결정 반도체 웨이퍼, 좀더 구체적으로는, 단결정 실리콘 웨이퍼)로 구성될 수 있다. 이와 같이 높은 결정성을 가지며 결함이 적은 반도체 기판(160)을 기반으로 하므로 태양 전지(150)가 우수한 전기적 특성을 가질 수 있다. 이때, 본 실시예에서는 반도체 기판(160)은 추가적인 도핑 등에 의하여 형성되는 도핑 영역을 구비하지 않는 베이스 영역(10)만으로 구성될 수 있다. 이에 의하여 도핑 영역에 의한 반도체 기판(160)의 패시베이션 특성 저하를 방지할 수 있다.
반도체 기판(160)의 전면 및/또는 후면은 반사를 방지할 수 있도록 텍스쳐링(texturing)에 의한 요철을 가질 수 있다. 일 예로, 요철은 특정한 결정면들로 구성될 수 있다. 예를 들어, (111)면인 4개의 외면에 의하여 형성되는 대략적인 피라미드 형상을 가질 수 있다. 반도체 기판(160)의 표면에 텍스쳐링에 의한 요철이 형성되면 반도체 기판(160)으로 입사하는 광의 반사를 방지할 수 있어 광 손실을 효과적으로 감소할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 반도체 기판(160)의 표면에 요철이 형성되지 않을 수도 있다.
반도체 기판(160)의 전면 위에는 제1 패시베이션막(52)이 형성(일 예로, 접촉)되고, 반도체 기판(160)의 후면 위에는 제2 패시베이션막(54)이 형성(일 예로, 접촉)된다. 이에 의하여 패시베이션 특성을 향상할 수 있다. 이때, 제1 및 제2 패시베이션막(52, 54)은 반도체 기판(160)의 전면 및 후면에 각기 전체적으로 형성될 수 있다. 이에 따라 우수한 패시베이션 특성을 가지면서 별도의 패터닝 없이 쉽게 형성될 수 있다. 캐리어가 제1 또는 제2 패시베이션막(52, 54)을 통과하여 제1 또는 제2 도전형 영역(20, 30)에 전달되므로, 제1 및 제2 패시베이션막(52, 54)의 각각의 두께는 제1 도전형 영역(20) 및 제2 도전형 영역(30) 각각의 두께보다 작을 수 있다.
일 예로, 제1 및 제2 패시베이션막(52, 54)이 진성 비정질 반도체(예를 들어, 진성 비정질 실리콘(i-a-Si))층으로 이루어질 수 있다. 그러면, 제1 및 제2 패시베이션막(52, 54)이 반도체 기판(160)과 동일한 반도체 물질을 포함하여 유사한 특성을 가지기 때문에 패시베이션 특성을 좀더 효과적으로 향상할 수 있다. 이에 의하여 패시베이션 특성을 크게 향상할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 제1 및/또는 제2 패시베이션막(52, 54)이 진성 비정질 실리콘 탄화물(i-a-SiCx)층 또는 진성 비정질 실리콘 산화물(i-a-SiOx)층을 포함할 수도 있다. 이에 의하면 넓은 에너지 밴드갭에 의한 효과가 향상될 수 있으나, 패시베이션 특성은 진성 비정질 실리콘(i-a-Si)층을 포함하는 경우보다 다소 낮을 수 있다.
제1 패시베이션막(52) 위에는 제1 도전형 도펀트를 포함하거나 제1 도전형을 가지며 반도체 기판(160)보다 높은 도핑 농도를 가지는 제1 도전형 영역(20)이 위치(일 예로, 접촉)할 수 있다. 그리고 제2 패시베이션막(54) 위에는 제1 도전형과 반대되는 제2 도전형을 가지는 제2 도전형 도펀트를 포함하거나 제2 도전형을 가지는 제2 도전형 영역(30)이 위치(일 예로, 접촉)할 수 있다. 제1 및 제2 패시베이션막(52, 54)이 각기 제1 및 제2 도전형 영역(20, 30)에 접촉하면, 캐리어 전달 경로를 단축하고 구조를 단순화할 수 있다.
제1 도전형 영역(20) 및 제2 도전형 영역(30)이 반도체 기판(160)과 별개로 형성되므로, 반도체 기판(160) 위에서 쉽게 형성될 수 있도록 반도체 기판(160)과 다른 물질 및/또는 결정 구조를 가질 수 있다.
예를 들어, 제1 도전형 영역(20) 및 제2 도전형 영역(30) 각각은 증착 등의 다양한 방법에 의하여 쉽게 제조될 수 있는 비정질 반도체 등에 제1 또는 제2 도전형 도펀트를 도핑하여 형성될 수 있다. 그러면 제1 도전형 영역(20) 및 제2 도전형 영역(30)이 간단한 공정에 의하여 쉽게 형성될 수 있다.
이때, 반도체 기판(160)이 제1 도전형을 가질 수 있다. 그러면, 제1 도전형 영역(20)이 반도체 기판(160)과 동일한 도전형을 가지면서 높은 도핑 농도를 가지는 전면 전계 영역을 구성하고, 제2 도전형 영역(30)이 반도체 기판(160)과 반대되는 도전형을 가져 에미터 영역을 구성할 수 있다. 그러면, 에미터 영역인 제2 도전형 영역(20)이 반도체 기판(110)의 후면에 위치하여 전면으로의 광 흡수를 방해하지 않으면서 위치하기 때문에 상대적으로 두껍게 형성할 수 있다. 그리고 전면 전계 영역인 제1 도전형 영역(20)은 광전 변환에 직접 관여하지 않으며 반도체 기판(110)의 전면에 위치하여 전면으로의 광 흡수에 관계되므로 상대적으로 얇게 형성할 수 있다. 이에 의하여 제1 도전형 영역(20)에 의한 광 손실을 최소화할 수 있다.
제1 또는 제2 도전형 도펀트로 사용되는 p형 도펀트로는 보론(B), 알루미늄(Al), 갈륨(Ga), 인듐(In) 등의 3족 원소를 들 수 있고, n형 도펀트로는 인(P), 비소(As), 비스무스(Bi), 안티몬(Sb) 등의 5족 원소를 들 수 있다. 이 외에도 다양한 도펀트가 제1 또는 제2 도전형 도펀트로 사용될 수 있다.
일 예로, 반도체 기판(160) 및 제1 도전형 영역(20)이 n형을 가질 수 있고, 제2 도전형 영역(30)이 p형을 가질 수 있다. 이에 의하면, 반도체 기판(160)이 n형을 가져 캐리어의 수명(life time)이 우수할 수 있다. 일 예로 반도체 기판(160)과 제1 도전형 영역(20)이 n형 도펀트로 인(P)을 포함할 수 있고, 제2 도전형 영역(30)이 p형 도펀트로 보론(B)을 포함할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 제1 도전형이 p형이고 제2 도전형이 n형일 수도 있다.
본 실시예에서 제1 도전형 영역(20) 및 제2 도전형 영역(30)은 각기 비정질 실리콘(a-Si)층, 비정질 실리콘 산화물(a-SiOx)층, 비정질 실리콘 탄화물(a-SiCx)층, 인듐-갈륨-아연 산화물(indium-gallium-zinc oxide, IGZO)층, 티타늄 산화물(TiOx)층 및 몰리브덴 산화물(MoOx)층 중 적어도 하나를 포함할 수 있다. 이때, 비정질 실리콘(a-Si)층, 비정질 실리콘 산화물(a-SiOx)층, 비정질 실리콘 탄화물(a-SiCx)층은 제1 또는 제2 도전형 도펀트로 도핑될 수 있다. 인듐-갈륨-아연 산화물층, 티타늄 산화물층 및 몰리브덴 산화물층은 도펀트 없이 그 자체로 전자 또는 정공을 선택적으로 수집하여 n형 또는 p형 도전형 영역과 동일한 역할을 수행할 수 있다. 일 예로, 제1 및 제2 도전형 영역(20, 30)이 비정질 실리콘층을 포함할 수 있다. 이에 의하면 제1 및 제2 도전형 영역(20, 30)이 반도체 기판(160)과 동일한 반도체 물질(즉, 실리콘)을 포함하여 반도체 기판(160)과 유사한 특성을 가질 수 있다. 이에 의하여 캐리어의 이동이 좀더 효과적으로 이루어지고 안정적인 구조를 구현할 수 있다.
제1 도전형 영역(20) 위에는 이에 전기적으로 연결되는 제1 전극(42)이 위치(일 예로, 접촉)하고, 제2 도전형 영역(30) 위에는 이에 전기적으로 연결되는 제2 전극(44)이 위치(일 예로, 접촉)한다.
제1 전극(42)은 배선재(142) 또는 솔더층(1423)이 접합되는 제1 금속 전극층(421)을 포함하고, 제1 도전형 영역(20)과 제1 금속 전극층(421) 사이에 위치하는 제1 투명 전극층(420)을 더 포함할 수 있다.
여기서, 제1 투명 전극층(420)은 제1 도전형 영역(20) 위에서 전체적으로 형성(일 예로, 접촉)될 수 있다. 전체적으로 형성된다고 함은, 빈 공간 또는 빈 영역 없이 제1 도전형 영역(20)의 전체를 덮는 것뿐만 아니라, 불가피하게 일부 부분이 형성되지 않는 경우를 포함할 수 있다. 이와 같이 제1 투명 전극층(420)이 제1 도전형 영역(20) 위에 전체적으로 형성되면, 캐리어가 제1 투명 전극층(420)을 통하여 쉽게 제1 금속 전극층(421)까지 도달할 수 있어, 수평 방향에서의 저항을 줄일 수 있다. 비정질 반도체층 등으로 구성되는 제1 도전형 영역(20)의 결정성이 상대적으로 낮아 캐리어의 이동도(mobility)가 낮을 수 있으므로, 제1 투명 전극층(420)을 구비하여 캐리어가 수평 방향으로 이동할 때의 저항을 저하시키는 것이다.
이와 같이 제1 투명 전극층(420)이 제1 도전형 영역(20) 위에서 전체적으로 형성되므로 광을 투과할 수 있는 물질(투과성 물질)로 구성될 수 있다. 일 예로, 제1 투명 전극층(420)은 인듐-틴 산화물(indium tin oxide, ITO), 알루미늄-아연 산화물(aluminum zinc oxide, AZO), 보론-아연 산화물(boron zinc oxide, BZO), 인듐-텅스텐 산화물(indium tungsten oxide, IWO) 및 인듐-세슘 산화물(indium cesium oxide, ICO) 중 적어도 하나를 포함할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 제1 투명 전극층(420) 그 외의 다양한 물질을 포함할 수 있다.
이때, 본 실시예의 제1 투명 전극층(420)은 상술한 물질을 주요 물질로 하면서 수소를 포함할 수 있다. 이와 같이 제1 투명 전극층(420)이 수소를 포함하면 전자 또는 정공의 이동도(mobility)가 개선될 수 있으며 투과도가 향상될 수 있다.
일 예로, 제1 투명 전극층(420)이 제1 도전형 영역(20)(또는 제2 도전형 영역(30))과 같거나 그보다 큰 두께를 가질 수 있다. 특히, 제1 투명 전극층(420)이 제1 도전형 영역(20)(또는 제2 도전형 영역(30))보다 큰 두께를 가질 수 있다. 이에 의하여 제1 투명 전극층(420)를 통하여 캐리어가 좀더 원활하게 이동할 수 있다.
본 실시예에서는 제1 투명 전극층(420) 위에 패턴을 가지는 제1 금속 전극층(421)이 형성될 수 있다. 일 예로, 제1 금속 전극층(421)은 제1 투명 전극층(420)에 접촉 형성되어 제1 전극(42)의 구조를 단순화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
제1 투명 전극층(420) 위에 위치하며 배선재(142)가 연결되는 제1 금속 전극층(421)은 금속과 가교 수지를 포함할 수 있다. 제1 금속 전극층(421)은 금속을 포함하여 캐리어 수집 효율, 저항 저감 등의 특성을 향상할 수 있다.
이와 같이 제1 금속 전극층(421)은 금속을 포함하여 광의 입사를 방해할 수 있으므로 쉐이딩 손실(shading loss)를 최소화할 수 있도록 일정한 패턴을 가질 수 있다. 이에 의하여 제1 금속 전극층(421)이 형성되지 않은 부분으로 광이 입사할 수 있도록 한다. 제1 금속 전극층(421)의 평면 형상은 도 6을 참조하여 추후에 좀더 상세하게 설명한다.
