KR101995761B1 - 송신방법, 송신장치, 수신방법 및 수신장치 - Google Patents

송신방법, 송신장치, 수신방법 및 수신장치 Download PDF

Info

Publication number
KR101995761B1
KR101995761B1 KR1020187020333A KR20187020333A KR101995761B1 KR 101995761 B1 KR101995761 B1 KR 101995761B1 KR 1020187020333 A KR1020187020333 A KR 1020187020333A KR 20187020333 A KR20187020333 A KR 20187020333A KR 101995761 B1 KR101995761 B1 KR 101995761B1
Authority
KR
South Korea
Prior art keywords
signal
precoding
transmission
symbol
symbols
Prior art date
Application number
KR1020187020333A
Other languages
English (en)
Other versions
KR20180084156A (ko
Inventor
유타카 무라카미
도모히로 기무라
미키히로 오우치
Original Assignee
선 페이턴트 트러스트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선 페이턴트 트러스트 filed Critical 선 페이턴트 트러스트
Publication of KR20180084156A publication Critical patent/KR20180084156A/ko
Application granted granted Critical
Publication of KR101995761B1 publication Critical patent/KR101995761B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03942Spatial equalizers codebook-based design switching between different codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Abstract

복수의 베이스밴드신호로부터 동일 주파수 대역이면서 동일 시각에 송신되는 복수의 프리코딩 된 신호를 생성하는 프리코딩 방법으로, 상기 복수의 베이스밴드신호에 대해서 실시되는 프리코딩 처리를 규정하는 N개의 행렬 F[i](단, i=0, 1, 2, …, N) 중에서 하나의 행렬을 전환하여 선택하여 제 1의 프리코딩 된 신호 z1과 제 2의 프리코딩 된 신호 z2를 생성하고, 소정의 오류정정블록 부호화방식을 이용하여 제 1 부호화블록 및 제 2 부호화블록을 생성하여, 상기 제 1 부호화블록 및 상기 제 2 부호화블록으로부터 각각 M심벌의 상기 제 1의 베이스밴드신호 s1 및 상기 제 2의 베이스밴드신호 s2를 생성해서, 상기 제 1 부호화블록으로부터 생성된 베이스밴드신호와 상기 제 2 부호화블록으로부터 생성된 베이스밴드신호의 조합에 대해서 프리코딩 처리를 실행함으로써 M슬롯의 프리코딩 된 신호를 생성한다.

Description

송신방법, 송신장치, 수신방법 및 수신장치{TRANSMISSION METHOD, TRANSMISSION DEVICE, RECEPTION METHOD, AND RECEPTION DEVICE}
(관련 출원에 관한 언급) 2010년 10월 18일 출원된 일본국 특허출원 2010-234061호 및 2010년 12월 9일 출원된 일본국 특허출원 2010-275164호에 포함되는 특허청구범위, 명세서, 도면 및 요약서의 개시내용은 모두 본원에 원용된다.
본 발명은 특히 멀티안테나를 이용한 통신을 하는 프리코딩방법, 프리코딩장치, 송신방법, 송신장치, 수신방법 및 수신장치에 관한 것이다.
종래, 멀티안테나를 이용한 통신방법으로 예를 들어 MIMO(Multiple-Input Multiple-Output)라고 불리는 통신방법이 있다. MIMO로 대표되는 멀티안테나 통신에서는 복수 계열의 송신데이터를 각각 변조하여, 각 변조신호를 다른 안테나로부터 동시에 송신함으로써 데이터의 통신속도를 높이게 되어 있다.
도 28은 송신안테나 수 2, 수신안테나 수 2, 송신 변조신호(송신 스트림) 수 2일 때의 송수신장치의 구성의 일례를 나타내고 있다. 송신장치에서는 복호화된 데이터를 인터리브하고, 인터리브 후의 데이터를 변조하고 주파수 변환 등을 실행하여 송신신호가 생성되며, 송신신호는 안테나로부터 송신된다. 이때, 송신안테나로부터 각각 다른 변조신호가 동일 시각에 동일 주파수로 송신하는 방식이 공간 다중 MIMO 방식이다.
이때, 특허문헌 1에서는 송신안테나마다 다른 인터리브 패턴을 구비하는 송신장치가 제안되어 있다. 즉, 도 28의 송신장치에서 2개의 인터리브(πab)가 서로 다른 인터리브 패턴을 가지게 된다. 그리고 수신장치에 있어서 비 특허문헌 1, 비 특허문헌 2에 나타내고 있는 것과 같이, 소프트 값을 이용한 검파방법(도 28에서의 MIMO detector)을 반복하여 실행함으로써 수신품질이 향상하게 된다.
그러나 무선통신에서의 실제 전파환경의 모델로 레일리 페이딩(Rayleigh fading) 환경으로 대표되는 NLOS(Non-line of sight) 환경, 라이시안 페이딩(Rician fading) 환경으로 대표되는 LOS(line of sight) 환경이 존재한다. 송신장치에서 싱글의 변조신호를 송신하고, 수신장치에서 복수의 안테나로 수신한 신호에 대해 최대 비 합성을 실행하여, 최대 비 합성 후의 신호에 대해서 복조 및 복호를 실행하는 경우, LOS 환경, 특히, 산란파의 수신전력에 대한 직접파의 수신전력의 크기를 나타내는 라이시안 팩터(Rician factor)가 큰 환경에서는 양호한 수신품질을 얻을 수 있다. 그러나 예를 들어 공간 다중 MIMO 전송방식에서는 라이시안 팩터(Rician factor)가 커지면 수신품질이 저하되는 문제가 발생한다. (비 특허문헌 3 참조)
도 29의 (A), (B)는 레일리 페이딩(Rayleigh fading) 환경 및 라이시안 팩터(Rician factor) K=3, 10, 16dB의 라이시안 페이딩(Rician fading) 환경에서 LDPC(low-density parity-check) 부호화된 데이터를 2×2(2 안테나 송신, 2 안테나 수신) 공간 다중 MIMO 전송한 경우의 BER(Bit Error Rate) 특성(세로축:BER, 가로축:SNR(Signal-to-Noise power Ratio))의 시뮬레이션 결과의 일례를 나타내고 있다. 도 29의 (A)는 반복 검파를 실행하지 않은 Max-log-APP(비 특허문헌 1, 비 특허문헌 2 참조)(APP:A Posterior Probability)의 BER 특성, 도 29의 (B)는 반복 검파를 실행한 Max-log-APP(비 특허문헌 1, 비 특허문헌 2 참조)(반복 횟수 5회)의 BER 특성을 나타내고 있다. 도 29 (A), (B)로부터 알 수 있는 것과 같이, 반복 검파를 실행하거나 또는 실행하지 않거나 관계없이 공간 다중 MIMO 시스템에서는 라이시안 팩터(Rician factor)가 커지면 수신품질이 열화하는 것을 확인할 수 있다. 이로부터 「공간 다중 MIMO 시스템에서는 전파환경이 안정적이 되면 수신품질이 열화한다」라는 종래의 싱글 변조신호를 송신하는 시스템에는 없는 공간 다중 MIMO 시스템 고유의 과제를 갖는 것을 알 수 있다.
방송이나 멀티캐스트통신은 송수신자 간에 교신 가능한 사용자(line-of-sight user)에 대한 서비스이며, 사용자가 소지하는 수신기와 방송국과의 사이의 전파 전파환경은 LOS 환경인 것이 많다. 상술의 과제를 갖는 공간 다중 MIMO 시스템을 방송이나 멀티캐스트통신에 이용한 경우, 수신기에 있어서 전파의 수신 전계 강도는 높으나, 수신품질의 열화에 의해 서비스를 받을 수 없다고 하는 현상이 발생할 가능성이 있다. 즉, 공간 다중 MIMO 시스템을 방송이나 멀티캐스트통신에서 이용하기 위해서는 NLOS 환경 및 LOS 환경의 어느 경우에 있어서도 어느 정도의 수신품질을 얻을 수 있는 MIMO 전송방식의 개발이 요청되고 있다.
비 특허문헌 8에서는 통신 상대로부터의 피드백정보로부터 프리코딩에 이용하는 코드 북(codebook, 프리코딩 행렬)을 선택하는 방법에 대해 기술되어 있으나, 상기와 같이 방송이나 멀티캐스트통신과 같이 통신 상대로부터의 피드백정보를 얻을 수 없는 상황에서 프리코딩을 실시하는 방법에 대해서는 전혀 기재되지 않았다.
한편, 비 특허문헌 4에서는 피드백정보가 없는 경우에도 적용할 수 있는 시간과 함께 프리코딩 행렬을 전환하는 방법에 대해 기술되어 있다. 이 문헌에서는 프리코딩에 이용하는 행렬로 유니테리 행렬(unitary matrix)을 이용하는 것, 또, 유니테리 행렬을 랜덤하게 전환하는 것에 대해 기술되어 있으나, 상기에서 나타내는 LOS 환경에서의 수신품질의 저하에 대한 적용방법에 대해서는 전혀 기재되지 않고, 단지 랜덤으로 전환하는 것만이 기재되어 있다. 당연하나, LOS 환경의 수신품질의 저하를 개선하기 위한 프리코딩방법 및 프리코딩 행렬의 구성방법에 관한 기술은 일절 되어있지 않다.
특허문헌 1 : 국제공개 2005/050885호
비 특허문헌 1 : "Achieving near-capacity on a multiple-antenna channel" IEEE Transaction on communications, vol.51, no.3, pp.389-399, March. 2003. 비 특허문헌 2 : "Performance analysis and design optimization of LDPC-coded MIMO OFDM systems" IEEE Trans. Signal Processing., vol.52, no.2, pp.348-361, Feb. 2004. 비 특허문헌 3 : "BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels," IEICE Trans. Fundamentals, vol.E91-A, no.10, pp. 2798-2807, Oct. 2008. 비 특허문헌 4 : "Turbo space-time codes with time varying linear transformations,"IEEE Trans. Wireless communications, vol.6, no.2, pp.486-493, Feb. 2007. 비 특허문헌 5 : "Likelihood function for QR-MLD suitable for soft-decision turbo decoding and its performance," IEICE Trans. Commun., vol.E88-B, no.1, pp.47-57, Jan. 2004. 비 특허문헌 6 : 「Shannon 한계로의 도표:"Parallel concatenated (Turbo) coding", "Turbo (iterative) decoding"과 그 주변」전자 정보통신 학회, 신학 기법 IT98-51 비 특허문헌 7 : "Advanced signal processing for PLCs: Wavelet-OFDM," Proc. of IEEE International symposium on ISPLC 2008, pp.187-192, 2008. 비 특허문헌 8 : D. J. Love, and R. W. heath, Jr. , "Limited feedback unitary precoding for spatial multiplexing systems, " IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2967-1976, Aug. 2005. 비 특허문헌 9 : DVB Document A122, Framing structure, channel coding and modulation for a second generation digital terrestrial television broadcasting syste, m (DVB-T2), June 2008. 비 특허문헌 10 : L. Vangelista, N. Benvenuto, and S. Tomasin, "Key technologies for next-generation terrestrial digital television standard DVB-T2, " IEEE Commun. Magazine, vo. 47, no. 10, pp. 146-153, Oct. 2009. 비 특허문헌 11 : T. Ohgane, T. Nishimura, and Y. Ogawa, "Application of space division multiplexing and those performance in a MIMO channel," IEICE Trans. Commun. , vo. 88-B, no. 5, pp. 1843-1851, May. 2005. 비 특허문헌 12 : R. G. Gallager, "Low-densityparity-check codes," IRE Trans. Inform. Theory, IT-8, pp-21-28, 1962. 비 특허문헌 13 : D. J. C. Mackay, "Gooderror-correcting codes based on very sparse matrices," IEEETrans. Inform.Theory, vol.45, no.2, pp399-431, March. 1999. 비 특허문헌 14 : ETSIEN 302 307, "Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications," v.1.1.2, June, 2006. 비 특허문헌 15 : Y. -L. Ueng, and C. -C. Cheng, "a fast-convergence decoding method and memory-efficient VLSI decoder architecture forirregular LDPC codes in the IEEE 802.16e standards, "IEEE VTC-2007 Fall, pp. 1255-1259.
본 발명은 LOS 환경에서의 수신품질의 개선이 가능한 MIMO 시스템을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 송신방법은, 송신장치에서의 송신방법으로, 복수의 제 1 변조심벌 s1과 복수의 제 2 변조심벌 s2에 N 개의 행렬 F[i] 중 어느 하나를 슬롯마다 적용하여 복수의 제 1 송신심벌 z1과 복수의 제 2 송신심벌 z2를 생성하며, 상기 복수의 제 1 변조심벌 s1은 슬롯마다 생성되고, 상기 복수의 제 2 변조심벌 s2은 슬롯마다 생성되며, N은 2이고, 상기 N 개의 행렬 F[i]는 2 슬롯을 1주기로 하여 규칙적으로 전환되며, 상기 N 개의 행렬 F[i]는,
Figure 112018069724742-pat00001
를 만족하고, i는 0 및 2이며, 상기 복수의 제 1 송신심벌 z1을 포함하는 1 이상의 제 1 OFDM 심벌을 제 1 안테나로부터 송신하고, 상기 복수의 제 2 송신심벌 z2를 포함하는 1 이상의 제 2 OFDM 심벌을 제 2 안테나로부터 송신하며, 상기 1 이상의 제 1 OFDM 심벌과 상기 1 이상의 제 2 OFDM 심벌은 동일 시간에, 또한, 동일 주파수로 송신된다.
이와 같이 본 발명에 의하면 LOS 환경에서의 수신 품질의 열화를 개선하는 송신방법, 수신방법, 송신장치, 수신장치를 제공할 수 있으므로, 방송이나 멀티캐스트 통신에서 교신 가능한 사용자에 대해서 품질이 높은 서비스를 제공할 수 있다.
도 1은 공간 다중 MIMO 전송시스템에서의 송수신장치의 구성 예이다.
도 2는 프레임 구성의 일례이다.
도 3은 프리코딩 웨이트 전환방법 적용 시의 송신장치의 구성 예이다.
도 4는 프리코딩 웨이트 전환방법 적용 시의 송신장치의 구성 예이다.
도 5는 프레임 구성 예이다.
도 6은 프리코딩 웨이트 전환방법의 예이다.
도 7은 수신장치의 구성 예이다.
도 8은 수신장치의 신호처리부의 구성 예이다.
도 9는 수신장치의 신호처리부의 구성 예이다.
도 10은 복호처리방법이다.
도 11은 수신상태의 예이다.
도 12는 BER 특성의 예이다.
도 13은 프리코딩 웨이트 전환방법 적용 시의 송신장치의 구성 예이다.
도 14는 프리코딩 웨이트 전환방법 적용 시의 송신장치의 구성 예이다.
도 15는 프레임 구성 예이다.
도 16은 프레임 구성 예이다.
도 17은 프레임 구성 예이다.
도 18은 프레임 구성 예이다.
도 19는 프레임 구성 예이다.
도 20은 수신품질 열악(劣惡) 점의 위치이다.
도 21은 수신품질 열악 점의 위치이다.
도 22는 프레임 구성의 일례이다.
도 23은 프레임 구성의 일례이다.
도 24는 매핑방법의 일례이다.
도 25는 매핑방법의 일례이다.
도 26은 가중합성부의 구성 예이다.
도 27은 심벌의 정렬방법의 일례이다.
도 28은 공간 다중 MIMO 전송시스템에서의 송수신장치의 구성 예이다.
도 29는 BER 특성 예이다.
도 30은 공간 다중형의 2 x 2 MIMO 시스템 모델의 예이다.
도 31은 수신 열악 점의 위치이다.
도 32는 수신 열악 점의 위치이다.
도 33은 수신 열악 점의 위치이다.
도 34는 수신 열악 점의 위치이다.
도 35는 수신 열악 점의 위치이다.
도 36은 수신 열악 점의 복소 평면에서의 최소 거리의 특성 예이다.
도 37은 수신 열악 점의 복소 평면에서의 최소 거리의 특성 예이다.
도 38은 수신 열악 점의 위치이다.
도 39는 수신 열악 점의 위치이다.
도 40은 실시형태 7에서의 송신장치의 구성의 일례이다.
도 41은 송신장치가 송신하는 변조신호의 프레임 구성의 일례이다.
도 42는 수신 열악 점의 위치이다.
도 43은 수신 열악 점의 위치이다.
도 44는 수신 열악 점의 위치이다.
도 45는 수신 열악 점의 위치이다.
도 46은 수신 열악 점의 위치이다.
도 47은 시간 - 주파수 축에서의 프레임 구성의 일례이다.
도 48은 시간 - 주파수 축에서의 프레임 구성의 일례이다.
도 49는 신호처리방법이다.
도 50은 시공간블록 부호를 이용한 때의 변조신호의 구성이다.
도 51은 시간 - 주파수 축에서의 프레임 구성의 상세 예이다.
도 52는 송신장치의 구성의 일례이다.
도 53은 도 52의 변조신호 생성부 #1 ~ #M의 구성의 일례이다.
도 54는 도 52에서의 OFDM 방식관련 처리부(5207_1 및 5207_2)의 구성을 나타내는 도면이다.
도 55는 시간 - 주파수 축에서의 프레임 구성의 상세 예이다.
도 56은 수신장치의 구성의 일례이다.
도 57은 도 56에서의 OFDM 방식관련 처리부(5600_X, 5600_Y)의 구성을 나타내는 도면이다.
도 58은 시간 - 주파수 축에서의 프레임 구성의 상세 예이다.
도 59는 방송시스템의 일례이다.
도 60은 수신 열악 점의 위치이다.
도 61은 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 62는 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 63은 기본 스트림에 대한 프리코딩의 일례이다.
도 64는 확장 스트림에 대한 프리코딩의 일례이다.
도 65는 계층전송을 적용하는 경우의 변조신호의 심벌의 배치 예이다.
도 66은 계층전송을 적용하는 경우의 수신장치에 있어서의 신호처리부의 구성 예이다.
도 67은 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 68은 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 69는 베이스밴드신호의 심벌의 구성 예이다.
도 70은 계층전송을 적용하는 경우의 변조신호의 심벌의 배치 예이다.
도 71은 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 72는 계층전송을 적용하는 경우의 송신장치의 구성 예이다.
도 73은 시공간블록 부호화 후의 베이스밴드신호의 심벌의 구성 예이다.
도 74는 계층전송을 적용하는 경우의 변조신호의 심벌의 배치 예이다.
도 75는 계층전송을 적용하는 경우의 변조신호의 심벌의 배치 예이다.
도 76은 블록 부호를 이용했을 경우의 하나의 부호하 후의 블록에 필요한 심벌수, 슬롯 수의 변화 예이다.
도 77은 블록 부호를 이용했을 경우의 2개의 부호화 후의 블록에 필요한 심벌 수, 슬롯 수의 변화 예이다.
도 78은 디지털방송용 시스템의 전체 구성도이다.
도 79는 수신기의 구성 예를 나타내는 블록도이다.
도 80은 다중화데이터의 구성을 나타내는 도면이다.
도 81은 각 스트림이 다중화데이터에 대해 어떻게 다중화되어 있는가를 모식적으로 나타내는 도면이다.
도 82는 PES 패킷 열에 비디오 스트림이 어떻게 저장되어 있는가를 나타내는 상세도이다.
도 83은 다중화 데이터에 있어서의 TS패킷과 소스 패킷의 구조를 나타내는 도면이다.
도 84는 PMT의 데이터 구성을 나타내는 도면이다.
도 85는 다중화데이터 정보의 내부 구성을 나타내는 도면이다.
도 86은 스트림 속성정보의 내부 구성을 나타내는 도면이다.
도 87은 영상표시, 음성출력장치의 구성도이다.
도 88은 베이스밴드신호 교체부의 구성을 나타내는 도면이다.
이하, 본 발명의 실시형태에 대해 도면을 참조하여 상세하게 설명한다.
(실시형태 1)
본 실시형태의 송신방법, 송신장치, 수신방법, 수신장치에 대해 상세하게 설명한다.
본 설명을 하기 전에 종래 시스템인 공간 다중 MIMO 전송시스템에서의 송신방법, 복호방법의 개요에 대해 설명한다.
NtxNr 공간 다중 MIMO 시스템의 구성을 도 1에 나타낸다. 정보 벡터 z는 부호화 및 인터리브가 시행된다. 그리고 인터리브의 출력으로 부호화 후 비트의 벡터 u=(u1, …, uNt)를 얻을 수 있다. 단, ui=(ui1 , …, uiM)으로 한다(M:심벌 당의 송신비트 수). 송신벡터 s=(s1, …, sNt )T라 하면 송신안테나 #i로부터 송신신호 si=map(ui)로 나타내고, 송신에너지를 정규화하면 E{|si2}=Es/Nt로 나타내게 된다.(Es:채널 당의 총 에너지). 그리고 수신 벡터를 y=(y1, …, yNr )T로 하면 식 (1)과 같이 나타내게 된다.
Figure 112018069724742-pat00002
이때, HNtNr은 채널행렬(channel matrix), n=(n1, …, nNr)T는 노이즈 벡터이며, ni는 평균값 0, 분산 σ2의 i. i. d. 복소 가우스 잡음이다. 수신기에서 도입하는 송신 심벌과 수신 심벌의 관계로부터 수신벡터에 관한 확률은 식 (2)와 같이 다차원 가우스 분포로 줄 수 있다.
Figure 112018069724742-pat00003
여기서 outer Soft-in/Soft-out 디코더와 MIMO 검파로부터 이루어지는 도 1과 같은 반복 복호를 실행하는 수신기를 생각한다. 도 1에서의 대수 우도 비(log-likelihood ratio )의 벡터(L-value)는 식 (3)-(5)와 같이 나타내게 된다.
Figure 112018069724742-pat00004
Figure 112018069724742-pat00005
Figure 112018069724742-pat00006
<반복검파방법>
여기에서는 Nt x Nr 공간 다중 MIMO 시스템에서의 MIMO 신호의 반복 검파에 대해 설명한다.
xmn의 대수 우도 비를 식 (6)과 같이 정의한다.
Figure 112018069724742-pat00007
베이즈의 정리에서 식 (6)은 식 (7)과 같이 나타낼 수 있다.
Figure 112018069724742-pat00008
단, Umn ,±1={u|umn=±1}로 한다. 그리고 lnΣaj ~ max ln aj로 근사하면 식 (7)은 식 (8)과 같이 근사할 수 있다. 또, 위의 「~」의 기호는 근사를 의미한다.
Figure 112018069724742-pat00009
식 (8)에서의 P(u|umn)와 ln P(u|umn)는 이하와 같이 나타내게 된다.
Figure 112018069724742-pat00010
Figure 112018069724742-pat00011
Figure 112018069724742-pat00012
그러나 식 (2)에서 정의한 식의 대수 확률은 식 (12)과 같이 나타내게 된다.
Figure 112018069724742-pat00013
따라서 식 (7), (13)에서 MAP 또는 APP(A Posteriori Probability)에서는 사후의 L-value는 이하와 같이 나타내게 된다.
Figure 112018069724742-pat00014
이하에서는 반복 APP 복호라고 부른다. 또, 식 (8), (12)에서 Max-Log 근사에 의거한 대수 우도 비(Max-Log APP)에서는 사후의 L-value는 이하와 같이 나타내게 된다.
Figure 112018069724742-pat00015
Figure 112018069724742-pat00016
이하에서는 반복 Max-log APP 복호라고 한다. 그리고 반복 복호의 시스템에서 필요로 하는 외부 정보는 식 (13) 또는 (14)에서 사전 입력을 감산함으로써 구할 수 있다.
<시스템 모델>
도 28에 이하의 설명에 연결되는 시스템의 기본 구성을 나타낸다. 여기에서는 2×2 공간 다중 MIMO 시스템으로 하고, 스트림 A, B에는 각각 outer 인코더가 있으며, 2개의 outer 인코더는 동일한 LDPC 부호의 인코더로 한다(여기에서는 outer 인코더로서 LDPC 부호의 인코더를 이용하는 구성을 예로 들어 설명하나, outer 인코더가 이용하는 오류정정코드(ECC)는 LDPC 부호에 한정되는 것은 아니며, 터보 부호(turbo coding), 돌림형 부호(convolutional coding), LDPC 돌림형 부호 등의 다른 오류정정코드(ECC)를 이용해도 동일하게 실행할 수 있다. 또, outer 인코더는 송신안테나마다 가지는 구성으로 하고 있으나, 이에 한정되는 것은 아니며, 송신안테나가 복수라도 outer 인코더는 1개라도 좋고, 또, 송신안테나 수보다 많은 outer 인코더를 가지고 있어도 좋다). 그리고 스트림 A, B에서는 각각에 인터리버(πab)가 있다. 여기에서는 변조방식을 2h-QAM으로 한다(1 심벌로 h 비트를 송신하게 된다).
수신기에서는 상술의 MIMO 신호의 반복 검파(반복 APP(또는 Max-log APP) 복호)를 실행하는 것으로 한다. 그리고 LDPC 부호의 복호로는 예를 들어 sum-product 복호를 실행하는 것으로 한다.
도 2는 프레임 구성을 나타내고 있으며, 인터리브 후의 심벌의 순번을 기재하고 있다. 이때, 이하의 식과 같이 (ia, ja), (ib, jb)를 나타내는 것으로 한다.
Figure 112018069724742-pat00017
Figure 112018069724742-pat00018
이때, ia,ib : 인터리브 후의 심벌의 순서, ja,jb : 변조방식에서의 비트 위치(ja, jb=1, …, h), πab : 스트림 A, B의 인터리버(nterleaver),Ωa ia, jab ib, jb:스트림 A, B의 인터리브 전의 데이터의 순번을 나타내고 있다. 단, 도 2에서는 ia = ib 일 때의 프레임 구성을 나타내고 있다.
<반복 복호>
여기서는 수신기에서의 LDPC 부호의 복호에서 이용하는 sum-product 복호 및 MIMO 신호의 반복 검파의 알고리즘에 대해 상세하게 설명한다.
(sum-product 복호)
2원 M x N 행렬 H={Hmn}을 복호대상으로 하는 LDPC 부호의 검사행렬(check matrix)로 한다. 집합[1, N]={1, 2, …, N}의 부분 집합 A(m), B(n)를 다음 식과 같이 정의한다.
Figure 112018069724742-pat00019
Figure 112018069724742-pat00020
이때, A(m)는 검사행렬 H의 m행째에 있어서 1인 열(列) 인덱스의 집합을 의미하고, B(n)는 검사행렬 H의 n행째에 있어서 1인 행(行) 인덱스의 집합이다. sum-product 복호의 알고리즘은 이하와 같다.
Step A·1(초기화) : Hmn=1을 만족하는 모든 조 (m, n)에 대해 사전 값 대수비 βmn=0으로 한다. 루프 변수(반복 횟수) lsum=1로 하고, 루프 최대 횟수를 lsum, max로 설정한다.
Step A·2(행 처리) : m=1, 2, …, M의 순으로 Hmn=1을 만족시키는 모든 조 (m, n)에 대해 이하의 갱신 식을 이용하여 외부 값 대수비 αmn을 갱신한다.
Figure 112018069724742-pat00021
Figure 112018069724742-pat00022
Figure 112018069724742-pat00023
이때, f는 Gallager의 함수이다. 그리고 λn을 구하는 방법에 대해서는 이후에 상세하게 설명한다.
Step A·3 (열(列)처리) : n=1, 2, …, N의 순으로 Hmn=1을 만족하는 모든 조 (m, n)에 대해 이하의 갱신 식을 이용하여 외부 값 대수비 βmn을 갱신한다.
Figure 112018069724742-pat00024
Step A·4(대수 우도 비의 계산) : n∈[1, N]에 대해 대수 우도 비 Ln을 이하와 같이 구한다.
Figure 112018069724742-pat00025
Step A·5 (반복 횟수의 카운트) : 만일, lsum<lsum,max이면 lsum을 인크리먼트(Increment) 하고 step A·2로 되돌아간다. lsum=lsum, max인 경우, 이번 회의 sum-product 복호는 종료한다.
이상이 1회의 sum-product 복호의 동작이다. 그 후, MIMO 신호의 반복 검파가 이루어진다. 상술한 sum-product 복호의 동작의 설명에서 이용한 변수 m, n, αmn, βmn, λn, Ln에 있어서 스트림 A에서의 변수를 ma, na, αa mana, βa mana, λna, Lna, 스트림 B에서의 변수를 mb, nb, αb mbnb, βb mbnb, λnb, Lnb로 나타내는 것으로 한다.
<MIMO 신호의 반복 검파>
여기에서는 MIMO 신호의 반복 검파에서의 λn을 구하는 방법에 대해 상세하게 설명한다.
식 (1)로부터 다음 식이 성립한다.
Figure 112018069724742-pat00026
도 2의 프레임 구성으로부터 식 (16), (17)으로부터 이하의 관계식이 성립한다.
Figure 112018069724742-pat00027
Figure 112018069724742-pat00028
이때, na, nb∈[1, N]이 된다. 이하에서는 MIMO 신호의 반복 검파의 반복 횟수 k 일 때의 λna, Lna, λnb, Lnb를 각각 λk, na, Lk, na, λk, nb, Lk, nb로 나타내는 것으로 한다.
Step B·1(초기 검파;k=0) : 초기 검파일 때 λ0, na, λ0, nb를 이하와 같이 구한다.
반복 APP 복호일 때 :
Figure 112018069724742-pat00029
반복 Max-log APP 복호일 때 :
Figure 112018069724742-pat00030
Figure 112018069724742-pat00031
단, X=a, b로 한다. 그리고 MIMO 신호의 반복 검파의 반복 횟수를 lmimo=0으로 하고, 반복 횟수의 최대 횟수를 lmimo, max로 설정한다.
Step B·2(반복 검파;반복 횟수 k) : 반복 횟수 k일 때의 λk, na, λk, nb는 식 (11), (13)-(15), (16), (17)로부터 식 (31)-(34)와 같이 나타내게 된다. 단, (X, Y)=(a, b)(b, a)가 된다.
반복 APP 복호일 때 :
Figure 112018069724742-pat00032
Figure 112018069724742-pat00033
반복 Max-log APP 복호일 때 :
Figure 112018069724742-pat00034
Figure 112018069724742-pat00035
Step B·3 (반복 횟수의 카운트, 부호어 추정) : 만일 lmimo < lmimo,max 이면 lmimo를 인크리먼트(increment)하고 step B·2로 되돌아간다. lmimo=lmimo,max의 경우, 추정 부호어를 이하와 같이 구한다.
Figure 112018069724742-pat00036
단, X=a, b로 한다.
도 3은 본 실시형태에서의 송신장치(300)의 구성의 일례이다. 부호화부(302A)는 정보(데이터)(301A), 프레임 구성신호(313)을 입력으로 하여, 프레임 구성신호(313)(부호화부(302A)가 데이터의 오류정정 부호화에 사용하는 오류정정방식, 부호화 율, 블록길이의 정보가 포함되어 있으며, 프레임 구성신호(313)가 지정한 방식을 이용하게 된다. 또, 오류정정방식은 전환해도 좋다)에 따라서 예를 들어 돌림형 부호, LDPC 부호, 터보 부호 등의 오류정정부호화를 실행하고 부호화 후의 데이터(303A)를 출력한다.
인터리버(304A)는 부호화 후의 데이터(303A), 프레임 구성신호(313)을 입력으로 하여, 인터리브, 즉, 순번의 재배열을 실행하여, 인터리브 후의 데이터(305A)를 출력한다(프레임 구성신호(313)에 의거하여 인터리브의 방법은 전환해도 좋다).
매핑부(306A)는 인터리브 후의 데이터(305A), 프레임 구성신호 (313)을 입력으로 하여, QPSK(Quadrature Phase Shift Keying), 16QAM(16 Quadrature Amplitude Modulation), 64QAM(64Quadrature Amplitude Modulation) 등의 변조를 시행하여 베이스밴드신호(307A)를 출력한다. (프레임 구성신호(313)에 의거하여 변조방식은 전환해도 좋다)
도 24는 QPSK 변조에서의 베이스밴드신호를 구성하는 동상성분 I와 직교성분 Q의 IQ평면에서의 매핑방법의 일례로 하고 있다. 예를 들어 도 24(A)와 같이 입력데이터가 「00」인 경우 I=1.0, Q=1.0이 출력되고, 이하 마찬가지로 입력데이터가 「01」인 경우 I=―1.0, Q=1.0이 출력되며…, 이 출력된다. 도 24(B)는 도 24(A)와는 다른 QPSK 변조의 IQ평면에서의 매핑방법의 예이며, 도 24(B)가 도 24(A)와 다른 점은 도 24(A)에서의 신호 점이 원점을 중심으로 회전시킴으로써 도 24(B)의 신호 점을 얻을 수 있다. 이와 같은 성상 회전(Constellation rotation)방법에 대해서는 비 특허문헌 9, 비 특허문헌 10에 기재되어 있으며, 또, 비 특허문헌 9, 비 특허문헌 10에 나타내고 있는 Cyclic Q Delay를 적용해도 좋다. 도 24와는 다른 예로, 도 25에 16QAM일 때의 IQ평면에서의 신호 점 배치를 나타내고 있고, 도 24(A)에 상당하는 예가 도 25 (A)이며, 도 24(B)에 상당하는 예가 도 25 (B)가 된다.
부호화부(302B)는 정보(데이터)(301B), 프레임 구성신호(313)을 입력으로 하여, 프레임 구성신호(313)(사용하는 오류정정방식, 부호화 율, 블록 길이의 정보가 포함되어 있으며, 프레임 구성신호(313)가 지정한 방식을 이용하게 된다. 또, 오류정정방식은 전환해도 좋다)에 따라, 예를 들어 돌림형 부호, LDPC 부호, 터보 부호 등의 오류정정부호화를 실시하고, 부호화 후의 데이터(303B)를 출력한다.
인터리버(304B)는 부호화 후의 데이터(303B), 프레임 구성신호(313)을 입력으로 하여, 인터리브, 즉 순번의 재배열을 실행하고, 인터리브 후의 데이터(305B)를 출력한다(프레임 구성신호(313)에 의거하여 인터리브의 방법은 전환해도 좋다).
매핑부(306B)는 인터리브 후의 데이터(305B), 프레임 구성신호(313)을 입력으로 하여, QPSK(Quadrature Phase Shift Keying), 16QAM(16 Quadrature Amplitude Modulation), 64QAM(64Quadrature Amplitude Modulation) 등의 변조를 시행하여 베이스밴드신호(307B)를 출력한다. (프레임 구성신호(313)에 의거하여 변조방식은 전환해도 좋다)
가중합성정보 생성부(314)는 프레임 구성신호(313)을 입력으로 하여 프레임 구성신호(313)에 의거하는 가중합성방법에 관한 정보(315)를 출력한다. 또, 가중합성방법은 규칙적으로 가중합성방법이 전환되는 것이 특징이 된다.
가중합성부(308A)는 베이스밴드신호(307A), 베이스밴드신호(307B), 가중합성방법에 관한 정보(315)를 입력으로 하여, 가중합성방법에 관한 정보(315)에 의거하여 베이스밴드신호(307A) 및 베이스밴드신호(307B)를 가중합성하며, 가중합성 후의 신호(309A)를 출력한다. 또, 가중합성의 방법의 상세에 대해서는 후에 상세하게 설명한다.
무선부(310A)는 가중합성 후의 신호(309A)를 입력으로 하여, 직교 변조, 대역 제한, 주파수 변환, 증폭 등의 처리를 시행하여 송신신호(311A)를 출력하고, 송신신호(511A)는 안테나(312A)에서 전파로서 출력된다.
가중합성부(308B)는 베이스밴드신호(307A), 베이스밴드신호(307B), 가중합성방법에 관한 정보(315)를 입력으로 하여, 가중합성방법에 관한 정보(315)에 의거하여 베이스밴드신호(307A) 및 베이스밴드신호(307B)를 가중합성하여 가중합성 후의 신호(309B)를 출력한다.
도 26에 가중합성부의 구성을 나타낸다. 베이스밴드신호(307A)는 w11(t)와 승산하여 w11(t), s1(t)를 생성하고, w21(t)와 승산하여 w21(t), s1(t)를 생성한다. 마찬가지로 베이스밴드신호(307B)는 w12(t)와 승산하여 w12(t), s2(t)를 생성하고, w22(t)와 승산하여 w22(t), s2(t)를 생성한다. 다음에 z1(t)=w11(t), s1(t)+w12(t), s2(t), z2(t)=w21(t), s1(t)+w22(t), s2(t)를 얻는다.
또, 가중합성의 방법의 상세에 대해서는 후에 상세하게 설명한다.
무선부(310B)는 가중합성 후의 신호(309B)를 입력으로 하여, 직교 변조, 대역 제한, 주파수 변환, 증폭 등의 처리를 시행하여 송신신호(311B)를 출력하고, 송신신호(511B)는 안테나(312B)에서 전파로서 출력된다.
도 4는 도 3과는 다른 송신장치(400)의 구성 예를 나타내고 있다. 도 4에서 도 3과 다른 부분에 대해 설명한다.
부호화부(402)는 정보(데이터)(401), 프레임 구성신호(313)을 입력으로 하여, 프레임 구성신호(313)에 의거하여 오류정정부호화를 실시하여 부호화 후의 데이터(402)를 출력한다.
분배부(404)는 부호화 후의 데이터(403)를 입력으로 하여, 데이터(403)를 분배하여 데이터(405A) 및 데이터(405B)를 출력한다. 또, 도 4에서는 부호화부가 하나인 경우를 기재하였으나, 이에 한정되는 것은 아니며, 부호화부를 m(m은 1 이상의 정수)으로 하여, 각 부호화부에서 작성된 부호화 데이터를 분배부가 2계통의 데이터로 나누어서 출력하는 경우에 대해서도 본 발명은 마찬가지로 실시할 수 있다.
도 5는 본 실시형태에서의 송신장치의 시간 축에서의 프레임 구성의 일례를 나타내고 있다. 심벌(500_1)은 수신장치에 송신방법을 통지하기 위한 심벌이며, 예를 들어 데이터심벌을 전송하기 위해 이용하는 오류정정방식, 그 부호화 율 정보, 데이터심벌을 전송하기 위해 이용하는 변조방식의 정보 등을 전송한다.
심벌(501_1)은 송신장치가 송신하는 변조신호 z1(t){단, t는 시간}의 채널 변동을 추정하기 위한 심벌이다. 심벌(502_1)은 변조신호 z1(t)가 (시간 축에서의)심벌번호 u에 송신하는 데이터심벌, 심벌(503_1)은 변조신호 z1(t)가 심벌번호 u+1에 송신하는 데이터심벌이다.
심벌(501_2)은 송신장치가 송신하는 변조신호 z2(t){단, t는 시간}의 채널 변동을 추정하기 위한 심벌이다. 심벌(502_2)은 변조신호 z2(t)가 심벌번호 u에 송신하는 데이터심벌, 심벌(503_2)은 변조신호 z2(t)가 심벌번호 u+1에 송신하는 데이터심벌이다.
송신장치가 송신하는 변조신호 z1(t)와 변조신호 z2(t) 및 수신장치에서의 수신신호 r1(t), r2(t)의 관계에 대해 설명한다.
도 5에서 504#1, 504#2는 송신장치에서의 송신안테나, 505#1, 505#2는 수신장치에서의 수신안테나를 나타내고 있으며, 송신장치는 변조신호 z1(t)를 송신안테나 504#1, 변조신호 z2(t)를 송신안테나 504#2로 송신한다. 이때, 변조신호 z1(t) 및 변조신호 z2(t)는 동일(공통의) 주파수(대역)를 점유하고 있는 것으로 한다. 송신장치의 각 송신안테나와 수신장치의 각 안테나의 채널 변동을 각각 h11(t), h12(t), h21(t), h22(t)로 하고, 수신장치의 수신안테나 505#1이 수신한 수신신호를 r1(t), 수신장치의 수신안테나 505#2가 수신한 수신신호를 r2(t)로 하면 이하의 관계식이 성립한다.
Figure 112018069724742-pat00037
도 6은 본 실시형태에서의 가중방법(weighting scheme, 프리코딩방법)에 관한 도면이며, 가중합성부(600)는 도 3의 가중합성부(308A와 308B)를 통합한 가중합성부이다. 도 6에 나타내는 것과 같이 스트림 s1(t) 및 스트림 s2(t)는 도 3의 베이스밴드신호(307A 및 307B)에 상당하는 즉, QPSK, 16QAM, 64QAM 등의 변조방식의 매핑에 따른 베이스밴드신호 동상 I, 직교 Q 성분이 된다. 그리고, 도 6의 프레임 구성과 같이 스트림 s1(t)는 심벌번호 u의 신호를 s1(u), 심벌번호 u+1의 신호를 s1(u+1), …로 나타낸다. 마찬가지로 스트림 s2(t)는 심벌번호 u의 신호를 s2(u), 심벌번호 u+1의 신호를 s2(u+1), …로 나타낸다. 그리고 가중합성부(600)는 도 3에서의 베이스밴드신호(307A (s1(t)) 및 307B (s2(t))), 가중정보에 관한 정보(315)를 입력으로 하여 가중정보에 관한 정보(315)에 따른 가중방법을 시행해서 도 3의 가중합성 후의 신호(309A (z1(t)), 309B (z2(t)))를 출력한다. 이때, z1(t), z2(t)는 이하와 같이 나타내게 된다.
심벌번호 4i일 때(i는 0 이상의 정수로 한다) :
Figure 112018069724742-pat00038
단, j는 허수 단위.
심벌번호 4i+1일 때 :
Figure 112018069724742-pat00039
심벌번호 4i+2 일 때 :
Figure 112018069724742-pat00040
심벌번호 4i+3일 때 :
Figure 112018069724742-pat00041
이와 같이, 도 6의 가중합성부는 4 슬롯 주기로 규칙적으로 프리코딩 웨이트를 전환하는 것으로 한다. (단, 여기에서는 4 슬롯으로 규칙적으로 프리코딩 웨이트를 전환하는 방식으로 하고 있으나, 규칙적으로 전환하는 슬롯 수는 4 슬롯으로 한정되는 것은 아니다)
그러나 비 특허문헌 4에서 슬롯마다 프리코딩 웨이트를 전환하는 것이 서술되어 있으며, 비 특허문헌 4에서는 프리코딩 웨이트를 랜덤으로 전환하는 것을 특징으로 하고 있다. 한편으로, 본 실시형태에서는 어느 주기를 마련하여 규칙적으로 프리코딩 웨이트를 전환하는 것을 특징으로 하고 있으며, 또, 4개의 프리코딩 웨이트로 구성되는 2행 2열의 프리코딩 웨이트 행렬에서 4개의 프리코딩 웨이트의 각 절댓값이 동일하며(1/sqrt(2)) 이 특징을 갖는 프리코딩 웨이트 행렬을 규칙적으로 전환하는 것을 특징으로 하고 있다.
LOS 환경에서는 특수한 프리코딩 행렬을 이용하면 수신품질이 크게 개선될 가능성이 있으나, 직접파의 상황에 따라 그 특수한 프리코딩 행렬은 다르다. 그러나 LOS 환경에는 어떤 규칙이 있으며, 이 규칙에 따라 특수한 프리코딩 행렬을 규칙적으로 전환하면 데이터의 수신품질이 크게 개선된다. 한편, 랜덤으로 프리코딩 행렬을 전환한 경우, 앞에서 설명한 특수한 프리코딩 행렬 이외의 프리코딩 행렬도 존재하게 될 가능성, 또, LOS 환경에는 적합하지 않은 치우친 프리코딩 행렬만으로 프리코딩을 실행할 가능성도 존재하며, 이에 의해 반드시 LOS 환경에서 양호한 수신품질을 얻을 수 있다고는 할 수 없다. 따라서 LOS 환경에 적합한 프리코딩 전환방법을 실현할 필요가 있으며, 본 발명은 그에 관한 프리코딩방법을 제안하고 있다.
도 7은 본 실시형태에서의 수신장치(700)의 구성의 일례를 나타내고 있다. 무선부(703_X)는 안테나(701_X)에서 수신된 수신신호(702_X)를 입력으로 하여, 주파수 변환, 직교 복조 등의 처리를 시행하여 베이스밴드신호(704_X)를 출력한다.
송신장치에서 송신된 변조신호 z1에서의 채널변동 추정부(705_1)는 베이스밴드신호(704_X)를 입력으로 하여, 도 5에서의 채널 추정용의 레퍼런스 심벌(501_1)을 추출해서 식 (36)의 h11에 상당하는 값을 추정하여 채널추정신호(706_1)를 출력한다.
송신장치에서 송신된 변조신호 z2에서의 채널변동 추정부(705_2)는 베이스밴드신호(704_X)를 입력으로 하여, 도 5에서의 채널 추정용의 레퍼런스 심벌(501_2)을 추출해서 식 (36)의 h12에 상당하는 값을 추정하여 채널추정신호(706_2)를 출력한다.
무선부(703_Y)는 안테나(701_Y)에서 수신된 수신신호(702_Y)를 입력으로 하여, 주파수 변환, 직교 복조 등의 처리를 시행하여 베이스밴드신호(704_Y)를 출력한다.
송신장치에서 송신된 변조신호 z1에서의 채널변동 추정부(707_1)는 베이스밴드신호(704_Y)를 입력으로 하여, 도 5에서의 채널 추정용의 레퍼런스 심벌(501_1)을 추출해서 식 (36)의 h21에 상당하는 값을 추정하여 채널추정신호 (708_1)를 출력한다.
송신장치에서 송신된 변조신호 z2에서의 채널변동 추정부(707_2)는 베이스밴드신호(704_Y)를 입력으로 하여, 도 5에서의 채널 추정용의 레퍼런스 심벌(501_2)을 추출해서 식 (36)의 h22에 상당하는 값을 추정하여 채널추정신호(708_2)를 출력한다.
제어정보 복호부(709)는 베이스밴드신호(704_X 및 704_Y)를 입력으로 하여, 도 5의 송신방법을 통지하기 위한 심벌(500_1)을 검출하여, 송신장치가 통지한 송신방법의 정보에 관한 신호(710)를 출력한다.
신호처리부(711)는 베이스밴드신호(704_X, 704_Y), 채널추정신호(706_1, 706_2, 708_1, 708_2) 및 송신장치가 통지한 송신방법의 정보에 관한 신호(710)를 입력으로 해서 검파, 복호를 실시하여 수신데이터(712_1 및 712_2)를 출력한다.
다음에, 도 7의 신호처리부(711)의 동작에 대해 상세하게 설명한다. 도 8은 본 실시형태에서의 신호처리부(711)의 구성의 일례를 나타내고 있다. 도 8은 주로 INNER MIMO 검파부와 Soft-in/Soft-out 디코더, 가중계수 생성부로 구성되어 있다. 이 구성에서의 반복 복호의 방법에 대해서는 비 특허문헌 2, 비 특허문헌 3에서 상세히 기술되고 있으나, 비 특허문헌 2, 비 특허문헌 3에 기재되어 있는 MIMO 전송방식은 공간 다중 MIMO 전송방식이지만, 본 실시형태에서의 전송방식은 시간과 함께 프리코딩 웨이트를 변경하는 MIMO 전송방식이라는 점이 비 특허문헌 2, 비 특허문헌 3과 다른 점이다. 식 (36)에서의 (채널)행렬을 H(t), 도 6에서의 프리코딩 웨이트 행렬을 W(t)(단, t에 의해 프리코딩 웨이트 행렬은 변화한다), 수신 벡터를 R(t)=(r1(t), r2(t))T, 스트림 벡터 S(t)=(s1(t), s2(t))T로 하면 이하의 관계식이 성립한다.
Figure 112018069724742-pat00042
이때, 수신장치는 H(t)W(t)를 채널행렬이라고 생각함으로써 수신 벡터를 R(t)에 대해서 비 특허문헌 2, 비 특허문헌 3의 복호방법을 적용할 수 있다.
따라서 도 8의 가중계수 생성부(819)는 송신장치가 통지한 송신방법의 정보에 관한 신호(818)(도 7의 710에 상당)를 입력으로 하여, 가중계수의 정보에 관한 신호(820)을 출력한다.
INNNER MIMO 검파부(803)는 가중계수의 정보에 관한 신호(820)를 입력으로 하여, 이 신호를 이용해서 식 (41)의 연산을 실행하게 된다. 그리고 반복 검파·복호를 실행하게 되나, 그 동작에 대해 설명한다.
도 8의 신호처리부에서는 반복 복호(반복 검파)를 실행하기 위해 도 10에 나타내는 것과 같은 처리방법을 실행할 필요가 있다. 처음에, 변조신호(스트림) s1의 1 부호어(또는 1 프레임) 및 변조신호(스트림) s2의 1 부호어(또는 1 프레임)의 복호를 실행한다. 그 결과, Soft-in/Soft-out 디코더로부터 변조신호(스트림) s1의 1 부호어(또는 1 프레임) 및 변조신호(스트림) s2의 1 부호어(또는 1 프레임)의 각 비트의 대수 우도 비(LLR:Log-Likelihood Ratio)를 얻을 수 있다. 그리고 그 LLR를 이용하여 재차 검파·복호가 실행된다. 이 조작이 복수 회 실행된다(이 조작을 반복 복호(반복 검파)라고 한다). 이하에서는 1 프레임에서의 특정의 시간의 심벌의 대수 우도 비(LLR)의 작성방법을 중심으로 설명한다.
도 8에서 기억부(815)는 베이스밴드신호(801X)(도 7의 베이스밴드신호(704_X)에 상당한다), 채널추정신호 군(802X)(도 7의 채널추정신호(706_1, 706_2)에 상당한다), 베이스밴드신호(801Y)(도 7의 베이스밴드신호(704_Y)에 상당한다), 채널추정신호 군(802Y)(도 7의 채널추정신호(708_1, 708_2)에 상당한다)을 입력으로 하여, 반복 복호(반복 검파)를 실현하기 위해 식 (41)에서의 H(t)W(t)를 실행(산출)하고, 산출한 행렬을 변형 채널신호 군으로서 기억한다. 그리고 기억부(815)는 필요할 때에 상기 신호를 베이스밴드신호(816X), 변형 채널추정신호 군(817X), 베이스밴드신호(816Y), 변형 채널추정신호 군(817Y)으로서 출력한다.
그 후의 동작에 대해서는 초기 검파의 경우와 반복 복호(반복 검파)의 경우를 나누어서 설명한다.
<초기 검파의 경우>
INNER MIMO 검파부(803)는 베이스밴드신호(801X), 채널추정신호 군(802X), 베이스밴드신호(801Y), 채널추정신호 군(802Y)을 입력으로 한다. 여기에서는 변조신호(스트림) s1, 변조신호(스트림) s2의 변조방식을 16QAM으로 하여 설명한다.
INNER MIMO 검파부(803)는 먼저, 채널추정신호 군(802X), 채널추정신호 군(802Y)으로부터 H(t)W(t)를 실행하여 베이스밴드신호(801X)에 대응하는 후보신호 점을 구한다. 그때의 모습을 도 11에 나타낸다. 도 11에서 ●(검은 원)은 IQ평면에서의 후보신호 점이며, 변조방식이 16QAM이므로 후보신호 점은 256개가 존재한다(단, 도 11에서는 이미지 도를 나타내고 있으므로 256개의 후보신호 점은 나타내고 있지 않다). 여기서, 변조신호 s1로 전송하는 4 비트를 b0, b1, b2, b3, 변조신호 s2로 전송하는 4 비트를 b4, b5, b6, b7로 하면 도 11에서 (b0, b1, b2, b3, b4, b5, b6, b7)에 대응하는 후보신호 점이 존재하게 된다. 그리고 수신신호 점(1101)(베이스밴드신호(801X)에 상당한다)과 후보신호 점 각각과의 2승 유클리드 거리(squared Euclidian distance)를 구한다. 그리고 각각의 2승 유클리드 거리를 노이즈의 분산 σ2로 나눈다. 따라서 (b0, b1, b2, b3, b4, b5, b6, b7)에 대응하는 후보신호 점과 수신신호 점 2승 유클리드 거리를 노이즈의 분산으로 나눈 값을 EX(b0, b1, b2, b3, b4, b5, b6, b7)가 구하게 된다
마찬가지로, 채널추정신호 군(802X), 채널추정신호 군(802Y)으로부터 H(t)W(t)를 실행하여 베이스밴드신호(801Y)에 대응하는 후보신호 점을 구하여 수신신호 점(베이스밴드신호(801Y)에 상당한다)과의 2승 유클리드 거리를 구하고, 이 2승 유클리드 거리를 노이즈의 분산 σ2로 나눈다. 따라서 (b0, b1, b2, b3, b4, b5, b6, b7)에 대응하는 후보신호 점과 수신신호 점 2승 유클리드 거리를 노이즈의 분산으로 나눈 값을 EY(b0, b1, b2, b3, b4, b5, b6, b7)가 구하게 된다.
그리고 EX(b0, b1, b2, b3, b4, b5, b6, b7) + EY(b0, b1, b2, b3, b4, b5, b6, b7) = E(b0, b1, b2, b3, b4, b5, b6, b7)를 구한다.
INNER MIMO 검파부(803)는 E(b0, b1, b2, b3, b4, b5, b6, b7)를 신호 (804)로 출력한다.
대수 우도 산출부(805A)는 신호(804)를 입력으로 해서 비트 b0, b1, b2, b3의 대수 우도(Log Likelihood)를 산출하여, 대수 우도 신호(806A)를 출력한다. 단, 대수 우도의 산출에서는 “1”일 때의 대수 우도 및“0”일 때의 대수 우도가 산출된다. 그 산출방법은 식 (28), 식 (29), 식 (30)에 나타낸 것과 같으며, 상세에 대해서는 비 특허문헌 2, 비 특허문헌 3에 나타내고 있다.
마찬가지로, 대수 우도 산출부(805B)는 신호(804)를 입력으로 해서 비트 b4, b5, b6, b7의 대수 우도를 산출하여, 대수 우도 신호(806B)를 출력한다.
디 인터리버(De-Interleaver)(807A)는 대수 우도 신호(806A)를 입력으로 해서 인터리버(도 3의 인터리버(304A))에 대응하는 디 인터리브(De-Interleave)를 실행하여 디 인터리브 후의 대수 우도 신호(808A)를 출력한다.
마찬가지로, 디 인터리버(807B)는 대수 우도 신호(806B)를 입력으로 해서 인터리버(도 3의 인터리버(304B))에 대응하는 디 인터리브를 실행하여 디 인터리브 후의 대수 우도 신호(808B)를 출력한다.
대수 우도 비 산출부(809A)는 디 인터리브 후의 대수 우도 신호(808A)를 입력으로 해서 도 3의 부호화기(302A)에서 부호화된 비트의 대수 우도 비(LLR:Log-Likelihood Ratio)를 산출하여 대수 우도 비 신호(810A)를 출력한다.
마찬가지로, 대수 우도 비 산출부(809B)는 디 인터리브 후의 대수 우도 신호(808B)를 입력으로 해서 도 3의 부호화기(302B)에서 부호화된 비트의 대수 우도 비(LLR:Log-Likelihood Ratio)를 산출하여 대수 우도 비 신호(810B)를 출력한다.
Soft-in/Soft-out 디코더(811A)는 대수 우도 비 신호(810A)를 입력으로 하여 복호를 실시해서 복호 후의 대수 우도 비(812A)를 출력한다.
마찬가지로, Soft-in/Soft-out 디코더(811B)는 대수 우도 비 신호(810B)를 입력으로 하여 복호를 실시해서 복호 후의 대수 우도 비(812B)를 출력한다.
<반복 복호(반복 검파)의 경우, 반복 횟수 k>
인터리버(813A)는 k-1회째의 Soft-in/Soft-out 디코드에서 얻은 복호 후의 대수 우도 비(812A)를 입력으로 해서 인터리브를 실행하여 인터리브 후의 대수 우도 비(814A)를 출력한다. 이때, 인터리브(813A)의 인터리브의 패턴은 도 3의 인터리버(304A)의 인터리브 패턴과 같다.
인터리버(813 B)는 k-1회째의 Soft-in/Soft-out 디코드에서 얻은 복호 후의 대수 우도 비(812B)를 입력으로 하여 인터리브를 실시해서 인터리브 후의 대수 우도 비(814B)를 출력한다. 이때, 인터리브(813B)의 인터리브의 패턴은 도 3의 인터리버(304B)의 인터리브 패턴과 같다.
INNER MIMO 검파부(803)는 베이스밴드신호(816X), 변형 채널추정신호 군(817X), 베이스밴드신호(816Y), 변형 채널추정신호 군(817Y), 인터리브 후의 대수 우도 비(814A), 인터리브 후의 대수 우도 비 (814B)를 입력으로 한다. 여기서, 베이스밴드신호(801X), 채널추정신호 군(802X), 베이스밴드신호(801Y), 채널추정신호 군(802Y)이 아니라, 베이스밴드신호(816X), 변형 채널추정신호 군(817X), 베이스밴드신호(816Y), 변형 채널추정신호 군(817Y)을 이용하고 있는 이유는 반복 복호이므로 지연시간이 발생하고 있기 때문이다.
INNER MIMO 검파부(803)의 반복 복호 시의 동작과 초기 검파시의 동작의 차이점은 인터리브 후의 대수 우도 비(814A), 인터리브 후의 대수 우도 비(814B)를 신호처리 시에 이용하고 있는 점이다. INNNER MIMO 검파부(803)는 먼저, 초기 검파 때와 마찬가지로 E(b0, b1, b2, b3, b4, b5, b6, b7)를 구한다. 또, 인터리브 후의 대수 우도 비(814A), 인터리브 후의 대수 우도 비(914B)로부터 식 (11), 식 (32)에 상당하는 계수를 구한다. 그리고 E(b0, b1, b2, b3, b4, b5, b6, b7)의 값을 구한 계수를 이용하여 보정 하여 그 값을 E'(b0, b1, b2, b3, b4, b5, b6, b7)로 하여 신호(804)로서 출력한다.
대수 우도 산출부(805A)는 신호(804)를 입력으로 하여 비트 b0, b1, b2, b3의 대수 우도(Log Likelihood)를 산출해서 대수 우도 신호(806A)를 출력한다. 단, 대수 우도의 산출에서는 “1”일 때의 대수 우도 및“0”일 때의 대수 우도가 산출된다. 그 산출방법은 식 (31), 식 (수학식 32), 식 (33), 식 (34), 식 (35)에 나타낸 것과 같으며 비 특허문헌 2, 비 특허문헌 3에 나타내고 있다.
마찬가지로, 대수 우도 산출부(805B)는 신호(804)를 입력으로 하여 비트 b4, b5, b6, b7의 대수 우도를 산출해서 대수 우도 신호(806B)를 출력한다. 디 인터리버 이후의 동작은 초기 검파와 동일하다.
또, 도 8에서는 반복 검파를 실행하는 경우의 신호처리부의 구성에 대해서 나타내었으나, 반복 검파는 반드시 양호한 수신품질을 얻는데 있어서 필수의 구성은 아니며, 반복 검파 만에 필요로 하는 구성 부분으로, 인터리버(813A, 813B)를 갖지 않은 구성이라도 좋다. 이때, INNNER MIMO 검파부(803)는 반복적인 검파를 실행하지 않게 된다.
그리고 본 실시형태에서 중요한 부분은 H(t)W(t)의 연산을 실행하는 것이다. 또, 비 특허문헌 5 등에 나타내고 있는 것과 같이, QR분해를 이용하여 초기 검파, 반복 검파를 실행해도 좋다.
또, 비 특허문헌 11에 나타내고 있는 것과 같이, H(t)W(t)에 의거하여 MMSE(Minimum Mean Square Error), ZF(Zero Forcing)의 선형연산을 실행하여 초기 검파를 실행해도 좋다.
도 9는 도 8과 다른 신호처리부의 구성이며, 도 4의 송신장치가 송신한 변조신호를 위한 신호처리부이다. 도 8과 다른 점은 Soft-in/Soft-out 디코더의 수이며, Soft-in/Soft-out 디코더(901)는 대수 우도 비 신호(810A, 810B)를 입력으로 하여 복호를 실행해서 복호 후의 대수 우도 비(902)를 출력한다. 분배부(903)는 복호 후의 대수 우도 비(902)를 입력으로 하여 분배를 실행한다. 그 이외의 부분에 대해서는 도 8과 동일한 동작이 된다.
도 12에 도 29일 때와 같은 조건에서 전송방식을 본 실시형태의 프리코딩 웨이트를 이용한 송신방법으로 한 때의 BER 특성을 나타낸다. 도 12의 (A)는 반복 검파를 실행하지 않는 Max-log-APP(비 특허문헌 1, 비 특허문헌 2 참조)(APP:a posterior probability)의 BER 특성, 도 12의 (B)는 반복 검파를 실행한 Max-log-APP(비 특허문헌 1, 비 특허문헌 2 참조)(반복 횟수 5회)의 BER 특성을 나타내고 있다. 도 12와 도 29를 비교하면, 본 실시형태의 송신방법을 이용하면 라이시안 팩터(Rician factor)가 클 때의 BER 특성이 공간 다중 MIMO 전송을 이용한 때의 BER 특성보다 크게 개선되고 있다는 것을 알 수 있으며, 본 실시형태의 방식의 유효성을 확인할 수 있다.
이상과 같이, 본 실시형태와 같이 MIMO 전송시스템의 송신장치가 복수 안테나로부터 복수의 변조신호를 송신할 때, 시간과 함께 프리코딩 웨이트를 전환하는 동시에, 전환을 규칙적으로 실시함으로써, 직접파가 지배적인 LOS 환경에 있어서 종래의 공간 다중 MIMO 전송을 이용할 때와 비교하여 전송 품질이 향상한다는 효과를 얻을 수 있다.
본 실시형태에서, 특히 수신장치의 구성에 대해서는 안테나 수를 한정하여 동작을 설명하였으나, 안테나 수가 증가해도 마찬가지로 실행할 수 있다. 즉, 수신장치에서의 안테나 수는 본 실시형태의 동작, 효과에 영향을 미치는 것은 아니다. 또, 본 실시형태에서는 특히 LDPC 부호를 예로 하여 설명하였으나, 이에 한정되는 것은 아니며, 또, 복호방법에 대해서도 Soft-in/Soft-out 디코더로 하여 sum-product 복호를 예로 한정되는 것은 아니며, 다른 Soft-in/Soft-out의 복호방법, 예를 들어 BCJR 알고리즘, SOVA 알고리즘, Msx-log-MAP 알고리즘 등이 있다. 상세에 대해서는 비 특허문헌 6에 기재되어 있다.
또, 본 실시형태에서는 싱글 캐리어 방식을 예로 설명하였으나, 이에 한정되는 것은 아니며, 멀티 캐리어 전송을 실행한 경우에서도 마찬가지로 실행할 수 있다. 따라서 예를 들어 스펙트럼 확산 통신방식, OFDM(Orthogonal Frequency-Division Multiplexing) 방식, SC-FDMA(Single Carrier Frequency Division Multiple Access), SC-OFDM(Single Carrier Orthogonal Frequency-Division Multiplexing) 방식, 비 특허문헌 7 등에서 나타내고 있는 웨이브릿 OFDM 방식 등을 이용한 경우에 대해서도 마찬가지로 실시할 수 있다. 또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리앰블, 유니크 워드 등), 제어정보의 전송용 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다.
이하에서는 멀티캐리어 방식의 일례로서 OFDM 방식을 이용한 때의 예를 설명한다.
도 13은 OFDM 방식을 이용한 때의 송신장치의 구성을 나타내고 있다. 도 13에서 도 3과 마찬가지로 동작하는 것에 대해서는 동일 부호를 부여했다.
OFDM 방식관련 처리부(1301A)는 가중 후의 신호(309A)를 입력으로 하여 OFDM 방식 관련의 처리를 해서 송신신호(1302A)를 출력한다. 마찬가지로, OFDM 방식관련 처리부(1301B)는 가중 후의 신호(309B)를 입력으로 하여 송신신호 (1302B)를 출력한다.
도 14는 도 13의 OFDM 방식관련 처리부(1301A, 1301B) 이후의 구성의 일례를 나타내고 있으며, 도 13의 1301A에서 312A에 관련하는 부분이 1401A에서 1410A이고, 1301B에서 312B에 관련하는 부분이 1401B에서 1410B이다.
직병렬(Serial/Parallel) 변환부(1402A)는 가중 후의 신호(1401A)(도 13의 가중 후의 신호(309A)에 상당한다)에 직병렬(Serial/Parallel) 변환을 실행하여 병렬신호(1403A)를 출력한다.
재배열부(1404A)는 병렬신호(1403A)를 입력으로 하여 재배열을 실행해서 재배열 후의 신호(1405A)를 출력한다. 또, 재배열에 대해서는 후에 상세하게 설명한다.
역 고속 푸리에 변환부(1406A)는 재배열 후의 신호(1405A)를 입력으로 하여 역 고속 푸리에변환을 실행하여 역 푸리에변환 후의 신호(1407A)를 출력한다.
무선부(1408A)는 역 푸리에변환 후의 신호(1407A)를 입력으로 하여 주파수 변환, 증폭 등의 처리를 실행하여 변조신호(1409A)를 출력하며, 변조신호(1409A)는 안테나(1410A)로부터 전파로서 출력된다.
직병렬(Serial/Parallel) 변환부(1402B)는 가중 후의 신호(1401B)(도 13의 가중 후의 신호(309B)에 상당한다)에 직병렬(Serial/Parallel)변환을 실행하여 병렬신호(1403B)를 출력한다.
재배열부(1404B)는 병렬신호(1403B)를 입력으로 하여 재배열을 실행하여 재배열 후의 신호(1405B)를 출력한다. 또, 재배열에 대해서는 후에 상세하게 설명한다.
역 고속 푸리에 변환부(1406B)는 재배열 후의 신호(1405B)를 입력으로 하여 역고속 푸리에 변환을 실행하여 역 푸리에변환 후의 신호(1407B)를 출력한다.
무선부(1408B)는 역 푸리에변환 후의 신호(1407B)를 입력으로 하여 주파수 변환, 증폭 등의 처리를 실행하여 변조신호(1409B)를 출력하며, 변조신호(1409B)는 안테나(1410B)에서 전파로서 출력된다.
도 3의 송신장치에서는 멀티 캐리어를 이용한 전송방식이 아니므로, 도 6과 같이 4 주기가 되도록 프리코딩을 전환하여 프리코딩 후의 심벌을 시간 축 방향으로 배치하고 있다. 도 13에 나타내는 것과 같은 OFDM 방식과 동일한 멀티 캐리어 전송방식을 이용하고 있는 경우, 당연히, 도 3과 같이 프리코딩 후의 심벌을 시간 축 방향으로 배치하고 그것을 각 (서브)캐리어마다 실행하는 방식이 생각되나, 멀티 캐리어 전송방식의 경우, 주파수 축 방향 또는 주파수 축·시간 축 양자를 이용하여 배치하는 방법이 고려된다. 이후에서는 이 점에 대해 설명한다.
도 15는 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 1401B)에서의 심벌의 재배열방법의 일례를 나타내고 있으며, 주파수 축은 (서브)캐리어 0에서 (서브)캐리어 9로 구성되어 있고, 변조신호 z1과 z2는 동일 시각(시간)에 동일한 주파수대역을 사용하고 있으며, 도 15 (A)는 변조신호 z1의 심벌의 재배열방법, 도 15 (B)는 변조신호 z2의 심벌의 재배열방법을 나타내고 있다. 직병렬(Serial/Parallel) 변환부(1402A)가 입력으로 하는 가중 후의 신호(1401A)의 심벌에 대해 순번으로 #1, #2, #3, #4, …로 번호를 부여한다. 이때, 도 15 (a)와 같이 심벌 #1, #2, #3, #4, …를 캐리어 0에서부터 차례로 배치하고, 심벌 #1에서 #9를 시각 $1에 배치하며, 그 후, 심벌 #10에서 #19를 시각 $2에 배치하는 것과 같이 규칙적으로 배치하는 것으로 한다.