제2 전극(44)은 배선재(142)가 연결되는 제2 금속 전극층(441)을 포함하고, 제2 도전형 영역(30)과 제2 금속 전극층(441) 사이에 위치하는 제2 투명 전극층(440)을 포함할 수 있다. 제2 전극(44)이 제2 도전형 영역(30) 위에 위치한다는 점을 제외하고는 제2 전극(44)의 제2 투명 전극층(440) 및 제2 금속 전극층(441)의 역할, 물질, 형상 등이 제1 전극(42)의 제1 투명 전극층(420) 및 제1 금속 전극층(421)의 역할, 물질, 형상 등과 동일하므로 이에 대한 설명이 그대로 적용될 수 있다.
이때, 본 실시예에서 배선재(142) 또는 솔더층(1423)에 접합되는 제1 및 제2 금속 전극층(421, 441)은 솔더층(1423)의 침투를 방지하면서 저온 소성(일 예로, 300℃ 이하의 공정 온도의 소성)에 의하여 소성될 수 있는 물질로 구성될 수 있다. 일 예로, 제1 및 제2 금속 전극층(421, 441)은 일정한 금속 화합물(일 예로, 산소를 포함하는 산화물, 탄소를 포함하는 탄화물, 황을 포함하는 황화물) 등으로 구성되는 유리 프릿(glass frit)을 구비하지 않고, 금속 입자(4214)과 가교 수지(4216)를 포함하고, 그 외에 다른 수지(일 예로, 경화제, 첨가제)만을 포함할 수 있다.
본 실시예에서는 제1 및 제2 금속 전극층(421, 441)이 각기 제1 및 제2 투명 전극층(420, 440)에 접촉하여 형성되므로, 절연막 등을 관통하는 파이어 스루(fire-through)가 요구되지 않는다. 이에 따라 제1 및 제2 금속 전극층(421, 441)이 유리 프릿을 제거한 저온 소성 페이스트를 도포(일 예로, 인쇄)한 후에 이를 열처리하여 형성될 수 있다. 이와 같이 저온 소성 페이스트 또는 제1 및 제2 금속 전극층(421, 441)이 유리 프릿을 구비하지 않으면, 제1 및 제2 금속 전극층(421, 441)의 금속이 소결(sintering)되는 것이 아니라 서로 접촉하여 응집(aggregation)되어 단순히 경화(curing)되는 것에 의하여 전도성을 가지게 된다.
이와 같이 단순히 경화되는 것에 의하여 형성된 제1 및 제2 금속 전극층(421, 441)은 금속 입자(4214) 사이의 일부를 가교 수지(4216)가 채우고 나머지 일부에 공극(v)이 잔존할 수 있다. 이에 의하여 제1 및 제2 금속 전극층(421, 441)은 공극(v)을 구비하지 않는 솔더층(1423)보다 높은 공극 비율을 가질 수 있다. 이러한 공극 비율 차이로부터 제1 및 제2 금속 전극층(421, 441)이 가교 수지(4216)를 포함하며 유리 프릿을 포함하지 않는 것을 알 수 있다.
금속 입자(4214)는 전도성을 제공하는 다양한 물질을 포함할 수 있다. 일 예로, 금속 입자는 은(Ag), 알루미늄(Al), 구리(Cu), 또는 은 또는 주석(Sn) 코팅된 은, 알루미늄, 구리 입자를 단독으로 또는 두 개 이상 혼합하여 사용할 수 있다.
가교 수지(4216)로는 금속 간의 가교(cross linking)를 수행하여 솔더층(1423)이 제1 및 제2 금속 전극층(421, 441)의 내부로 침투되는 것을 방지하는 물질을 포함할 수 있다. 본 실시예와 달리 가교 수지(4216)를 포함하지 않으면, 솔더층(1423)이 제1 및 제2 금속 전극층(421, 441)의 내부로 침투하여 취성(brittle)을 가지게 되어 제1 및 제2 금속 전극층(421, 441)이 작은 충격 등에 의하여 쉽게 깨질 수 있다. 본 실시예에는 가교 수지(4216)가 금속 입자(4214) 사이를 채워 솔더층(1423)의 침투를 방지하는 것으로 예측된다. 일 예로, 가교 수지(4216)가 페녹시 계열 수지, 에폭시 계열 수지, 셀룰로오스 계열 수지 등을 포함할 수 있다. 이들은 가교 특성이 우수하며 전극의 특성을 변화시키지 않기 때문이다. 특히, 에폭시 계열 수지를 사용하며 우수한 가교 특성을 가질 수 있다. 그 외에도 제1 및 제2 금속 전극층(421, 441)은 경화제를 더 포함할 수 있다. 경화제로는 아민계 경화제를 사용할 수 있다. 아민계 경화제의 일 예로, 무수 프탈산(phthalic anhydride), 디에틸아미노 프로필아민(diethylamino propylamine), 디에틸 트리아민(diethylene triamine) 등을 들 수 있다. 그 외에 첨가제 등을 포함할 수 있다.
그리고 제1 및 제2 금속 전극층(421, 441)을 형성하기 위한 저온 페이스트에는 용매가 포함되나, 열처리 시 용매는 휘발되어 제1 및 제2 금속 전극층(421, 441)에서는 포함되지 않거나 매우 미량으로 포함될 수 있다. 용매로는 유기 용매를 사용할 수 있는데, 일 예로, 부틸 카르비톨 아세테이트(butyl carbitol acetate, BCA), 셀룰로즈 아세테이트(cellulose acetate, CA) 등을 사용할 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
이때, 제1 또는 제2 금속 전극층(421, 441)에서 금속 또는 금속 입자(4214)가 가교 수지(4216)보다 더 많이 포함될 수 있다. 이에 의하여 제1 또는 제2 금속 전극층(421, 441)이 충분한 전도성을 가질 수 있다. 일 예로, 금속 입자(4214) 및 가교 수지(4216)의 합을 100 중량부라 할 때, 금속 입자(4214)가 80 내지 95 중량부, 가교 수지(4216)가 5 내지 20 중량부로 포함되고, 경화제가 0.1 내지 5 중량부로 포함될 수 있다. 용매는 열처리 전에는 금속 입자(4214) 및 가교 수지(4216)의 합을 100 중량부라 할 때, 3 내지 10 중량부로 포함될 수 있으나, 열처리 후에는 휘발되어 존재하지 않거나 미량만 존재하게 된다. 열처리 후에 경화제 등의 다른 물질의 함량은 크지 않으므로 제1 또는 제2 금속 전극층(421, 441)에서 금속 또는 금속 입자(4214)의 중량부가 80 내지 95 중량부일 수 있다.
금속 입자(4214)의 중량부가 80 미만이거나 가교 수지(4216)의 중량부가 20을 초과하면, 금속 입자(4214)에 의한 전도성이 충분하지 않을 수 있다. 금속 입자(4214)의 중량부가 95를 초과하거나 가교 수지(4216)의 중량부가 5 미만이면, 가교 수지(4216)이 충분하지 않아 가교 수지(4216)에 의한 솔더층(1423)의 침투 방지 효과가 충분하지 않을 수 있다. 경화제는 저온 페이스트의 특성을 저하시키지 않으면서 충분한 경화가 이루어지도록 하는 양으로 포함된 것이며, 용매는 다양한 물질을 균일하게 혼합하고 열처리 시 휘발되어 전기적 특성을 저하하지 않는 양으로 포함된 것이다. 그러나 본 발명이 이러한 수치에 한정되는 것은 아니다.
본 실시예에서 금속 입자(4214)가 서로 다른 형상의 제1 형상 입자(4211)와 제2 형상 입자(4213)를 포함할 수 있다. 이에 의하면, 금속 입자(4214)의 충진률을 높이고 솔더층(1423)이 제1 및 제2 금속 전극층(421, 441)으로 침투하는 것을 효과적으로 방지할 수 있다. 일 예로, 제1 형상 입자(4211)가 구형 형상을 가지고, 제2 형상 입자(4213)가 플레이크 형상을 가질 수 있다. 그러면, 제1 형상 입자(4211)에 의하여 충진률을 높이면서 제2 형상 입자(4213)에 의하여 솔더층(1423)이 침투하는 것을 막을 수 있다. 이때, 제1 형상 입자(4211)가 제2 형상 입자(4213)보다 많이 포함될 수 있다. 구형 입자인 제1 형상 입자(4211)가 많이 포함되어 우수한 전기 전도도를 구현하고, 제2 형상 입자(4213)는 솔더층(1423)의 침투를 방지하는 정도로 포함되면 되기 때문이다. 일 예로, 금속 입자(4214) 전체 100 중량부에 대하여 제1 형상 입자(4211)가 70 내지 99 중량부로 포함되고 제2 형상 입자(4213)가 1 내지 30 중량부로 포함될 수 있다. 이러한 범위는 우수한 전기 전도도를 구현하면서 솔더층(1423)의 침투를 효과적으로 방지할 수 있는 범위로 한정된 것이나, 본 발명이 이러한 수치에 한정되는 것은 아니다. 또한, 제2 형상 입자(4213) 없이 제1 형상 입자(4211)만을 구비할 수도 있다.
이때, 제1 형상 입자(4211)의 크기(일 예로, 입경)가 제2 형상 입자(4213)의 장축보다 작을 수 있고, 제2 형상 입자(4213)의 두께와 같거나 그보다 작을 수 있다. 또는, 제1 형상 입자(4211)의 크기이 0.1 내지 5um이고, 제2 형상 입자(4213)의 장축이 2 내지 10um이고 두께가 0.2 내지 5um일 수 있다. 이와 같이 제1 형상 입자(4211)와 제2 형상 입자(4213)를 함께 포함하였을 때 조밀하게 금속 입자(4213)가 채워지고 제2 형상 입자(4213)에 의하여 솔더층(1423)의 침투를 방지할 수 있다.
그리고 금속 입자(4214) 또는 제1 형상 입자(4211)는 제1 크기를 가지며 구형 형상을 가지는 제1 입자(4211a)와 제1 크기와 다른 제2 크기를 가지며 구형 형상을 가지는 제2 입자(4211b)를 포함할 수 있다. 이와 같이 제1 형상 입자(4211)가 서로 다른 크기를 가지는 제1 입자(4211a) 및 제2 입자(4211b)를 포함하면 금속 전극층(421, 422) 내의 공극을 최소화할 수 있다. 일 예로, 제1 입자(4211a)의 크기가 0.2 내지 1um일 수 있고, 제2 입자(4211b)의 크기가 2 내지 3um일 수 있다. 이때, 제2 입자(4211b)가 제1 입자(4211a)보다 적게 포함될 수 있다. 크기가 작은 제1 입자(4211a)를 더 많이 포함하면 공극을 줄일 수 있기 때문이다. 일 예로, 제1 형상 입자(4211) 전체 100 중량부에 대하여 제1 입자(4211a)가 60 내지 95 중량부, 제2 입자(4211b)가 5 내지 40 중량부로 포함될 수 있다. 이러한 범위는 공극(v)를 최소화할 수 있는 범위로 한정된 것이나 본 발명이 이에 한정되는 것은 아니다.
참고로, 제1 형상 입자(4211)의 크기는 입도 분석기 또는 주사 전자 현미경(SEM)으로 측정 또는 판단될 수 있고, 제2 형상 입자(4213)의 장축 및 두께는 주사 전자 현미경(SEM)으로 측정 또는 판단될 수 있다.
이와 같이 본 실시예에서 제1 및 제2 금속 전극층(421, 441)은 각기 금속 입자(4214)와 함께 가교 수지(4216)를 포함하므로, 금속으로 이루어진 솔더층(1423)의 금속 함량이 제1 및 제2 금속 전극층(421, 441)의 금속 함량보다 높다. 솔더층(1423)은 높은 금속 함량을 가져 솔더링 특성을 향상하고, 제1 및 제2 금속층(421, 441)은 가교 수지(4216)에 의하여 솔더층(1423)의 침투를 방지할 수 있다. 일 예로, 솔더층(1423) 전체 100 중량부에 대하여 금속이 99 중량부 이상으로 포함될 수 있다. 반면, 앞서 설명한 바와 같이, 제1 또는 제2 금속 전극층(421, 441) 전체 100 중량부에는 금속(또는 금속 입자(4214))이 80 내지 95 중량부로 포함될 수 있다.
상술한 제1 및 제2 전극(42, 44)의 제1 및 제2 금속 전극층(421, 441)의 형상 및 이에 접합되는 배선재(142) 및/또는 솔더층(1423)의 형상을 도 5와 함께 도 6 및 도 7을 참조하여 좀더 상세하게 설명한다.