마찬가지로 직병렬(Serial/Parallel) 변환부(1402B)가 입력으로 하는 가중 후의 신호(1401B)의 심벌에 대해 순번으로 #1, #2, #3, #4, …라는 번호를 부여한다. 이때, 도 15 (b)와 같이 심벌 #1, #2, #3, #4, …를 캐리어 0부터 순번으로 배치하고, 심벌 #1에서 #9를 시각 $1에 배치하며, 그 후, 심벌 #10에서 #19를 시각 $2에 배치하는 것과 같이 규칙적으로 배치하는 것으로 한다.
그리고 도 15에 나타내는 심벌 군(1501), 심벌 군(1502)은 도 6이 나타내는 프리코딩 웨이트 전환방법을 이용한 때의 1주기 분의 심벌이며, 심벌 #0은 도 6의 슬롯 4i의 프리코딩 웨이트를 이용한 때의 심벌이고, 심벌 #1은 도 6의 슬롯 4i + 1의 프리코딩 웨이트를 이용한 때의 심벌이며, 심벌 #2는 도 6의 슬롯 4i + 2의 프리코딩 웨이트를 이용한 때의 심벌이고, 심벌 #3은 도 6의 슬롯 4i + 3의 프리코딩 웨이트를 이용한 때의 심벌이다. 따라서 심벌 #x에서 x mod 4가 0일 때 심벌 #x는 도 6의 슬롯 4i의 프리코딩 웨이트를 이용한 때의 심벌이며, x mod 4가 1일 때 심벌 #x는 도 6의 슬롯 4i + 1의 프리코딩 웨이트를 이용한 때의 심벌이고, x mod 4가 2일 때 심벌 #x는 도 6의 슬롯 4i + 2의 프리코딩 웨이트를 이용한 때의 심벌이며, x mod 4가 3일 때 심벌 #x는 도 6의 슬롯 4i + 3의 프리코딩 웨이트를 이용한 때의 심벌이다.
이와 같이, OFDM 방식 등의 멀티 캐리어 전송방식을 이용한 경우 싱글 캐리어 전송일 때와는 달리, 심벌을 주파수 축 방향으로 배열할 수 있다는 특징을 가지게 된다. 그리고 심벌의 배열방법에 대해서는 도 15와 같은 배열방법에 한정되는 것은 아니다. 다른 예에 대해서 도 16, 도 17을 이용하여 설명한다.
도 16은 도 15와는 다른 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 1401B)에서의 심벌의 재배열방법의 일례를 나타내고 있으며, 도 16 (A)는 변조신호 z1의 심벌의 재배열방법, 도 16 (B)는 변조신호 z2의 심벌의 재배열방법을 나타내고 있다. 도 16 (A), (B)가 도 15와 다른 점은 변조신호 z1의 심벌의 재배열방법과 변조신호 z2의 심벌의 재배열방법이 다른 점이며, 도 16 (B)에서는 심벌 #0부터 #5를 캐리어 4부터 캐리어 9에 배치하고, 심벌 #6에서부터 #9를 캐리어 0에서부터 3으로 배치하며, 그 후, 동일한 규칙으로 심벌 #10에서 #19를 각 캐리어에 배치한다. 이때, 도 15와 마찬가지로, 도 16에 나타내는 심벌 군(1601), 심벌 군(1602)은 도 6이 나타내는 프리코딩 웨이트 전환방법을 이용한 때의 1주기 분의 심벌이다.
도 17은 도 15와 다른 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 1401B)에서의 심벌의 재배열방법의 일례를 나타내고 있으며, 도 17 (A)는 변조신호 z1의 심벌의 재배열방법, 도 17 (B)는 변조신호 z2의 심벌의 재배열방법을 나타내고 있다. 도 17 (A), (B)가 도 15와 다른 점은 도 15에서는 심벌을 캐리어에 차례대로 배치하고 있는 것에 대해, 도 17에서는 심벌을 캐리어에 순서대로 배치하고 있지 않은 점이다. 당연하나, 도 17에서 도 16과 마찬가지로 변조신호 z1의 심벌의 재배열방법과 변조신호 z2의 재배열방법을 다르게 해도 좋다.
도 18은 도 15 ~ 17과는 다른 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 1401B)에서의 심벌의 재배열방법의 일례를 나타내고 있으며, 도 18 (A)는 변조신호 z1의 심벌의 재배열방법, 도 18 (B)는 변조신호 z2의 심벌의 재배열방법을 나타내고 있다. 도 15 ~ 17에서는 심벌을 주파수 축 방향으로 배열하고 있으나, 도 18에서는 심벌을 주파수, 시간 축의 양자를 이용하여 배치하고 있다.
도 6에서는 프리코딩 웨이트의 변환을 4 슬롯으로 전환하는 경우의 예를 설명하였으나, 여기에서는 8 슬롯으로 전환하는 경우를 예로 설명한다. 도 18에 나타내는 심벌 군(1801), 심벌 군(1802)은 프리코딩 웨이트 전환방법을 이용한 때의 1주기 분의 심벌(따라서 8심벌)이고, 심벌 #0은 슬롯 8i의 프리코딩 웨이트를 이용한 때의 심벌이며, 심벌 #1은 슬롯 8i+1의 프리코딩 웨이트를 이용한 때의 심벌이고, 심벌 #2는 슬롯 8i+2의 프리코딩 웨이트를 이용한 때의 심벌이며, 심벌 #3은 슬롯 8i+3의 프리코딩 웨이트를 이용한 때의 심벌이고, 심벌 #4는 슬롯 8i+4의 프리코딩 웨이트를 이용한 때의 심벌이며, 심벌 #5는 슬롯 8i+5의 프리코딩 웨이트를 이용한 때의 심벌이고, 심벌 #6은 슬롯 8i+6의 프리코딩 웨이트를 이용한 때의 심벌이며, 심벌 #7은 슬롯 8i+7의 프리코딩 웨이트를 이용한 때의 심벌이다. 따라서 심벌 #x에서 x mod 8이 0일 때 심벌 #x는 슬롯 8i의 프리코딩 웨이트를 이용한 때의 심벌이고, x mod 8이 1일 때 심벌 #x는 슬롯 8i+1의 프리코딩 웨이트를 이용한 때의 심벌이며, x mod 8이 2일 때 심벌 #x는 슬롯 8i+2의 프리코딩 웨이트를 이용한 때의 심벌이고, x mod 8이 3일 때 심벌 #x는 슬롯 8i+3의 프리코딩 웨이트를 이용한 때의 심벌이며, x mod 8이 4일 때 심벌 #x는 슬롯 8i+4의 프리코딩 웨이트를 이용한 때의 심벌이고, x mod 8이 5일 때 심벌 #x는 슬롯 8i+5의 프리코딩 웨이트를 이용한 때의 심벌이며, x mod 8이 6일 때 심벌 #x는 슬롯 8i+6의 프리코딩 웨이트를 이용한 때의 심벌이고, x mod 8이 7일 때 심벌 #x는 슬롯 8i+7의 프리코딩 웨이트를 이용한 때의 심벌이다. 도 18의 심벌의 배열방법에서는 시간 축 방향으로 4 슬롯, 주파수 축 방향으로 2 슬롯의 합계 4×2=8 슬롯을 이용하여 1주기 분의 심벌을 배치하고 있으나, 이때, 1주기 분의 심벌의 수를 m×n심벌(즉, 프리코딩 웨이트는 m×n종류 존재한다), 1주기 분의 심벌을 배치하는데 사용하는 주파수 축 방향의 슬롯(캐리어 수)을 n, 시간 축 방향으로 사용하는 슬롯을 m으로 하면 m>n으로 하면 좋다. 이는 직접파의 위상은 시간 축 방향의 변동은 주파수 축 방향의 변동에 비하여 완만하다. 따라서 정상적인 직접파의 영향을 작게 하기 위해 본 실시형태의 프리코딩 웨이트 변경을 실행하므로, 프리코딩 웨이트의 전환을 실행하는 주기에서는 직접파의 변동을 작게 하고자 한다. 따라서 m>n으로 하면 좋다. 또, 이상의 점을 고려하면, 주파수 축 방향만 또는 시간 축 방향으로만 심벌을 재배열하는 것보다, 도 18과 같이 주파수 축과 시간 축의 양자를 이용하여 재배열을 실행하는 편이 직접파는 정상적이 될 가능성이 크고, 본 발명의 효과를 얻기 쉽다는 효과를 얻을 수 있다. 단, 주파수 축 방향으로 배열하면 주파수 축의 변동이 급격하므로, 다이버시티 게인(Diversity Gain)을 얻을 수 있을 가능성이 있으므로, 반드시 주파수 축과 시간 축 양자를 이용하여 재배열을 실행하는 방법이 최적의 방법이라고는 할 수 없다.
도 19는 도 18과는 다른 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 1401B)에서의 심벌의 재배열방법의 일례를 나타내고 있으며, 도 19 (A)는 변조신호 z1의 심벌의 재배열방법, 도 19 (B)는 변조신호 z2의 심벌의 재배열방법을 나타내고 있다. 도 19는 도 18과 마찬가지로 심벌을 주파수, 시간 축의 양자를 이용하여 배치하고 있으나, 도 18과 다른 점은 도 18에서는 주파수 방향을 우선하고, 그 후, 시간 축 방향으로 심벌을 배치하고 있는데 반해, 도 19에서는 시간 축 방향을 우선하고, 그 후, 시간 축 방향으로 심벌을 배치하고 있는 점이다. 도 19에서 심벌 군(1901), 심벌 군(1902)은 프리코딩 전환방법을 이용한 때의 1주기 분의 심벌이다.
또, 도 18, 도 19에서는 도 16과 마찬가지로 변조신호 z1의 심벌의 배치방법과 변조신호 z2의 심벌 배치방법이 다르게 배치해도 마찬가지로 실시할 수 있으며, 또, 높은 수신품질을 얻을 수 있다는 효과를 얻을 수 있다. 또, 도 18, 도 19에서 도 17과 마찬가지로 심벌을 차례로 배치하고 있지 않아도 마찬가지로 실시할 수 있으며 또, 높은 수신품질을 얻을 수 있다는 효과를 얻을 수 있다.
도 27은 상기와는 다른 가로축 주파수, 세로축 시간에서의 도 14의 재배열부(1401A, 140B)에서의 심벌의 재배열방법의 일례를 나타내고 있다. 식 (37) ~ 식 (40)과 같은 4 슬롯을 이용하여 규칙적으로 프리코딩 행렬을 전환하는 경우를 생각한다. 도 27에서 특징적인 점은 주파수 축 방향으로 심벌을 차례로 배열하고 있으나, 시간 축 방향으로 진행한 경우, 사이클릭에 n(도 27의 예에서는 n=1) 심벌 사이클릭 시프트(Cyclic Shift) 시키고 있는 점이다. 도 27에서의 주파수 축 방향의 심벌 군(2710)에 나타낸 4 심벌에 있어서 식 (37) ~ 식 (40)의 프리코딩 행렬의 전환을 실행하는 것으로 한다.
이때, #0의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #1에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #2에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #3에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
주파수 축 방향의 심벌 군(2720)에 대해서도 동일하게 #4의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #5에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #6에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #7에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
시간 $1의 심벌에서 상기와 같은 프리코딩 행렬의 전환을 실행하였으나, 시간 축 방향에서 사이클릭 시프트(Cyclic Shift)를 하고 있으므로, 심벌 군 (2701, 2702, 2703, 2704)에 대해서는 이하와 같이 프리코딩 행렬의 전환을 실행하게 된다.
시간 축 방향의 심벌 군(2701)에서는 #0의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #9에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #18에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #27에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
 시간 축 방향의 심벌 군(2702)에서는 #28의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #1에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #10에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #19에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
시간 축 방향의 심벌 군(2703)에서는 #20의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #29에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #1에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #10에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
시간 축 방향의 심벌 군(2704)에서는 #12의 심벌에서는 식 (37)의 프리코딩 행렬을 이용한 프리코딩, #21에서는 식 (38)의 프리코딩 행렬을 이용한 프리코딩, #30에서는 식 (39)의 프리코딩 행렬을 이용한 프리코딩, #3에서는 식 (40)의 프리코딩 행렬을 이용한 프리코딩을 실행하는 것으로 한다.
도 27에서의 특징은 예를 들어 #11의 심벌에 주목한 경우, 동일 시각의 주파수 축 방향의 좌우 양쪽 이웃의 심벌(#10과 #12)은 모두 #11과는 다른 프리코딩 행렬을 이용하여 프리코딩을 실행하고 있는 것과 동시에, #11의 심벌의 동일 캐리어의 시간 축 방향의 좌우 양쪽 이웃의 심벌(#2과 #20)은 모두 #11과는 다른 프리코딩 행렬을 이용하여 프리코딩을 실행하고 있는 것이다. 그리고 이는 #11의 심벌에 한정되는 것은 아니며, 주파수 축 방향 및 시간 축 방향 모두 좌우 양쪽 이웃에 심벌이 존재하는 심벌 모두에 있어서 #11의 심벌과 같은 특징을 가지게 된다. 이에 의해 효과적으로 프리코딩 행렬을 전환하고 있게 되며, 직접파의 정상적인 상황에 대한 영향을 받기 힘들어지므로 데이터의 수신품질이 개선될 가능성이 커진다.
도 27에서는 n=1로 하여 설명하였으나, 이에 한정되는 것은 아니며, n=3으로 해도 동일하게 실행할 수 있다. 또, 도 27에서는 주파수 축에 심벌을 배열하고, 시간이 축 방향으로 진행하는 경우, 심벌의 배치의 순번을 사이클릭 시프트(Cyclic Shift) 한다는 특징을 가지게 함으로써 상기 특징을 실현했으나, 심벌을 랜덤(규칙적이라도 좋다)하게 배치함으로써 상기 특징을 실현하는 것과 같은방법도 있다.
(실시형태 2)
실시형태 1에서는 도 6에 나타내는 것과 같은 프리코딩 웨이트를 규칙적으로 전환하는 경우에 대해 설명하였으나, 본 실시형태에서는 도 6의 프리코딩 웨이트와는 다른 구체적인 프리코딩 웨이트의 설계방법에 대해 설명한다.
도 6에서는 식 (37) ~ 식 (40)의 프리코딩 웨이트를 전환하는 방법을 설명했다. 이를 일반화한 경우 프리코딩 웨이트는 이하와 같이 변경할 수 있다(단, 프리코딩 웨이트의 변환 주기는 4로 하고, 식 (37) ~ 식 (40)과 같은 기재를 실시한다).
심벌번호 4i일 때(i는 0 이상의 정수로 한다) :
Figure 112018069724742-pat00043
단, j는 허수 단위.
심벌번호 4i+1일 때 :
Figure 112018069724742-pat00044
심벌번호 4i+2일 때 :
Figure 112018069724742-pat00045
심벌번호 4i+3일 때 :
Figure 112018069724742-pat00046
그리고 식 (36) 및 식 (41)에서 수신 벡터 R(t)=(r1(t), r2(t))T를 이하와 같이 나타낼 수 있다.
심벌번호 4i일 때 :
Figure 112018069724742-pat00047
심벌번호 4i+1일 때 :
Figure 112018069724742-pat00048
심벌번호 4i+2일 때:
Figure 112018069724742-pat00049
심벌번호 4i+3일 때:
Figure 112018069724742-pat00050
이때, 채널 요소 h11(t), h12(t), h21(t), h22(t)에서 직접파의 성분밖에 존재하지 않는다고 가정하고, 그 직접파의 성분의 진폭성분은 모두 동일하며, 또, 시간에 있어서 변동이 일어나지 않는 것으로 한다. 그러면, 식 (46) ~ 식 (49)은 이하와 같이 나타낼 수 있다.
심벌번호 4i일 때:
Figure 112018069724742-pat00051
심벌번호 4i+1일 때:
Figure 112018069724742-pat00052
심벌번호 4i+2일 때:
Figure 112018069724742-pat00053
심벌번호 4i+3일 때:
Figure 112018069724742-pat00054
단, 식 (50) ~ 식 (53)에서 A는 양수이며, q는 복소수인 것으로 한다. 이 A 및 q의 값은 송신장치와 수신장치의 위치관계에 따라서 정하게 된다. 그리고 식 (50) ~ 식 (53)을 이하와 같이 나타내는 것으로 한다.
심벌번호 4i일 때:
Figure 112018069724742-pat00055
심벌번호 4i+1일 때:
Figure 112018069724742-pat00056
심벌번호 4i+2일 때:
Figure 112018069724742-pat00057
심벌번호 4i+3일 때:
Figure 112018069724742-pat00058
그러면, q를 이하와 같이 나타내게 될 때, r1, r2에 s1 또는 s2의 어느 일방에 의거하는 신호 성분이 포함되지 않게 되므로, s1, s2의 어느 일방의 신호를 얻을 수 없게 된다.
심벌번호 4i일 때:
Figure 112018069724742-pat00059
심벌번호 4i+1일 때:
Figure 112018069724742-pat00060
심벌번호 4i+2일 때:
Figure 112018069724742-pat00061
심벌번호 4i+3일 때:
Figure 112018069724742-pat00062
이때, 심벌번호 4i, 4i+1, 4i+2, 4i+3에서 q가 동일한 값을 가지면 직접파의 채널 요소는 큰 변동이 없으므로, q의 값이 상기의 동일 값과 동일한 채널 요소를 가지는 수신장치는 어느 심벌번호에서도 양호한 수신품질을 얻을 수 없게 되므로, 오류정정부호를 도입해도 오류정정능력을 얻기가 어렵다. 따라서 q가 동일한 값을 갖지 않기 위해서는 q의 2개의 답 중 δ를 포함하지 않는 쪽의 답에 주목하면 식 (58) ~ 식 (61)에서 이하의 조건이 필요하게 된다.
Figure 112018069724742-pat00063
(x는 0, 1, 2, 3이고, y는 0, 1, 2, 3이며, x≠y이다)
조건 #1을 만족시키는 예로,
(예 #1)
<1> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0 라디안으로 하고,
<2> θ21(4i)=0 라디안
<3> θ21(4i+1)=π/2 라디안
<4> θ21(4i+2)=π 라디안
<5> θ21(4i+3)=3π/2 라디안으로 설정하는 방법이 고려된다(상기는 예이며, (θ21(4i), θ21(4i+1), θ21(4i+2), θ21(4i+3))세트에는 0 라디안, π/2 라디안, π 라디안, 3π/2 라디안이 한 개씩 존재하면 좋다). 이때, 특히 <1>의 조건이 있으면 베이스밴드신호 S1(t)에 대해 신호처리(회전처리)를 할 필요가 없으므로, 회로 규모의 삭감을 도모할 수 있다는 이점이 있다.
다른 예로,
(예 #2)
<6> θ11(4i)=0 라디안
<7> θ11(4i+1)=π/2 라디안
<8> θ11(4i+2)=π 라디안
<9> θ11(4i+3)=3π/2 라디안으로 하고,
<10> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 라디안으로 설정하는 방법도 고려할 수 있다(상기는 예이며, (θ11(4i), θ11(4i+1), θ11(4i+2), θ11(4i+3))세트에는 0라디안, π/2 라디안, π 라디안, 3π/2 라디안이 한 개씩 존재하면 좋다). 이때, 특히 <6>의 조건이 있으면 베이스밴드신호 S2(t)에 대해 신호처리(회전처리)를 할 필요가 없으므로, 회로 규모의 삭감을 도모할 수 있다는 이점이 있다.
이하를 더 다른 예로 든다.
(예 #3)
<11> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0 라디안으로 하고,
<12> θ21(4i)=0 라디안
<13> θ21(4i+1)=π/4 라디안
<14> θ21(4i+2)=π/2 라디안
<15> θ21(4i+3)=3π/4 라디안
(상기는 예이며, (θ21(4i)θ21(4i+1)θ21(4i+2)θ21(4i+3))세트에는 0 라디안, π/4 라디안, π/2 라디안, 3π/4 라디안이 한 개씩 존재하면 좋다).
(예 #4)
<16> θ11(4i)=0 라디안
<17> θ11(4i+1)=π/4 라디안
<18> θ11(4i+2)=π/2 라디안
<19> θ11(4i+3)=3π/4 라디안으로 하고,
<20> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 라디안
(상기는 예이며, (θ11(4i)θ11(4i+1)θ11(4i+2)θ11(4i+3))세트에는 0 라디안, π/4 라디안, π/2 라디안, 3π/4 라디안이 한 개씩 존재하면 좋다).
또, 4개의 예를 들었으나, 조건 #1을 만족시키는 방법은 이에 한정되는 것은 아니다.
다음에, θ11, θ12뿐만이 아니라, λ,δ에 대해서 설계 요건에 대해 설명한다. λ에 대해 어떤 값으로 설정하면 좋으며, 요건으로는 δ에 대한 요건을 부여할 필요가 있다. 그래서 λ를 0라디안으로 한 경우의 δ의 설정방법에 대해 설명한다.
이 경우, δ에 대해 π/2 라디안≤|δ|≤π라디안으로 하면 특히 LOS 환경에 있어서 양호한 수신품질을 얻을 수 있다.
그러나 심벌번호 4i, 4i+1, 4i+2, 4i+3에서 각각 나쁜 수신품질이 되는 q는 2점 존재한다. 따라서 2×4=8점의 점이 존재하게 된다. LOS 환경에 있어서 특정의 수신 단말에서 수신품질이 저하되는 것을 막기 위해서는 이들 8점이 모두 다른 값이면 좋다. 이 경우,<조건 #1>에 더하여 <조건 #2>의 조건이 필요하게 된다.
Figure 112018069724742-pat00064
더욱, 이들 8점의 위상이 균일하게 존재하면 좋다. (직접파의 위상은 일양 분포(一樣分布)가 될 가능성이 크다고 생각되므로) 이하에서는 이 요건을 만족시키는δ의 설정방법에 대해 설명한다.
(예 #1), (예 #2)의 경우, δ를±3π/4 라디안으로 설정함으로써, 수신품질의 나쁜 점을, 위상이 균일하게 존재하게 된다. 예를 들어 (예 #1)로 하고, δ를 3π/4 라디안으로 하면, (A는 양수로 한다) 도 20과 같이 4 슬롯에 1회 수신품질이 저하되는 점이 존재한다. (예 #3), (예 #4)의 경우, δ를±π라디안으로 설정함으로써, 수신품질의 나쁜 점을, 위상이 균일하게 존재하게 된다. 예를 들어 (예 #3)로 하고, δ를π라디안으로 한다면, 도 21과 같이 4 슬롯에 1회 수신품질이 저하되는 점이 존재한다. (채널행렬 H에서의 요소 q가 도 20, 도 21에 나타내는 점에 존재하면 수신품질이 저하하게 된다)
이상과 같이 함으로써, LOS 환경에서 양호한 수신품질을 얻을 수 있다. 상기에서는 4 슬롯 주기로 프리코딩 웨이트를 변경하는 예로 설명하였으나, 이하에서는 N 슬롯 주기로 프리코딩 웨이트를 변경하는 경우에 대해 설명한다. 실시형태 1 및 상술의 설명과 마찬가지로 생각하면 심벌번호에 대해 이하에서 나타내게 하는 것과 같은 처리를 실행하게 된다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00065
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00066
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00067
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00068
따라서 r1, r2는 이하와 같이 나타내게 된다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00069
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00070
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00071
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00072
이때, 채널 요소 h11(t), h12(t), h21(t), h22(t)에서 직접파의 성분밖에 존재하지 않는다고 가정하면, 그 직접파의 성분의 진폭성분은 모두 동일하고, 또, 시간에 있어서 변동이 일어나지 않는 것으로 한다. 그러면, 식 (66) ~ 식 (69)은 이하와 같이 나타낼 수 있다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00073
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00074
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00075
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00076
단, 식 (70) ~ 식 (73)에 있어서 A는 실수이고, q는 복소수인 것으로 한다. 이 A 및 q의 값은 송신장치와 수신장치의 위치 관계에 따라서 정해진다. 그래서 식 (70) ~ 식 (73)을 이하와 같이 나타내는 것으로 한다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00077
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00078
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00079
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00080
그러면, q를 이하와 같이 나타낼 때, r1, r2에 s1 또는 s2의 어느 일방에 의거하는 신호 성분이 포함되지 않게 되므로 s1, s2의 어느 하나의 신호를 얻을 수 없게 된다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00081
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00082
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00083
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00084
이때, 심벌번호 N ~ Ni+N-1에서 q가 동일한 값을 가지면 직접파의 채널 요소는 큰 변동이 없으므로, q의 값이 상기의 동일 해(解)와 동일한 수신장치는 어느 심벌번호에 있어서도 양호한 수신품질을 얻을 수 없게 되므로, 오류정정부호를 도입해도 오류정정능력을 얻기 어렵다. 따라서 q가 동일한 값을 갖지 않기 위해서는 q의 2개의 값 중에 δ를 포함하지 않는 편의 해에 주목하면 식 (78) ~ 식 (81)에서 이하의 조건이 필요하게 된다.
Figure 112018069724742-pat00085
(x는 0, 1, 2, …, N-2, N-1이며, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
다음에, θ11, θ12뿐만이 아니라 λ,δ에 대한 설계 요건에 대해 설명한다. λ에 대해 어떤 값으로 설정하면 좋고, 요건으로는 δ에 대한 요건을 부여할 필요가 있다. 그래서, λ를 0라디안으로 한 경우의 δ의 설정방법에 대해 설명한다.
이 경우, 4 슬롯 주기에 프리코딩 웨이트를 변경하는 방법일 때와 마찬가지로, δ에 대해 π/2 라디안≤|δ|≤π라디안으로 하면, 특히 LOS 환경에서 양호한 수신품질을 얻을 수 있다.
심벌번호 Ni ~ Ni+N-1에서 각각 나쁜 수신품질이 되는 q는 2점 존재하고, 따라서 2N 점의 점이 존재하게 된다. LOS 환경에서 양호한 특성을 얻기 위해서는 이들 2N 점이 모두 다른 값이면 좋다. 이 경우, <조건 #3>에 더하여 <조건 #4>의 조건이 필요하게 된다.
Figure 112018069724742-pat00086
이에 더하여, 이들 2N 점의 위상이 균일하게 존재하면 좋다(각 수신장치에서의 직접파의 위상은 일양 분포가 될 가능성이 크다고 생각되므로).
이상과 같이, MIMO 전송시스템의 송신장치가 복수 안테나에서 복수의 변조신호를 송신할 때, 시간과 함께 프리코딩 웨이트를 전환하는 동시에, 전환을 규칙적으로 실시함으로써, 직접파가 지배적인 LOS 환경에서 종래의 공간 다중 MIMO 전송을 이용할 때와 비교하여 전송 품질이 향상한다는 효과를 얻을 수 있다.
본 실시형태에서 수신장치의 구성은 실시형태 1에서 설명한 것과 같으며, 특히, 수신장치의 구성에 대해서는 안테나 수를 한정하여 동작을 설명하였으나, 안테나 수가 증가해도 마찬가지로 실시할 수 있다. 즉, 수신장치에서의 안테나 수는 본 실시형태의 동작, 효과에 영향을 미치는 것은 아니다. 또, 본 실시형태에서는 실시형태 1과 마찬가지로 오류정정부호는 한정되는 것은 아니다.
또, 본 실시형태에서는 실시형태 1과 대비시켜서, 시간 축에서의 프리코딩 웨이트 변경방법에 대해 설명하였으나, 실시형태 1에서 설명한 것과 같이 멀티 캐리어 전송방식을 이용하여 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트 변경방법으로 해도 마찬가지로 실시할 수 있다. 또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리 앰블, 유니크 워드(U/W) 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다.
(실시형태 3)
실시형태 1, 실시형태 2에서는 프리코딩 웨이트를 규칙적으로 전환하는 방식에 있어서, 프리코딩 웨이트의 행렬의 각 요소의 진폭이 동일한 경우에 대해 설명하였으나, 본 실시형태에서는 이 조건을 만족하지 않는 예에 대해 설명한다.
실시형태 2와 대비하기 위해 N슬롯 주기로 프리코딩 웨이트를 변경하는 경우에 대해 설명한다. 실시형태 1 및 실시형태 2와 동일하게 생각하면 심벌번호에 대해 이하에서 나타내게 되는 것과 같은 처리를 실행하게 된다. 단, β은 양수로 하고, β≠1로 한다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00087
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00088
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00089
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00090
따라서 r1, r2는 이하와 같이 나타내게 된다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00091
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00092
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00093
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00094
이때, 채널 요소 h11(t), h12(t), h21(t), h22(t)에서 직접파의 성분밖에 존재하지 않는다고 가정하고, 그 직접파의 성분의 진폭성분은 모두 동일하며, 또, 시간에서 변동이 일어나지 않는 것으로 한다. 그러면, 식 (86) ~ 식 (89)은 이하와 같이 나타낼 수가 있다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00095
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00096
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00097
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00098
단, 식 (90) ~ 식 (93)에 있어서 A는 실수이며, q는 복소수인 것으로 한다. 그리고 식 (90) ~ 식 (93)을 이하와 같이 나타내는 것으로 한다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00099
단, j는 허수 단위.
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00100
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00101
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00102
그러면, q를 이하와 같이 나타내게 될 때 s1, s2의 어느 하나의 신호를 얻을 수 없게 된다.
심벌번호 Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00103
심벌번호 Ni+1일 때:
Figure 112018069724742-pat00104
심벌번호 Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00105
심벌번호 Ni+N-1일 때:
Figure 112018069724742-pat00106
이때, 심벌번호 N~Ni+N-1에서 q가 동일한 값을 가지면 직접파의 채널 요소는 큰 변동이 없으므로, 어느 심벌번호에서도 양호한 수신품질을 얻을 수 없게 되므로 오류정정부호를 도입해도 오류정정능력을 얻기 어렵다. 따라서 q가 동일한 값을 갖지 않기 위해서는 q의 2개의 값 중, δ를 포함하지 않는 쪽의 값에 주목하면 식 (98) ~ 식 (101)에서 이하의 조건이 필요하게 된다.
Figure 112018069724742-pat00107
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
다음에, θ1112뿐만이 아니라 λ, δ에 대한 설계 요건에 대해 설명한다. λ에 대해 어떤 값으로 설정하면 좋고, 요건으로는 δ에 대한 요건을 부여할 필요가 있다. 그래서, λ를 0라디안으로 한 경우의 δ의 설정방법에 대해서 설명한다.
이 경우, 4 슬롯 주기로 프리코딩 웨이트를 변경하는 방법일 때와 마찬가지로 δ에 대해 π/2 라디안≤|δ|≤π라디안으로 하면 특히 LOS 환경에서 양호한 수신품질을 얻을 수 있다.
심벌번호 Ni ~ Ni+N-1에서 각각 나쁜 수신품질이 되는 q는 2점 존재하며, 따라서 2N 점의 점이 존재하게 된다. LOS 환경에서 양호한 특성을 얻기 위해서는 이들 2N 점이 모두 다른 해라도 좋다. 이 경우, <조건 #5>에 더하여, β는 양수로 하고, β≠1인 것을 고려하면 <조건 #6>의 조건이 필요하게 된다.
Figure 112018069724742-pat00108
이상과 같이, MIMO 전송시스템의 송신장치가 복수 안테나로부터 복수의 변조신호를 송신할 때, 시간과 함께 프리코딩 웨이트를 전환하는 동시에, 전환을 규칙적으로 실행함으로써 직접파가 지배적인 LOS 환경에서 종래의 공간 다중 MIMO 전송을 이용할 때와 비교하여 전송 품질이 향상한다는 효과를 얻을 수 있다.
본 실시형태에 있어서 수신장치의 구성은 실시형태 1에서 설명한 것과 같으며 특히, 수신장치의 구성에 대해서는 안테나 수를 한정하여 동작을 설명하였으나, 안테나 수가 증가해도 마찬가지로 실시할 수 있다. 즉, 수신장치에서의 안테나 수는 본 실시형태의 동작, 효과에 영향을 미치는 것은 아니다. 또, 본 실시형태에서는 실시형태 1과 마찬가지로 오류정정부호는 한정되는 것이 아니다.
또, 본 실시형태에서는 실시형태 1과 대비시켜, 시간 축에서의 프리코딩 웨이트 변경방법에 대해 설명하였으나, 실시형태 1에서 설명한 것과 같이 멀티 캐리어 전송방식을 이용하여 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트 변경방법으로 해도 마찬가지로 실시할 수 있다. 또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리 앰블, 유니크 워드(U/W) 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다.
(실시형태 4)
실시형태 3에서는 프리코딩 웨이트를 규칙적으로 전환하는 방식에서 프리코딩 웨이트의 행렬의 각 요소의 진폭을 1과 β의 2종류의 경우를 예로 설명했다.
또, 여기에서는
Figure 112018069724742-pat00109
는 무시하고 있다.
이어서, β의 값을 슬롯에서 전환하는 경우의 예에 대해 설명한다.
실시형태 3과 대비하기 위해, 2×N슬롯 주기로 프리코딩 웨이트를 변경하는 경우에 대해 설명한다.
실시형태 1, 실시형태 2, 실시형태 3과 마찬가지로 생각하면, 심벌번호에 대해 이하에서 나타내는 것과 같은 처리를 실행하게 된다. 단, β은 양수로 하고, β≠1로 한다. 또, α는 양수로 하고, α≠β로 한다.
심벌번호 2Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00110
단, j는 허수 단위.
심벌번호 2Ni+1일 때:
Figure 112018069724742-pat00111
심벌번호 2Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00112
심벌번호 2Ni+N-1일 때:
Figure 112018069724742-pat00113
심벌번호 2Ni+N 일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00114
단, j는 허수 단위.
심벌번호 2Ni+N+1일 때:
Figure 112018069724742-pat00115
심벌번호 2Ni+N+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00116
심벌번호 2Ni+2N-1일 때:
Figure 112018069724742-pat00117
따라서 r1, r2는 이하와 같이 나타내게 된다.
심벌번호 2Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00118
단, j는 허수 단위.
심벌번호 2Ni+1일 때:
Figure 112018069724742-pat00119
심벌번호 2Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00120
심벌번호 2Ni+N-1일 때:
Figure 112018069724742-pat00121
심벌번호 2Ni+N 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00122
단, j는 허수 단위.