도 6은 도 1의 태양 전지 패널(100)에 포함된 태양 전지(150)를 도시한 평면도이다. 도 7은 도 1의 태양 전지 패널(100)에 포함된 태양 전지(150)와 이에 연결된 배선재(142)를 도시한 평면도이다. 도 6 및 도 7에서는 반도체 기판(160)과 제1 및 제2 전극(42, 44)의 제1 및 제2 금속 전극층(421, 441)을 위주로 도시하였다. 이하에서는 제1 전극(42)의 제1 금속층(421)을 위주로 하여 설명하나, 후술하는 설명은 제2 전극(44)의 제2 금속층(441)에도 그대로 적용될 수 있다.
도 6 및 도 7을 참조하면, 본 실시예에서 제1 금속 전극층(421)은 각기 제1 방향(도면의 가로 방향)으로 연장되며 서로 평행하게 위치하는 복수의 핑거 라인(427)을 포함한다. 그리고 제1 방향과 교차(일 예로, 직교)하는 제2 방향(도면의 세로 방향)으로 연장되어 배선재(142)가 연결 또는 부착되는 버스바(423)를 더 포함할 수 있다. 버스바(423)는 배선재(142)에 일대일 대응하여 배치될 수 있으므로 버스바(423)의 개수, 피치 등에 대해서는 배선재(142)의 개수, 피치 등에 대한 설명이 그대로 적용될 수 있다. 본 실시예에서 배선재(142)가 태양 전지(150)의 일면을 기준으로 복수 개(일 예로, 6개 이상) 구비되므로 버스바(423)도 이에 대응하도록 복수 개(일 예로, 6개 이상) 구비될 수 있다.
복수의 핑거 라인(427)은 균일한 폭 및 피치를 가지면서 서로 이격될 수 있다. 도면에서는 핑거 라인(427)이 제1 방향으로 서로 나란히 형성되어 태양 전지(150)의 메인 가장자리와 평행한 것을 예시하였으나, 본 발명이 이에 한정되는 것은 아니다.
일 예로, 버스바(423)와 배선재(142)가 서로 연결 또는 부착하는 부분에서 버스바(423)는 솔더층(1423)보다 넓은 폭(W2)을 가지는 패드부(424)를 포함할 수 있다. 패드부(424)는 상대적으로 넓은 폭(W2)을 가져 배선재(142)가 안정적으로 부착될 수 있도록 하고 접촉 저항을 저감할 수 있다. 패드부(424)는 각 배선재(142)에 대응하여 일정 간격을 두고 서로 이격된 복수의 패드부(424a, 424b)로 구성될 수 있다. 일 예로, 복수의 패드부(424a, 424b)는 버스바(423)의 양 단부 쪽에 각기 인접하여 위치하는 제1 패드(424a)와, 제1 패드(424a) 이외의 제2 패드(424b)를 포함할 수 있다. 제1 패드(424a)는 배선재(142)를 태양 전지(150)로부터 분리하는 방향으로 힘이 많이 작용될 수 있는 부분에 위치하므로, 제2 패드(424b)보다 큰 길이 및/또는 폭을 가질 수 있다. 제1 방향에서 측정되는 패드부(424)의 폭(W2)은 제1 방향에서 측정된 라인부(425)의 폭 및 제2 방향에서 측정된 핑거 라인(427)의 폭보다 각기 클 수 있다.
여기서, 솔더층(1423)의 두께가 코어층(1427)의 폭의 20% 이하(일 예로, 20um 이하, 예를 들어, 2um 내지 20um, 일 예로 5um 내지 20um)로 작은 편이다. 이때, 솔더층(1423)의 두께가 2um 미만이면 태빙 공정이 원활하게 이루어지지 않을 수 있다. 그리고 솔더층(1423)의 두께가 20um를 초과하면 재료 비용이 증가하고 코어층(1427)의 폭이 작아져서 배선재(142)의 강도가 저하될 수 있다. 참조로, 제1 및 제2 금속 전극층(421, 441)의 두께가 솔더층(1423)의 두께보다 클 수 있다. 일 예로, 제1 및 제2 금속 전극층(421, 441)의 두께가 20 내지 40um일 수 있다. 이에 의하여 제1 및 제2 금속 전극층(421, 441)의 저항을 저감하고 배선재(142)가 안정적으로 제1 및 제2 금속 전극층(421, 441)에 부착되도록 할 수 있다.
이때, 각 배선재(142)의 솔더층(1423)은 다른 배선재(142) 또는 솔더층(1423)과 개별적으로 위치하게 된다. 태빙 공정에 의하여 배선재(142)가 태양 전지(150)에 부착되면, 각 솔더층(1423)이 제1 또는 제2 전극(42, 44)(좀더 구체적으로, 패드부(424)) 쪽으로 전체적으로 흘러내려 각 패드부(424)에 인접한 부분 또는 패드부(424)와 코어층(1427) 사이에 위치한 부분에서 솔더층(1423)의 폭이 패드부(424)를 향하면서 점진적으로 커질 수 있다. 일 예로, 솔더층(1423)에서 패드부(424)에 인접한 부분은 코어층(1427)의 직경(W1)과 같거나 그보다 큰 폭(W3)을 가질 수 있다. 좀더 구체적으로, 솔더층(1423)은 코어층(1427)의 상부에서 코어층(1427)의 형상에 따라 태양 전지(150)의 외부를 향하여 돌출된 형상을 가지는 반면, 코어층(1423)의 하부 또는 패드부(424)에 인접한 부분에는 태양 전지(150)의 외부에 대하여 오목한 형상을 가지는 부분을 포함한다. 이에 의하여 솔더층(1423)의 측면에서는 곡률이 변하는 변곡점(CP)이 위치하게 된다. 솔더층(1423)의 이러한 형상으로부터 배선재(142)가 별도의 층, 필름 등에 삽입되거나 덮여지지 않은 상태로 솔더층(1423)에 의하여 각기 개별적으로 부착되어 고정되었음을 알 수 있다. 별도의 층, 필름 등의 사용 없이 솔더층(1423)에 의하여 배선재(142)를 고정하여 단순한 구조 및 공정에 의하여 태양 전지(150)와 배선재(142)를 연결할 수 있다. 특히, 본 실시예와 같이 좁은 폭 및 라운드진 형상을 가지는 배선재(142)를 별도의 층, 필름(일 예로, 수지와 전도성 물질을 포함하는 전도성 접착 필름) 등을 사용하지 않고 부착할 수 있어 배선재(142)의 공정 비용 및 시간을 최소화할 수 있다.
한편, 태빙 공정 이후인 경우에도 두 개의 태양 전지(150)의 사이에 위치한 배선재(142)의 부분은 태빙 공정 이전과 동일 또는 유사한 형상을 그대로 유지할 수 있다.
이와 같이 솔더층(1423)의 폭(W3)이 패드부(424)의 폭(W2)과 같거나 그보다 작으므로 솔더층(1423)은 패드부(424)에서 반도체 기판(160)의 반대면에 위치한 면(도 5의 확대원에서 상부면)에만 형성되고 패드부(424)의 측면에는 형성되지 않는다. 이와 달리 패드부(424)의 측면에도 솔더층(1423)이 위치하게 되면, 투명 전극층(420, 440)을 손상시키거나 제1 및 제2 투명 전극층(420, 440)과 제1 및 제2 금속 전극층(421, 441) 사이로 파고 들어 제1 및 제2 투명 전극층(420, 440)과 제1 및 제2 금속 전극층(421, 441)의 접합 특성을 저하시킬 수 있다.
일 예로, 배선재(142)의 폭(W1) : 패드부(424)에 인접한 부분에서 솔더층(1423)의 폭(W3)의 비율(W1:W3)이 1:1 내지 1:3.33일 수 있다. 그리고 패드부(424)에 인접한 부분에서 솔더층(1423)의 폭(W3) : 패드부(424)의 폭(W2)의 비율(W3:W2)이 1:1 내지 1:4.5(일 예로, 1:1.1 내지 1:4.5)일 수 있다. 상기 비율(W3:W2)이 1:1 미만이면, 배선재(142)와 패드부(424)의 접착 특성이 우수하지 않을 수 있다. 상기 비율(W3:W2)이 1:4.5를 초과하면, 패드부(424)의 면적이 커져 광 손실이 증가하고 제조 비용이 증가할 수 있다. 상기 비율(W3:W2)이 1:1.1 이상이면, 패드부(424)에 인접한 솔더층(1423)의 폭(W3)이 패드부(424)의 폭(W2)보다 작아 솔더층(1423)이 패드부(424)의 측면으로 흘러내리지 않고 패드부(424) 위에서 안정적으로 위치할 수 있다.
그러나 본 발명이 이에 한정되는 것은 아니다. 배선재(142)의 폭(W1), 패드부(424)의 폭(W2) 및 솔더층(1423)의 폭(W3)이 다양한 값을 가질 수 있다. 또한, 라인부(425)와 패드부(424)를 별도로 구비하지 않고, 라인부(425) 또는 패드부(424)로 전체적으로 형성되는 것도 가능하다.
그리고 버스바(423)는 패드부(424) 사이를 연결하며 패드부(424)보다 작은 폭을 가지는 라인부(425)를 포함할 수 있다. 라인부(425)에 의하여 버스바(423)가 끊이지 않고 연속적으로 형성될 수 있다. 좁은 폭의 라인부(425)에 의하여 태양 전지(150)로 입사하는 광을 막는 면적을 최소화할 수 있다.
본 실시예에서 배선재(142)에 대응하도록 버스바(423)의 라인부(425)가 구비되는 것을 예시하였다. 좀더 구체적으로, 기존에는 배선재(142)에 대응하여 핑거 라인(427)보다 매우 큰 폭을 가지는 버스바 전극이 위치하였는데, 본 실시예에서는 폭이 버스바보다 매우 작은 버스바(423)의 라인부(425)가 위치한다. 본 실시예에서 라인부(425)는 복수의 핑거 라인(427)을 연결하여 일부 핑거 라인(427)이 단선될 경우 캐리어가 우회할 수 있는 경로를 제공할 수 있다.
본 명세서에서 버스바 전극은 리본에 대응하도록 핑거 라인에 교차하는 방향으로 형성되며 핑거 라인의 폭의 12배 이상(보통 15배 이상)의 폭을 가지는 전극부를 지칭한다. 버스바 전극은 상대적으로 큰 폭을 가지므로 보통 2개 정도 3개의 개수로 형성된다. 그리고 본 실시예에서의 버스바(423)의 라인부(425)는 배선재(142)에 대응하도록 핑거 라인(427)과 교차하는 방향으로 형성되며 핑거 라인(427)의 폭의 10배 이하의 폭을 가지는 전극부를 지칭할 수 있다.
일 예로, 라인부(425)의 폭이 핑거 라인(427)의 폭의 0.5배 내지 10배(일 예로, 2배 내지 5배)일 수 있다. 상기 비율이 0.5배 미만이면, 라인부(425)의 폭이 적어져 라인부(425)에 의한 효과가 충분하지 않을 수 있다. 상기 비율이 10배를 초과하면, 라인부(425)의 폭이 커져서 광 손실이 커질 수 있다. 특히, 본 실시예에서는 배선재(142)를 많은 개수로 구비하므로 라인부(425) 또한 많은 개수로 구비되어 광 손실이 더 커질 수 있다. 좀더 구체적으로는, 전기적 연결 특성 및 광 손실을 더 고려하면 라인부(425)의 폭이 핑거 라인(427)의 폭의 2배 내지 5배일 수 있다. 이러한 범위에서 태양 전지(150)의 효율을 크게 향상할 수 있다.
또는, 라인부(423)의 폭이 배선재(142)의 폭(W1)과 같거나 이보다 작을 수 있다. 배선재(142)가 원형, 타원형 또는 라운드진 형상을 가지는 경우에 배선재(142)의 하부에서 라인부(425)에 접촉하는 폭 또는 면적이 크지 않으므로, 라인부(425)의 폭을 배선재(142)의 폭(W1)과 같거나 이보다 작게 할 수 있기 때문이다. 이와 같이 라인부(425)의 폭을 상대적으로 작게 하면 제1 전극(42)의 면적을 줄여 제1 전극(42)의 재료 비용을 절감할 수 있다.
또는, 라인부(425)의 폭이 50um 내지 500um일 수 있다. 라인부(425)의 폭이 50um 미만이면, 라인부(425)의 폭이 너무 적어 전기적 특성 등이 저하될 수 있다. 라인부(425)의 폭이 500um를 초과하면, 라인부(425)과의 접촉 특성 등을 크게 향상하지 못하면서 제1 전극(42)의 면적만을 늘려 광 손실 증가, 재료 비용 증가 등의 문제가 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서, 라인부(425)의 폭은 광전 변환에 의하여 생성된 전류를 효과적으로 전달하면서도 쉐이딩 손실을 최소화하는 범위 내에서 다양한 변형이 가능하다.