심벌번호 2Ni+N+1일 때:
Figure 112018069724742-pat00123
심벌번호 2Ni+N+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00124
심벌번호 2Ni+2N-1일 때:
Figure 112018069724742-pat00125
이때, 채널 요소 h11(t), h12(t), h21(t), h22(t)에 있어서 직접파의 성분밖에 존재하지 않는다고 가정하고, 그 직접파의 성분의 진폭성분은 모두 동일하며, 또, 시간에 있어서 변동이 일어나지 않는 것으로 한다. 그러면, 식 (110) ~ 식 (117)은 이하와 같이 나타낼 수 있다.
심벌번호 2Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00126
단, j는 허수 단위.
심벌번호 2Ni+1일 때:
Figure 112018069724742-pat00127
심벌번호 2Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00128
심벌번호 2Ni+N-1일 때:
Figure 112018069724742-pat00129
심벌번호 2Ni+N 일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00130
단, j는 허수 단위.
심벌번호 2Ni+N+1일 때:
Figure 112018069724742-pat00131
심벌번호 2Ni+N+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00132
심벌번호 2Ni+2N-1일 때:
Figure 112018069724742-pat00133
단, 식 (118) ~ 식 (125)에서 A는 실수이며, q는 복소수인 것으로 한다. 그리고 식 (118) ~ 식 (125)을 이하와 같이 나타내는 것으로 한다.
심벌번호 2Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00134
단, j는 허수 단위.
심벌번호 2Ni+1일 때:
Figure 112018069724742-pat00135
심벌번호 2Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00136
심벌번호 2Ni+N-1일 때:
Figure 112018069724742-pat00137
심벌번호 2Ni+N 일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00138
단, j는 허수 단위.
심벌번호 2Ni+N+1일 때:
Figure 112018069724742-pat00139
심벌번호 2Ni+N+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00140
심벌번호 2Ni+2N-1일 때:
Figure 112018069724742-pat00141
그러면, q가 이하와 같이 나타내지게 될 때 s1, s2의 어느 하나의 신호를 얻을 수 없게 된다.
심벌번호 2Ni일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00142
심벌번호 2Ni+1일 때:
Figure 112018069724742-pat00143
심벌번호 2Ni+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00144
심벌번호 2Ni+N-1일 때:
Figure 112018069724742-pat00145
심벌번호 2Ni+N 일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00146
심벌번호 2Ni+N+1일 때:
Figure 112018069724742-pat00147
심벌번호 2Ni+N+k(k=0, 1, …, N-1) 일 때:
Figure 112018069724742-pat00148
심벌번호 2Ni+2N-1일 때:
Figure 112018069724742-pat00149
이때, 심벌번호 2N ~ 2Ni+N-1에서 q가 동일한 값을 가지면 직접파의 채널 요소는 큰 변동이 없으므로, 어느 심벌번호에서도 양호한 수신품질을 얻을 수 없게 되기 때문에 오류정정부호를 도입해도 오류정정능력을 얻기 어렵다. 따라서 q가 동일한 값을 갖지 않기 위해서는 q의 2개의 값 중 δ를 포함하지 않는 쪽의 값에 주목하면 식 (134) ~ 식 (141) 및 α≠β에서 <조건 #7> 또는 <조건 #8>이 필요하게 된다.
Figure 112018069724742-pat00150
Figure 112018069724742-pat00151
이때, <조건 #8>은 실시형태 1 ~ 실시형태 3에서 설명한 조건과 동일한 조건이나, <조건 #7>은 α≠β이므로 q의 2개의 값 중 δ를 포함하지 않는 쪽의 해는 다른 해를 가지게 된다.
다음에, θ1112 만이 아니라 λ, δ에 대한 설계 요건에 대해 설명한다. λ에 대해 어떤 값으로 설정하면 좋고, 요건으로는 δ에 대한 요건을 부여할 필요가 있다. 그래서, λ를 0 라디안으로 한 경우의 δ의 설정방법에 대해 설명한다.
이 경우, 4 슬롯 주기로 프리코딩 웨이트를 변경하는 방법일 때와 동일하게, δ에 대해 π/2 라디안≤|δ|≤π라디안으로 하면 특히 LOS 환경에서 양호한 수신품질을 얻을 수 있다.
심벌번호 2Ni ~ 2Ni+2N-1에서 각각 나쁜 수신품질이 되는 q는 2점 존재하며, 따라서 4N 점의 점이 존재하게 된다. LOS 환경에서 양호한 특성을 얻기 위해서는 이들 4N 점이 모두 다른 값이라도 좋다. 이때, 진폭에 주목하면 <조건 #7> 또는 <조건 #8>에 대해 α≠β이므로 이하의 조건이 필요하게 된다.
Figure 112018069724742-pat00152
이상과 같이, MIMO 전송시스템의 송신장치가 복수 안테나에서 복수의 변조신호를 송신할 때, 시간과 함께 프리코딩 웨이트를 전환하는 동시에 전환을 규칙적으로 실시함으로써, 직접파가 지배적인 LOS 환경에서 종래의 공간 다중 MIMO 전송을 이용할 때와 비교하여 전송 품질이 향상한다는 효과를 얻을 수 있다.
본 실시형태에서 수신장치의 구성은 실시형태 1에서 설명한 것과 같으며, 특히, 수신장치의 구성에 대해서는 안테나 수를 한정하여 동작을 설명하였으나, 안테나 수가 증가해도 마찬가지로 실시할 수 있다. 즉, 수신장치에서의 안테나 수는 본 실시형태의 동작, 효과에 영향을 미치는 것은 아니다. 또, 본 실시형태에서는 실시형태 1과 마찬가지로 오류정정부호는 한정되는 것이 아니다.
또, 본 실시형태에서는 실시형태 1과 대비시켜서 시간 축에서의 프리코딩 웨이트 변경방법에 대해 설명하였으나, 실시형태 1에서 설명한 것과 같이 멀티 캐리어 전송방식을 이용하여 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트 변경방법으로 해도 마찬가지로 실시할 수 있다. 또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리 앰블, 유니크 워드(W/W) 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다.
(실시형태 5)
실시형태 1 ~ 실시형태 4에서는 프리코딩 웨이트를 규칙적으로 전환하는 방법에 대해 설명하였으나, 본 실시형태에서는 그 변형 예에 대해 설명한다.
실시형태 1 ~ 실시형태 4에서는 프리코딩 웨이트를 도 6과 같이 규칙적으로 전환하는 방법에 대해서 설명하였다. 본 실시형태에서는 도 6과는 다른 규칙적으로 프리코딩 웨이트를 전환하는 방법에 대해 설명한다.
도 6과 마찬가지로 4개의 다른 프리코딩 웨이트(행렬)를 전환하는 방식에서, 도 6과는 다른 전환방법에 관한 도면을 도 22에 나타낸다. 도 22에서 4개의 다른 프리코딩 웨이트(행렬)를 W1, W2, W3, W4로 나타내는 것으로 한다. (예를 들어 W1을 식 (37)에서의 프리코딩 웨이트(행렬), W2를 식 (38)에서의 프리코딩 웨이트(행렬), W3을 식 (39)에서의 프리코딩 웨이트(행렬), W4를 식 (40)에서의 프리코딩 웨이트(행렬)로 한다) 그리고 도 3, 도 6과 동일하게 동작하는 것에 대해서는 동일 부호를 부여하고 있다. 도 22에 있어서 고유한 부분은
ㆍ 제 1 주기(2201), 제 2 주기(2202), 제 3 주기(2203), …는 모두 4 슬롯으로 구성되어 있다.
ㆍ4 슬롯에서는 슬롯마다 다른 프리코딩 웨이트 행렬, 즉, W1, W2, W3, W4를 각각 1번 이용한다.
ㆍ 제 1 주기(2201), 제 2 주기(2202), 제 3 주기(2203), …에서 반드시 W1, W2, W3, W4의 순서를 동일하게 할 필요가 없다.
는 것이다. 이를 실현하기 위해 프리코딩 웨이트 행렬 생성부( 2200)는 가중방법에 관한 신호를 입력으로 하여 각 주기에서의 순번에 따른 프리코딩 웨이트에 관한 정보(2210)를 출력한다. 그리고 가중합성부(600)는 이 신호와 s1(t), s2(t)를 입력으로 하여 가중합성을 실행하여 z1(t), z2(t)를 출력한다.
도 23은 상술의 프리코딩방법에 대해 도 22와는 다른 가중합성방법을 나타내고 있다. 도 23에서 도 22와 다른 점은 가중합성부 이후에 재배열부를 배치하여 신호의 재배열을 실행함으로써 도 22와 같은방법을 실현하고 있는 점이다.
도 23에서 프리코딩 웨이트 생성부(2200)는 가중방법에 관한 정보(315)를 입력으로 하여 프리코딩 웨이트 W1, W2, W3, W4, W1, W2, W3, W4,ㆍㆍㆍ의 순서로 프리코딩 웨이트의 정보(2210)를 출력한다. 따라서 가중합성부(600)는 프리코딩 웨이트 W1, W2, W3, W4, W1, W2, W3, W4, …의 순으로 프리코딩 웨이트를 이용하여 프리코딩 후의 신호(2300A, 2300B)를 출력한다.
재배열부(2300)는 프리코딩 후의 신호(2300A, 2300B)를 입력으로 하여, 도 23의 제 1 주기(2201), 제 2 주기(2202), 제 3 주기(2203)의 순서가 되도록 프리코딩 후의 신호(2300A, 2300B)에 대해 재배열을 실행해서 z1(t), z2(t)를 출력한다.
또, 앞에서의 설명에서는 프리코딩 웨이트의 변환 주기를 도 6과 비교하기 위해 4로 하여 설명하였으나, 실시형태 1 ~ 실시형태 4와 같이 주기 4 이외일 때에도 동일하게 실시하는 것이 가능하다.
또, 실시형태 1 ~ 실시형태 4 및 상술한 프리코딩방법에서 주기 내에서는 δ, β의 값을 슬롯마다 동일한 것으로 하여 설명하였으나, 슬롯마다 δ, β의 값을 전환하도록 해도 좋다.
이상과 같이 MIMO 전송시스템의 송신장치가 복수 안테나에서 복수의 변조신호를 송신할 때, 시간과 함께 프리코딩 웨이트를 전환하는 동시에 전환을 규칙적으로 실행함으로써, 직접파가 지배적인 LOS 환경에서 종래의 공간 다중 MIMO 전송을 이용할 때와 비교하여 전송 품질이 향상한다는 효과를 얻을 수 있다.
본 실시형태에 있어서 수신장치의 구성은 실시형태 1에서 설명한 것과 같으며, 특히, 수신장치의 구성에 대해서는 안테나 수를 한정하여 동작을 설명하였으나, 안테나 수가 증가해도 마찬가지로 실시할 수 있다. 즉, 수신장치에서의 안테나 수는 본 실시형태의 동작, 효과에 영향을 미치는 것은 아니다. 또, 본 실시형태에서는 실시형태 1과 마찬가지로 오류정정부호는 한정되는 것이 아니다.
또, 본 실시형태에서는 실시형태 1과 대비시켜, 시간 축에서의 프리코딩 웨이트 변경방법에 대해 설명하였으나, 실시형태 1에서 설명한 것과 같이 멀티 캐리어 전송방식을 이용하여 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써, 프리코딩 웨이트 변경방법으로 해도 마찬가지로 실시할 수 있다. 또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리앰블, 유니크 워드(U/W) 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다.
(실시형태 6)
실시형태 1 ~ 4에서 프리코딩 웨이트를 규칙적으로 전환하는 방법에 대해 설명하였으나, 본 실시형태에서는 실시형태 1 ~ 4에서 설명한 내용을 포함하여, 재차 프리코딩 웨이트를 규칙적으로 전환하는 방법에 대해 설명한다.
여기에서는 먼저, LOS 환경을 고려한 통신 상대로부터의 피드백이 존재하지 않는 프리코딩을 적용한 공간 다중형의 2 x 2 MIMO 시스템의 프리코딩 행렬의 설계방법에 대해 설명한다.
도 30은 통신 상대로부터의 피드백이 존재하지 않는 프리코딩을 적용한 공간 다중형의 2 x 2 MIMO 시스템 모델을 나타내고 있다. 정보 벡터 z는 부호화 및 인터리브가 시행된다. 그리고 인터리브의 출력으로서 부호화 후 비트의 벡터 u(p)=(u1(p), u2(p))를 얻을 수 있다(p는 슬롯 시간이다). 단, ui(p)=(ui1(p)…, uih(p))로 한다(h:심벌 당의 송신비트 수). 변조 후(매핑 후)의 신호를 s(p)=(s1(p), s2(p))T로 하고, 프리코딩 행렬을 F(p)로 하면 프리코딩 후의 신호 x(p)=(x1(p), x2(p))T는 다음 식으로 나타내게 된다.
Figure 112018069724742-pat00153
따라서 수신 벡터를 y(p)=(y1(p), y2(p))T로 하면 다음 식으로 나타내게 된다.
Figure 112018069724742-pat00154
이때, H(p)는 채널행렬, n(p)=(n1(p), n2(p))T는 노이즈 벡터이며, ni(p)는 평균값 0, 분산 σ2의 i. i. d. 복소 가우스 잡음이다. 그리고 라이시안 팩터(Rician factor)를 K로 한 때 상기 식은 이하와 같이 나타낼 수 있다.
Figure 112018069724742-pat00155
이때, Hd(p)는 직접파 성분의 채널행렬, Hs(p)는 산란파 성분의 채널행렬이다. 따라서 채널행렬 H(p)를 이하와 같이 나타낸다.
Figure 112018069724742-pat00156
식 (145)에서 직접파의 환경은 통신기끼리의 위치 관계에서 일의(一意)로 결정한다고 가정하고, 직접파 성분의 채널행렬 Hd(p)는 시간상으로는 변동이 없는 것으로 한다. 또, 직접파 성분의 채널행렬 Hd(p)에 있어서 송신안테나 간격과 비교하여 송수신기 간의 거리가 충분히 긴 환경이 될 가능성이 크므로, 직접파 성분의 채널행렬, 정칙행렬인 것으로 한다. 따라서 채널행렬 Hd(p)를 이하와 같이 나타내는 것으로 한다.
Figure 112018069724742-pat00157
여기에서 A는 양수이며, q는 복소수인 것으로 한다. 이하에서는 LOS 환경을 고려한 통신 상대로부터의 피드백이 존재하지 않는 프리코딩을 적용한 공간 다중형의 2 x 2 MIMO 시스템의 프리코딩 행렬의 설계방법에 대해 설명한다.
식 (144), (145)에서 산란파를 포함한 상태에서의 해석은 곤란하다는 점에서, 산란파를 포함한 상태에서 적절한 무 피드백(no-feedback)의 프리코딩 행렬을 구하기는 곤란하게 된다. 이에 더하여, NLOS 환경에서는 LOS 환경과 비교하여 데이터의 수신품질의 저하가 적다. 따라서 LOS 환경에서의 적절한 무 피드백의 프리코딩 행렬의 설계방법(시간과 함께 프리코딩 행렬을 전환하는 프리코딩방법의 프리코딩 행렬에 대해 설명한다.
상술한 것과 같이 식 (144), (145)에서 산란파를 포함한 상태에서의 해석은 곤란한 점에서, 직접파 만의 성분을 포함한 채널행렬에서 적절한 프리코딩 행렬을 구하기로 한다. 따라서 식 (144)에서 채널행렬이 직접파 만의 성분을 포함한 경우를 생각한다. 따라서 식 (146)에서 이하와 같이 나타낼 수 있다.
Figure 112018069724742-pat00158
여기서, 프리코딩 행렬로 유니테리 행렬을 이용하는 것으로 한다. 따라서 프리코딩 행렬을 이하와 같이 나타낸다.
Figure 112018069724742-pat00159
이때, λ는 고정 값이다. 따라서 식 (147)은 이하와 같이 나타낼 수 있다.
Figure 112018069724742-pat00160
식 (149)로부터 알 수 있는 것과 같이, 수신기가 ZF(Zeroforcing)와 MMSE(Minimum meansquared error)의 선형연산을 실행한 경우 s1(p), s2(p)에 의해 송신한 비트를 판정할 수는 없다. 이로부터 실시형태 1에서 설명한 것과 같은 반복 APP(또는 반복 Max-log APP) 또는 APP(또는 Max-log APP)를 실행하고(이후에서는 ML(Maximum Likelihood)연산이라고 한다), s1(p), s2(p)로 송신한 각 비트의 대수 우도 비를 구하여 오류정정부호에서의 복호를 실시하게 된다. 따라서 ML연산을 실시하는 수신기에 대한 LOS 환경에서의 적절한 무 피드백의 프리코딩 행렬의 설계방법에 대해 설명한다.
식 (149)에서의 프리코딩을 생각한다. 1행째의 우변 및 좌변에 e- 를 승산하고, 마찬가지로 2행째의 우변 및 좌변에 e- 를 승산한다. 그러면 다음 식과 같이 나타내게 된다.
Figure 112018069724742-pat00161
e- jΨy1(p), e- jΨy2(p), e- jΨq를 각각 y1(p), y2(p), q로 재정의하고, 또, e- n(p)=(e-jΨn1(p), e- n2(p))T가 되며, e- n1(p), e- n2(p)는 평균값 0, 분산σ2의 i. i. d. (independent identically distributed) 복소 가우스 잡음이 되므로, e- n(p)를 n(p)로 재정의한다. 그러면, 식 (150)을 식 (151)과 같이 해도 일반성은 상실되지 않는다.
Figure 112018069724742-pat00162
다음에, 식 (151)을 이해하기 쉽게 식 (152)와 같이 변형한다.
Figure 112018069724742-pat00163
이때, 수신신호 점과 수신 후보신호 점의 유클리드 거리의 최소값을 dmin 2로 한 때 dmin 2가 제로라는 최소값을 취하는 열악 점인 동시에, s1(p)로 송신하는 모든 비트 또는 s2(p)로 송신하는 모든 비트가 소실한다는 열악한 상태가 되는 q가 2개 존재한다.
식 (152)에서 s1(p)가 존재하지 않는다:
Figure 112018069724742-pat00164
식 (152)에서 s2(p)가 존재하지 않는다:
Figure 112018069724742-pat00165
(이후에서는 식 (153), (154)를 만족시키는 q를 각각 「s1, s2의 수신 열악 점」이라고 한다)
식 (153)을 만족할 때 s1(p)에 의해 송신한 비트 모두가 소실하고 있으므로, s1(p)에 의해 송신한 비트 모두의 수신 대수 우도 비를 구할 수 없으며, 식 (154)을 만족할 때 s2(p)에 의해 송신한 비트 모두가 소실하고 있으므로 s2(p)에 의해 송신한 비트 모두의 수신 대수 우도 비를 구할 수 없다.
여기서, 프리코딩 행렬을 전환하지 않은 경우의 방송·멀티캐스트 통신시스템을 생각한다. 이때, 프리코딩 행렬을 전환하지 않는 프리코딩 방식을 이용하여 변조신호를 송신하는 기지국이 있고, 기지국이 송신한 변조신호를 수신하는 단말이 복수(Γ개) 존재하는 시스템 모델을 고려한다.
기지국·단말 간의 직접파의 상황은 시간에 의한 변화는 작다고 생각된다. 그러면, 식 (153), (154)에서부터 식 (155) 또는 식 (156)의 조건에 맞는 위치에 있으며 라이시안 팩터(Rician factor)가 큰 LOS 환경에 있는 단말은 데이터의 수신품질이 저하한다는 현상에 빠질 가능성이 있다. 따라서 이 문제를 개선하기 위해서는 시간적으로 프리코딩 행렬을 전환할 필요가 있다.
Figure 112018069724742-pat00166
Figure 112018069724742-pat00167
그래서, 시간 주기를 N슬롯으로 하여, 규칙적으로 프리코딩 행렬을 전환하는 방법(이후에서는 프리코딩 홉핑방법이라고 한다)을 고려한다.
시간 주기 N슬롯을 위해 식 (148)에 의거하는 N종류의 프리코딩 행렬 F[i]를 준비한다(i=0, 1, …, N-1). 이때, 프리코딩 행렬 F[i]를 이하와 같이 나타낸다.
Figure 112018069724742-pat00168
 여기서, α는 시간적으로 변화하지 않는 것으로 하고, λ도 시간적으로 변화하지 않는 것으로 한다(변화시켜도 좋다).
그리고 실시형태 1과 마찬가지로 시점(시각) N×k+i(k는 0 이상의 정수, i=0, 1, …, N-1)의 식 (142)에서의 프리코딩 후의 신호 x(p= N×k+i)를 얻기 위하여 이용되는 프리코딩 행렬이 F[i]가 된다. 이에 대해서는 이후에서도 동일하다.
이때, 식 (153), (154)에 의거하여 이하와 같은 프리코딩 홉핑의 프리코딩 행렬의 설계 조건이 중요해진다.
Figure 112018069724742-pat00169
Figure 112018069724742-pat00170
<조건 #10>에 의해, Γ개의 단말 모두에 있어서 시간 주기 내의 N에서 s1의 수신 열악 점을 얻는 슬롯은 1 슬롯 이하가 된다. 따라서 N-1 슬롯 이상 s1(p)로 송신한 비트의 대수 우도 비를 얻을 수 있다. 마찬가지로 <조건 #11>에 의해, Γ개의 단말 모두에 있어서 시간 주기 내의 N에서 s2의 수신 열악 점을 얻는 슬롯은 1 슬롯 이하가 된다. 따라서 N-1 슬롯 이상 s2(p)로 송신한 비트의 대수 우도 비를 얻을 수 있다.
이와 같이, <조건 #10>, <조건 #11>의 프리코딩 행렬의 설계 규범을 마련함으로써, s1(p)로 송신한 비트의 대수 우도 비를 얻을 수 있는 비트 수 및 s2(p)로 송신한 비트의 대수 우도 비를 얻을 수 있는 비트 수를 Γ개의 단말 모두에서 일정 수 이상으로 보증함으로써, Γ개의 단말 모두에서 라이시안 팩터(Rician factor)가 큰 LOS 환경에서의 데이터 수신품질의 저하를 개선하는 것을 생각한다.
이하에서는 프리코딩 홉핑방법에서의 프리코딩 행렬의 예를 기재한다.
직접파의 위상의 확률밀도분포는 [02π]의 일양 분포라고 생각할 수 있다. 따라서 식 (151), (152)에서의 q의 위상의 확률밀도분포도[02π]의 일양 분포라고 생각할 수 있다. 따라서 q의 위상만이 다른 동일한 LOS 환경에서 Γ개의 단말에 대해 가능한 한 공평한 데이터의 수신품질을 제공하기 위한 조건으로서 이하의 조건이 필요하다.
<조건 #12>
시간 주기 N슬롯의 프리코딩 홉핑방법을 이용한 경우, 시간 주기 내의 N에 있어서 s1의 수신 열악 점을 위상에 대해 일양 분포가 되도록 배치하고, 또한 s2의 수신 열악 점을 위상에 대해 일양 분포가 되도록 배치한다.
그래서, <조건 #10> 내지 <조건 #12>에 의거하는 프리코딩 홉핑방법에서의 프리코딩 행렬의 예를 설명한다. 식 (157)의 프리코딩 행렬의 α=1.0으로 한다.
(예 #5)
시간 주기 N=8로 하고, <조건 #10> 내지 <조건 #12>를 만족시키기 위하여 다음 식과 같은 시간 주기 N=8의 프리코딩 홉핑방법에서의 프리코딩 행렬을 제공한다.
Figure 112018069724742-pat00171
단, j는 허수 단위이며, i=0, 1, …, 7이다. 식 (160) 대신에 식 (161)으로 제공되어도 좋다(λ, θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00172
따라서 s1, s2의 수신 열악 점은 도 31(a), (b)와 같이 된다. (도 31에서 가로축은 실축, 세로축은 허축이 된다) 또, 식 (160), 식 (161) 대신에 식 (162), 식 (163)으로 제공되어도 좋다 (i=0, 1, …, 7) (λ, θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00173
Figure 112018069724742-pat00174
다음에, 조건 12와는 다른, q의 위상만이 다른 동일한 LOS 환경에서 Γ개의 단말에 대해 가능한 한 공평한 데이터의 수신품질을 제공하기 위한 조건으로 이하를 제공한다.
<조건 #13>
시간 주기 N슬롯의 프리코딩 홉핑방법을 이용한 경우,
Figure 112018069724742-pat00175
의 조건을 부가하고, 또, 시간 주기 내의 N에 있어서 s1의 수신 열악 점을 위상과 s2의 수신 열악 점을 위상에 대해 일양 분포가 되도록 배치한다.
그래서, <조건 #10>, <조건 #11>, <조건 #13>에 의거하는 프리코딩 홉핑방법에서의 프리코딩 행렬의 예를 설명한다. 식 (157)의 프리코딩 행렬의 α=1.0으로 한다.
(예 #6)
시간 주기 N=4로 하고, 다음 식과 같은 시간 주기 N=4의 프리코딩 홉핑방법에서의 프리코딩 행렬이 제공된다.
Figure 112018069724742-pat00176
단, j는 허수 단위이며, i=0, 1, 2, 3이다. 식 (165) 대신에 식 (166)으로 제공되어도 좋다(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00177
따라서 s1, s2의 수신 열악 점은 도 32와 같이 된다. (도 32에서 가로축은 실축, 세로축은 허축이 된다) 또, 식 (165), 식 (166) 대신에 식 (167), 식 (168)으로 제공되어도 좋다(i=0, 1, 2,3)(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00178
Figure 112018069724742-pat00179
다음에, 비 유니테리 행렬을 이용한 프리코딩 홉핑방법에 대해 설명한다.
식 (148)에 의거하여 본 검토에서 취급하는 프리코딩 행렬을 이하와 같이 나타낸다.
Figure 112018069724742-pat00180
그러면, 식 (151), (152)에 상당하는 식은 다음 식과 같이 나타낸다.
Figure 112018069724742-pat00181
Figure 112018069724742-pat00182
이때, 수신신호 점과 수신 후보신호 점의 유클리드 거리의 최솟값 dmin 2가 제로가 되는 q가 2개 존재한다.
식 (171)에 있어서 s1(p)가 존재하지 않는다:
Figure 112018069724742-pat00183
식 (171)에 있어서 s2(p)가 존재하지 않는다:
Figure 112018069724742-pat00184
시간 주기 N의 프리코딩 홉핑방법에서 식 (169)을 참고로 하여, N종류의 프리코딩 행렬 F[i]를 이하와 같이 나타낸다.
Figure 112018069724742-pat00185
여기서, α 및 δ은 시간적으로 변화하지 않는 것으로 한다. 이때, 식 (34), (35)에 의거하여 이하와 같은 프리코딩 홉핑의 프리코딩(Precding) 행렬의 설계 조건을 제공한다.
Figure 112018069724742-pat00186
Figure 112018069724742-pat00187
(예 #7)
식 (174)의 프리코딩 행렬의 α=1.0으로 한다. 그리고 시간 주기 N=16으로 하고, <조건 #12>, <조건 #14>, <조건 #15>을 만족시키기 위하여 다음 식과 같은 시간 주기 N=8의 프리코딩 홉핑방법에서의 프리코딩 행렬이 제공된다.
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00188
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00189
또, 식 (177), 식 (178)과 다른 프리코딩 행렬로 이하와 같이 줄 수가 있다.
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00190
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00191
따라서 s1, s2의 수신 열악 점은 도 33 (a), (b)와 같이 된다.
(도 33에서 가로축은 실축, 세로축은 허축이 된다) 또, 식 (177), 식 (178) 및 식 (179), 식 (180) 대신에 이하와 같이 프리코딩 행렬을 제공해도 좋다.
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00192
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00193
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00194
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00195
(또, 식 (177) ~ (184)에 있어서 7π/8을 -7π/8로 해도 좋다)
다음에, <조건 #12>와는 다른, q의 위상만이 다른 동일한 LOS 환경에서 Γ개의 단말에 대해 가능한 한 공평한 데이터의 수신품질을 제공하기 위한 조건으로서 이하를 준다.
<조건 #16>
시간 주기 N슬롯의 프리코딩 홉핑방법을 이용한 경우,
Figure 112018069724742-pat00196
의 조건을 부가하고, 또, 시간 주기 내의 N에 있어서 s1의 수신 열악 점을 위상과 s2의 수신 열악 점을 위상에 대해 일양 분포가 되도록 배치한다.
그래서, <조건 #14>, <조건 #15>, <조건 #16>에 의거하는 프리코딩 홉핑방법에서의 프리코딩 행렬의 예를 설명한다. 식 (174)의 프리코딩 행렬의 α=1.0으로 한다.
(예 #8)
시간 주기 N=8로 하고, 다음 식과 같은 시간 주기 N=8의 프리코딩 홉핑방법에서의 프리코딩 행렬이 제공된다.
Figure 112018069724742-pat00197
단, i=0, 1, …, 7이다.
또, 식 (186)과 다른 프리코딩 행렬로 이하와 같이 줄 수 있다(i=0, 1, …, 7)(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00198
따라서 s1, s2의 수신 열악 점은 도 34와 같이 된다. 또, 식 (186), 식 (187) 대신에 이하와 같이 프리코딩 행렬이 주어져도 좋다(i=0, 1, …, 7)(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00199
또는
Figure 112018069724742-pat00200
(또, 식 (186) ~ 식 (189)에서 7π/8을 -7π/8로 해도 좋다)
다음에, 식 (174)의 프리코딩 행렬에서 α≠1로 하고, 수신 열악 점끼리의 복소 평면에서의 거리의 점을 고려한 (예 #7), (예 #8)과 다른 프리코딩 홉핑방법에 대해 고려한다.
여기서는 식 (174)의 시간 주기 N의 프리코딩 홉핑방법을 다루고 있으나, 이때 <조건 #14>에 의해 Γ개의 단말 모두에 있어서 시간 주기 내의 N에서 s1의 수신 열악 점을 얻는 슬롯은 1 슬롯 이하가 된다. 따라서 N-1 슬롯 이상 s1(p)로 송신한 비트의 대수 우도 비를 얻을 수 있다. 마찬가지로 <조건 #15>에 의해 Γ개의 단말 모두에 있어서 시간 주기 내의 N에서 s2의 수신 열악 점을 얻는 슬롯은 1 슬롯 이하가 된다. 따라서 N-1 슬롯 이상 s2(p)로 송신한 비트의 대수 우도 비를 얻을 수 있다.
따라서 시간 주기 N은 큰 값으로 하는 편이 대수 우도 비를 얻을 수 있는 슬롯 수가 커지는 것을 알 수 있다.
그러나 실제의 채널 모델에서는 산란파 성분의 영향을 받으므로, 시간 주기 N이 고정인 경우, 수신 열악 점의 복소 평면상의 최소 거리는 가능한 한 큰 편이 데이터의 수신품질이 향상할 가능성이 있다고 생각된다. 따라서 (예 #7), (예 #8)에서 α≠1로 하고, (예 #7), (예 #8)을 개량한 프리코딩 홉핑방법에 대해 생각한다. 먼저, 이해가 용이한 (예 #8)를 개량한 프리코딩방법에 대해 설명한다.
(예 #9)
식 (186)에서 (예 #7)을 개량한 시간 주기 N=8의 프리코딩 홉핑방법에서의 프리코딩 행렬이 다음 식으로 주어진다.
Figure 112018069724742-pat00201
단, i=0, 1, …, 7이다. 또, 식 (190)과 다른 프리코딩 행렬로서 이하와 같이 줄 수 있다(i=0, 1, …, 7)(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
Figure 112018069724742-pat00202
또는
Figure 112018069724742-pat00203
또는
Figure 112018069724742-pat00204
또는
Figure 112018069724742-pat00205
또는
Figure 112018069724742-pat00206
또는
Figure 112018069724742-pat00207
또는
Figure 112018069724742-pat00208
따라서 s1, s2의 수신 열악 점은 α<1.0일 때는 도 35 (a),α>1.0일 때는 도 35 (b)와 같이 나타내게 된다.
(i) α<1.0일 때
α<1.0일 때, 수신 열악 점의 복소 평면에서의 최소 거리는 수신 열악 점 #1에서 #2의 거리(d#1, #2) 및 수신 열악 점 #1과 #3의 거리(d#1, #3)에 주목하면 min{d#1,#2,d#1,#3}로 나타낸다. 이때, α와 d#1, #2 및 d#1, #3의 관계를 도 36에 나타낸다. 그리고 min{d#1,#2,d#1,#3}를 가장 크게 하는α는
Figure 112018069724742-pat00209
이 된다. 이때의 min{d#1, #2, d#1, #3}는
Figure 112018069724742-pat00210
이 된다. 따라서 식 (190) ~ 식 (197)에 있어서 α를 식 (198)에서 주는 프리코딩방법이 유효해진다. 단, α의 값을 식 (198)로 설정하는 것은 양호한 데이터의 수신품질을 얻기 위한 하나의 적절한 방법이다. 그러나 식 (198)에 가까운 값을 취하도록 α를 설정해도 마찬가지로 양호한 데이터의 수신품질을 얻을 수 있을 가능성이 있다. 따라서α의 설정 값은 식 (198)에 한정되는 것은 아니다.
(ii)α>1.0일 때
α>1.0일 때, 수신 열악 점의 복소 평면에서의 최소 거리는 수신 열악 점 #4와 #5의 거리 (d#4, #5) 및 수신 열악 점 #4와 #6의 거리 (d#4, # 6)에 주목하면, min{d#4, #5, d#4, # 6}으로 나타내게 된다. 이때, α와 d#4, #5 및 d#4, #6의 관계를 도 37에 나타낸다. 그리고 min{d#4, #5, d#4, #6}를 가장 크게 하는 α는
Figure 112018069724742-pat00211
이 된다. 이때의 min{d#4, #5, d#4, #6}는
Figure 112018069724742-pat00212
이 된다. 따라서 식 (190) ~ 식 (197)에서 α를 식 (200)으로 주는 프리코딩방법이 유효해진다. 단, α의 값을 식 (200)으로 설정하는 것은 양호한 데이터의 수신품질을 얻기 위한 하나의 적절한방법이다. 그러나 식 (200)에 가까운 값을 취하도록 α를 설정해도 마찬가지로 양호한 데이터의 수신품질을 얻을 수 있을 가능성이 있다. 따라서 α의 설정 값은 식 (200)에 한정되는 것은 아니다.