그리고 패드부(424)의 폭(W2)은 라인부(425)의 폭보다 크고, 배선재(142)의 폭(W1)과 같거나 그보다 클 수 있다. 패드부(424)는 배선재(142)와의 접촉 면적을 늘려 배선재(142)와의 부착력을 향상하기 위한 부분이므로, 라인부(425)보다 큰 폭을 가지고 배선재(142)의 폭(W1)와 같거나 이보다 큰 폭을 가지는 것이다.
또는, 일 예로, 패드부(424)의 폭이 0.2mm 내지 2.5mm(일 예로, 0.2mm 내지 2.0mm)일 수 있다. 패드부(424)의 폭이 0.2mm 미만이면, 배선재(142)와의 접촉 면적이 충분하지 않아 패드부(424)와 배선재(142)의 부착력이 충분하지 않을 수 있다. 패드부(424)의 폭이 2.5mm를 초과하면, 패드부(424)에 의하여 광이 손실되는 면적이 늘어나서 쉐이딩 손실이 클 수 있다. 일 예로, 패드부(424)의 폭이 0.8mm 내지 1.5mm일 수 있다.
그리고 패드부(424)의 길이는 핑거 라인(427)의 폭보다 클 수 있다. 예를 들어, 패드부(424)의 길이가 1mm 내지 5mm일 수 있다. 패드부(424)의 길이가 1mm 미만이면, 배선재(142)와의 접촉 면적이 충분하지 않아 패드부(424)와 배선재(142)의 부착력이 충분하지 않을 수 있다. 패드부(424)의 길이가 5mm를 초과하면, 패드부(424)에 의하여 광이 손실되는 면적이 늘어나서 쉐이딩 손실이 클 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 패드부(424)의 폭 및 길이는 다양하게 변형될 수 있다. 또한, 서로 다른 폭을 가지는 패드부(424)와 라인부(425)를 모두 구비하지 않고, 버스바(423)가 동일한 폭을 가지는 라인부(425) 또는 패드부(424)로만 구성될 수도 있다.
일 예로, 본 실시에에서는 핑거 라인(427) 및 버스바(423)의 두께가 10um 이상일 수 있다. 핑거 라인(427) 및 버스바(423)의 두께가 10um 미만일 경우에는 전기적 특성이 저하될 수 있다. 특히, 본 실시예에서는 핑거 라인(427), 버스바(423), 배선재(142) 등이 얇은 폭을 가지기 때문에 두께가 일정 수준으로 확보되어야 한다. 일 예로, 핑거 라인(427)의 두께가 10um 내지 40um(좀더 구체적으로, 15um 내지 30um) 일 수 있고, 버스바 라인(423)의 두께가 10um 내지 50um일 수 있다. 이러한 범위 내에서 전극 재료(일 예로, 은)의 사용량에 따른 비용을 절감하면서도 충분한 전기적 특성을 구현할 수 있다. 이때, 버스바 라인(423)의 두께가 핑거 라인(427)의 두께와 같거나 이보다 클 수 있다. 특히, 버스바 라인(423)의 두께가 핑거 라인(427)의 두께보다 크게 하여 전기적 특성을 좀더 향상할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
상술한 설명에서는 도 5의 확대원 및 도 6 및 도 7을 참조하여 제1 전극(42)의 제1 금속 전극층(422)을 위주로 하여 설명하였다. 제1 금속 전극층(421)의 핑거 라인(427) 및 버스바(423)에 각기 대응하도록 제2 금속 전극층(441)도 핑거 라인 및 버스바를 구비할 수 있다. 이때, 제1 금속 전극층(421)의 핑거 라인(427) 및 버스바(423)의 폭, 피치 등은 제2 금속 전극층(441)의 핑거 라인 및 버스바의 폭, 피치 등과 같은 값을 가질 수도 있고 서로 다른 값을 가질 수 있다. 일 예로, 광 손실을 고려하여 제1 금속 전극층(421)의 핑거 라인(427) 및 버스바(423)의 폭이 제2 금속 전극층(441)의 핑거 라인 및 버스바의 폭보다 작고, 및/또는 제1 금속 전극층(421)의 핑거 라인(427) 및 버스바(423)의 피치가 제2 금속 전극층(441)의 핑거 라인 및 버스바의 피치보다 클 수 있다. 이 경우에도, 제1 전극(42)의 버스바(423)의 개수 및 피치는 각기 제2 전극(44)의 버스바의 개수 및 피치와 동일할 수 있다. 또는, 제1 및 제2 금속 전극층(421, 441)의 평면 형상이 서로 다른 것도 가능하다. 예를 들어, 제2 금속 전극층(441)이 반도체 기판(160)의 후면에 전체적으로 형성되는 것도 가능하다. 그 의 다양한 변형이 가능하다.
이와 같이 본 실시예에서는 태양 전지(150)의 제1 및 제2 전극(42, 44) 중에 불투명한 또는 금속을 포함하는 제1 및 제2 금속 전극층(421, 441)이 일정한 패턴을 가져 반도체 기판(160)의 전면 및 후면으로 광이 입사될 수 있는 양면 수광형(bi-facial) 구조를 가진다. 이에 의하여 태양 전지(150)에서 사용되는 광량을 증가시켜 태양 전지(150)의 효율 향상에 기여할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 제2 전극(44)의 제2 금속 전극층(441)이 반도체 기판(160)의 후면 쪽에서 전체적으로 형성되는 구조를 가지는 것도 가능하다.
본 실시예에 따르면, 와이어 형태의 배선재(142)를 사용하여 난반사 등에 의하여 광 손실을 최소화할 수 있고 배선재(142)의 개수를 늘리고 배선재(142)의 피치를 줄여 캐리어의 이동 경로를 줄일 수 있다. 이에 의하여 태양 전지(150)의 효율 및 태양 전지 패널(100)의 출력을 향상할 수 있다. 솔더층(1423)에 의하여 배선재(142)를 부착하여 간단한 구조 및 공정으로 배선재(142)의 부착이 가능하다. 또한, 제1 및 제2 금속 전극층(421, 441)이 금속 입자(4214)과 가교 수지(4216)를 포함하여 솔더층(1423)이 제1 및 제2 금속 전극층(421, 441)으로 침투하여 발생할 수 있는 문제를 방지하여 신뢰성을 향상할 수 있다.
본 실시예에서는 상술한 구조의 태양 전지(150)에 100um 내지 500um의 폭을 가지는 배선재(142)를 적용하여 배선재(142)가 제1 또는 제2 투명 전극층(420, 440) 위에 부착되거나 놓여지는 경우에도 전기적인 연결이 이루어지도록 할 수 있다. 그리고 제1 또는 제2 금속 전극층(421, 441)이 유리 프릿을 포함하지 않는 저온 페이스트로 형성되므로, 솔더링에 의한 그리드 인터럽션(grid interruption caused by soldering, GICS)이 발생하지 않는다. 좀더 구체적으로, 파이어스루를 위하여 유리 프릿을 포함하는 페이스트를 사용하면 금속 전극층을 형성하면 솔더링 시에 핑거 라인(474)이 단선되는 등의 문제에 의하여 GICS가 발생할 수 있는데, 본 실시예에서는 유리 프릿을 포함하지 않는 저온 페이스트를 포함하여 이러한 문제를 방지할 수 있다. 그리고 의도치 않게 핑거 라인(474)이 단선되는 등의 문제가 발생하여도 제1 또는 제2 투명 전극층(420, 440)에 의하여 전기적인 연결은 그대로 유지될 수 있다. 또한, 버스바(423)가 위치하지 않는 영역(일 예로, 도 7에서 버스바(423)의 하단부와 태양 전지(150)의 가장자리 사이)에서도 배선재(142)가 제1 또는 제2 투명 전극층(420, 440)에 연결되어 캐리어를 수집할 수 있으므로, 전류 손실을 방지할 수 있다. 반면, 본 실시예와 달리, 제1 또는 제2 투명 전극층(420, 440)을 구비하지 않고 도전형 영역 위에 절연막, 반사 방지막 등을 구비한 경우에는 버스바(423)가 위치하지 않는 영역에 배선재(142)가 위치하면 배선재(142)가 절연막, 반사 방지막 위에 위치하게 되므로 캐리어를 수집할 수 없어 전류가 손실될 수 있다.
즉, 본 실시예에 따르면 얇은 폭의 배선재(142)를 적용할 경우에 얼라인 미스 등이 발생하여도 배선재(142)를 안정적으로 제1 또는 제2 전극(42, 44)에 전기적으로 연결하여 전류 수집 효율을 향상할 수 있으며 태양 전지(150)에 손상을 주지 않을 수 있다.
본 실시예에서는 솔더층(1423)의 배선재(142)의 코어층(1427)의 표면에 전체적으로 도포된 상태로 존재하고, 배선재(142)를 태양 전지(150) 위에 위치한 상태에서 열 및 압력을 가하여 코어층(1427)에 코팅된 솔더층(1423)을 녹여 배선재(142)를 태양 전지(150)에 부착한다. 이에 의하여 부착 공정을 단순화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 솔더층(1423)이 배선재(142)와 별개로 형성되어 배선재(142)의 부착 공정 시 태양 전지(150)와 배선재(142) 사이에 놓여져서 열 및 압력에 태양 전지(150)와 배선재(142)를 부착할 수도 있다. 이 경우에는 솔더층(1423)이 태양 전지(150)와 배선재(142) 사이에 놓여진 솔더링 페이스트일 수 있다. 그 외의 다양한 변형이 가능하다.
이하, 첨부한 도면을 참조하여 본 발명의 다른 실시예에 따른 태양 전지 및 이를 포함하는 태양 전지 패널을 상세하게 설명한다. 상술한 설명과 동일 또는 극히 유사한 부분에 대해서는 상술한 설명이 그대로 적용될 수 있으므로 상세한 설명을 생략하고 서로 다른 부분에 대해서만 상세하게 설명한다. 그리고 상술한 실시예 또는 이를 변형한 예와 아래의 실시예 또는 이를 변형한 예들을 서로 결합한 것 또한 본 발명의 범위에 속한다. 이하의 도면에서는 제1 전극(42)을 예시로 하여 도시 및 설명하였으나, 후술할 실시예 또는 이를 변형한 예들은 제1 전극(42) 및 제2 전극(44) 중 적어도 하나에 적용되면 족하다.
도 8은 본 발명의 다른 실시예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 8에서는 도 5의 확대원에 대응하는 부분만을 도시하였다.
도 8을 참조하면, 본 실시예에서는 제1 금속 전극층(도 5의 참조부호 421, 이하 동일)(좀더 구체적으로는, 적어도 패드부(424))의 표면 위에 배리어 전극부(428)가 형성된다. 배리어 전극부(428)는 도전성 물질(일 예로, 금속)을 포함할 수 있다. 이때, 배리어 전극부(428)는 적어도 솔더층(1423)에 인접한 패드부(424)의 상면(즉, 패드부(424)와 솔더층(1423) 사이에 위치한 패드부(424)의 면)에 형성되고, 패드부(424)의 측면에 추가적으로 형성될 수 있다. 그리고 라인부(425)의 표면에는 배리어 전극부(428)가 형성될 수도 있고 형성되지 않을 수도 있다.
도면에서는 배리어 전극부(428)가 제1 금속 전극층(421)의 상면 및 측면에 형성된 것을 도시하였으나, 본 발명이 이에 한정되는 것은 아니다. 배리어 전극부(428)가 제1 금속 전극층(421)의 측면에는 형성되지 않고 제1 금속 전극층(421)의 상면에만 위치할 수도 있다.
이러한 배리어 전극부(428)는 솔더층(1423)의 침투 경로를 막아 솔더층(1423)의 침투를 효과적으로 방지할 수 있다. 특히, 본 실시예에서와 같이 제1 투명 전극층(420)을 포함하는 경우에는 배선재(142)를 부착하는 공정 또는 그 이후에 솔더층(1423)이 제1 투명 전극층(420)과 제1 금속 전극층(421) 사이로 침투하여 제1 투명 전극층(420)과 제1 금속 전극층(421) 사이의 접착 특성이 저하될 수 있다. 이에 의하여 배선재(142)의 태빙 시 또는 태빙 후에 제1 금속 전극층(421)이 제1 투명 전극층(420)으로부터 박리될 수 있는데, 본 실시예에서는 배리어 전극부(428)에 의하여 이러한 현상을 방지할 수 있다. 그리고 배리어 전극부(428)를 형성하는 단순한 공정에 의하여 솔더층(1423)의 침투를 방지할 수 있으며, 배리어 전극부(428)가 전도성을 가지므로 제1 전극(42)의 전기적 특성 또한 저하되지 않는다. 일 예로, 배리어 전극부(428)가 금속을 포함하여 제1 투명 전극층(420)보다 높은 전기 전도도를 가질 수도 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
본 실시예에서는 배리어 전극부(428)가 제1 금속 전극층(421)의 상면 및 측면에서 전체적으로 형성되는 층 형상을 가지는 것을 예시하였다. 이에 의하여 솔더층(1423)에 인접한 부분에서 배리어 전극부(428)를 전체적으로 위치시켜 솔더층(1423)에 의한 침투를 효과적으로 방지할 수 있다.
이러한 형상의 배리어 전극부(428)는 도금에 의하여 쉽게 형성할 수 있다. 도금에 의하면 제1 금속 전극층(421)이 형성된 부분에만 선택적으로 배리어 전극부(428)가 형성될 수 있어 별도의 마스크 없이 배리어 전극부(428)를 원하는 형상으로 형성할 수 있다. 그러면, 가교 수지를 포함하지 않아 제1 금속 전극층(421)보다 높은 금속 함량을 가지고 이보다 낮은 공극 비율을 가질 수 있다. 일 예로, 배리어 전극부(428)는 은, 티타늄, 니켈, 구리, 니켈-바나듐(NiV) 합금, 티타늄-바나듐(TiN) 합금, 티타늄-텅스텐(TiW) 합금, 또는 이들의 합금을 포함할 수 있고, 금속이 99 중량부 이상으로 포함될 수 있다.
그러나 본 발명이 이에 한정되는 것은 아니며 스퍼터링, 스핀 코팅, 스프레이 코팅 등의 다양한 방법에 의하여 배리어 전극부(428)를 형성할 수 있다. 배리어 전극부(428)의 형성 방법으로는 그 외의 다양한 방법이 적용될 수 있다. 스핀 코팅 또는 스프레이 코팅 등에 의하는 경우에는 배리어 전극부(428)가 수지 내부에 금속 입자가 분산된 형태일 수 있다. 이 경우에 수지로는 에폭시 계열 수지를 사용할 수 있고 금속 입자로는 은 입자, 티타늄 입자, 니켈 입자, 구리 입자, 은 코팅된 구리 입자, 니켈-바나듐(NiV) 합금 입자, 티타늄-바나듐(TiN) 합금 입자, 티타늄-텅스텐(TiW) 합금 입자, 또는 이들의 합금 입자 등을 사용할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 배리어 전극부(428)가 도전성을 가지면서 솔더층(1423)의 침투를 막을 수 있는 다양한 물질을 포함할 수 있다. 배리어 전극부(428)의 금속 함량은 제1 금속 전극층(421)와 같을 수도 있고, 그보다 높거나 낮을 수도 있다. 일 예로, 배리어 전극부(428)의 금속 함량은 제1 금속 전극층(421)보다 높아 우수한 전도성을 가지도록 할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.
그리고 배리어 금속부(428)의 두께는 제1 금속 전극층(421)의 두께와 같거나 이보다 작을 수 있다. 좀더 구체적으로, 배리어 금속부(428)의 두께는 제1 금속 전극층(421)의 두께보다 작을 수 있다. 이는 배리어 금속부(428)는 솔더층(142b)의 침투를 방지하는 역할만을 수행하면 되므로 상대적으로 얇은 두께로 형성되고, 제1 금속 전극층(421)은 충분한 전기적 특성을 위하여 상대적으로 두껍게 형성되기 때문이다. 또는, 배리어 금속부(428)의 두께가 5nm 내지 40um이고, 제1 금속 전극층(421)의 두께가 10um 내지 40um일 수 있다. 배리어 금속부(428)의 두께가 5nm 미만이면 효과가 충분하지 않을 수 있고 40um를 초과하면 재료 비용, 공정 시간 등이 증가할 수 있다. 제1 금속 전극층(421)의 두께는 전기 전도성, 재료 비용, 공정 시간 등을 모두 고려하여 한정된 것이다. 그러나 본 발명이 이에 한정되는 것은 아니며 배리어 금속부(428)의 두께와 제1 금속 전극층(421)이 두께는 다양한 값을 가질 수 있다.
한편, 배리어 전극부(428)는 제1 금속 전극층(421) 및 제2 금속 전극층(441) 중 적어도 하나의 패드부(424)의 표면 위에 형성될 수 있다. 일 예로, 배선재(142)의 부착 공정 시 제1 및 제2 금속 전극층(421, 441) 중 하나의 온도가 다른 하나의 온도보다 더 높을 수 있는데, 높은 온도 쪽에 위치하여 솔더층(142b)의 침투에 더 취약한 패드부(428)에만 배리어 전극부(428)를 형성하고 다른 쪽의 패드부(428)에는 배리어 전극부(428)를 형성하지 않을 수 있다. 예를 들어, 배선재(142)의 부착 공정 시 제1 금속 전극층(421)의 온도가 제2 금속 전극층(441)의 온도보다 높은 경우에는 제1 금속 전극층(421)의 패드부(424) 위에만 배리어 전극부(428)를 형성하고 제2 금속 전극층(441)의 패드부(424) 위에는 배리어 전극부(428)를 형성하지 않을 수 있다.
배리어 전극부(428)의 형상, 위치 등은 상술한 바에 한정되지 않으며 다양하게 변형될 수 있다. 이를 도 9 내지 도 13을 참조하여 상세하게 설명한다. 도 9는 본 발명의 일 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부의 다양한 예를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 9에서는 도 5 또는 도 8의 확대원에 대응하는 부분만을 도시하였다.
도 9를 참조하면, 본 변형예에서는 배리어 전극부(428)는 제1 투명 전극층(420)과 제1 금속 전극층(421) 사이에 층 형상으로 형성된다. 이에 의하면 스퍼터링, 스핀 코팅, 스프레이 코팅 등과 같은 간단한 방법에 의하여 배리어 전극부(428)를 형성한 후에 그 위에 제1 금속 전극층(421)을 형성할 수 있다. 배리어 전극부(428)의 폭은 제1 금속 전극층(421)의 폭(좀더 구체적으로, 패드부(424)가 위치한 부분에서 패드부(424)의 폭)과 같거나 그보다 클 수 있다. 이에 의하여 솔더층(1423)이 위치하는 제1 금속 전극층(421)의 패드부(424)가 전체적으로 배리어 전극부(428) 위에 위치하도록 하여 솔더층(1423)의 침투를 효과적으로 방지할 수 있다.
이러한 배리어 전극부(428)는 도 8에서 설명한 바와 같은 다양한 방법에 의하여 형성될 수 있다.
도 10은 본 발명의 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부의 다양한 예를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 10에서는 도 5 또는 도 8의 확대원에 대응하는 부분만을 도시하였다.
도 10을 참조하면, 본 변형예에서는 배리어 전극부(428)가 제1 투명 전극층(420)과 제1 금속 전극층(421) 사이에 위치하는 제1 부분(428a) 및 제1 투명 전극층(420)과 반대되는 제1 금속 전극층(421)의 면(도면의 상면)에 위치하는 제2 부분(428b)을 포함하고, 제1 금속 전극층(421)의 측면에 위치하는 제3 부분(428c)을 더 포함할 수 있다. 제3 부분(428c)은 필수적인 것은 아니며 형성될 수도 있고 형성되지 않을 수도 있다. 이에 의하면 솔더층(1423)의 침투를 방지하는 배리어 전극부(428)가 제1 금속 전극층(421)의 양면에 모두 형성되어 솔더층(1423)의 침투에 의한 문제를 좀더 효과적으로 방지할 수 있다.
이때, 제1 부분(428a)과 제2 부분(428b)이 서로 별개의 공정에서 형성될 수 있다. 이에 따라 제1 부분(428a)의 두께, 물질, 조성, 형성 방법 등이 제2 부분(428b)의 두께, 물질, 조성, 형성 방법 등과 다를 수 있다. 이에 의하여 제1 부분(428a)과 제2 부분(428b)이 원하는 특성을 가지도록 형성하여 솔더층(1423)의 침투 방지 효과를 최대화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 제1 부분(428a)과 제2 부분(428b)이 동일한 두께, 물질, 조성 및 형성 방법으로 형성될 수 있다. 그러면, 제1 부분(428a)과 제2 부분(428b)을 동일한 공정 조건에 의하여 형성할 수 있어 제조 공정을 단순화할 수 있다. 이때, 제3 부분(428c)은 제2 부분(428b)과 동일한 공정으로 형성되어 제3 부분(428c)의 두께, 물질, 조성, 형성 방법 등이 제2 부분(428b)의 두께, 물질, 조성, 형성 방법 등과 다를 수 있다.
일 예로, 제1 부분(428a)의 폭이 제1 금속 전극층(421)의 폭과 같거나 이보다 크고 제2 부분(428b)은 제1 금속 전극층(421)의 상면 및 측면에 위치하면서 제1 부분(428a)에 접촉하여 위치할 수 있다. 이에 의하면 제1 금속 전극층(421)이 전체적으로 배리어 전극부(428)에 의하여 덮이게 된다.
이러한 배리어 전극부(428)는 도 8에서 설명한 바와 같은 다양한 방법에 의하여 형성될 수 있다.
상술한 도면 및 설명에서는 배리어 전극부(428)가 층 형상으로 형성되는 것을 예시하였다. 이에 의하여 솔더층(142b)에 의한 침투 경로를 효과적으로 차단하여 솔더층(142b)의 침투를 효과적으로 방지할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 다른 변형예를 도 11 내지 도 13을 참조하여 설명한다.
도 11은 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부의 다양한 예를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 11에서는 도 5 또는 도 8의 확대원에 대응하는 부분만을 도시하였다.
도 11을 참조하면, 본 변형예에서는 배리어 전극부(428)가 복수의 금속 입자(428d)로 구성될 수도 있다. 금속 입자(428d)는 적어도 일부끼리 서로 인접하여 접하고 나머지는 이격될 수도 있고, 아니면 금속 입자(428d)가 모두 이격되어 위치할 수도 있다. 이러한 금속 입자(428d)로 구성된 배리어 전극부(428)는, 일 예로, 적은 양의 수지에 금속 입자(428d)를 분산시킨 후 스프레이 코팅, 스핀 코팅 등에 의하여 원하는 위치에 도포한 후에 수지를 제거(예를 들어, 열처리에 의하여 수지를 휘발)하는 것에 의하여 형성될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 방법으로 이러한 형태의 배리어 전극부(428)를 형성할 수 있다.
금속 입자(428d)는 마이크로 수준 또는 나노 입자 수준의 크기(또는 직경)(일 예로, 1nm 이상, 1mm 이하의 크기)를 가질 수 있다. 좀더 구체적으로 금속 입자(428d)는 나노 입자 수준의 크기(일 예로, 1nm 이상, 1um 이하의 크기)를 가질 수 있다. 이에 의하면 재료 비용을 줄일 수 있으며 금속 입자(428d)가 인식되지 않으며 광의 경로를 방해하지도 않는다.