(예 #10)
(예 #9)의 검토로부터 (예 #7)를 개량한 시간 주기 N=16의 프리코딩 홉핑방법에서의 프리코딩 행렬은 다음 식으로 줄 수 있다(λ,θ11[i]는 시간적으로 변화하지 않는 것으로 한다(변화해도 좋다)).
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00213
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00214
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00215
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00216
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00217
i=8, 9, …, 15 때:
Figure 112018069724742-pat00218
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00219
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00220
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00221
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00222
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00223
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00224
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00225
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00226
또는
i=0, 1, …, 7 일 때:
Figure 112018069724742-pat00227
i=8, 9, …, 15 일 때:
Figure 112018069724742-pat00228
단, α는 식 (198) 또는 식 (200)이 되면 양호한 데이터의 수신품질을 얻기에 적합하다. 이때, s1의 수신 열악 점은 α<1.0일 때는 도 38 (a), (b), α>1.0일 때는 도 39 (a), (b)와 같이 나타내게 된다.
본 실시형태에서는 시간 주기 N의 프리코딩 홉핑방법을 위한 N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]을 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또, 시간 주기 N의 프리코딩 홉핑방법으로서 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 동일한 효과를 얻을 수 있다. 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
<조건 #10>부터 <조건 #16>에 의거하여 예 #5부터 예 #10을 나타냈으나, 프리코딩 행렬의 변환 주기를 길게 하기 위해 예를 들어 예 #5부터 예 #10에서의 복수의 예를 선택하고, 그 선택한 예에서 나타내는 프리코딩 행렬을 이용하여 긴 주기의 프리코딩 행렬 전환방법을 실현해도 좋다. 예를 들어 예 #7에서 나타낸 프리코딩 행렬과 예 #10에서 나타낸 프리코딩 행렬을 이용하여 긴 주기의 프리코딩 행렬 전환방법을 실현하는 것이 된다. 이 경우, <조건 #10>부터 <조건 #16>에 반드시 따른다고는 할 수는 없다(<조건 #10>의 식 (158), <조건 #11>의 식 (159), <조건 #13>의 식 (164), <조건 #14>의 식 (175), <조건 #15>의 식 (176)에서 「모든 x, 모든 y」로 하고 있는 곳을 「존재하는 것의 x, 존재하는 것의 y」라는 조건이 양호한 수신품질을 제공하기 위해서 중요해진다는 것이 된다). 다른 시점에서 생각한 경우, 주기 N(N은 큰 자연수로 한다)의 프리코딩 행렬 전환방법에서 예 #5부터 예 #10의 어느 한 프리코딩 행렬이 포함되면 양호한 수신품질을 제공할 가능성이 커진다.
(실시형태 7)
본 실시형태에서는 실시형태 1 ~ 6에서 설명한 규칙적으로 프리코딩 행렬을 전환하는 송신방법으로 송신된 변조신호를 수신하는 수신장치의 구성에 대해 설명한다.
실시형태 1에서는 규칙적으로 프리코딩 행렬을 전환하는 송신방법을 이용하여 변조신호를 송신하는 송신장치가 프리코딩 행렬에 관한 정보를 송신하고, 수신장치가 그 정보에 의거하여 송신 프레임에서 이용되고 있는 규칙적인 프리코딩 행렬 전환 정보를 얻어서, 프리코딩의 복호 및 검파를 실행하여 송신비트의 대수 우도 비를 얻으며, 그 후, 오류정정 복호를 실시하는 방법에 대해서 설명하였다.
본 실시형태에서는 상기와는 다른 수신장치의 구성 및 프리코딩 행렬의 전환방법에 대해 설명한다.
도 40은 본 실시형태에서의 송신장치의 구성의 일례를 나타내고 있으며, 도 3과 마찬가지로 동작하는 것에 대해서는 동일 부호를 부여했다. 부호화기 군(4002)은 송신비트(4001)를 입력으로 한다. 이때, 부호화기 군(4002)은 실시형태 1에서 설명한 것과 같이 오류정정부호의 부호화부를 복수 개 보유하고 있으며, 프레임 구성신호(313)에 의거하여 예를 들어 1개의 부호화, 2개의 부호화기, 4개의 부호화기 중 어느 하나의 부호화기가 동작하게 된다.
1개의 부호화기가 동작하는 경우, 송신비트(4001)는 부호화를 하여 부호화 후의 송신비트를 얻을 수 있으며, 이 부호화 후의 송신비트를 2 계통에 분배하여, 분배된 비트(4003A) 및 분배된 비트(4003B)를 부호화기 군(4002)은 출력한다.
2개의 부호화기가 동작하는 경우, 송신비트(4001)를 2개로 분할하여(분할 비트 A, B라고 이름 붙인다), 제 1 부호화기는 분할 비트 A를 입력으로 하여 부호화를 실행하여 부호화 후의 비트가 분배된 비트(4003A)로서 출력한다. 제 2 부호화기는 분할 비트 B를 입력으로 하여 부호화를 실행하여, 부호화 후의 비트가 분배된 비트(4003B)로서 출력한다.
4개의 부호화기가 동작하는 경우, 송신비트(4001)를 4개로 분할하고(분할 비트 A, B, C, D라고 이름 붙인다), 제 1 부호화기는 분할 비트 A를 입력으로 하여 부호화를 실시하여 부호화 후의 비트 A를 출력한다. 제 2 부호화기는 분할 비트 B를 입력으로 하여 부호화를 실행하여 부호화 후의 비트 B를 출력한다. 제 3 부호화기는 분할 비트 C를 입력으로 하여 부호화를 실행하여 부호화 후의 비트 C를 출력한다. 제 4 부호화기는 분할 비트 D를 입력으로 하여 부호화를 실행하여 부호화 후의 비트 D를 출력한다. 그리고 부호화 후의 비트 A, B, C, D가 분배된 비트 (4003A), 분배된 비트 (4003B)로 분할한다.
송신장치는 일례로 이하의 표 1(표 1A 및 표 1B)과 같은 송신방법을 지원하게 된다.
Figure 112018069724742-pat00229
표 1에 나타내는 것과 같이, 송신신호 수(송신안테나 수)로는 1 스트림의 신호의 송신과 2 스트림의 신호의 송신을 지원한다. 또, 변조방식은 QPSK, 16QAM, 64QAM, 256QAM, 1024QAM을 지원한다. 특히, 송신신호 수가 2 일 때 스트림 #1과 스트림 #2는 별개로 변조방식을 설정할 수 있으며, 예를 들어 표 1에서 「#1: 256QAM, #2: 1024QAM」는 「스트림 #1의 변조방식은 256QAM, 스트림 #2의 변조방식은 1024QAM」이라는 것을 나타내고 있다(그 외에 대해서도 동일하게 표현하고 있다). 오류정정 부호화방식으로는 A, B, C의 3 종류를 지원하고 있는 것으로 한다. 이때, A, B, C는 모두 다른 부호라도 좋고, A, B, C는 다른 부호화 율이라도 좋으며, A, B, C는 다른 블록 사이즈의 부호화방법이라도 좋다.
표 1의 송신정보는 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」을 정해진 각 모드에 대해 각 송신정보를 할당한다. 따라서 예를 들어 「송신신호 수:2」, 「변조방식:#1:1024QAM, #2:1024QAM」, 「부호화기 수:4」, 「오류정정부호화방법:C」의 경우 송신정보를 01001101로 설정한다. 그리고 송신장치는 프레임에 있어서 송신정보 및 송신데이터를 전송한다. 그리고 송신데이터를 전송할 때, 특히 「송신신호 수」가 2 일 때, 표 1에 따라 「프리코딩 행렬 전환방법」을 이용하게 된다. 표 1에서 「프리코딩 행렬 전환방법」으로는 D, E, F, G, H의 5 종류를 준비해 두고, 이 5 종류의 어느 하나를 표 1에 따라서 설정하게 된다. 이때, 다른 5 종류의 실현방법으로는
ㆍ프리코딩 행렬이 다른 5 종류를 준비하여 실현한다.
ㆍ다른 5 종류 주기, 예를 들어 D 주기를 4, E 주기를 8, …, 로 함으로써 실현한다.
ㆍ다른 프리코딩 행렬, 다른 주기의 양자를 병용함으로써 실현한다.
등이 고려된다.
도 41은 도 40의 송신장치가 송신하는 변조신호의 프레임 구성의 일례를 나타내고 있으며, 송신장치는 2개의 변조신호 z1(t)와 z2(t)를 송신하는 모드의 설정 및 1개의 변조신호를 송신하는 모드의 양자의 설정이 가능한 것으로 한다.
도 41에서 심벌 (4100)은 표 1에 나타나고 있는 「송신정보」를 전송하기 위한 심벌이다. 심벌 (4101_1 및 4101_2)은 채널 추정용의 레퍼런스(파일럿) 심벌이다. 심벌 (4102_1, 4103_1)은 변조신호 z1(t)로 송신하는 데이터전송용의 심벌, 심벌 (4102_2, 4103_2)은 변조신호 z2(t)로 송신하는 데이터전송용의 심벌이며, 심벌 (4102_1) 및 심벌 (4102_2)는 동일 시각에 동일(공통) 주파수를 이용하여 전송되며, 또, 심벌 (4103_1) 및 심벌 (4103_2)은 동일 시각에 동일(공통) 주파수를 이용하여 전송된다. 그리고 심벌 (4102_1, 4103_1) 및 심벌 (4102_2, 4103_2)은 실시형태 1 ~ 4 및 실시형태 6에서 설명한 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬 연산 후의 심벌이 된다(따라서 실시형태 1에서 설명한 것과 같이 스트림 s1(t), s2(t)의 구성은 도 6과 같다).
또, 도 41에서 심벌 (4104)은 표 1에 나타내고 있는 「송신정보」를 전송하기 위한 심벌이다. 심벌 (4105)은 채널 추정용의 레퍼런스(파일럿) 심벌이다. 심벌 (4106, 4107)은 변조신호 z1(t)로 송신하는 데이터전송용의 심벌이며, 이때, 변조신호 z1(t)로 송신하는 데이터전송용의 심벌은 송신신호 수가 1이므로 프리코딩을 실행하지 않게 된다.
따라서 도 40의 송신장치는 도 41의 프레임 구성 및 표 1에 따른 변조신호를 생성하여 송신하게 된다. 도 40에서 프레임 구성신호(313)는 표 1에 의거하여 설정한 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」에 관한 정보를 포함하고 있게 된다. 그리고 부호화부(4002), 매핑부(306A, B), 가중합성부(308A, B)는 프레임 구성신호를 입력으로 하여, 표 1에 의거하여 설정한 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」에 의거하는 동작을 실행하게 된다. 또, 설정한 「송신신호 수」 「변조방식」, 「부호화기 수」 「오류정정부호화방법」에 상당하는 「송신정보」에 대해서도 수신장치에 송신하게 된다.
수신장치의 구성은 실시형태 1과 마찬가지로 도 7로 나타낼 수 있다. 실시형태 1과 다른 점은 송수신장치를 미리 공유하고 있으므로, 표 1의 정보를 송신장치가 규칙적으로 전환하는 프리코딩 행렬의 정보를 송신하지 않아도 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」에 상당하는 「송신정보」를 송신장치가 송신하고, 수신장치가 이 정보를 얻음으로써 표 1로부터 규칙적으로 전환하는 프리코딩 행렬의 정보를 얻을 수 있다는 점이다. 따라서 도 7의 수신장치는 제어정보 복호부(709)가 도 40의 송신장치가 송신한 「송신정보」를 얻음으로써 표 1에 상당하는 정보로부터 규칙적으로 전환하는 프리코딩 행렬의 정보를 포함한 송신장치가 통지한 송신방법의 정보에 관한 신호(710)를 얻을 수 있다. 따라서 신호처리부(711)는 송신신호 수 2 일 때 프리코딩 행렬의 전환 패턴에 의거하는 검파를 실행할 수 있으며, 수신 대수 우도 비를 얻을 수 있다.
또, 상술한 설명에서는 표 1과 같이 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」에 대해 「송신정보」를 설정하고, 이에 대해 프리코딩 행렬 전환방법을 설정하고 있으나, 반드시, 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」에 대해 「송신정보」를 설정하지 않아도 되며, 예를 들어 표 2와 같이 「송신신호 수」, 「변조방식」에 대해 「송신정보」를 설정하고, 이에 대해 프리코딩 행렬 전환방법을 설정해도 좋다.
Figure 112018069724742-pat00230
여기서, 「송신정보」 및 프리코딩 행렬 전환방법의 설정방법은 표 1이나 표 2에 한정되는 것은 아니며, 프리코딩 행렬 전환방법은 「송신신호 수」, 「변조방식」, 「부호화기 수」, 「오류정정부호화방법」등의 송신 파라미터에 의거하여 전환하도록 미리 규칙이 정해져 있으면(송신장치, 수신장치에서 미리 정해져 있는 규칙이 공유되고 있으면), (즉, 프리코딩 행렬 전환방법을 송신 파라미터 중 어느 하나 (또는 송신 파라미터의 복수로 구성된 어느 하나)에 의해 전환하고 있으면), 송신장치는 프리코딩 행렬 전환방법에 관한 정보를 전송할 필요가 없으며, 수신장치는 송신 파라미터의 정보를 판별함으로써,, 송신장치가 이용한 프리코딩 행렬 전환방법을 판별할 수가 있으므로 정확한 복호, 검파를 실행할 수 있다. 또, 표 1, 표 2에서는 송신변조신호 수가 2 일 때 규칙적으로 프리코딩 행렬을 전환하는 송신방법을 이용하는 것으로 하고 있으나, 송신변조신호 수가 2 이상이면 규칙적으로 프리코딩 행렬을 전환하는 송신방법을 적용할 수 있다.
따라서 송수신장치가 프리코딩 전환방법에 관한 정보를 포함하는 송신 파라미터에 관한 표를 공유하고 있으면, 송신장치가 프리코딩 전환방법에 관한 정보를 송신하지 않고, 프리코딩 전환방법에 관한 정보를 포함하지 않는 제어정보를 송신하여, 수신장치가 이 제어정보를 얻음으로써 프리코딩 전환방법을 추정할 수 있게 된다.
이상과 같이, 본 실시형태에서는 송신장치가 규칙적으로 프리코딩 행렬을 전환하는 방법에 관한 직접적인 정보를 송신하지 않고, 수신장치가 송신장치가 이용한 「규칙적으로 프리코딩 행렬을 전환하는 방법」의 프리코딩에 관한 정보를 추정하는 방법에 대해서 설명하였다. 이에 의해 송신장치는 규칙적으로 프리코딩 행렬을 전환하는 방법에 관한 직접적인 정보를 송신하지 않으므로, 그만큼 데이터의 전송효율이 향상한다는 효과를 얻을 수 있다.
또, 본 실시형태에서 시간 축에서의 프리코딩 웨이트를 변경할 때의 실시형태를 설명하였으나, 실시형태 1에서 설명한 것과 같이 OFDM 전송 등의 멀티 캐리어 전송방식을 이용한 때에도 본 실시형태와 같이 실시할 수 있다.
또, 특히, 프리코딩 전환방법이 송신신호 수만에 의해 변경되고 있을 때, 수신장치는 송신장치가 송신하는 송신신호 수의 정보를 얻음으로써 프리코딩 전환방법을 알 수 있다.
본 명세서에서 송신장치를 구비하고 있는 것은 예를 들어 방송국, 기지국, 액세스 포인트, 단말, 휴대전화(mobile phone) 등의 통신·방송 기기인 것을 생각할 수 있고, 이때, 수신장치를 구비하고 있는 것은 텔레비전, 라디오, 단말, 퍼스널컴퓨터, 휴대전화, 액세스포인트, 기지국 등의 통신 기기인 것을 생각할 수 있다. 또, 본 발명에서의 송신장치, 수신장치는 통신 기능을 구비하고 있는 기기이며, 그 기기가 텔레비전, 라디오, 퍼스널컴퓨터, 휴대전화 등의 애플리케이션을 실행하기 위한 장치에 어떤 인터페이스를 설치하여 접속할 수 있는 형태인 것도 생각할 수 있다.
또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리앰블, 유니크 워드, 포스트앰블, 레퍼런스 심벌 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다. 그리고 여기에서는 파일럿 심벌, 제어정보용의 심벌이라고 명명하고 있으나, 어떤 명명법을 실행해도 좋으며, 기능 자체가 중요하게 되어 있다.
파일럿 심벌은 예를 들어 송수신기에서 PSK 변조를 이용하여 변조한 기존의 심벌(또는 수신기가 동기를 취함으로써 수신기는 송신기가 송신한 심벌을 알 수 있어도 좋다)이면 좋고, 수신기는 이 심벌을 이용하여 주파수 동기, 시간 동기, (각 변조신호의) 채널 추정(CSI(Channel State Information)의 추정), 신호의 검출 등을 실행하게 된다.
또, 제어정보용의 심벌은 (애플리케이션 등의) 데이터 이외의 통신을 실현하기 위한 통신 상대에게 전송할 필요가 있는 정보(예를 들어 통신에 이용하고 있는 변조방식·오류정정 부호화방식·오류정정 부호화방식의 부호화 율, 상위층에서의 설정정보 등)를 전송하기 위한 심벌이다.
또, 본 발명은 상기 실시형태 1 ~ 5로 한정되지 않으며, 여러 가지로 변경하여 실시하는 것이 가능하다. 예를 들어 상기 실시형태에서는 통신장치로서 실시하는 경우에 대해 설명하고 있으나, 이에 한정되는 것은 아니며, 이 통신방법을 소프트웨어로서 실행하는 것도 가능하다.
또, 상기에서는 2개의 변조신호를 2개의 안테나로부터 송신하는 방법에서의 프리코딩 전환방법에 대해 설명하였으나, 이에 한정되는 것은 아니며, 4개의 매핑 후의 신호에 대해 프리코딩을 실행하고 4개의 변조신호를 생성하여, 4개의 안테나로부터 송신하는 방법, 즉, N개의 매핑 후의 신호에 대해 프리코딩을 실행하여 N개의 변조신호를 생성하며, N개의 안테나로부터 송신하는 방법에서도 동일하게 프리코딩 웨이트(행렬)를 변경하는 프리코딩 전환방법으로서도 마찬가지로 실시할 수 있다.
본 명세서에서는 「프리코딩」, 「프리코딩 웨이트」등의 용어를 사용하고 있으나, 명명법 자체는 어떤 것이라도 좋고, 본 발명에서는 그 신호처리 자체가 중요하다.
스트림 s1(t), s2(t)에 의해 다른 데이터를 전송해도 좋고, 동일한 데이터를 전송해도 좋다.
송신장치의 송신안테나, 수신장치의 수신안테나와 함께 도면에 기재되어 있는 1개의 안테나는 복수의 안테나에 의해 구성되어 있어도 좋다.
또, 예를 들어 상기 통신방법을 실행하는 프로그램을 미리 ROM(Read Only Memory)에 저장해 두고, 그 프로그램을 CPU(Central Processor Unit)에 의해 동작시키도록 해도 좋다.
또, 상기 통신방법을 실행하는 프로그램을 컴퓨터로 판독 가능한 기억매체에 저장하고, 기억매체에 저장된 프로그램을 컴퓨터의 RAM(Random Access Memory)에 기록하여, 컴퓨터를 그 프로그램에 따라서 동작시키도록 해도 좋다.
그리고 상기의 각 실시형태 등의 각 구성은 전형적으로는 집적회로인 LSI(Large Scale Integration)로서 실현되어도 좋다. 이들은 개별적으로 1 칩화되어도 좋고, 각 실시형태의 모든 구성 또는 일부의 구성을 포함하도록 1 칩화되어도 좋다. 여기에서는 LSI로 했으나, 집적도의 차이에 따라서 IC(Integrated Circuit), 시스템 LSI, 슈퍼 LSI, 울트라 LSI라고 불리는 경우도 있다. 또, 집적회로화의 수법은 LSI에 한정되는 것은 아니며, 전용 회로 또는 범용 프로세서로 실현되어도 좋다. LSI 제조 후에, 프로그램 가능한 FPGA(Field Programmable Gate Array)나, LSI 내부의 회로 셀의 접속이나 설정을 재구성 가능한 리콘피규러블·프로세서(Reconfigurable Processor)를 이용해도 좋다.
나아가, 반도체 기술의 진보 또는 파생하는 별도의 기술에 의해 LSI에 대치되는 집적회로화 기술이 등장하면 당연히 그 기술을 이용하여 기능 블록의 집적화를 실행해도 좋다. 바이오 기술의 적용 등이 가능성으로 있을 수 있다.
(실시형태 8)
본 실시형태에서는 실시형태 1 ~ 4, 실시형태 6에서 설명한 프리코딩 웨이트를 규칙적으로 전환하는 방법의 응용 예에 대해서 여기에서는 설명한다.
도 6은 본 실시형태에서의 가중방법(프리코딩방법)에 관련한 도면이며, 가중합성부(600)는 도 3의 가중합성부 308A와 308B의 양자를 통합한 가중합성부이다. 도 6에 나타내는 것과 같이 스트림 s1(t) 및 스트림 s2(t)는 도 3의 베이스밴드신호(307A 및 307B)에 상당하는 즉, QPSK, 16QAM, 64QAM 등의 변조방식의 매핑에 따른 베이스밴드신호 동상 I, 직교 Q성분이 된다. 그리고 도 6의 프레임 구성과 같이 스트림 s1(t)는 심벌번호 u의 신호를 s1(u), 심벌번호 u+1의 신호를 s1(u+1), …로 나타낸다. 마찬가지로 스트림 s2(t)는 심벌번호 u의 신호를 s2(u), 심벌번호 u+1의 신호를 s2(u+1), …로 나타낸다. 그리고 가중합성부(600)는 도 3에서의 베이스밴드신호(307A(s1(t)) 및 307B(s2(t))), 가중정보에 관한 정보(315)를 입력으로 하여, 가중정보에 관한 정보(315)에 의한 가중방법을 시행하여, 도 3의 가중합성 후의 신호(309A(z1(t)), 309B(z2(t))를 출력한다.
이때, 예를 들어 실시형태 6에서의 예 8의 주기 N=8의 프리코딩 행렬 전환방법을 이용한 경우, z1(t), z2(t)는 이하와 같이 나타내게 된다.
심벌번호 8i일 때(i는 0 이상의 정수로 한다):
Figure 112018069724742-pat00231
단, j는 허수 단위, k=0.
심벌번호 8i+1일 때:
Figure 112018069724742-pat00232
단, k=1.
심벌번호 8i+2 일 때:
Figure 112018069724742-pat00233
단, k=2.
심벌번호 8i+3일 때:
Figure 112018069724742-pat00234
단, k=3.
심벌번호 8i+4 일 때:
Figure 112018069724742-pat00235
단, k=4.
심벌번호 8i+5 일 때:
Figure 112018069724742-pat00236
단, k=5.
심벌번호 8i+6 일 때:
Figure 112018069724742-pat00237
단, k=6.
심벌번호 8i+7 일 때:
Figure 112018069724742-pat00238
단, k=7.
여기서, 심벌번호로 기재하고 있으나, 심벌번호는 시각(시간)으로 생각해도 좋다. 다른 실시형태에서 설명한 것과 같이, 예를 들어 식 (225)에서 시각 8i+7의 z1(8i+7)와 z2(8i+7)는 동일 시각의 신호이며, 한편, z1(8i+7)와 z2(8i+7)는 동일(공통의) 주파수를 이용하여 송신장치가 송신하게 된다. 즉, 시각 T의 신호를 s1(T), s2(T), z1(T), z2(T)로 하면, 어느 프리코딩 행렬과 s1(T) 및 s2(T)로부터 z1(T) 및 z2(T)를 구하고, z1(T) 및 z2(T)는 동일(공통의) 주파수를 이용하여(동일 시각(시간)에) 송신장치가 송신하게 된다. 또, OFDM 등의 멀티 캐리어 전송방식을 이용한 경우, (서브)캐리어 L, 시각 T에서의 s1, s2, z1, z2에 상당하는 신호를 s1(T, L), s2(T, L), z1(T, L), z2(T, L)로 하면, 어느 프리코딩 행렬과 s1(T, L) 및 s2(T, L)로부터 z1(T, L) 및 z2(T, L)를 구하고, z1(T, L) 및 z2(T, L)는 동일(공통의) 주파수를 이용하여(동일 시각(시간)에) 송신장치가 송신하게 된다.
이때, α의 적절한 값으로 식 (198), 또는 식 (200)이 있다.
본 실시형태에서는 상기에서 설명한 식 (190)의 프리코딩 행렬을 기초로 하여 주기를 크게 하는 프리코딩 전환방법에 대해 설명한다.
프리코딩 전환 행렬 주기를 8M으로 한 때, 다른 프리코딩 행렬 8M개를 이하와 같이 나타낸다.
Figure 112018069724742-pat00239
이때, i=0, 1, 2, 3, 4, 5, 6, 7, k=0, 1, …, M-2, M-1이 된다.
예를 들어 M=2로 한 때, α<1로 하면 k=0 때의 s1의 수신 열악 점(○) 및 s2의 수신 열악 점(□)은 도 42(a)와 같이 나타내게 된다. 마찬가지로 k=1일 때의 s1의 수신 열악 점(○) 및 s2의 수신 열악 점(□)은 도 42(b)와 같이 나타내게 된다. 이와 같이, 식 (190)의 프리코딩 행렬을 기초로 하면 수신 열악 점은 도 42(a)와 같게 되며, 이 식 (190)의 우변의 행렬의 2행째의 각 요소에 ejX를 승산한 행렬을 프리코딩 행렬로 함으로써(식 (226) 참조) 수신 열악 점이 도 42(a)에 대해 회전한 수신 열악 점을 가지도록 한다(도 42(b) 참조). (단, 도 42(a)와 도 42(b)의 수신 열악 점은 겹치지 않고 있다. 이와 같이 ejX를 승산해도 수신 열악 점은 겹치지 않게 하면 좋다. 또, 식 (190)의 우변의 행렬의 2행째의 각 요소에 ejX를 승산하는 것은 아니며, 식 (190)의 우변의 행렬의 1행째의 각 요소에 ejX를 승산한 행렬을 프리코딩 행렬로 해도 좋다) 이때, 프리코딩 행렬 F[0] ~ F[15]는 다음 식으로 나타내게 된다.
Figure 112018069724742-pat00240
단, i=0, 1, 2, 3, 4, 5, 6, 7, k=0, 1이 된다.
그러면, M=2일 때 F[0] ~ F[15]의 프리코딩 행렬이 생성되게 된다(F[0]~F[15]의 프리코딩 행렬은 어떤 순번으로 배열해도 좋다. 또, F[0] ~ F[15]의 행렬이 각각 다른 행렬이라도 좋다). 그리고 예를 들어 심벌번호 16i일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 16i+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 16i+h일 때 F[h]를 이용하여 프리코딩을 실행하게 (h=0, 1, 2, …, 14, 15) 된다. (여기에서는 이전의 실시형태에서 설명한 것과 같이 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다)
이상을 정리하면, 식 (82) ~ 식 (85)을 참고로 하여 주기 N의 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00241
이때, 주기가 N이므로 i=0, 1, 2, …, N-2, N-1이 된다. 그리고 식 (228)을 베이스로 하는 주기 N×M의 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00242
이때, i=0, 1, 2, …, N-2, N-1, k=0, 1, …, M-2, M-1이 된다.
그러면 F[0] ~ F[N×M-1]의 프리코딩 행렬이 생성되게 된다(F[0] ~ F[N×M-1]의 프리코딩 행렬은 주기 N×M의 어떤 순번으로 배열하여 사용해도 좋다). 그리고 예를 들어 심벌번호 N×M×i일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 N×M×i+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 N×M×i+h일 때 F[h]을 이용하여 프리코딩을 실행하게(h=0, 1, 2, …, N×M-2, N×M-1) 된다(여기에서는 이전의 실시형태에서 설명한 것과 같이, 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다).
이와 같이 프리코딩 행렬을 생성하면 주기가 큰 프리코딩 행렬의 전환방법을 실현할 수 있고, 수신 열악 점의 위치를 간단하게 변경할 수 있으며, 이것이 데이터의 수신품질의 향상으로 연결될 가능성이 있다. 또, 주기 N×M의 프리코딩 행렬을 식 (229)와 같이 했으나, 상술한 것과 같이 주기 N×M의 프리코딩 행렬을 다음 식과 같이 해도 좋다.
Figure 112018069724742-pat00243
이때, i=0, 1, 2, …, N-2, N-1, k=0, 1, …, M-2, M-1이 된다.
또, 식 (229) 및 식 (230)에서 0 라디안≤δ<2π 라디안으로 한 때 δ=π 라디안일 때 유니테리 행렬이 되고, δ≠π 라디안일 때 비 유니테리 행렬이 된다. 본 방식에서는 π/2 라디안≤|δ|<π 라디안이 비 유니테리 행렬 일때가 하나의 특징적인 구성이며(δ의 조건에 대해서는 다른 실시형태일 때도 마찬가지이다), 양호한 데이터의 수신품질을 얻을 수 있게 된다. 다른 구성으로 유니테리 행렬인 경우도 있으나, 실시형태 10이나 실시형태 16에서 자세하게 설명하겠지만 식 (229), 식 (230)에서 N을 홀수로 하면 양호한 데이터의 수신품질을 얻을 수 있을 가능성이 커진다.
(실시형태 9)
본 실시형태에서는 유니테리 행렬을 이용한 프리코딩 행렬을 규칙적으로 전환하는 방법에 대해 설명한다.
실시형태 8에서 설명한 것과 같이, 주기 N의 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서, 식 (82) ~ 식 (85)을 참고로 한, 주기 N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00244
이때, i=0, 1, 2, …, N-2, N-1이 된다. (α>0인 것으로 한다) 본 실시형태에서는 유니테리 행렬을 취급하므로, 식 (231)의 프리코딩 행렬은 다음 식으로 나타낼 수가 있다.
Figure 112018069724742-pat00245
이때, i=0, 1, 2, …, N-2, N-1이 된다. (α>0인 것으로 한다) 이때, 실시형태 3의 (수학식 106)의 조건 5 및 (수학식 107)의 조건 6으로부터 이하의 조건이 양호한 데이터의 수신품질을 얻기 위하여 중요해진다.
Figure 112018069724742-pat00246
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00247
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
실시형태 6에서의 설명 시에 수신 열악 점 간의 거리에 대해 설명하였으나, 수신 열악 점 간의 거리를 크게 하기 위해서는 주기 N은 3 이상의 홀수인 것이 중요해진다. 이하에서는 이 점에 대해 설명한다.
실시형태 6에서 설명한 것과 같이, 수신 열악 점을 복소 평면상에서 위상에 대해 일양 분포가 되도록 배치하기 위해 <조건 19> 또는 <조건 20>이 주어진다.
Figure 112018069724742-pat00248
Figure 112018069724742-pat00249
즉, <조건 19>에서는 위상의 차이가 2π/N 라디안인 것을 의미하고 있다. 또, <조건 20>에서는 위상의 차이가 -2π/N 라디안인 것을 의미하고 있다.
그리고 θ11(0)―θ21(0)=0라디안으로 하고, 또한, α<1로 한 때, 주기 N=3일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 43 (a)에, 주기 N=4 일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 43 (b)에 나타낸다. 또, θ11(0)―θ21(0)=0라디안으로 하고, 또한, α>1로 한 때, 주기 N=3일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 44(a)에, 주기 N=4 일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 44(b)에 나타낸다.
이때, 수신 열악 점과 원점으로 형성하는 선분과 Real의 축에 있어서 Real≥0의 반직선으로 형성하는 위상(도 43 (a) 참조)을 고려한 경우, α>1, α<1 어느 경우에 대해서도 N=4 일 때 s1에 관한 수신 열악 점에서의 상술한 위상과 s2에 관한 수신 열악 점에서의 상술한 위상이 동일한 값이 되는 경우가 반드시 발생한다(도 43의 4301, 4302 및 도 44의 4401, 4402 참조). 이때, 복소 평면에서 수신 열악 점 간의 거리가 작아진다. 한편, N=3일 때 s1에 관한 수신 열악 점에서의 상술한 위상과 s2에 관한 수신 열악 점에서의 상술한 위상이 동일한 값이 되는 경우는 발생하지 않는다.
이상으로부터 주기 N이 짝수일 때 s1에 관한 수신 열악 점에서의 상술한 위상과 s2에 관한 수신 열악 점에서의 상술한 위상이 동일한 값이 되는 경우가 반드시 발생하는 것을 고려하면, 주기 N이 홀수일 때가 주기 N이 짝수일 때와 비교하여 복소 평면에서의 수신 열악 점 간의 거리가 커질 가능성이 크다. 단, 주기 N이 작은 값, 예를 들어 N≤16 이하의 경우, 복소 평면에서의 수신 열악 점의 최소 거리는 수신 열악 점이 존재하는 개수가 적으므로 어느 정도의 길이를 확보할 수 있다. 따라서 N≤16인 경우는 짝수로 해도 데이터의 수신품질을 확보할 수 있는 경우가 존재할 가능성이 있다.
따라서 식 (232)에 의거하는 규칙적으로 프리코딩 행렬을 전환하는 방식에서 주기 N은 홀수로 하면 데이터의 수신품질을 향상시킬 수 있을 가능성이 크다. 또, 식 (232)에 의거하여, F[0] ~ F[N-1]의 프리코딩 행렬이 생성되게 된다(F[0] ~ F[N-1]의 프리코딩 행렬은 주기 N에 대해 어떤 순번으로 배열하여 사용해도 좋다). 그리고 예를 들어 심벌번호 Ni일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 Ni+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 N×i+h일 때 F[h]를 이용하여 프리코딩을 실행하게(h=0, 1, 2, …, N-2, N-1) 된다(여기에서는 이전의 실시형태에서 설명한 것과 같이 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다). 또, s1, s2의 변조방식이 동시에 16QAM일 때, α를
Figure 112018069724742-pat00250
이라고 하면, IQ평면에서의 16×16=256개의 신호 점 간의 최소 거리를 어느 특정의 LOS 환경에서 크게 할 수 있다고 하는 효과를 얻을 수 있을 가능성이 있다.
본 실시형태에서는 시간 주기 N의 프리코딩 홉핑방법을 위한 N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]를 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또, 시간 주기 N의 프리코딩 홉핑방법으로서 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤하게 이용하도록 해도 동일한 효과를 얻을 수 있는. 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 주기 H(H는 상기 규칙적으로 프리코딩 행렬을 전환하는 방식의 주기 N은 더 큰 자연수로 한다)의 프리코딩 행렬 전환방법에서 본 실시형태에서의 N개의 다른 프리코딩 행렬이 포함되어 있으면 양호한 수신품질을 제공할 가능성이 커진다. 이때, <조건 #17>, <조건 #18>은 이하와 같은 조건으로 치환할 수 있다. (주기는 N으로 하여 생각한다)
Figure 112018069724742-pat00251
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00252
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
(실시형태 10)
본 실시형태에서는 유니테리 행렬을 이용한 프리코딩 행렬을 규칙적으로 전환하는 방법에 대해 실시형태 9와는 다른 예를 설명한다.
주기 2N의 규칙적으로 프리코딩 행렬을 전환하는 방법에서 주기 2N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00253
α>0
Figure 112018069724742-pat00254
인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다.
Figure 112018069724742-pat00255
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다. (식 (234)의 α와 식 (235)의 α는 동일한 값인 것으로 한다)
이때, 실시형태 3의 (수학식 106)의 조건 5 및 (수학식 107)의 조건 6에서 식 (234)에 대해 이하의 조건이 양호한 데이터의 수신품질을 얻기 위해서는 중요해진다.
Figure 112018069724742-pat00256
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00257
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
그리고 이하의 조건을 부가하는 것을 고려한다.
Figure 112018069724742-pat00258
다음에, 실시형태 6에서 설명한 것과 같이 수신 열악 점을 복소 평면상에 있어서 위상에 대해 일양 분포가 되도록 배치하기 위해 <조건 #24> 또는 <조건 #25>가 제공된다.
Figure 112018069724742-pat00259
Figure 112018069724742-pat00260
즉, <조건 24>에서는 위상의 차이가 2π/N 라디안인 것을 의미하고 있다. 또, <조건 25>에서는 위상의 차이가 -2π/N 라디안인 것을 의미하고 있다.
그리고 θ11 (0)―θ21(0)=0라디안으로 하고, 한편, α>1로 한 때, N=4 일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 45 (a), (b)에 나타낸다. 도 45 (a), (b)로부터 알 수 있는 것과 같이, 복소 평면에 있어서 s1의 수신 열악 점의 최소 거리는 크게 유지할 수 있고, 또, 마찬가지로 s2의 수신 열악 점의 최소 거리도 크게 유지할 수 있다. 그리고 α<1일 때에도 동일한 상태가 된다. 또, 실시형태 9와 마찬가지로 생각하면, N이 홀수일 때가 N이 짝수일 때와 비교하여 복소 평면에서의 수신 열악 점 간의 거리가 커질 가능성이 크다. 단, N이 작은 값, 예를 들어 N≤16 이하의 경우, 복소 평면에서의 수신 열악 점의 최소 거리는 수신 열악 점이 존재하는 개수가 적으므로, 어느 정도의 길이를 확보할 수 있다. 따라서 N≤16의 경우에는 짝수라도 데이터의 수신품질을 확보할 수 있는 경우가 존재할 가능성이 있다.
따라서 식 (234), (235)에 의거하는 규칙적으로 프리코딩 행렬을 전환하는 방식에 있어서 N은 홀수로 하면 데이터의 수신품질을 향상시킬 수 있을 가능성이 크다. 또, 식 (234), (235)에 의거하여 F[0] ~ F[2N-1]의 프리코딩 행렬이 생성되게 된다(F[0] ~ F[2N-1]의 프리코딩 행렬은 주기 2N에 대해 어떤 순번으로 배열하여 사용해도 좋다). 그리고 예를 들어 심벌번호 2Ni일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 2Ni+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 2N×i+h일 때 F[h]를 이용하여 프리코딩을 실행하게(h=0, 1, 2, …, 2N-2, 2N-1) 된다(여기에서는 이전의 실시형태에서 설명한 것과 같이, 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다). 또, s1, s2의 변조방식이 함께 16QAM일 때, α를 식 (233)으로 하면 IQ평면에서의 16×16=256개의 신호 점 간의 최소 거리를 어느 특정의 LOS 환경에서 크게 할 수 있는 효과를 얻을 수 있을 가능성이 있다.
또, <조건 #23>과 다른 조건으로 이하의 조건을 생각한다.
Figure 112018069724742-pat00261
(x는 N, N+1, N+2, …, 2N-2, 2N-1이고, y는 N, N+1, N+2, …, 2N-2, 2N-1이며, x≠y이다)
Figure 112018069724742-pat00262
(x는 N, N+1, N+2, …, 2N-2, 2N-1이고, y는 N, N+1, N+2, …, 2N-2, 2N-1이며, x≠y이다)
이때, <조건 #21>, <조건 #22>, <조건 #26> 및 <조건 #27>을 만족시킴으로써 복소 평면에서의 s1 끼리의 수신 열악 점의 거리를 크게 또는 s2 끼리의 수신 열악 점의 거리를 크게 할 수가 있으므로 양호한 데이터의 수신품질을 얻을 수 있다.
본 실시형태에서는 시간 주기 2N의 프리코딩 홉핑방법을 위한 2N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, 2N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]을 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]의 순번으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 2N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[2N-2], F[2N-1]을 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또, 시간 주기 2N의 프리코딩 홉핑방법으로 하여 설명하고 있으나, 2N개의 다른 프리코딩 행렬을 랜덤하게 이용하도록 해도 동일한 효과를 얻을 수 있는. 즉, 반드시 규칙적인 주기를 가지도록 2N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 주기 H(H는 상기 규칙적으로 프리코딩 행렬을 전환하는 방식의 주기 2N은 더 큰 자연수로 한다)의 프리코딩 행렬 전환방법에 있어서 본 실시형태에서의 2N개의 다른 프리코딩 행렬이 포함되어 있으면 양호한 수신품질을 제공할 가능성이 커진다.
(실시형태 11)
본 실시형태에서는 비 유니테리 행렬(non-unitary matrix)을 이용한 프리코딩 행렬을 규칙적으로 전환하는 방법에 대해 설명한다.
주기 2N의 규칙적으로 프리코딩 행렬을 전환하는 방법에서 주기 2N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00263
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다. 또,δ≠π 라디안으로 한다.
Figure 112018069724742-pat00264
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다. (식 (236)의 α와 식 (237)의 α는 동일한 값인 것으로 한다)
이때, 실시형태 3의 (수학식 106)의 조건 5 및 (수학식 107)의 조건 6에서 식 (236)에 대해 이하의 조건이 양호한 데이터의 수신품질을 얻기 위해서는 중요해진다.
Figure 112018069724742-pat00265
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00266
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
그리고 이하의 조건을 부가하는 것을 생각한다.
Figure 112018069724742-pat00267
또, 식 (237) 대신, 다음 식의 프리코딩 행렬이 제공되어도 좋다.
Figure 112018069724742-pat00268
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다. (식 (236)의 α와 식 (238)의 α는 동일한 값인 것으로 한다)
예로서 실시형태 6에서 설명한 것과 같이, 수신 열악 점을 복소 평면상에 있어서 위상에 대해 일양 분포가 되도록 배치하기 위해 <조건 #31> 또는 <조건 #32>가 제공된다.
Figure 112018069724742-pat00269
Figure 112018069724742-pat00270
즉, <조건 31>에서는 위상의 차이가 2π/N 라디안인 것을 의미하고 있다. 또, <조건 32>에서는 위상의 차이가 -2π/N 라디안인 것을 의미하고 있다.
그리고 θ11(0)―θ21(0)=0라디안으로 하고, 또한 α>1로 하여, δ=(3π)/4 라디안으로 한 때, N=4 일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면상에서의 배치를 도 46 (a), (b)에 나타낸다. 이와 같이 함으로써 프리코딩 행렬을 전환하는 주기를 크게 할 수 있고, 또한 복소 평면에서 s1의 수신 열악 점의 최소 거리는 크게 유지하고 있으며, 또, s2의 수신 열악 점의 최소 거리도 크게 유지할 수 있으므로 양호한 수신품질을 얻을 수 있다. 여기에서는 α>1, δ=(3π)/4라디안, N=4 일 때를 예로 설명하였으나, 이에 한정되는 것은 아니며, π/2 라디안≤|δ|<π 라디안, α>0, α≠1이면 동일한 효과를 얻을 수 있다.
또, <조건 #30>과 다른 조건으로 이하의 조건을 고려한다.
Figure 112018069724742-pat00271
(x는 N, N+1, N+2, …, 2N-2, 2N-1이며, y는 N, N+1, N+2, …, 2N-2, 2N-1이고, x≠y이다)
Figure 112018069724742-pat00272
(x는 N, N+1, N+2, …, 2N-2, 2N-1이며, y는 N, N+1, N+2, …, 2N-2, 2N-1이고, x≠y이다)
이때, <조건 #28>, <조건 #29>, <조건 #33> 및 <조건 #34>를 만족시킴으로써 복소 평면에서의 s1끼리의 수신 열악 점의 거리를 크게, 또는 s2끼리의 수신 열악 점의 거리를 크게 할 수 있으므로 양호한 데이터의 수신품질을 얻을 수 있다.
본 실시형태에서는 시간 주기 2N의 프리코딩 홉핑방법을 위한 2N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, 2N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]를 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]의 순번으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 2N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[2N-2], F[2N-1]을 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에서 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또, 시간 주기 2N의 프리코딩 홉핑방법으로 하여 설명하고 있으나, 2N개의 다른 프리코딩 행렬을 랜덤하게 이용하도록 해도 동일한 효과를 얻을 수 있다. 즉, 반드시 규칙적인 주기를 가지도록 2N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 주기 H(H는 상기 규칙적으로 프리코딩 행렬을 전환하는 방식의 주기 2N은 더 큰 자연수로 한다)의 프리코딩 행렬 전환방법에서 본 실시형태에서의 2N개의 다른 프리코딩 행렬이 포함되어 있으면 양호한 수신품질을 제공할 가능성이 커진다.
(실시형태 12)
본 실시형태에서는 비 유니테리 행렬을 이용한 프리코딩 행렬을 규칙적으로 전환하는 방법에 대해 설명한다.
주기 N의 규칙적으로 프리코딩 행렬을 재배열하는 방법에서 주기 N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00273
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다. 또, δ≠π라디안(i에 상관없이, 고정 값), i=0, 1, 2, …, N-2, N-1로 한다.
이때, 실시형태 3의 (수학식 106)의 조건 5 및 (수학식 107)의 조건 6으로부터 식 (239)에 대해 이하의 조건이 양호한 데이터의 수신품질을 얻기 위해서는 중요해진다.
Figure 112018069724742-pat00274
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00275
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
예로서 실시형태 6에서 설명한 것과 같이, 수신 열악 점을 복소 평면상에 있어서 위상에 대해 일양 분포가 되도록 배치하기 위해 <조건 #37> 또는 <조건 #38>을 제공한다.
Figure 112018069724742-pat00276
Figure 112018069724742-pat00277
즉, <조건 37>에서는 위상의 차이가 2π/N 라디안인 것을 의미하고 있다. 또, <조건 38>에서는 위상의 차이가 -2π/N 라디안인 것을 의미하고 있다.
이때, π/2 라디안≤|δ|<π 라디안, α>0, α≠1이면 복소 평면에서의 s1끼리의 수신 열악 점의 거리를 크게, 또는 s2끼리의 수신 열악 점의 거리를 크게 할 수 있으므로 양호한 데이터의 수신품질을 얻을 수 있다. 또, <조건 #37>, <조건 #38>은 반드시 필요한 조건은 아니다.
본 실시형태에서는 시간 주기 N의 프리코딩 홉핑방법을 위한 N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]를 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순서에 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 2N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]를 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또 시간 주기 N의 프리코딩 홉핑방법으로 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤하게 이용하도록 해도 동일한 효과를 얻을 수 있다. 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 주기 H(H는 상기 규칙적으로 프리코딩 행렬을 전환하는 방식의 주기 N은 더 큰 자연수로 한다)의 프리코딩 행렬 전환방법에 있어서 본 실시형태에서의 N개의 다른 프리코딩 행렬이 포함되어 있으면 양호한 수신품질을 제공할 가능성이 커진다. 이때, <조건 #35>, <조건 #36>은 이하와 같은 조건으로 치환할 수 있다(주기는 N으로서 생각한다).
Figure 112018069724742-pat00278
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00279
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
(실시형태 13)
본 실시형태에서는 실시형태 8의 다른 예에 대해 설명한다.
주기 2N의 규칙적으로 프리코딩 행렬을 전환하는 방법에서 주기 2N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00280
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다.
Figure 112018069724742-pat00281
α>0인 것으로 하고, (i와 상관없이) 고정 값인 것으로 한다(식 (240)의 α와 식 (241)의 α는 동일한 값인 것으로 한다).
그리고 식 (240) 및 식 (241)을 베이스로 하는 주기 2×N×M의 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00282
이때, k=0, 1, …, M-2, M-1이 된다.
Figure 112018069724742-pat00283
이때, k=0, 1, …, M-2, M-1이 된다. 또, Xk=Yk라도 좋고, Xk≠Yk라도 좋다.
그러면, F[0]~F[2×N×M-1]의 프리코딩 행렬이 생성되게 된다(F[0]~F[2×N×M-1]의 프리코딩 행렬은 주기 2×N×M은 어떤 순번으로 배열하여 사용해도 좋다). 그리고 예를 들어 심벌번호 2×N×M×i일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 2×N×M×i+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 2×N×M×i+h일 때 F[h]를 이용하여 프리코딩을 실행하게(h=0, 1, 2, …, 2×N×M-2, 2×N×M-1) 된다(여기에서는 이전의 실시형태에서 설명한 것과 같이, 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다).
이와 같이 프리코딩 행렬을 생성하면 주기가 큰 프리코딩 행렬의 전환방법을 실현할 수 있고, 수신 열악 점의 위치를 간단하게 변경할 수 있으며, 이것이 데이터의 수신품질의 향상으로 연결될 가능성이 있다.
또, 주기 2×N×M의 프리코딩 행렬의 식 (242)를 다음 식과 같이 해도 좋다.
Figure 112018069724742-pat00284
이때, k=0, 1, …, M-2, M-1이 된다.
또, 주기 2×N×M의 프리코딩 행렬의 식 (243)을 식 (245) ~ 식 (247)의 어느 하나로 해도 좋다.
Figure 112018069724742-pat00285
이때, k=0, 1, …, M-2, M-1이 된다.
Figure 112018069724742-pat00286
이때, k=0, 1, …, M-2, M-1이 된다.
Figure 112018069724742-pat00287
이때, k=0, 1, …, M-2, M-1이 된다.
또, 수신 열악 점에 대해 주목하면, 식 (242)에서부터 식 (247)에 있어서,
Figure 112018069724742-pat00288
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00289
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00290
의 모두를 만족시키면 양호한 데이터의 수신품질을 얻을 수 있다. 또, 실시형태 8에서는 <조건 #39> 및 <조건 #40>을 만족시키면 좋다.
또, 식 (242)에서부터 식 (247)의 Xk, Yk에 주목하면,
Figure 112018069724742-pat00291
(a는 0, 1, 2, …, M-2, M -1이고, b는 0, 1, 2, …, M-2, M-1이며, a≠b이다)
단, s는 정수이다.
Figure 112018069724742-pat00292
(a는 0, 1, 2, …, M-2, M -1이고, b는 0, 1, 2, …, M-2, M-1이며, a≠b이다).
단, u는 정수이다.
의 2개의 조건을 만족시키면 양호한 데이터의 수신품질을 얻을 수 있다. 또, 실시형태 8에서는 <조건 42>를 만족시키면 좋다.
또, 식 (242) 및 식 (247)에서 0 라디안≤δ<2π 라디안으로 한 때, δ=π 라디안일 때 유니테리 행렬이 되며, δ≠π 라디안일 때 비 유니테리 행렬이 된다. 본 방식에서는 π/2 라디안≤|δ|<π 라디안의 비 유니테리 행렬일 때가 하나의 특징적인 구성이며, 양호한 데이터의 수신품질을 얻을 수 있게 된다. 다른 구성으로서 유니테리 행렬인 경우도 있으나, 실시형태 10이나 실시형태 16에서 상세하게 설명하나, 식 (242)에서부터 식 (247)에서 N을 홀수로 하면 양호한 데이터의 수신품질을 얻을 수 있을 가능성이 커진다.
(실시형태 14)
본 실시형태에서는 규칙적으로 프리코딩 행렬을 전환하는 방식에서 프리코딩 행렬로 유니테리 행렬을 이용하는 경우와 비 유니테리 행렬을 이용하는 경우의 사용구분의 예에 대해 설명한다.
예를 들어 2행 2열의 프리코딩 행렬(각 요소는 복소수로 구성되어 있는 것으로 한다)을 이용한 경우, 즉, 어떤 변조방식에 의거한 2개의 변조신호 (s1(t) 및 s2(t))에 대해 프리코딩을 시행하여, 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하는 경우에 대해 설명한다.
규칙적으로 프리코딩 행렬을 재배열하는 방법을 이용하여 데이터를 전송하는 경우, 도 3, 도 13의 송신장치는 프레임 구성신호(313)에 따라 매핑부(306A, 306B)는 변조방식을 전환하게 된다. 이때, 변조방식의 변조 다치 수(多値數)(변조 다치 수:IQ평면에서의 변조방식의 신호 점의 수)와 프리코딩 행렬의 관계에 대해 설명한다.
규칙적으로 프리코딩 행렬을 전환하는 방법의 이점은 실시형태 6에서 설명한 것과 같이, LOS 환경에 있어서 양호한 데이터의 수신품질을 얻을 수 있다는 점이며, 특히, 수신장치가 ML연산이나 ML연산에 의거 APP(또는 Max-log APP)를 실시한 경우 그 효과가 크다. 그러나 ML연산은 변조방식의 변조 다치 수에 수반하여 회로 규모(연산 규모)에 큰 영향을 준다. 예를 들어 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하고, 2개의 변조신호(프리코딩 전의 변조방식에 의거하는 신호)가 모두 동일한 변조방식을 이용하고 있는 것으로 하는 경우, 변조방식이 QPSK인 경우 IQ평면에서의 후보신호 점(도 11의 수신신호 점(1101))의 수는 4×4=16개, 16QAM인 경우 16×16=256개, 64QAM인 경우 64×64=4096개, 256QAM인 경우 256×256=65536개, 1024QAM인 경우 1024×1024=1048576개가 되며, 수신장치의 연산 규모를 어느 정도의 회로 규모로 억제하기 위해서는 변조방식이 QPSK, 16QAM, 64QAM인 경우는 수신장치에서 ML연산(ML연산에 의거하는 (Max-log) APP)를 이용하고, 256QAM, 1024QAM인 경우는 MMSE, ZF와 같은 선형연산을 이용한 검파를 이용하게 된다(경우에 따라서는 256QAM인 경우, ML연산을 이용해도 좋다).
이와 같은 수신장치를 상정한 경우, 다중 신호 분리 후의 SNR(signal-to-noisepower ratio)를 고려한 경우에 수신장치로 MMSE, ZF와 같은 선형연산을 이용하고 있는 경우는 프리코딩 행렬로 유니테리 행렬이 적합하며, ML연산을 이용하고 있는 경우는 프리코딩 행렬로 유니테리 행렬·비 유니테리 행렬의 어느 하나를 이용해도 좋다. 상술의 몇 가지의 실시형태의 설명을 고려하면 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하고, 2개의 변조신호(프리코딩전의 변조방식에 의거하는 신호)가 모두 동일한 변조방식을 이용하고 있는 것일 경우, 변조방식의 변조 다치 수가 64치 이하(또는 256치 이하)일 때, 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로서 비 유니테리 행렬을 이용하고, 64치보다 큰(또는 256치보다 크다) 경우 유니테리 행렬을 이용하면 통신시스템이 지원하고 있는 모든 변조방식에 있어서 어느 변조방식의 경우에서도 수신장치의 회로 규모를 작게 하면서 양호한 데이터의 수신품질을 얻을 수 있다는 효과를 얻을 수 있을 가능성이 커진다.
또, 변조방식의 변조 다치 수가 64치 이하(또는 256치 이하)의 경우에 대해서도 유니테리 행렬을 이용하는 편이 좋은 경우가 있을 가능성이 있다. 이와 같은 점을 고려하면 변조방식의 변조 다치 수가 64치 이하(또는 256치 이하)의 복수의 변조방식을 지원하고 있는 경우, 지원하고 있는 복수의 64치 이하의 변조방식의 어느 한 변조방식에서 규칙적으로 프리코딩 행렬을 재배열하는 방식을 이용한 때의 프리코딩 행렬로 비 유니테리 행렬을 이용하는 경우가 존재하는 것이 중요해진다.
상술한 설명에서는 일례로 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하는 경우에 대해 설명하였으나, 이에 한정되는 것은 아니며, 프리코딩 후의 N개의 신호를 N개의 안테나로부터 송신하여, N개의 변조신호(프리코딩 전의 변조방식에 의거하는 신호)가 모두 동일한 변조방식을 이용하고 있는 것으로 하는 경우, 변조방식의 변조 다치 수에서 βN라고 하는 임계치를 설치하고, 변조방식의 변조 다치 수가 βN 이하의 복수의 변조방식을 지원하고 있는 경우, 지원하고 있는 βN 이하의 복수의 변조방식의 어느 한 변조방식에서 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로 비 유니테리 행렬을 이용하는 경우가 존재하며, 변조방식의 변조 다치 수가 βN보다 큰 변조방식의 경우, 유니테리 행렬을 이용하면 통신시스템이 지원하고 있는 모든 변조방식에 있어서 어느 변조방식의 경우에도 수신장치의 회로 규모를 작게 하면서 양호한 데이터의 수신품질을 얻을 수 있다는 효과를 얻을 수 있을 가능성이 커진다(변조방식의 변조 다치 수가 βN 이하일 때, 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로 비 유니테리 행렬을 항상 이용해도 좋다).
상술한 설명에서는 동시에 송신하는 N개의 변조신호의 변조방식이 동일한 변조방식을 이용하고 있는 경우로 하여 설명하였으나, 이하에서는 동시에 송신하는 N개의 변조신호에 있어서 2종류 이상의 변조방식이 존재하는 경우에 대해 설명한다.
예로서 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하는 경우에 대해 설명한다. 2개의 변조신호(프리코딩 전의 변조방식에 의거하는 신호)가 모두 동일한 변조방식 또는 다른 변조방식인 것으로 한 때, 변조 다치 수가 2a1치의 변조방식과 변조 다치 수가 2a2치의 변조방식을 이용하고 있는 것으로 한다. 이때, 수신장치에 대해 ML연산(ML연산에 의거하는(Max-log) APP)을 이용하고 있는 경우, IQ 평면에서의 후보신호 점(도 11의 수신신호 점(1101))의 수는 2a1×2a2=2 a1+a2의 후보신호 점이 존재하게 된다. 이때, 상기에서 설명한 것과 같이 수신장치의 회로 규모를 작게 하면서 양호한 데이터의 수신품질을 얻을 수 있기 위해서는 2a1 +a2에 대해 2β라는 임계치를 설치하고, 2a1 +a2≤2β 때 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로 비 유니테리 행렬을 이용하며, 2a1 +a2>2β 경우 유니테리 행렬을 이용하면 좋다.
또, 2a1 +a2≤2β의 경우에도 유니테리 행렬을 이용하는 편이 좋은 경우가 있을 가능성이 있다. 이와 같은 점을 고려하면, 2a1 +a2≤2β의 복수의 변조방식의 조합을 지원하고 있는 경우, 지원하고 있는 2a1 +a2≤2β의 복수의 변조방식의 조합의 어느 한 변조방식의 조합으로 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로 비 유니테리 행렬을 이용하는 경우가 존재하는 것이 중요해진다.
상술한 설명에서는 일례로서 프리코딩 후의 2개의 신호를 2개의 안테나로부터 송신하는 경우에 대해 설명하였으나 이에 한정되는 것은 아니다. 예를 들어 N개의 변조신호(프리코딩 전의 변조방식에 의거하는 신호)가 모두 동일한 변조방식 또는 다른 변조방식이 존재하는 경우일 때, 제 i 변조신호의 변조방식의 변조 다치 수를 2ai로 한다(i=1, 2, …, N-1, N).
이때, 수신장치에서 ML연산(ML연산에 의거하는(Max-log) APP)을 이용하고 있는 경우, IQ 평면에서의 후보신호 점(도 11의 수신신호 점(1101))의 수는 2a1×2a2×…×2ai×…×2aN=2a1+a2+…+ai+…+aN의 후보신호 점이 존재하게 된다. 이때, 상기에서 설명한 것과 같이 수신장치의 회로 규모를 작게 하면서 양호한 데이터의 수신품질을 얻을 수 있기 위해서는 2a1+a2+…+ai+…+aN에 대해 2β라는 임계치를 설치하고,
Figure 112018069724742-pat00293
<조건 #44>를 만족시키는 복수의 변조방식의 조합을 지원하고 있는 경우, 지원하고 있는 <조건 #44>를 만족시키는 복수의 변조방식의 조합의 어느 한 변조방식의 조합으로 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로서 비 유니테리 행렬을 이용하는 경우가 존재하며,
Figure 112018069724742-pat00294
<조건 #45>를 만족시키는 모든 변조방식의 조합의 경우, 유니테리 행렬을 이용하면 통신시스템이 지원하고 있는 모든 변조방식에서 어느 변조방식의 조합의 경우에 있어서도 수신장치의 회로 규모를 작게 하면서 양호한 데이터의 수신품질을 얻을 수 있다는 효과를 가질 수 있을 가능성이 커진다(지원하고 있는 <조건 #44>를 만족시키는 복수의 변조방식의 조합 모두에서 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용한 때의 프리코딩 행렬로서 비 유니테리 행렬을 이용해도 좋다).
(실시형태 15)
본 실시형태에서는 OFDM과 같은 멀티 캐리어 전송방식을 이용한 규칙적으로 프리코딩 행렬을 전환하는 방식의 시스템 예에 대해 설명한다.
도 47은 본 실시형태에서의 OFDM과 같은 멀티 캐리어 전송방식을 이용한 규칙적으로 프리코딩 행렬을 전환하는 방식의 시스템에서, 방송국(기지국)이 송신하는 송신신호의 시간-주파수 축에서의 프레임 구성의 일례를 나타내고 있다(시간 $1부터 시간 $T까지의 프레임 구성으로 한다). 도 47 (A)는 실시형태 1 등에서 설명한 스트림 s1의 시간-주파수 축에서의 프레임 구성, 도 47 (B)는 실시형태 1 등에서 설명한 스트림 s2의 시간-주파수 축에서의 프레임 구성을 나타내고 있다. 스트림 s1과 스트림 s2의 동일시간, 동일(서브)캐리어의 심벌은 복수의 안테나를 이용하여 동일시간, 동일 주파수로 송신되게 된다.
도 47 (A), (B)에서는 OFDM을 이용한 때에 사용되는 (서브)캐리어는 (서브)캐리어 a ~ (서브)캐리어 a+Na로 구성된 캐리어 군 #A, (서브)캐리어 b ~ (서브)캐리어 b+Nb로 구성된 캐리어 군 #B, (서브)캐리어 c ~ (서브)캐리어 c+Nc로 구성된 캐리어 군 #C, (서브)캐리어 d ~ (서브)캐리어 d+Nd로 구성된 캐리어 군 #D, …로 분할하는 것으로 한다. 그리고 각 서브 캐리어 군에서는 복수의 송신방법을 지원하는 것으로 한다. 여기서, 복수의 송신방법을 지원함으로써 각 송신방법이 가지는 이점을 효과적으로 활용하는 것이 가능해진다. 예를 들어 도 47 (A), (B)에서는 캐리어 군 #A는 공간 다중 MIMO 전송방식 또는 프리코딩 행렬이 고정인 MIMO 전송방식을 이용하는 것으로 하고, 캐리어 군 #B는 규칙적으로 프리코딩 행렬을 전환하는 MIMO 전송방식을 이용하는 것으로 하며, 캐리어 군 #C는 스트림 s1만 송신하고, 캐리어 군 #D는 시공간블록 부호를 이용하여 송신하는 것으로 한다.
도 48은 본 실시형태에서의 OFDM과 같은 멀티 캐리어 전송방식을 이용한 규칙적으로 프리코딩 행렬을 전환하는 방식의 시스템에서 방송국(기지국)이 송신하는 송신신호의 시간-주파수 축에서의 프레임 구성의 일례를 나타내고 있으며, 도 47과는 다른 시간의 시간 $X에서부터 시간 $X+T'까지의 프레임 구성을 나타내고 있다. 도 48은 도 47과 마찬가지로 OFDM을 이용한 때에 사용되는 (서브)캐리어는 (서브)캐리어 a ~ (서브)캐리어 a+Na로 구성된 캐리어 군 #A, (서브)캐리어 b ~ (서브)캐리어 b+Nb로 구성된 캐리어 군 #B, (서브)캐리어 c ~ (서브)캐리어 c+Nc로 구성된 캐리어 군 #C, (서브)캐리어 d ~ (서브)캐리어 d+Nd로 구성된 캐리어 군 #D, …로 분할하는 것으로 한다. 그리고 도 48이 도 47과 다른 점은 도 47에서 이용되고 있는 통신방식과 도 48에서 이용되고 있는 통신방식이 다른 캐리어 군이 존재하는 것이다. 도 48에서는 (A), (B)에서는 캐리어 군 #A는 시공간블록 부호를 이용하여 송신하는 것으로 하고, 캐리어 군 #B는 규칙적으로 프리코딩 행렬을 전환하는 MIMO 전송방식을 이용하는 것으로 하며, 캐리어 군 #C는 규칙적으로 프리코딩 행렬을 전환하는 MIMO 전송방식을 이용하는 것으로 하고, 캐리어 군 #D는 스트림 s1만 송신하는 것으로 한다.
다음에, 지원하는 송신방법에 대해 설명한다.
도 49는 공간 다중 MIMO 전송방식 또는 프리코딩 행렬이 고정의 MIMO 전송방식을 이용한 때의 신호처리방법을 나타내고 있으며, 도 6과 동일한 번호를 부여하고 있다. 어떤 변조방식에 따른 베이스밴드신호인 가중합성부(600)는 스트림 s1(t)(307A) 및 스트림 s2(t)(307B) 및 가중방법에 관한 정보(315)를 입력으로 하여, 가중 후의 변조신호 z1(t)(309A) 및 가중 후의 변조신호 z2(t)(309B)를 출력한다. 여기서, 가중방법에 관한 정보(315)가 공간 다중 MIMO 전송방식을 나타내고 있은 경우 도 49의 방식#1의 신호처리를 한다. 즉, 이하의 처리를 한다.
Figure 112018069724742-pat00295
단, 1개의 변조신호를 송신하는 방식을 지원하고 있는 경우, 송신 전력의 점으로부터 식 (250)은 식 (251)과 같이 나타나는 경우도 있다.
Figure 112018069724742-pat00296
그리고 가중방법에 관한 정보(315)가 프리코딩 행렬이 고정된 MIMO 전송방식을 나타내고 있는 경우, 예를 들어 도 49의 방식 #2의 신호처리를 한다. 즉, 이하의 처리를 한다.
Figure 112018069724742-pat00297
여기서,θ1112,λ,δ는 고정 값이 된다.
도 50은 시공간블록 부호를 이용한 때의 변조신호의 구성을 나타내고 있다. 도 50의 시공간블록 부호화부(5002)는 어느 변조신호에 의거하는 베이스밴드신호를 입력으로 한다. 예를 들어 시공간블록 부호화부(5002)는 심벌 s1, 심벌 s2, …를 입력으로 한다. 그러면, 도 50과 같이 시공간블록 부호화가 실행되어, z1(5003A)은 「심벌 #0으로서 s1」, 「심벌 #1로서 -s2」, 「심벌 #2로서 s3」, 「심벌 #3으로서 -s4」…이 되고, z2(5003B)는 「심벌 #0으로서 s2」, 「심벌 #1로서 s1」, 「심벌 #2로서 s4」, 「심벌 #3으로서 s3」…이 된다. 이때, z1에서의 심벌 #X, z2에서의 심벌 #X는 동일시간에 동일 주파수에 의해 안테나로부터 송신되게 된다.
도 47, 도 48에서는 데이터를 전송하는 심벌만을 기재하고 있으나, 실제로는 전송방식, 변조방식, 오류정정방식 등의 정보를 전송할 필요가 있다. 예를 들어 도 51과 같이 1개의 변조신호 z1만으로 이와 같은 정보를 정기적으로 전송하면, 이와 같은 정보를 통신 상대에게 전송할 수 있다. 또, 전송로의 변동, 즉, 수신장치가 채널 변동을 추정하기 위한 심벌(예를 들어 파일럿 심벌, 레퍼런스 심벌, 프리앰블, 송수신에서 기존의 (PSK:Phase Shift Keying) 심벌)을 전송할 필요가 있다. 도 47, 도 48에서는 이와 같은 심벌을 생략하여 기술하고 있으나, 실제로는 채널 변동을 추정하기 위한 심벌이 시간-주파수 축의 프레임 구성에서 포함되게 된다. 따라서 각 캐리어 군은 데이터를 전송하기 위한 심벌만으로 구성되어 있는 것은 아니다(이 점에 대해서는 실시형태 1에 있어서도 동일하다).
도 52는 본 실시형태에서의 방송국(기지국)의 송신장치의 구성의 일례를 나타내고 있다. 송신방법 결정부(5205)는 각 캐리어 군의 캐리어 수, 변조방식, 오류정정방식, 오류정정부호의 부호화 율, 송신방법 등의 결정을 하여 제어신호(5205)로서 출력한다.