금속 입자(428d)가 분산된 형태의 배리어 전극부(428)가 제1 금속 전극층(421)의 상면 및 측면에 위치할 수 있다. 이때, 금속 입자(428d)가 제1 금속 전극층(421)이 형성된 부분뿐만 아니라 제1 금속 전극층(421)이 위치하지 않은 제1 투명 전극층(420) 위에서 전체적으로 위치할 수 있다. 앞서 언급한 바와 같이 금속 입자(428d)가 작은 크기를 가지므로 제1 투명 전극층(420) 위에 위치하더라도 인식되거나 광의 경로를 방해하지 않기 때문이다. 그러면 별도의 패터닝 없이 금속 입자(428b)를 전체적으로 위치시키는 것에 의하여 배리어 전극부(428)를 형성할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 금속 입자(428d)가 제1 금속 전극층(421)이 형성될 부분에 대응하여 부분적으로 형성될 수 있고, 금속 입자(428d)가 제1 금속 전극층(421)의 측면에 형성될 수도 있고 형성되지 않을 수도 있다.
도 12는 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부의 다양한 예를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 12에서는 도 5 또는 도 8의 확대원에 대응하는 부분만을 도시하였다.
도 12를 참조하면, 금속 입자(428d)가 분산된 형태의 배리어 전극부(428)가 제1 금속 전극층(421)과 제1 투명 전극층(420) 사이에 위치할 수 있다. 이때, 금속 입자(428d)가 제1 금속 전극층(421)이 형성된 부분뿐만 아니라 제1 금속 전극층(421)이 위치하지 않은 제1 투명 전극층(420) 위에서 전체적으로 위치할 수 있다. 그러면 별도의 패터닝 없이 금속 입자(428b)를 전체적으로 위치시키는 것에 의하여 배리어 전극부(428)를 형성할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 금속 입자(428d)가 제1 금속 전극층(421)이 형성될 부분에 대응하여 부분적으로 형성될 수 있다.
도 13은 본 발명의 또 다른 변형예에 따른 태양 전지 패널에 포함되는 태양 전지의 일부의 다양한 예를 도시한 부분 확대 단면도이다. 명확하고 간략한 도면을 위하여 도 13에서는 도 5 또는 도 8의 확대원에 대응하는 부분만을 도시하였다.
도 13을 참조하면, 금속 입자(428d)가 분산된 형태의 배리어 전극부(428)가 제1 금속 전극층(421)과 제1 투명 전극층(420) 사이, 그리고 제1 금속 전극층(421)의 상면 및 측면에 위치할 수 있다. 제1 금속 전극층(421)과 제1 투명 전극층(420) 사이에 위치한 금속 입자(428d)와 제1 금속 전극층(421)의 상면(즉, 제1 금속 전극층(421)과 배선재(142) 사이에 위치한 금속 입자(428d)는 서로 다른 물질, 형태, 입경 등을 가질 수도 있고, 서로 동일한 물질, 형태, 입경 등을 가질 수도 있다.
이때, 금속 입자(428d)가 제1 금속 전극층(421)이 형성된 부분뿐만 아니라 제1 금속 전극층(421)이 위치하지 않은 제1 투명 전극층(420) 위에서 전체적으로 위치할 수 있다. 그러면 별도의 패터닝 없이 금속 입자(428b)를 전체적으로 위치시키는 것에 의하여 배리어 전극부(428)를 형성할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다. 따라서 금속 입자(428d)가 제1 금속 전극층(421)이 형성될 부분에 대응하여 부분적으로 형성될 수 있고, 금속 입자(428d)가 제1 금속 전극층(421)의 측면에 형성되지 않을 수도 있다.
또한, 도 8 내지 도 13에 도시한 예들을 서로 결합할 수도 있으며, 이 또한 본 발명의 범위에 속한다. 예를 들어, 제1 금속 전극층(421)과 제1 투명 전극층(420) 사이에 층 형상의 배리어 전극부(428)가 위치하고, 제1 금속 전극층(421)의 상면 및/또는 측면에 금속 입자(428d)로 구성된 배리어 전극부(428)가 위치할 수 있다. 이와 반대로, 제1 금속 전극층(421)과 제1 투명 전극층(420) 사이에 금속 입자(428d)로 구성된 배리어 전극부(428)가 위치하고, 제1 금속 전극층(421)의 상면 및/또는 측면에 층 형상으로 구성된 배리어 전극부(428)가 위치할 수 있다. 그 외의 다양한 변형이 가능하다.
본 실시예에서는 배리어 전극부(428)은 제1 전극(42) 또는 제2 전극(44)에 전체적으로 형성될 수도 있다. 또는, 제1 또는 전극(42, 44)의 버스바(423) 전체에 선택적으로 구비될 수 있다. 또는, 제1 또는 제2 전극(42, 44)의 핑거 라인 전체에 선택적으로 구비될 수도 있다. 이에 의하여 배리어 전극부(428)의 효과를 최대화할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 배리어 전극부(428)이 제1 전극(42) 또는 제2 전극(44)의 일부에서만 형성되고 다른 일부에는 형성되지 않을 수 있다. 그리고 제1 전극(42)에 포함된 배리어 전극부(428)의 물질, 두께, 형상 등은 제2 전극(44)에 포함된 배리어 전극부(428)의 물질, 두께, 형상 등과 같거나 다를 수 있다. 그 외의 다양한 변형이 가능하다.
이하, 본 발명의 실험예를 참조하여 본 발명을 좀더 상세하게 설명한다. 이하의 실험예는 일 예로 제시한 것에 불과할 뿐 본 발명이 이에 한정되는 것은 아니다.
실험예 1
0.1 내지 5um의 크기를 가지는 구형 형상 입자와 장축이 2 내지 10um이고 두께가 0.2 내지 5um인 플레이크 형상 입자를 포함하는 금속 입자, 가교 수지, 경화제 및 용매를 포함하는 저온 페이스트를 도포한 후에 열처리 하여 금속 전극층을 형성하였다. 이때, 금속 입자 100 중량부에 대하여 구형 형상 입자가 80 중량부로 포함되고 플레이트 형상 입자가 20 중량부로 포함되었다. 가교 수지로는 에폭시 계열 수지를 사용하고, 경화제로는 아민계 경화제를 사용하였으며, 용매로는 부틸 카르비톨 아세테이트를 사용하였다. 그리고 금속 입자와 가교 수지의 합을 100 중량부라 할 때, 금속 입자가 80, 가교 수지가 20 중량부, 경화제가 2 중량부, 용매가 10 중량부로 포함되었다.
금속 전극층 위에 구리로 이루어진 코어층과 SnPbAg를 포함하는 제1 솔더층을 포함하는 배선재에 열과 압력을 가하는 태빙 공정을 수행하여 금속 전극층 위에 배선재를 부착한 다음 인발 강도(pull strength)를 측정하였다.
실험예 2
SnBi를 포함하는 제2 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 실험예 1과 동일한 방법으로 인발 강도를 측정하였다.
실험예 3
SnIn를 포함하는 제3 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 실험예 1과 동일한 방법으로 인발 강도를 측정하였다.
실험예 4
금속 입자로 플레이트 형상 입자를 사용하지 않고 0.1 내지 5um의 크기를 가지는 구형 형상 입자를 100 중량부로 포함하는 저온 페이스트를 사용하였다는 점을 제외하고는 실험예 1과 동일한 방법으로 인발 강도를 측정하였다.
실험예 5
SnBi를 포함하는 제2 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 실험예 4와 동일한 방법으로 인발 강도를 측정하였다.
실험예 6
SnIn를 포함하는 제3 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 실험예 4와 동일한 방법으로 인발 강도를 측정하였다.
비교예 1
금속 입자로 플레이트 형상 입자를 사용하지 않고 10 내지 20um의 크기를 가지는 구형 형상 입자를 100 중량부로 포함하는 저온 페이스트를 사용하였다는 점을 제외하고는 실험예 1과 동일한 방법으로 인발 강도를 측정하였다.
비교예 2
SnBi를 포함하는 제2 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 비교예 1과 동일한 방법으로 인발 강도를 측정하였다.
비교예 3
SnIn를 포함하는 제3 솔더층을 포함하는 배선재를 태빙 공정으로 부착하였다는 점을 제외하고는 비교예 1과 동일한 방법으로 인발 강도를 측정하였다.
실험예 1 내지 6, 비교예 1 내지 3에 의하여 측정된 인발 강도의 상대값을 표 1에 나타내었다. 참조로 인발 강도는 복수 횟수로 측정되었으며 표 1에서는 그 평균 값을 기재하였다. 그리고 실험예 1에서 부착된 금속 전극층과 배선재의 단면 사진을 촬영하여 도 14에 나타내었고, 비교예 1에서 배선재에 태빙 공정을 수행하였으나 배선재가 부착되지 못하고 박리된 사진을 도 15에 나타내었다.
솔더층 물질 인발 강도
실험예 1 SnPbAg 37
실험예 2 SnBi 10
실험예 3 SnIn 39
실험예 4 SnPbAg 20
실험예 5 SnBi 30
실험예 6 SnIn 10
비교예 1 SnPbAg 0
비교예 2 SnBi 0
비교예 3 SnIn 0
표 1을 참조하면 실험예 1 내지 6에서는 태빙 공정 후에 배선재가 금속 전극층에 안정적으로 부착되어 있는 것을 알 수 있다. 즉, 실험예 1 내지 3을 참조하면 구형 형상 입자와 플레이크 형상 입자를 함께 사용한 경우에 우수한 부착력을 가짐을 알 수 있고, 실험예 4 내지 6을 참조하면 5um 이하의 구형 형상 입자만을 사용한 경우에도 우수한 부착력을 가짐을 알 수 있다. 솔더층의 물질에 따라 다소 차이가 있으나 구형 형상 입자와 플레이크 형상 입자를 함께 사용한 실험예 1 및 3에서 높은 부착력을 가지는 것을 알 수 있다. 그리고 도 14를 참조하면 솔더층이 금속 전극층이 위치한 부분에서 외부를 향하여 오목한 형상을 가지는 부분을 포함하는 것을 알 수 있다. 반면, 표 1 및 도 15을 참조하면 크기가 큰 구형 입자만을 사용한 비교예 1 내지 3은 태빙 공정을 수행하여 배선재가 금속 전극층에 안정적으로 부착되지 않아 거의 힘을 가하지 않아도 배선재 및 이에 접촉하는 금속 전극층이 쉽게 박리되는 것을 알 수 있다. 즉 5um 이상의 크기를 가지는 구형 형상 입자만을 사용하는 금속 전극층은 배선재와의 부착 특성이 우수하지 않을 수 있음을 알 수 있다.
실험예 7
금속 전극층의 상면 및 측면 위에 도금에 의하여 티타늄으로 구성되는 층 형상의 배리어 전극부를 형성한 후에 태빙 공정을 수행하였다는 점을 제외하고는 실험예 1과 동일한 방법으로 전극을 형성하고 배선재를 부착하였다.
실험예 7에서 배선재를 박리한 후에 태양 전지의 주사 전자 현미경(SEM) 사진을 촬영하여 이를 도 16에 첨부하였고, 비교예 1에서 배선재를 박리한 후에 태양 전지의 주사 전자 현미경 사진을 촬영하여 이를 도 17에 첨부하였다. 도 16를 참조하면 실험예 7에서는 반도체 기판의 텍스처링 구조 위에 은(Ag) 페이스트 잔여물만이 보였을 뿐 침상 형상의 솔더층 물질이 거의 발견되지 않았다. 반면, 도 17을 참조하면 비교예 1에서는 ㅂ반도체 기판의 텍스쳐링 구조 위에 침상 형상의 솔더층 물질이 많이 위치하는 것을 알 수 있다. 이로부터 배리어 전극부를 형성하면 솔더층 물질이 금속 전극층 내로 침투하는 것을 효과적으로 방지할 수 있음을 알 수 있다.
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
100: 태양 전지 패널
150: 태양 전지
142: 배선재
1427: 코어층
1423: 솔더층
420: 제1 투명 전극층
440: 제2 투명 전극층
421: 제1 금속 전극층
441: 제2 금속 전극층
4214: 금속 입자
4216: 가교 수지