변조신호 생성부 #1(5201_1)은 정보(5200_1) 및 제어신호(5205)를 입력으로 하여, 제어신호(5205)의 통신방식의 정보에 의거하여, 도 47, 도 48의 캐리어 군 #A의 변조신호 z1(5202_1) 및 변조신호 z2(5203_1)를 출력한다.
마찬가지로, 변조신호 생성부 #2(5201_2)는 정보(5200_2) 및 제어신호(5205)를 입력으로 하여, 제어신호(5205)의 통신방식의 정보에 의거하여, 도 47, 도 48의 캐리어 군 #B의 변조신호 z1(5202_2) 및 변조신호 z2(5203_2)를 출력한다.
마찬가지로, 변조신호 생성부 #3 (5201_3)은 정보(5200_3) 및 제어신호(5205)를 입력으로 하여, 제어신호(5205)의 통신방식의 정보에 의거하여, 도 47, 도 48의 캐리어 군 #C의 변조신호 z1(5202_3) 및 변조신호 z2(5203_3)을 출력한다.
마찬가지로, 변조신호 생성부 #4(5201_4)는 정보(5200_4) 및 제어신호(5205)를 입력으로 하여, 제어신호(5205)의 통신방식의 정보에 의거하여, 도 47, 도 48의 캐리어 군 #D의 변조신호 z1(5202_4) 및 변조신호 z2(5203_4)를 출력한다.
마찬가지로, 변조신호 생성부 #M(5201_M)은 정보(5200_M) 및 제어신호(5205)를 입력으로 하여, 제어신호(5205)의 통신방식의 정보에 의거하여, 어느 캐리어 군의 변조신호 z1(5202_M) 및 변조신호 z2(5203_M)를 출력한다.
OFDM 방식관련 처리부(5207_1)는 캐리어 군 #A의 변조신호 z1(5202_1), 캐리어 군 #B의 변조신호 z1(5202_2), 캐리어 군 #C의 변조신호 z1(5202_3), 캐리어 군 #D의 변조신호 z1(5202_4), …, 어느 캐리어 군의 변조신호 z1(5202_M) 및 제어신호(5206)를 입력으로 하여, 재배열, 역 푸리에변환, 주파수 변환, 증폭 등의 처리를 시행하여 송신신호(5208_1)를 출력하고, 송신신호(5208_1)는 안테나(5209_1)로부터 전파로서 출력된다.
마찬가지로, OFDM 방식관련 처리부(5207_2)는 캐리어 군 #A의 변조신호 z1(5203_1), 캐리어 군 #B의 변조신호 z2(5203_2), 캐리어 군 #C의 변조신호 z2(5203_3), 캐리어 군 #D의 변조신호 z2(5203_4), …, 어느 캐리어 군의 변조신호 z2(5203_M) 및 제어신호(5206)를 입력으로 하여, 재배열, 역 푸리에변환, 주파수 변환, 증폭 등의 처리를 시행하여 송신신호(5208_2)를 출력하고, 송신신호(5208_2)는 안테나(5209_2)로부터 전파로서 출력된다.
도 53은 도 52의 변조신호 생성부 #1 ~ #M의 구성의 일례를 나타내고 있다. 오류정정 부호화부(5302)는 정보(5300) 및 제어신호(5301)를 입력으로 하여, 제어신호(5301)에 의해 오류정정 부호화방식, 오류정정부호화의 부호화 율을 설정해서 오류정정부호화를 실시하여, 오류정정부호화 후의 데이터(5303)을 출력한다(오류정정 부호화 방식, 오류정정부호화의 부호화 율의 설정에 의해, 예를 들어 LDPC 부호, 터보 부호, 돌림형 부호 등을 이용한 때 부호화 율에 따라서는 펑쳐(Puncture)를 실행하여 부호화 율을 실현하는 경우가 있다).
인터리브부(5304)는 오류정정부호화 후의 데이터(5303), 제어신호(5301)를 입력으로 하여, 제어신호(5301)에 포함되는 인터리브방법의 정보에 따라서 오류정정부호화 후의 데이터(5303)의 재배열을 실행하여 인터리브 후의 데이터(5305)를 출력한다.
매핑부(5306_1)는 인터리브 후의 데이터(5305) 및 제어신호(5301)를 입력으로 하여, 제어신호(5301)에 포함되는 변조방식의 정보에 따라서 매핑 처리를 실행하여 베이스밴드신호(5307_1)를 출력한다.
마찬가지로, 매핑부(5306_2)는 인터리브 후의 데이터(5305) 및 제어신호(5301)를 입력으로 하여, 제어신호(5301)에 포함되는 변조방식의 정보에 따라서 매핑 처리를 실행하여 베이스밴드신호(5307_2)를 출력한다.
신호처리부(5308)는 베이스밴드신호(5307_1), 베이스밴드신호(5307_2) 및 제어신호(5301)를 입력으로 하여, 제어신호(5301)에 포함되는 전송방법(여기에서는 예를 들어 공간 다중 MIMO 전송방식, 고정적인 프리코딩 행렬을 이용하는 MIMO 방식, 규칙적으로 프리코딩 행렬을 전환하는 MIMO 방식, 시공간블록 부호화, 스트림 s1만 송신하는 전송방식)의 정보에 의거하여 신호처리를 실행하여, 신호처리 후의 신호 z1(5309_1) 및 신호처리 후의 z2(5309_2)를 출력한다. 또 스트림 s1만을 송신하는 전송방식이 선택되었을 경우, 신호처리부(5308)는 신호처리 후의 z2(5309_2)를 출력하지 않는 경우도 있다. 또, 도 53에서는 오류정정 부호화부가 하나인 경우의 구성을 나타냈으나, 이에 한정되는 것은 아니며, 예를 들어 도 3에 나타내는 것과 같이 복수의 부호화기를 구비하고 있어도 좋다.
도 54는 도 52에서의 OFDM 방식관련 처리부(5207_1 및 5207_2)의 구성의 일례를 나타내고 있으며, 도 14와 동일하게 동작하는 것에 대해서는 동일 부호를 부여하고 있다. 재배열부(5402A)는 캐리어 군 #A의 변조신호 z1(5400_1), 캐리어 군 #B의 변조신호 z1(5400_2), 캐리어 군 #C의 변조신호 z1(5400_3), 캐리어 군 #D의 변조신호 z1(5400_4), …, 어느 캐리어 군의 변조신호 z1(5400_M) 및 제어신호(5403)을 입력으로 하여 재배열을 실행하고, 재배열 후의 신호 (1405A 및 1405B)를 출력한다. 또, 도 47, 도 48, 도 51에서는 캐리어 군의 할당을 집합한 서브 캐리어로 구성하는 예로 설명하고 있으나, 이에 한정되는 것은 아니며, 시간마다 이산적인 서브 캐리어에 의해 캐리어 군을 구성해도 좋다. 또, 도 47, 도 48, 도 51에서는 캐리어 군의 캐리어 수는 시간에 있어서 변경하지 않는 예로 설명하고 있으나, 이에 한정되는 것은 아니다. 이 점에 대해서는 별도로 다음에 설명한다.
도 55는 도 47, 도 48, 도 51과 같이 캐리어 군마다 전송방식을 설정하는 방식의 시간-주파수 축에서의 프레임 구성의 상세한 예를 나타내고 있다. 도 55에 있어서 제어정보 심벌을 5500, 개별 제어정보 심벌을 5501, 데이터심벌을 5502, 파일럿 심벌을 5503으로 나타낸다. 또, 도 55 (A)는 스트림 s1의 시간-주파수 축에서의 프레임 구성을 나타내고 있으며, 도 55 (B)는 스트림 s2의 시간-주파수 축에서의 프레임 구성을 나타내고 있다.
제어정보 심벌은 캐리어 군 공통의 제어정보를 전송하기 위한 심벌이며, 송수신기가 주파수, 시간 동기를 행하기 위한 심벌, (서브)캐리어의 할당에 관한 정보 등으로 구성되어 있다. 그리고 제어심벌은 시각 $1에서 스트림 s1만으로부터 송신되는 것으로 한다.
개별 제어정보 심벌은 서브 캐리어 군 개별의 제어정보를 전송하기 위한 심벌이며, 데이터심벌의 전송방식·변조방식·오류정정 부호화방식·오류정정부호화의 부호화 율·오류정정부호의 블록 사이즈 등의 정보, 파일럿 심벌의 삽입방법의 정보, 파일럿 심벌의 송신 파워의 정보 등으로 구성되어 있다. 개별 제어정보 심벌은 시각 $1에서 스트림 s1만으로부터 송신되는 것으로 한다.
데이터심벌은 데이터(정보)를 전송하기 위한 심벌이며, 도 47 ~ 도 50을 이용하여 설명한 것과 같이, 예를 들어 공간 다중 MIMO 전송방식, 고정적인 프리코딩 행렬을 이용하는 MIMO 방식, 규칙적으로 프리코딩 행렬을 전환하는 MIMO 방식, 시공간블록 부호화, 스트림 s1만 송신하는 전송방식의 어느 하나의 전송방식의 심벌이다. 또, 캐리어 군 #A, 캐리어 군 #B, 캐리어 군 #C, 캐리어 군 #D에 있어서 스트림 s2에 데이터심벌이 존재하도록(듯이) 기재하고 있으나, 스트림 s1만 송신하는 전송방식을 이용하고 있는 경우는 스트림 s2에 데이터심벌이 존재하지 않는 경우도 있다.
파일럿 심벌은 수신장치가 채널 추정, 즉, 식 (36)의 h11(t), h12(t), h21(t), h22(t)에 상당하는 변동을 추정하기 위한 심벌이다(여기에서는 OFDM 방식과 같은 멀티 캐리어 전송방식을 이용하고 있으므로, 서브 캐리어마다 h11(t), h12(t), h21(t), h22(t)에 상당하는 변동을 추정하기 위한 심벌이라고 하게 된다). 따라서 파일럿 심벌은 예를 들어 PSK 전송방식을 이용하고 있으며, 송수신기에서 기존의 패턴이 되도록 구성하게 된다. 또, 파일럿 심벌을 수신장치는 주파수 오프셋(offset)의 추정, 위상 왜곡 추정, 시간 동기에 이용해도 좋다.
도 56은 도 52의 송신장치가 송신한 변조신호를 수신하기 위한 수신장치의 구성의 일례를 나타내고 있으며, 도 7과 마찬가지로 동작하는 것에 대해서는 동일 부호를 부여하고 있다.
도 56에서 OFDM 방식관련 처리부(5600_X)는 수신신호(702_X)를 입력으로 하여 소정의 처리를 실행하여 신호처리 후의 신호(704_X)를 출력한다. 마찬가지로, OFDM 방식관련 처리부(5600_Y)는 수신신호(702_Y)를 입력으로 하여 소정의 처리를 실행하여 신호처리 후의 신호(704_Y)를 출력한다.
도 56의 제어정보 복호부(709)는 신호처리 후의 신호(704_X) 및 신호처리 후의 신호(704_Y)를 입력으로 하여, 도 55에서의 제어정보 심벌 및 개별 제어정보 심벌을 추출하여 이들 심벌로 전송한 제어정보를 얻어서, 이 정보를 포함한 제어신호(710)를 출력한다.
변조신호 z1의 채널변동 추정부(705_1)는 신호처리 후의 신호(704_X) 및 제어신호(710)를 입력으로 하여, 이 수신장치가 필요로 하는 캐리어 군(소한 캐리어 군)에서의 채널 추정을 실행하여 채널추정신호(706_1)를 출력한다.
마찬가지로, 변조신호 z2의 채널변동 추정부(705_2)는 신호처리 후의 신호(704_X) 및 제어신호(710)를 입력으로 하여, 이 수신장치가 필요로 하는 캐리어 군(소망하는 캐리어 군)에서의 채널 추정을 실행하여 채널추정신호(706_2)를 출력한다.
마찬가지로, 변조신호 z1의 채널변동 추정부(705_1)는 신호처리 후의 신호(704_Y) 및 제어신호(710)를 입력으로 하여, 이 수신장치가 필요로 하는 캐리어 군(소망하는 캐리어 군)에서의 채널 추정을 실행하여 채널추정신호(708_1)를 출력한다.
마찬가지로, 변조신호 z2의 채널변동 추정부(705_2)는 신호처리 후의 신호(704_Y) 및 제어신호(710)를 입력으로 하여, 이 수신장치가 필요로 하는 캐리어 군(소망하는 캐리어 군)에서의 채널 추정을 실행하여 채널추정신호(708_2)를 출력한다.
그리고 신호처리부(711)는 신호(706_1, 706_2, 708_1, 708_2, 704_X, 704_Y) 및 제어신호(710)를 입력으로 하여, 제어신호(710)에 포함되어 있는 소망하는 캐리어 군으로 전송한 데이터심벌에서의 전송방식·변조방식·오류정정 부호화방식·오류정정부호화의 부호화 율·오류정정부호의 블록 사이즈 등의 정보에 의거하여 복조, 복호의 처리를 실행하여 수신데이터(712)를 출력한다.
도 57은 도 56에서의 OFDM 방식관련 처리부(5600_X, 5600_Y)의 구성을 나타내고 있으며, 주파수 변환부(5701)는 수신신호(5700)를 입력으로 하여 주파수 변환을 실행하여, 주파수 변환 후의 신호(5702)를 출력한다.
푸리에 변환부(5703)는 주파수 변환 후의 신호(5702)를 입력으로 하여 푸리에 변환을 실행하여 푸리에 변환 후의 신호(5704)를 출력한다.
이상과 같이, OFDM 방식과 같은 멀티 캐리어 전송방식을 이용하고 있을 때, 복수의 캐리어 군으로 분할하고 캐리어 군마다 전송방식을 설정함으로써, 캐리어 군마다 수신품질 또는 전송속도를 설정할 수 있으므로, 유연한 시스템을 구축할 수 있다는 효과를 얻을 수 있다. 이때, 다른 실시형태에서 설명한 것과 같은 규칙적으로 프리코딩 행렬을 전환하는 방법을 선택할 수 있도록 함으로써, LOS 환경에 대해 높은 수신품질을 얻을 수 있는 동시에 높은 전송속도를 얻을 수 있다는 이점을 얻을 수 있다. 또, 본 실시형태에서는 캐리어 군이 설정 가능한 전송방식으로서 「공간 다중 MIMO 전송방식, 고정적인 프리코딩 행렬을 이용하는 MIMO 방식, 규칙적으로 프리코딩 행렬을 전환하는 MIMO 방식, 시공간블록 부호화, 스트림 s1만 송신하는 전송방식」을 언급했으나, 이에 한정되는 것은 아니며, 이때, 시공간부호로서 도 50의 방식을 설명하였으나, 이에 한정되는 것은 아니고 또, 고정적인 프리코딩 행렬을 이용하는 MIMO 방식은 도 49의 방식#2에 한정되는 것은 아니며, 고정적인 프리코딩 행렬로 구성되어 있으면 좋다. 또, 본 실시형태에서는 송신장치의 안테나 수를 2로 한 경우로 설명하였으나, 이에 한정되는 것은 아니며, 2보다 큰 경우에 대해서도 캐리어 군마다 「공간 다중 MIMO 전송방식, 고정적인 프리코딩 행렬을 이용하는 MIMO 방식, 규칙적으로 프리코딩 행렬을 전환하는 MIMO 방식, 시공간블록 부호화, 스트림 s1만 송신하는 전송방식」의 어느 것이든 전송방식을 선택할 수 있도록 하면 동일한 효과를 얻을 수 있다.
도 58은 도 47, 도 48, 도 51과는 다른 캐리어 군의 할당방법을 나타내고 있다. 도 47, 도 48, 도 51, 도 55에서는 캐리어 군의 할당을 집합한 서브 캐리어로 구성하는 예로 설명하고 있으나, 도 58에서는 캐리어 군의 캐리어를 이산적으로 배치하고 있는 것이 특징이 되고 있다. 도 58은 도 47, 도 48, 도 51, 도 55와는 다른 시간-주파수 축에서의 프레임 구성의 일례를 나타내고 있고, 도 58에서는 캐리어 1부터 캐리어 H, 시간 $1부터 시간 $K의 프레임 구성을 나타내고 있으며, 도 55와 동일한 것에 대해서는 동일 부호를 부여하고 있다. 도 58의 데이터심벌에서 「A」라고 기재되어 있는 심벌은 캐리어 군 A의 심벌, 「B」라고 기재되어 있는 심벌은 캐리어 군 B의 심벌, 「C」라고 기재되어 있는 심벌은 캐리어 군 C의 심벌, 「D」라고 기재되어 있는 심벌은 캐리어 군 D의 심벌이라는 것을 나타내고 있다. 이와 같이 캐리어 군은 (서브)캐리어 방향에 있어서 이산적으로 배치해도 마찬가지로 실시할 수가 있으며 또, 시간 축 방향에 있어서 항상 동일한 캐리어를 사용할 필요는 없다. 이와 같은 배치를 실행함으로써 시간, 주파수 다이버시티 게인(Diversity Gain)을 얻을 수 있다는 효과를 얻을 수 있다.
도 47, 도 48, 도 51, 도 58에 있어서 제어정보 심벌, 고유 제어정보 심벌을 캐리어 군마다 동일한 시간에 배치하고 있으나, 다른 시간에 배치해도 좋다. 또, 캐리어 군이 사용하는 (서브)캐리어 수는 시간과 동시에 변경해도 좋다.
(실시형태 16)
본 실시형태에서는 실시형태 10과 같이 유니테리 행렬을 이용한 프리코딩 행렬을 규칙적으로 전환하는 방법에 있어서 N을 홀수로 하는 경우에 대해 설명한다.
주기 2N의 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서 주기 2N을 위하여 준비하는 프리코딩 행렬을 다음 식으로 나타낸다.
Figure 112018069724742-pat00298
α>0인 것으로 하고, (i에 상관없이) 고정 값인 것으로 한다.
Figure 112018069724742-pat00299
α>0인 것으로 하고, (i에 상관없이) 고정 값인 것으로 한다. (식 (253)의 α와 식 (254)의 α는 동일한 값인 것으로 한다)
이때, 실시형태 3의 (수학식 106)의 조건 5 및 (수학식 107)의 조건 6에서 식 (253)에 대해 이하의 조건이 양호한 데이터의 수신품질을 얻기 위해서는 중요해진다.
Figure 112018069724742-pat00300
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
Figure 112018069724742-pat00301
(x는 0, 1, 2, …, N-2, N-1이고, y는 0, 1, 2, …, N-2, N-1이며, x≠y이다)
그리고 이하의 조건을 부가하는 것을 고려한다.
Figure 112018069724742-pat00302
다음에, 실시형태 6에서 설명한 것과 같이 수신 열악 점을 복소 평면상에서 위상에 대해 일양 분포가 되도록 배치하기 위해서 <조건 #49> 또는 <조건 #50>을 준다.
Figure 112018069724742-pat00303
Figure 112018069724742-pat00304
즉, <조건 49>에서는 위상의 차이가 2π/N라디안인 것을 의미하고 있다. 또, <조건 50>에서는 위상의 차이가-2π/N 라디안인 것을 의미하고 있다.
그리고 θ11(0)―θ21(0)=0 라디안으로 하고, 또 α>1로 한 때, N=3일 때의 s1의 수신 열악 점과 s2의 수신 열악 점의 복소 평면에서의 배치를 도 60 (a), (b)에 나타낸다. 도 60 (a), (b)로부터 알 수 있는 것과 같이, 복소 평면에서 s1의 수신 열악 점의 최소 거리는 크게 유지할 수 있으며, 또, 마찬가지로 s2의 수신 열악 점의 최소 거리도 크게 유지할 수 있다. 그리고 α<1일 때에도 동일한 상태가 된다. 또, 실시형태 10의 도 45와 비교하면, 실시형태 9와 마찬가지로 고려하면 N이 홀수일 때가 N이 짝수일 때와 비교하여 복소 평면에서 수신 열악 점 간의 거리가 커질 가능성이 크다. 단, N이 작은 값, 예를 들어 N≤16 이하의 경우, 복소 평면에서의 수신 열악 점의 최소 거리는 수신 열악 점의 존재하는 개수가 적으므로 어느 정도의 길이를 확보할 수 있다. 따라서 N≤16의 경우는 짝수라도 데이터의 수신품질을 확보할 수 있는 경우가 존재할 가능성이 있다.
따라서 식 (253), (254)에 의거 규칙적으로 프리코딩 행렬을 전환하는 방식에 있어서 N은 홀수로 하면 데이터의 수신품질을 향상시킬 수 있을 가능성이 크다. 또 식 (253), (254)에 의거하여 F[0] ~ F[2N-1]의 프리코딩 행렬이 생성되게 된다(F[0] ~ F[2N-1]의 프리코딩 행렬은 주기 2N에 대해 어떤 순번으로 배열하여 사용해도 좋다). 그리고 예를 들어 심벌번호 2Ni일 때 F[0]을 이용하여 프리코딩을 실행하고, 심벌번호 2Ni+1일 때 F[1]을 이용하여 프리코딩을 실행하며, …, 심벌번호 2N×i+h일 때 F[h]를 이용하여 프리코딩을 실행하게(h=0, 1, 2, …, 2N-2, 2N-1) 된다(여기에서는 이전의 실시형태에서 설명한 것과 같이 반드시 규칙적으로 프리코딩 행렬을 전환하지 않아도 좋다). 또, s1, s2의 변조방식이 동시에 16QAM일 때, α를 식 (233)으로 하면 IQ평면에서의 16×16=256개의 신호 점 간의 최소 거리를 어느 특정의 LOS 환경에서 크게 할 수 있다는 효과를 얻을 수 있을 가능성이 있다.
또, <조건 #48>과 다른 조건으로 이하의 조건을 생각한다.
Figure 112018069724742-pat00305
(x는 N, N+1, N+2, …, 2N-2, 2N-1이고, y는 N, N+1, N+2, …, 2N-2, 2N-1이며, x≠y이다)
Figure 112018069724742-pat00306
(x는 N, N+1, N+2, …, 2N-2, 2N-1이고, y는 N, N+1, N+2, …, 2N-2, 2N-1이며, x≠y이다)
이때, <조건 #46>, <조건 #47>, <조건 #51> 및 <조건 #52>를 만족시킴으로써 복소 평면에서의 s1끼리의 수신 열악 점의 거리를 크게, 또는 s2끼리의 수신 열악 점의 거리를 크게 할 수 있으므로, 양호한 데이터의 수신품질을 얻을 수 있다.
본 실시형태에서는 시간 주기 2N의 프리코딩 홉핑방법을 위한 2N개의 다른 프리코딩 행렬의 구성방법에 대해서 설명하였다. 이때, 2N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]를 준비하게 되나, 본 실시형태는 싱글 캐리어 전송방식일 때를 예로 설명하고 있으므로, 시간 축(또는 주파수 축) 방향으로 F[0], F[1], F[2], …, F[2N-2], F[2N-1]의 순번으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 2N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[2N-2], F[2N-1]를 OFDM 전송방식 등의 멀티 캐리어 전송방식에 적용할 수도 있다. 이 경우의 적용방법에 대해서는 실시형태 1과 마찬가지로 주파수 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또, 시간 주기 2N의 프리코딩 홉핑방법으로 설명하고 있으나, 2N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 동일한 효과를 얻을 수 있다. 즉, 반드시 규칙적인 주기를 가지도록 2N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 주기 H(H는 상기 규칙적으로 프리코딩 행렬을 전환하는 방식의 주기 2N은 더 큰 자연수로 한다)의 프리코딩 행렬 전환방법에서, 본 실시형태에서의 2N개의 다른 프리코딩 행렬이 포함되어 있으면 양호한 수신품질을 제공할 가능성이 커진다.
(실시형태 A1)
본 실시형태에서는 데이터를 전송할 때에 계층전송을 적용한 경우로, 실시형태 1~16에서 설명한 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용한 때의 송신방법에 대해 상세하게 설명한다.
도 61 및 도 62는 본 실시에서의, 예를 들어 방송국의 송신장치의 구성의 일례를 나타내고 있다. 기본 스트림(기본 레이어) 용의 오류정정 부호화부(6101-1)는 기본 스트림(기본 레이어)의 정보(6100-1)를 입력으로 하여, 오류정정부호화를 실시하고, 부호화 후의 기본 스트림(기본 레이어)의 정보(6102-1)를 출력한다.
확장 스트림(확장 레이어) 용의 오류정정 부호화부(6101-2)는 확장 스트림(확장 레이어)의 정보(6100-2)를 입력으로 하여, 오류정정부호화를 실시해서, 부호화 후의 확장 스트림(확장 레이어)의 정보(6102-2)를 출력한다.
인터리브부(6103-1)는 부호화 후의 기본 스트림(기본 레이어)의 정보(6102-1)를 입력으로 하여, 인터리브를 실행하여, 인터리브 후의 부호화 후의 데이터(6104-1)를 출력한다.
마찬가지로, 인터리브부(6103-2)는 부호화 후의 확장 스트림(확장 레이어)의 정보(6102-2)를 입력으로 하여, 인터리브를 실행하여, 인터리브 후의 부호화 후의 데이터(6104-2)를 출력한다.
매핑부(6105-1)는 인터리브 후의 부호화 후의 데이터(6104-1) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에서 지정된 송신방법에 의거하여 소정의 변조방식의 변조를 실행하여, 베이스밴드신호(6106-1)(도 3의 s1(t)(307A)에 상당) 및 베이스밴드신호(6106-2)(도 3의 s2(t)(307B)에 상당)를 출력한다. 송신방법에 관한 정보(6111)로는 예를 들어 계층전송을 실시한 때의 전송방식(변조방식, 전송방법, 규칙적으로 프리코딩 행렬을 전환하는 송신방법을 이용하는 경우에는 그 송신방법에 이용하는 프리코딩 행렬에 관한 정보), 오류정정부호의 방법(부호의 종류, 부호화 율) 등의 정보가 된다.
마찬가지로, 매핑부(6105-2)는 인터리브 후의 부호화 후의 데이터(6104-2) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에서 지정된 송신방법에 의거하여 소정의 변조방식의 변조를 실행하여, 베이스밴드신호(6107-1)(도 3의 s1(t)(307A)에 상당) 및 베이스밴드신호(6107-2)(도 3의 s2(t)(307B)에 상당)를 출력한다.
프리코딩부(6108-1)는 베이스밴드신호(6106-1)(도 3의 s1(t)(307A)에 상당) 및 베이스밴드신호(6106-2)(도 3의 s2(t)(307B)에 상당) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에서 지정된 규칙적인 프리코딩 행렬 전환방법에 의거하여 프리코딩을 실행하여, 프리코딩 후의 베이스밴드신호(6109-1)(도 3의 z1(t)(309A)에 상당) 및 프리코딩 후의 베이스밴드신호(6109-2)(도 3의 z2(t)(309B)에 상당)를 출력한다.
마찬가지로, 프리코딩부(6108-2)는 베이스밴드신호(6107-1)(도 3의 s1(t)(307A)에 상당) 및 베이스밴드신호(6107-2)(도 3의 s2(t)(307B)에 상당) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에서 지정된 규칙적인 프리코딩 행렬 전환방법에 의거하여 프리코딩을 실행하여, 프리코딩 후의 베이스밴드신호(6110-1)(도 3의 z1(t)(309A)에 상당) 및 프리코딩 후의 베이스밴드신호(6110-2)(도 3의 z2(t)(309B)에 상당)를 출력한다.
도 62에 있어서, 재배열부(6200-1)는 프리코딩 후의 베이스밴드신호(6109-1) 및 프리코딩 후의 베이스밴드신호(6110-1)를 입력으로 하여 재배열을 실행하고, 재배열 후의 프리코딩 후의 베이스밴드신호(6201-1)를 출력한다.
마찬가지로, 재배열부(6200-2)는 프리코딩 후의 베이스밴드신호(6109-2) 및 프리코딩 후의 베이스밴드신호(6110-2)를 입력으로 하여 재배열을 실행하고, 재배열 후의 프리코딩 후의 베이스밴드신호(6201-2)를 출력한다.
OFDM 방식관련 처리부(6202-1)는 재배열 후의 프리코딩 후의 베이스밴드신호(6201-1)를 입력으로 하여, 실시형태 1에서 설명한 신호 처리를 하여, 송신신호(6203-1)를 출력하고, 송신신호(6203-1)는 안테나(6204-1)로부터 출력된다.
마찬가지로, OFDM 방식관련 처리부(6202-2)는 재배열 후의 프리코딩 후의 베이스밴드신호(6201-2)를 입력으로 하여, 실시형태 1에서 설명한 신호 처리를 하여 송신신호(6203-2)를 출력하고, 송신신호(6203-2)는 안테나(6204-2)로부터 출력된다.
도 63은 도 61의 프리코딩부(6108-1)의 동작을 설명하기 위한 도면이며, 구성 및 동작에 대해서는 도 3, 도 6, 도 22등에서 설명한 구성, 동작과 동일하며, 프리코딩 행렬을 규칙적으로 전환하는 것으로 한다.
도 63은 도 61의 프리코딩부(6108-1)에 대한 설명이라는 점에서 기본 스트림(기본 레이어) 용의 가중 합성의 동작을 나타내고 있게 된다. 도 63에 나타내는 것과 같이, 프리코딩부(6108-1)가 가중 합성을 실행할 때, 즉, 프리코딩을 실행하여 프리코딩 후의 베이스밴드신호를 생성할 때는 프리코딩 행렬이 규칙적으로 교체되어서 프리코딩이 실행됨으로써 z1(t) 및 z2(t)가 생성되게 된다. 여기서, 기본 스트림(기본 레이어) 용의 프리코딩에서는 주기 8로 프리코딩 행렬이 교체되는 것으로 하고, 가중 합성용의 프리코딩 행렬을 F[0], F[1], F[2], F[3], F[4], F[5], F[6], F[7]로 나타내는 것으로 한다. 이때, 프리코딩 후의 신호 z1(t) 및 z2(t)의 각 심벌을 6301 및 6302와 같이 나타내는 것으로 한다. 도 63에 있어서, 「기 #X F[Y]」로 나타내고 있으나, 이는 기본 스트림(기본 레이어)의 제 X번째의 심벌이며, 이 제 X번째의 심벌에는 F[Y](여기에서는 Y는 0~7의 어느 하나)의 프리코딩 행렬을 이용해서 프리코딩을 한다는 것을 나타내고 있다.
도 64는 도 61의 프리코딩부(6108-2)의 동작을 설명하기 위한 도면이며, 구성 및 동작에 대해서는 도 3, 도 6, 도 22 등에서 설명한 구성, 동작과 동일하고, 프리코딩 행렬을 규칙적으로 전환하는 것으로 한다.
도 64는 도 61의 프리코딩부(6108-2)에 대한 설명이라는 점에서 확장 스트림(확장 레이어) 용의 가중 합성의 동작을 나타내고 있게 된다. 도 64에 나타내는 것과 같이, 프리코딩부(6108-2)가 가중 합성을 실행할 때, 즉, 프리코딩을 실행하여 프리코딩 후의 베이스밴드신호를 생성할 때에는 프리코딩 행렬이 규칙적으로 교체된 프리코딩이 실행됨으로써 z1(t) 및 z2(t)가 생성되게 된다. 여기서, 확장 스트림(확장 레이어) 용의 프리코딩에서는 주기 4로 프리코딩 행렬이 교체되는 것으로 하고, 가중 합성용의 프리코딩 행렬을 f[0], f[1], f[2], f[3]으로 나타내는 것으로 한다. 이때, 프리코딩 후의 신호 z1(t) 및 z2(t)의 각 심벌을 6403 및 6404와 같이 나타내는 것으로 한다. 도 64에 있어서, 「확 #X f[Y]」로 나타내고 있으나, 이는 확장 스트림(확장 레이어)의 제 X번째의 심벌이며, 이 제 X번째의 심벌에는 f[Y](여기에서는 Y는 0~4의 어느 하나)의 프리코딩 행렬을 이용해서 프리코딩을 한다는 것을 나타내고 있다.
도 65는 도 62에서의 재배열부(6200-1) 및 재배열부(6200-2)의 심벌의 재배열방법에 대해서 나타낸 도면이다. 재배열부(6200-1) 및 재배열부(6200-2)는 도 63 및 도 64에서 나타낸 심벌을 도 65와 같이 주파수 축 및 시간 축 상에 배치하게 된다. 이때, 동일 (서브)캐리어, 동일 시각의 심벌은 각 안테나로부터 동일 주파수, 동일 시각에 송신되게 된다. 또한, 도 65에 나타내는 주파수 축, 시간 축에서의 심벌의 배치는 일례이며, 실시형태 1에서 나타내는 배치방법에 의거하여 심벌을 배치해도 좋다.
기본 스트림(기본 레이어)과 확장 스트림(확장 레이어)을 전송할 때, 각 스트림(레이어)의 성질상 기본 스트림(기본 레이어)의 데이터의 수신 품질을 확장 스트림(확장 레이어)의 데이터의 수신 품질보다 높게 할 필요가 있다. 이 때문에, 본 실시형태와 같이 규칙적으로 프리코딩 행렬을 전환하는 방식을 이용할 때, 기본 스트림(기본 레이어)을 전송할 때의 변조방식과 확장 스트림(확장 레이어)을 전송할 때의 변조방식을 다르게 설정하게 된다. 예를 들어 표 3과 같이 모드 #1~#5의 어느 하나를 이용한다고 하는 것을 생각할 수 있다.
모드 기본 스트림(레이어)의
변조방식
확장 스트림(레이어)의
변조방식
모드 #1 QPSK 16QAM
모드 #2 QPSK 64QAM
모드 #3 QPSK 256QAM
모드 #4 16QAM 64QAM
모드 #5 16QAM 256QAM
이에 수반하여, 기본 스트림(기본 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법과 확장 스트림(확장 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법이 다르게 설정하면 수신장치에 있어서 데이터의 수신 품질이 향상하거나, 또는 송신장치나 수신장치의 구성이 간소화할 가능성이 있다. 예로는 도 63 및 도 64에서 나타내는 것과 같이 변조 다치 수(IQ평면상에서의 신호점의 수)에 의한 변조방식을 이용하는 경우, 규칙적으로 프리코딩 행렬을 전환하는 방법이 다른 편이 좋은 경우가 있다. 따라서, 기본 스트림(기본 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법에서의 주기와 확장 스트림(확장 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법에서의 주기를 다르게 하는 방법은 수신장치에서의 데이터의 수신 품질을 향상시키거나, 또는 송신장치나 수신장치의 구성이 간소화하는 점에서 하나의 유효한 수단이며, 또, 기본 스트림(기본 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법에서의 프리코딩 행렬의 구성방법과 확장 스트림(확장 레이어)을 전송할 때에 이용하는 규칙적인 프리코딩 행렬의 전환방법에서의 프리코딩 행렬의 구성방법을 다르게 해도 좋다. 따라서, 표 3의 각 스트림(레이어)의 변조방식의 설정 가능한 모드에 대해 표 4와 같이 프리코딩 행렬 전환방법을 설정하게 된다(표 4에서 A, B, C, D는 각각이 다른 프리코딩 전환방법인 것을 나타내고 있다).

모드
기본스트림(레이어) 확장스트림(레이어)
변조방식 프리코딩행렬
전환방법
변조방식 프리코딩행렬
전환방법
모드 #1 QPSK A 16QAM B
모드 #2 QPSK A 64QAM C
모드 #3 QPSK A 256QAM D
모드 #4 16QAM B 64QAM C
모드 #5 16QAM B 256QAM D
따라서, 도 61 및 도 62의 방송국의 송신장치에서는 매핑부(6105-1 및 6105-2)에서의 변조방식의 전환과 동시에 프리코딩부(6108-1 및 6108-2)에서의 프리코딩 방법을 전환하게 된다. 또한, 표 4는 어디까지나 일례이며, 변조방식이 달라도 프리코딩 행렬 전환방법이 동일한 경우가 있어도 좋다. 예를 들어 64QAM일 때의 프리코딩 행렬의 전환방법과 256QAM일 때의 프리코딩 행렬 전환방법이 동일해도 좋다. 포인트가 되는 점은 지원되고 있는 변조방식이 복수일 때 2 종류 이상의 프리코딩 행렬 전환방법이 존재하고 있다는 점이다. 이 점에 대해서는 계층전송을 이용하고 있을 때에 한정되는 것은 아니며, 계층전송을 이용하지 않을 때에 대해서도 변조방식과 프리코딩 행렬의 전환방법에 대해서 상기에서 설명한 것과 같은 관계를 제공하면 데이터의 수신 품질이 향상하거나, 또는 송신장치나 수신장치의 구성이 간소화할 가능성이 있다.시스템으로는 계층전송만을 지원하고 있는 것이 아니라, 계층전송을 이용하지 않는 전송도 지원하고 있는 시스템도 생각할 수 있다. 이 경우, 도 61 및 도 62에 있어서 계층전송을 이용하지 않는 전송을 하는 경우에는 확장 스트림(확장 레이어)과 관련되는 기능부의 동작을 정지시키고, 기본 스트림(기본 레이어)만을 전송하게 된다. 따라서, 이러한 경우 상술한 표 4에 대응하는 설정 가능한 모드와 변조방식, 프리코딩 행렬 전환방법에 관한 대응 표는 표 5와 같이 된다.

모드
기본스트림(레이어) 확장스트림(레이어)
변조방식 프리코딩행렬
전환방법
변조방식 프리코딩행렬
전환방법
모드 #1 QPSK A 16QAM B
모드 #2 QPSK A 64QAM C
모드 #3 QPSK A 256QAM D
모드 #4 16QAM B 64QAM C
모드 #5 16QAM B 256QAM D
모드 #6 QPSK A - -
모드 #7 16QAM B - -
모드 #8 64QAM C - -
모드 #9 256QAM D - -
모드 #10 1024QAM E - -
표 5에 있어서, 모드 #1~#5는 계층전송을 이용하고 있을 때의 모드이며, 모드 #6~모드 #10은 계층전송을 이용하지 않을 때의 모드이다. 이때, 프리코딩 전환방법은 각 모드에 적절한 프리코딩 전환방법을 설정하게 된다.다음에, 계층전송을 지원하고 있을 때의 수신장치의 동작에 대해 설명한다. 본 실시형태에서의 수신장치의 구성은 실시형태 1에서 설명한 도 7로 구성할 수 있다. 이때, 도 7의 신호처리부(711)의 구성을 도 66에 나타낸다.
도 66에 있어서, 6601X는 채널추정신호이며, 도 7의 채널추정신호(706-1)에 상당한다. 6602X는 채널추정신호이며, 도 7의 채널추정신호(706-2)에 상당한다. 6603X는 베이스밴드신호이며, 도 7의 베이스밴드신호(704-X)에 상당한다. 6604는 송신장치가 통지한 송신방법의 정보에 관한 신호이며, 도 7의 송신장치가 통지한 송신방법의 정보에 관한 신호(710)에 상당한다.
6601Y는 채널추정신호이며, 도 7의 채널추정신호(708-1)에 상당한다. 6602Y는 채널추정신호이며, 도 7의 채널추정신호(708-2)에 상당한다. 6603Y는 베이스밴드신호이며, 도 7의 베이스밴드신호(704-Y)에 상당한다.
신호 분류부(6605)는 채널추정신호(6601X, 6602X, 6601Y, 6602Y), 베이스밴드신호(6603X, 6603Y) 및 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)를 입력으로 하여, 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)에 의거하여 기본 스트림(기본 레이어)에 관한 신호와 확장 스트림(확장 레이어)에 관한 정보로 분류하여 기본 스트림용의 채널추정신호(6606-1, 6607-1, 6609-1, 6610-1), 기본 스트림용의 베이스밴드신호(6608-1, 6611-1) 및 확장 스트림용의 채널추정신호(6606-2, 6607-2, 6609-2, 6610-2), 확장 스트림용의 베이스밴드신호(6608-2, 6611-2)를 출력한다.
검파 및 대수 우도 비 산출부(6612-1)는 기본 스트림(기본 레이어)에 대한 처리부이며, 기본 스트림용의 채널추정신호(6606-1, 6607-1, 6609-1, 6610-1), 기본 스트림용의 베이스밴드신호(6608-1, 6611-1) 및 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)를 입력으로 하여, 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)로부터 기본 스트림(기본 레이어)을 위해 이용한 변조방식, 프리코딩 행렬 전환방법을 추정하고, 그들에 의거한 검파, 프리코딩 복호를 실행하여 각 비트의 대수 우도 비를 산출해서 대수 우도 비 신호(6613-1)를 출력한다. 또한, 표 5에 있어서 확장 스트림(확장 레이어)이 존재하지 않는 모드 #6~#10의 경우에 대해서도 검파 및 대수 우도 비 산출부(6612-1)가 검파, 프리코딩 복호를 실행하여 대수 우도 비 신호를 출력한다.
검파 및 대수 우도 비 산출부(6612-2)는 확장 스트림(확장 레이어)에 대한 처리부이며, 확장 스트림용의 채널추정신호(6606-2, 6607-2, 6609-2, 6610-2), 확장 스트림용의 베이스밴드신호(6608-2, 6611-2) 및 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)를 입력으로 하여, 송신장치가 통지한 송신방법의 정보에 관한 신호(6604)로부터 확장 스트림(확장 레이어)을 위해 이용한 변조방식, 프리코딩 행렬 전환방법을 추정하고, 그들에 의거한 검파, 프리코딩 복호를 실행하여 각 비트의 대수 우도 비를 산출해서 대수 우도 비 신호(6613-2)를 출력한다. 또한, 표 5에 있어서 확장 스트림(확장 레이어)이 존재하지 않는 모드 #6~#10의 경우 동작을 정지하게 된다.
또한, 도 61, 도 62를 이용해서 설명한 송신장치에서는 계층전송방법의 설명만을 하고 있으나, 실제는 계층전송방법과는 별도로, 송신방법에 관한 정보, 예를 들어 계층전송을 한을 때의 전송방법(변조방식, 전송방법, 규칙적으로 프리코딩 행렬을 전환하는 송신방법을 이용하는 경우에는 그에 이용하는 프리코딩 행렬에 관한 정보), 오류정정부호의 방법(부호의 종류, 부호화 율) 등의 정보를 수신장치에 전송할 필요가 있다. 또, 수신장치에 있어서 채널 추정(전파의 변동의 추정), 주파수 동기, 주파수 오프셋 추정, 신호 검출을 위한 파일럿 심벌, 레퍼런스 심벌, 프리앰블은 별도 송신신호에 존재하는 프레임 구성이 된다. 또한, 이에 대해서는 실시형태 A1 뿐만 아니라, 실시형태 A2 이후에서도 같다.
디 인터리버(6614-1)는 대수 우도 비 신호(6613-1)를 입력으로 하여 재배열을 실행하여, 디 인터리브 후의 대수 우도 비 신호(6615-1)를 출력한다.
마찬가지로, 디 인터리버(6614-2)는 대수 우도 비 신호(6613-2)를 입력으로 하여 재배열을 실행하여 디 인터리브 후의 대수 우도 비 신호(6615-2)를 출력한다.
복호부(6616-1)는 디 인터리브 후의 대수 우도 비 신호(6615-1)를 입력으로 하여 오류정정 복호를 실행하여 수신정보(6617-1)를 출력한다.
마찬가지로, 복호부(6616-2)는 디 인터리브 후의 대수 우도 비 신호(6615-2)를 입력으로 하여 오류정정 복호를 실행하여 수신정보(6617-2)를 출력한다.
표 5와 같이 송신 모드가 존재한 경우,
·실시형태 1에서 설명한 것과 같이, 프리코딩 행렬 전환방법에 이용하고 있는 프리코딩 행렬에 관한 정보를 송신장치가 송신하고, 검파 및 대수 우도 비 산출부(6612-1, 6612-2)는 이 정보를 얻어서 프리코딩의 복호를 실시하는 방법,
·실시형태 7에서 설명한 것과 같이, 송수신장치에서 표 5의 정보를 미리 공유해 두고, 송신장치는 모드의 정보를 송신함으로써 수신장치는 표 5에 의거하여 프리코딩 행렬 전환방법에 이용하고 있는 프리코딩 행렬을 추정하여 프리코딩 복호를 실시하는 방법,
이 있다.
이상과 같이, 계층전송을 이용하고 있을 때 상술한 것과 같은 프리코딩 행렬 전환방법으로 함으로써 데이터의 수신 품질이 향상한다고 하는 효과를 얻을 수 있다.
본 실시형태에서는 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서 주기를 4, 8로 한 예를 설명하였으나, 주기는 이에 한정되는 것은 아니다. 따라서, 주기 N의 프리코딩 홉핑방법을 위해서는 N개의 다른 프리코딩 행렬이 필요하다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]을 준비하게 되나, 본 실시형태는 주파수 축 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 실시형태 1과 마찬가지로 시간 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또한, 주기 N의 프리코딩 홉핑방법에서 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 같은 효과를 얻을 수 있다, 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 표 5에서는 계층전송을 이용하지 않을 때의 예로 계층전송방식을 이용하지 않는 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드가 있는 경우를 설명하였으나, 존재하는 모드로는 이에 한정되는 것은 아니며, 실시형태 15에서 설명한 것과 같이 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신의 모드가 본 실시형태에서 설명한 계층전송방법과는 별도로 존재하고, 송신장치(방송국, 기지국)는 이들 모드에서 어느 하나의 송신방법을 선택할 수 있도록 해도 좋다. 이때, 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신의 모드에 있어서 계층전송을 하는 경우와 계층전송을 하지 않는 경우의 어느 경우도 지원하도록 해도 좋다. 또, 그 이외의 송신방법을 이용한 모드가 존재하고 있어도 좋다. 그리고, 본 실시형태를 실시형태 15에 적용하여, 실시형태 15에서 어느 하나의 (서브)캐리어 군에 있어서 본 실시형태에서 설명한 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용한 계층전송방법을 적용해도 좋다.
(실시형태 A2)
실시형태 A1에서는 규칙적으로 프리코딩 행렬을 전환하는 방법으로 계층전송을 실현하는 방법에 대해 설명하였으나, 본 실시형태에서는 이와는 다른 계층전송의 실현방법에 대해 설명한다.
도 67 및 도 68은 본 실시형태에서의 계층전송을 이용한 때의 송신장치의 구성을 나타내고 있고, 도 61, 도 62와 도일하게 동작하는 것에 대해서는 동일 부호를 부여한다. 도 67의 도 61과의 차는 프리코딩부(6108-1)을 구비하지 않는 점에 있고, 본 실시형태에서는 기본 스트림(레이어)에 대해서는 프리코딩을 실행하지 않는 점이 실시형태 A1과 다르다.
도 67의 매핑부(6105-1)는 인터리브 후의 부호화 후의 데이터(6104-1) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거하여 소정의 변조방식의 매핑을 실행하여 베이스밴드신호(6700)를 출력한다.
도 68의 재배열부(6200-1)는 베이스밴드신호(6700), 프리코딩 후의 베이스밴드신호(6110-1), 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거해 재배열을 실행하여, 재배열 후의 베이스밴드신호(6201-1)를 출력한다.
재배열부(6200-2)는 프리코딩 후의 베이스밴드신호(6110-2), 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거해 재배열을 실행하여, 재배열 후의 베이스밴드신호(6201-2)를 출력한다.
도 69는 도 67의 베이스밴드신호의 심벌의 구성의 일례를 나타내고 있고, 6901이 그 심벌 군이다. 심벌 군(6901)에 있어서 「기 #X」로 기재하고 있으나, 이것은 「기본 스트림(기본 레이어)의 제 X번째의 심벌」이라는 것을 나타내고 있다. 또한, 확장 스트림(확장 레이어)의 심벌의 구성은 도 64에 나타낸 것과 같다.
도 70은 도 68에서의 재배열부(6200-1) 및 재배열부(6200-2)의 재배열방법에 대해 나타낸 도면이다. 도 64 및 도 69에서 나타낸 심벌을 도 70과 같이 주파수 축 및 시간 축 상에 배치하게 된다. 도 70에 있어서 「-」은 심벌이 존재하지 않는 것을 의미하고 있다. 이때, 동일 (서브)캐리어, 동일 시각의 심벌은 각 안테나로부터 동일 주파수, 동일 시각에 송신되게 된다. 또한, 도 70, 주파수 축, 시간 축에서의 심벌의 배치는 일례이며, 실시형태 1에서 나타낸 배치방법에 의거하여 심벌을 배치해도 좋다.
기본 스트림(기본 레이어)과 확장 스트림(확장 레이어)을 전송할 때, 각 스트림(레이어)의 성질상 기본 스트림(기본 레이어)의 데이터의 수신 품질을 확장 스트림(확장 레이어)의 데이터의 수신 품질보다 높게 할 필요가 있다. 이 때문에, 본 실시형태와 같이 기본 스트림을 전송할 때는 변조신호 z1만을 이용해 송신(즉, 변조신호 z2는 송신하지 않는다)함으로써 데이터의 수신 품질을 확보한다. 이에 대해 확장 스트림을 전송할 때는 전송속도의 향상을 우선하기 위해 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용함으로써 계층전송을 실현한다. 예를 들어 표 6과 같이 모드 #1~#9의 어느 하나를 이용한다고 하는 것을 생각할 수 있다.
모드 기본 스트림(레이어)의
변조방식
확장 스트림(레이어)의
변조방식
모드 #1 QPSK 16QAM
모드 #2 QPSK 64QAM
모드 #3 QPSK 256QAM
모드 #4 16QAM 16QAM
모드 #5 16QAM 64QAM
모드 #6 16QAM 256QAM
모드 #7 64QAM 64QAM
모드 #8 64QAM 256QAM
모드 #9 256QAM 256QAM
표 6에서 특징적인 점은 기본 스트림(기본 레이어)의 변조방식과 확장 스트림(확장 레이어)의 변조방식을 동일하게 할 수 있다고 하는 점이다. 이것은 동일 변조방식이라도 기본 스트림(기본 레이어)에서 확보할 수 있는 전송 품질과 확장 스트림(확장 레이어)에서 확보할 수 있는 전송 품질이 각각의 스트림(레이어)에서 다른 전송방법을 이용하고 있으므로 다르기 때문이다.본 실시형태에서의 수신장치의 구성은 도 7 및 도 66과 같다. 실시형태 A1과 동작이 다른 점은 도 66에서의 검파 및 대수 우도 비 산출부(6612-1)는 프리코딩의 복호를 실시하지 않는 점이다.
또, 확장 스트림(확장 레이어)에서는 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용하고 있게 되나, 이때, 송신장치에서 프리코딩 방법에 관한 정보를 송신하고 있으면, 수신장치는 그 정보를 얻음으로써 이용하고 있는 프리코딩 방법을 알 수 있다. 다른 방법으로 표 6을 송수신장치에서 공유하고 있는 경우, 모드의 정보를 송신장치가 송신하고, 모드의 정보를 얻음으로써 확장 스트림(확장 레이어)에서 이용하고 있는 프리코딩 방법을 알 수 있다. 따라서, 도 66의 수신장치에 있어서 검파 및 대수 우도 비 산출부에서 신호처리방법을 변경함으로써 각 비트에서의 대수 우도 비를 얻을 수 있다. 또한, 설정 가능한 모드로 표 6을 이용해서 설명하였으나, 이에 한정되는 것은 아니며, 실시형태 8에서 설명한 송신방법의 모드나, 이후의 실시형태에서 설명하는 송신방법의 모드가 존재하고 있어도 마찬가지로 실시하는 것이 가능하다.
이상과 같이, 계층전송을 이용하고 있을 때에 상술한 것과 같은 프리코딩 행렬 전환방법으로 함으로써 수신장치에서의 데이터의 수신 품질이 향상한다고 하는 효과를 얻을 수 있다.
본 실시형태에서는 규칙적으로 프리코딩 행렬을 전환하는 방법에서의 프리코딩 행렬의 변환의 주기는 이에 한정되는 것은 아니다. 주기 N의 프리코딩 홉핑방법을 위해서는 N개의 다른 프리코딩 행렬이 필요해진다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]을 준비하게 되나, 본 실시형태는 주파수 축 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 실시형태 1과 마찬가지로 시간 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또한, 주기 N의 프리코딩 홉핑방법으로 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 같은 효과를 얻을 수 있다, 즉, 반드시, 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 표 6에서는 본 실시형태에서의 계층전송방법의 모드에 대해 설명하였으나, 존재하는 모드로는 이에 한정되는 것은 아니며, 실시형태 15에서 설명한 것과 같이 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드가 본 실시형태에서 설명한 계층전송방법과는 따로 존재하고, 송신장치(방송국, 기지국)는 이들 모드에서 어느 하나의 송신방법을 선택할 수 있도록 해도 좋다. 이때, 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드에 있어서 계층전송을 하는 경우와 계층전송을 하지 않는 경우의 어느 경우도 지원하도록 해도 좋다. 또, 그 이외의 송신방법을 이용한 모드가 존재하고 있어도 좋다. 그리고, 본 실시형태를 실시형태 15에 적용하여, 실시형태 15에서 어느 하나의 (서브)캐리어 군에 있어서 본 실시형태에서 설명한 계층전송방법을 적용해도 좋다.
(실시형태 A3)
본 실시형태에서는 실시형태 A1 및 실시형태 A2와는 다른 계층전송의 실현에 대해 설명한다.
도 71 및 도 72는 본 실시형태에서의 계층전송을 이용한 때의 송신장치의 구성을 나타내고 있고, 도 61, 도 62와 동일하게 동작하는 것에 대해서는 동일 부호를 부여한다. 도 71의 도 61과의 차는 시공간블록부호화부(7101)를 구비하고 있다는 점에 있으며, 본 실시형태에 있어서는 기본 스트림(레이어)에 대해서 시공간블록부호를 실행하는 점이 실시형태 A2와 다르다.
도 71의 시공간블록부호화부(경우에 따라서는 주파수-공간 블록부호화부가 된다)(7101)는 매핑 후의 베이스밴드신호(7100) 및 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거하여 시공간블록부호화를 실행하여, 시공간블록부호화 후의 베이스밴드신호(7102-1)(z1(t)라고 나타낸다) 및 시공간블록부호화 후의 베이스밴드신호(7102-2)(z2(t)라고 나타낸다)를 출력한다.
여기서, 시공간블록부호라고 하고 있으나, 반드시, 시공간블록부호화한 심벌을 시간 축 방향에 순번으로 배열하는 것에 한정하지 않고, 시공간블록부호화 한 심벌을 주파수 축 방향으로 순서대로 배열해도 좋다. 또, 복수의 시간 축 방향의 심벌과 복수의 주파수 축의 심벌로 블록을 형성하여, 이 블록에 적절하게 배치하는(즉, 시간, 주파수 축양자를 이용해 배치하는) 방법이라도 좋다.
도 72의 재배열부(6200-1)는 시공간블록부호화 후의 베이스밴드신호(7102-1), 프리코딩 후의 베이스밴드신호(6110-1), 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거하여 재배열을 실행하여 재배열 후의 베이스밴드신호(6201-1)를 출력한다.
마찬가지로, 재배열부(6200-2)는 시공간블록부호화 후의 베이스밴드신호(7102-2), 프리코딩 후의 베이스밴드신호(6110-2), 송신방법에 관한 정보신호(6111)를 입력으로 하여, 송신방법에 관한 정보신호(6111)에 의거하여 재배열을 실행하여 재배열 후의 베이스밴드신호(6201-2)를 출력한다.
도 73은 도 71의 시공간블록부호화부(7101)가 출력하는 시공간블록부호화 후의 베이스밴드신호(7102-1, 7102-2)의 심벌의 구성의 일례를 나타내고 있다. 심벌 군(7301)은 시공간블록부호화 후의 베이스밴드신호(7102-1)(z1(t)로 나타낸다)에 상당하며, 심벌 군(7302)은 시공간블록부호화 후의 베이스밴드신호(7102-2)(z2(t)로 나타낸다)에 상당한다.
도 71의 매핑부(6105-1)가 출력하는 심벌을 순서대로 s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, …라 한다. 그러면 도 71의 시공간블록부호화부(7101)는 s1, s2에 대해 시공간블록부호화를 실행하여 s1, s2 및 s1*,-s2*를 생성해서(*:공역 복소) 도 73과 같이 출력한다. 마찬가지로 (s3, s4), (s5, s6), (s7, s8), (s9, s10), (s11, s12), …의 각각의 세트에 대해 시공간블록부호화를 실행하여 도 73과 같이 심벌을 배치하게 된다. 또한, 본 실시형태에서 설명한 시공간블록부호에 한정하지 않고, 다른 시공간블록부호를 이용해도 똑같이 실시할 수 있다.
도 74는 도 72에서의 재배열부(6200-1) 및 재배열부(6200-2)의 재배열방법에 대해 나타낸 도면의 일례이다. 도 74 (A)는 변조신호 z1의 시간 축 및 주파수 축에서의 심벌의 배치 예이다. 또, 도 74 (B)는 변조신호 z2의 시간 축 및 주파수 축에서의 심벌의 배치 예이다. 이때, 동일 (서브)캐리어, 동일 시각의 심벌은 각 안테나로부터 동일 주파수, 동일 시각에 송신되게 된다. 도 74의 특징적인 점은 시공간블록부호화 된 심벌을 주파수 축 상에 순번으로 배치하고 있는 점이다.
도 75는 도 72에서의 재배열부(6200-1) 및 재배열부(6200-2)의 재배열방법에 대해 나타낸 도면의 일례이다. 도 75(A)는 변조신호 z1의 시간 축 및 주파수 축에서의 심벌의 배치 예이다. 또, 도 75(B)는 변조신호 z2의 시간 축 및 주파수 축에서의 심벌의 배치 예이다. 이때, 동일 (서브)캐리어, 동일 시각의 심벌은 각 안테나로부터 동일 주파수, 동일 시각에 송신되게 된다. 도 75의 특징적인 점은 시공간블록부호화 된 심벌을 시간 축 상에 순번으로 배치하고 있는 점이다.
이와 같이, 시공간블록부호화 된 심벌은 주파수 축에 배열하는 것도 가능하고, 또, 시간 축에 배열하는 것도 가능하다.
기본 스트림(기본 레이어)과 확장 스트림(확장 레이어)을 전송할 때, 각 스트림(레이어)의 성질상 기본 스트림(기본 레이어)의 데이터의 수신 품질을 확장 스트림(확장 레이어)의 데이터의 수신 품질보다 높게 할 필요가 있다. 이 때문에, 본 실시형태와 같이 기본 스트림을 전송할 때는 시공간블록부호를 이용해 다이버시티 게인을 얻음으로써 데이터의 수신 품질을 확보한다. 이에 대해, 확장 스트림을 전송할 때는 전송속도의 향상을 우선하기 위해 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용함으로써 계층전송을 실현한다. 예를 들어 표 7과 같이 모드 #1~#9의 어느 하나를 이용하는 것을 생각할 수 있다.
모드 기본 스트림(레이어)의
변조방식
확장 스트림(레이어)의
변조방식
모드 #1 QPSK 16QAM
모드 #2 QPSK 64QAM
모드 #3 QPSK 256QAM
모드 #4 16QAM 16QAM
모드 #5 16QAM 64QAM
모드 #6 16QAM 256QAM
모드 #7 64QAM 64QAM
모드 #8 64QAM 256QAM
모드 #9 256QAM 256QAM
표 7에서 특징적인 점은 기본 스트림(기본 레이어)의 변조방식과 확장 스트림(확장 레이어)의 변조방식을 동일하게 할 수 있다고 하는 점이다. 이것은 동일 변조방식이라도 기본 스트림(기본 레이어)에서 확보할 수 있는 전송 품질과 확장 스트림(확장 레이어)에서 확보할 수 있는 전송 품질이 각각의 스트림(레이어)에서 다른 전송방법을 이용하고 있으므로 다르기 때문이다.또한, 표 7의 모드 #1~#9에서는 계층전송의 모드를 나타냈으나, 계층전송의 모드가 아닌 모드가 동시에 지원되고 있어도 좋다. 본 실시형태의 경우 계층전송이 아닌 모드로 시공간블록부호 단독의 모드, 규칙적으로 프리코딩 행렬을 전환하는 단독의 모드가 존재하고 있어도 좋고, 본 실시형태에서의 송신장치, 수신장치에서는 표 7의 계층전송의 모드를 지원하고 있는 경우, 시공간블록부호 단독의 모드, 규칙적으로 프리코딩 행렬을 전환하는 단독의 모드를 용이하게 설정할 수 있다.
확장 스트림(확장 레이어)에서는 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용하고 있게 되나, 이때, 송신장치에서 프리코딩 방법에 관한 정보를 송신하고 있으면, 수신장치는 그 정보를 얻음으로써 이용하고 있는 프리코딩 방법을 알 수 있다. 다른 방법으로, 표 7을 송수신장치에서 공유하고 있는 경우, 모드의 정보를 송신장치가 송신하고, 모드의 정보를 얻음으로써 확장 스트림(확장 레이어)에서 이용하고 있는 프리코딩 방법을 알 수 있다. 따라서, 도 66의 수신장치에 있어서 검파 및 대수 우도 비 산출부에서 신호처리방법을 변경함으로써 각 비트에서의 대수 우도 비를 얻을 수 있다. 또한, 설정 가능한 모드로 표 7을 이용해서 설명하였으나, 이에 한정되는 것은 아니며, 실시형태 8에서 설명한 송신방법의 모드나, 이후의 실시형태에서 설명하는 송신방법의 모드가 존재하고 있어도 마찬가지로 실시하는 것이 가능하다.
이상과 같이, 계층전송을 이용하고 있을 때, 상술한 것과 같은 프리코딩 행렬 전환방법으로 함으로써 수신장치에서의 데이터의 수신 품질이 향상한다고 하는 효과를 얻을 수 있다.
본 실시형태에서는 규칙적으로 프리코딩 행렬을 전환하는 방법에서의 프리코딩 행렬의 변환의 주기는 이에 한정되는 것은 아니다. 주기 N의 프리코딩 홉핑방법을 위해서는 N개의 다른 프리코딩 행렬이 필요하다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]을 준비하게 되나, 본 실시형태는 주파수 축 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 경우에 대해 설명하였으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 실시형태 1과 마찬가지로 시간 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또한, 주기 N의 프리코딩 홉핑방법으로 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 같은 효과를 얻을 수 있다, 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 표 7에서는 본 실시형태에서의 계층전송방법의 모드에 대해 설명하였으나, 존재하는 모드로는 이에 한정되는 것은 아니며, 실시형태 15에서 설명한 것과 같이 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드가 본 실시형태에서 설명한 계층전송방법과는 따로 존재하고, 송신장치(방송국, 기지국)는 이들 모드에서 어느 하나의 송신방법을 선택할 수 있도록 해도 좋다. 이때, 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드에 있어서 계층전송을 하는 경우와 계층전송을 하지 않는 경우의 어느 경우도 지원하도록 해도 좋다. 또, 그 이외의 송신방법을 이용한 모드가 존재하고 있어도 좋다. 그리고, 본 실시형태를 실시형태 15에 적용하여, 실시형태 15에서 어느 하나의 (서브)캐리어 군에 있어서 본 실시형태에서 설명한 계층전송방법을 적용해도 좋다.
(실시형태 A4)
본 실시형태에서는 비 특허문헌 12~비 특허문헌 15에 나타내고 있는 것과 같이 QC(Quasi Cyclic) LDPC(Low-Density Prity-Check) 부호(QC-LDPC 부호가 아니라 LDPC 부호라도 좋다), LDPC 부호와 BCH 부호(Bose-Chaudhuri-Hocquenghemcode)의 연접 부호 등의 블록부호를 이용한 때의 규칙적으로 프리코딩 행렬을 전환하는 방법에 대해 상세하게 설명한다. 여기에서는 일례로서 s1, s2의 2개의 스트림을 송신하는 경우를 예로 설명한다. 다만, 블록부호를 이용해 부호화를 실시한 때, 제어정보 등이 필요하지 않을 때, 부호화 후의 블록을 구성하는 비트 수는 블록부호를 구성하는 비트 수(다만, 이 중에 이하에서 기재하는 것과 같은 제어정보 등이 포함되어 있어도 좋다)와 일치한다. 블록부호를 이용해 부호화를 실시한 때, 제어정보 등(예를 들어 CRC(cyclic redundancy check), 전송 파라미터 등 )이 필요한 때 부호화 후의 블록을 구성하는 비트 수는 블록부호를 구성하는 비트 수와 제어정보 등의 비트 수의 합인 경우도 있다.
도 76은 블록부호를 이용한 때, 1개의 부호화 후의 블록에 필요한 심벌 수, 슬롯 수의 변화를 나타낸 도면이다. 도 76은 예를 들어 도 4의 송신장치에 나타낸 것과 같이 s1, s2의 2개의 스트림을 송신하고, 또한, 송신장치가 1개의 부호화기를 가지고 있는 경우의 「블록부호를 이용한 때, 1개의 부호화 후의 블록에 필요한 심벌 수, 슬롯 수의 변화를 나타낸 도면」이다(이때, 전송방식으로는 싱글 캐리어 전송, OFDM과 같은 멀티 캐리어 전송 어느 것을 이용해도 좋다).
도 76에 나타내는 것과 같이, 블록부호에서의 1개의 부호화 후의 블록을 구성하는 비트 수를 6000비트인 것으로 한다. 이 6000비트를 송신하기 위해서는 변조방식이 QPSK일 때 3000 심벌, 16QAM일 때 1500 심벌, 64QAM일 때 1000 심벌이 필요하다.
그리고, 도 4의 송신장치에서는 2개의 스트림을 동시에 송신하게 되므로, 변조방식이 QPSK일 때 상술한 3000 심벌은 s1에 1500 심벌, s2에 1500 심벌 할당할 수 있게 되므로, s1로 송신하는 1500 심벌과 s2로 송신하는 1500 심벌을 송신하기 위해서 1500 슬롯(여기에서는 「슬롯」이라고 이름 붙인다)이 필요하다.
마찬가지로 생각하면, 변조방식이 16QAM일 때 1개의 부호화 후의 블록을 구성하는 모든 비트를 송신하기 위해서 750 슬롯이 필요하고, 변조방식이 64QAM일 때 1 블록을 구성하는 모든 비트를 송신하기 위해서 500 슬롯이 필요하다.
다음에, 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서 상술한 설명에서 정의한 슬롯과 프리코딩 행렬의 관계에 대해 설명한다.
여기에서는 규칙적으로 프리코딩 행렬을 전환하는 방법을 위해 준비하는 프리코딩 행렬의 수를 5로 한다. 즉, 도 4의 송신장치의 가중합성부를 위해 5개의 다른 프리코딩 행렬을 준비하는 것으로 한다. 이 5개의 다른 프리코딩 행렬을 F[0], F[1], F[2], F[3], F[4]로 나타내는 것으로 한다.
변조방식이 QPSK일 때, 1개의 부호화 후의 블록을 구성하는 비트 수 6000비트를 송신하기 위한 상기에서 설명한 1500 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 300 슬롯일 필요가 있다. 이것은 사용하는 프리코딩 행렬에 치우침이 있으면 많은 수를 사용한 프리코딩 행렬의 영향이 큰 데이터의 수신 품질이 되기 때문이다.
마찬가지로, 변조방식이 16QAM일 때, 1개의 부호화 후의 블록을 구성하는 비트 수 6000비트를 송신하기 위한 상기에서 설명한 750 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 150 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 150 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 150 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 150 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 150 슬롯일 필요가 있다.
마찬가지로, 변조방식이 64QAM일 때, 1개의 부호화 후의 블록을 구성하는 비트 수 6000비트를 송신하기 위한 상기에서 설명한 500 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 100 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 100 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 100 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 100 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 100 슬롯일 필요가 있다.
이상과 같이, 규칙적으로 프리코딩 행렬을 전환하는 방식에 있어서, 다른 프리코딩 행렬을 N개(N개의 다른 프리코딩 행렬을 F[0], F[1], F[2], …, F[N-2], F[N-1]로 나타내는 것으로 한다)로 한 때, 1개의 부호화 후의 블록을 구성하는 비트를 모두 송신할 때에 프리코딩 행렬 F[0]을 사용하는 슬롯 수를 K0, 프리코딩 행렬 F[1