Claims (19)

  1. 제1 태양 전지 및 제2 태양 전지를 포함하는 복수의 태양 전지; 및
    상기 제1 태양 전지와 상기 제2 태양 전지를 연결하는 복수의 배선재
    를 포함하고,
    상기 제1 및 제2 태양 전지 각각은,
    반도체 기판;
    상기 반도체 기판의 전면 위에 위치하는 제1 패시베이션막;
    상기 반도체 기판의 후면 위에 위치하는 제2 패시베이션막;
    상기 반도체 기판의 전면 쪽에서 상기 제1 패시베이션막 위에 위치하는 제1 도전형 영역;
    상기 반도체 기판의 후면 쪽에서 상기 제2 패시베이션막 위에 위치하는 제2 도전형 영역;
    상기 제1 도전형 영역에 전기적으로 연결되며, 제1 방향으로 연장되는 제1 핑거 라인 및 상기 제1 방향과 교차하는 제2 방향으로 위치한 제1 버스바를 구비하는 제1 금속 전극층을 포함하는 제1 전극; 및
    상기 제2 도전형 영역에 전기적으로 연결되며, 상기 제2 방향으로 위치한 제2 버스바를 구비하는 제2 금속 전극층을 포함하는 제2 전극
    을 포함하고,
    상기 복수의 배선재는 각기 100um 내지 500um의 직경 또는 폭을 가지며 상기 태양 전지의 일면 쪽에서 6개 이상 배치되고,
    상기 제1 및 제2 전극 중 적어도 하나가 상기 제1 또는 제2 도전형 영역과 상기 제1 또는 제2 금속 전극층 사이에 위치하는 투명 전극층을 더 포함하고,
    상기 복수의 배선재는 각기 상기 제1 태양 전지의 상기 제1 버스바 및 상기 제2 태양 전지의 상기 제2 버스바에 연결되고,
    상기 제1 및 제2 금속 전극층 중 적어도 하나가 금속과 가교 수지를 포함하는 태양 전지 패널.
  2. 제1항에 있어서,
    상기 제1 도전형 영역이 상기 반도체 기판과 동일한 도전형을 가지며 상기 반도체 기판보다 높은 도핑 농도를 가지는 전면 전계 영역을 포함하고,
    상기 제2 도전형 영역이 상기 반도체 기판과 반대되는 도전형을 가지는 에미터 영역을 포함하는 태양 전지 패널.
  3. 제1항에 있어서,
    상기 복수의 배선재는, 코어층과, 상기 코어층을 둘러싸는 솔더층을 포함하고,
    상기 솔더층은 제1 또는 제2 전극에 인접한 부분에서 상기 제1 또는 제2 전극으로 향하면서 폭이 점진적으로 커지는 부분을 포함하고, 상기 제1 또는 제2 버스바는 상기 솔더층보다 넓은 폭을 가지며 상기 제2 방향으로 위치하는 복수의 패드부를 포함하며,
    상기 솔더층은 상기 제1 또는 제2 전극에 인접한 부분에서 상기 태양 전지의 외부에 대하여 오목한 형상을 가지는 부분을 포함하는 태양 전지 패널.
  4. 제3항에 있어서,
    상기 솔더층은 상기 패드부에서 상기 반도체 기판의 반대면에 위치한 면에만 형성되고 상기 패드부의 측면에는 형성되지 않는 태양 전지 패널.
  5. 삭제
  6. 제1항에 있어서,
    상기 제1 또는 제2 금속 전극층에는 상기 금속이 상기 가교 수지보다 더 많이 포함되는 태양 전지 패널.
  7. 제6항에 있어서,
    상기 제1 또는 제2 금속 전극층 내에서 상기 금속과 상기 가교 수지의 합을 100 중량부라 할 때, 상기 금속이 80 내지 90로 중량부로 포함되고, 상기 가교 수지가 5 내지 20 중량부로 포함되는 태양 전지 패널.
  8. 제1항에 있어서,
    상기 제1 또는 제2 금속 전극층은 유리 프릿을 포함하지 않는 태양 전지 패널.
  9. 제1항에 있어서,
    상기 가교 수지가 페녹시 계열 수지, 에폭시 계열 수지 및 셀룰로오스 계열 수지 중 적어도 하나를 포함하는 태양 전지 패널.
  10. 제1항에 있어서,
    상기 금속이 서로 다른 형상의 제1 형상 입자와 제2 형상 입자를 포함하는 태양 전지 패널.
  11. 제10항에 있어서,
    상기 제1 형상 입자가 구형 형상을 가지고,
    상기 제2 형상 입자가 플레이크 형상을 가지는 태양 전지 패널.
  12. 제11항에 있어서,
    상기 제1 형상 입자가 상기 제2 형상 입자보다 많이 포함되는 태양 전지 패널.
  13. 제11항에 있어서,
    상기 제1 형상 입자의 입경이 0.1 내지 5um이고, 상기 제2 형상 입자의 장축이 2 내지 10um이고 두께가 0.2 내지 5um인 태양 전지 패널.
  14. 제1항에 있어서,
    상기 금속이 서로 다른 크기의 제1 입자 및 제2 입자를 포함하는 태양 전지 패널.
  15. 제1항에 있어서,
    상기 복수의 배선재는, 코어층과, 상기 코어층을 둘러싸는 솔더층을 포함하고,
    상기 제1 또는 제2 금속 전극층의 공극 비율이 상기 솔더층의 공극 비율보다 높은 태양 전지 패널.
  16. 제1항에 있어서,
    상기 제1 또는 제2 금속 전극층 위에 위치하며 상기 제1 또는 제2 금속 전극층보다 높은 금속 함량을 가지는 배리어 전극부를 더 포함하는 태양 전지 패널.
  17. 제16항에 있어서,
    상기 배리어 전극부가 상기 투명 전극층에 대향하는 상기 제1 또는 제2 금속 전극층의 제1 면, 상기 제1 면과 반대되는 상기 제1 또는 제2 금속 전극층의 제2 면 및 상기 제1 또는 제2 금속 전극층의 측면 중 적어도 하나에 위치하고,
    상기 배리어 전극부가 층 형상을 가지거나 입자 형태로 존재하는 태양 전지 패널.
  18. 제1항에 있어서,
    상기 반도체 기판이 결정질 구조를 가지고,
    상기 제1 도전형 영역 및 상기 제2 도전형 영역 중 적어도 하나가 비정질 구조를 가지는 태양 전지 패널.
  19. 제18항에 있어서,
    상기 제1 도전형 영역 및 상기 제2 도전형 영역이 각기 비정질 실리콘을 포함하고,
    상기 제1 및 제2 패시베이션막이 각기 진성 비정질 실리콘을 포함하는 태양 전지 패널.
KR1020190034703A 2016-03-28 2019-03-26 태양 전지 패널 KR102005572B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160036715 2016-03-28
KR1020160036715 2016-03-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160164404A Division KR101964968B1 (ko) 2016-03-28 2016-12-05 태양 전지 패널

Publications (2)

Publication Number Publication Date
KR20190037209A KR20190037209A (ko) 2019-04-05
KR102005572B1 true KR102005572B1 (ko) 2019-07-30

Family

ID=60140227

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020160164404A KR101964968B1 (ko) 2016-03-28 2016-12-05 태양 전지 패널
KR1020190034703A KR102005572B1 (ko) 2016-03-28 2019-03-26 태양 전지 패널

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020160164404A KR101964968B1 (ko) 2016-03-28 2016-12-05 태양 전지 패널

Country Status (4)

Country Link
EP (1) EP3437144B1 (ko)
JP (1) JP7057753B2 (ko)
KR (2) KR101964968B1 (ko)
CN (1) CN108713257B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109476B2 (ja) 2017-12-28 2022-07-29 富士フイルム株式会社 光学積層体の製造方法、光学積層体および画像表示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11757058B2 (en) 2016-11-17 2023-09-12 Shangrao Jinko Solar Technology Development Co Ltd Solar cell panel
KR102005445B1 (ko) * 2016-11-17 2019-07-30 엘지전자 주식회사 태양 전지
EP3754729B8 (en) * 2018-02-14 2024-01-24 Shangrao Xinyuan YueDong Technology Development Co. Ltd Solar cell module comprising perovskite solar cell and manufacturing method thereof
KR102496629B1 (ko) * 2018-03-22 2023-02-06 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 패널
KR102624328B1 (ko) * 2018-10-31 2024-01-15 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 모듈
TWI703738B (zh) * 2019-05-14 2020-09-01 友達光電股份有限公司 太陽能電池
KR102273013B1 (ko) * 2019-05-31 2021-07-06 엘지전자 주식회사 태양 전지 패널의 제조 방법 및 이에 사용되는 태양 전지 전극용 페이스트
CN112259614B (zh) * 2019-07-03 2022-09-23 中国科学院宁波材料技术与工程研究所 一种叠层薄膜钝化接触结构的制备方法及其应用
KR20210015364A (ko) * 2019-08-02 2021-02-10 주식회사 엘지화학 표면 패턴이 형성된 버스바 및 이를 포함하는 전지 모듈

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076398A (ja) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd 光起電力素子

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335922A (ja) * 1994-06-07 1995-12-22 Canon Inc 光起電力素子及びその製造方法
JPH11284216A (ja) * 1998-02-02 1999-10-15 Canon Inc 光起電力素子、太陽電池モジュ―ル、その製造方法、施工方法及び太陽光発電システム
DE102004013833B4 (de) * 2003-03-17 2010-12-02 Kyocera Corp. Verfahren zur Herstellung eines Solarzellenmoduls
JP2005159173A (ja) 2003-11-27 2005-06-16 Kyocera Corp 太陽電池素子接続用配線材および太陽電池モジュール
JP4266840B2 (ja) 2004-01-29 2009-05-20 三洋電機株式会社 太陽電池モジュール
EP1560272B1 (en) * 2004-01-29 2016-04-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP2007266262A (ja) * 2006-03-28 2007-10-11 Sharp Corp インターコネクタ付き太陽電池、太陽電池モジュールおよび太陽電池モジュールの製造方法
JP5288790B2 (ja) * 2007-08-02 2013-09-11 三洋電機株式会社 太陽電池モジュール及びその製造方法
EP2020688B1 (en) * 2007-08-02 2013-11-27 Sanyo Electric Co., Ltd. Solar cell interconnection using thermo-compression bonding and correspondingly fabricated module
US20090301560A1 (en) 2008-06-05 2009-12-10 Sanyo Electric Co., Ltd. Photovoltaic element, photovoltaic module and method of manufacturing photovoltaic element
JP2012129359A (ja) 2010-12-15 2012-07-05 Mitsubishi Electric Corp 太陽電池モジュール及び太陽電池セル
JP5899623B2 (ja) 2011-02-10 2016-04-06 三菱マテリアル株式会社 はんだ接合用積層体および接合体
JPWO2014016954A1 (ja) * 2012-07-27 2016-07-07 パナソニックIpマネジメント株式会社 太陽電池
TWI643351B (zh) * 2013-01-31 2018-12-01 澳洲商新南創新有限公司 太陽能電池金屬化及互連方法
JP5694620B1 (ja) 2013-05-29 2015-04-01 株式会社カネカ 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
US8975175B1 (en) * 2013-06-28 2015-03-10 Sunpower Corporation Solderable contact regions
CN104810428A (zh) * 2014-01-25 2015-07-29 泉州市博泰半导体科技有限公司 一种用于制作硅基异质结电池片时结合层的处理方法
EP2960946B1 (en) * 2014-06-26 2020-11-18 LG Electronics Inc. Solar cell module
KR101794948B1 (ko) * 2014-06-26 2017-11-07 엘지전자 주식회사 태양 전지 모듈
CN106575676B (zh) 2014-07-17 2019-06-28 光城公司 具有叉指背接触的太阳能电池
EP3002792B1 (en) * 2014-09-30 2016-12-21 LG Electronics Inc. Solar cell and solar cell panel including the same
CN104600157A (zh) * 2015-01-13 2015-05-06 福建铂阳精工设备有限公司 一种异质结太阳能电池的制造方法及异质结太阳能电池
US11757058B2 (en) * 2016-11-17 2023-09-12 Shangrao Jinko Solar Technology Development Co Ltd Solar cell panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076398A (ja) * 2000-08-29 2002-03-15 Sanyo Electric Co Ltd 光起電力素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109476B2 (ja) 2017-12-28 2022-07-29 富士フイルム株式会社 光学積層体の製造方法、光学積層体および画像表示装置

Also Published As

Publication number Publication date
JP7057753B2 (ja) 2022-04-20
CN108713257B (zh) 2023-07-04
KR20170112971A (ko) 2017-10-12
KR101964968B1 (ko) 2019-04-03
EP3437144B1 (en) 2022-06-15
JP2019510361A (ja) 2019-04-11
EP3437144A2 (en) 2019-02-06
KR20190037209A (ko) 2019-04-05
EP3437144A4 (en) 2019-12-18
CN108713257A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
KR102005572B1 (ko) 태양 전지 패널
KR101739404B1 (ko) 태양 전지 패널
CN110379870B (zh) 太阳能电池模块及其制造方法
US9608139B2 (en) Solar cell
US10510908B2 (en) Solar cell panel
JP6396374B2 (ja) 太陽電池
EP3324448B1 (en) Solar cell panel
KR101975588B1 (ko) 태양 전지 패널용 리본 및 이의 제조 방법, 그리고 태양 전지 패널
EP2528109A1 (en) Solar cell module
KR101680037B1 (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
US11575057B2 (en) Solar cell and method for manufacturing the same, and solar cell panel
US11476377B2 (en) Solar cell and solar cell panel including the same
KR20100135515A (ko) 인터커넥터 및 이를 구비한 태양 전지 모듈
KR101909142B1 (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
US20110094567A1 (en) Solar cell, method of manufacturing the same, and solar cell module
KR101838969B1 (ko) 태양 전지 패널
JP2023520119A (ja) 太陽電池それと太陽電池パネル及びその製造方法
KR101744535B1 (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
KR102336219B1 (ko) 태양 전지 및 이의 제조 방법
KR102496629B1 (ko) 태양 전지 패널
US20220223748A1 (en) Solar cell panel manufacturing method and paste for solar cell electrode used therefor
US20220238731A1 (en) Solar cell and solar cell panel including same
KR20170013160A (ko) 태양 전지

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant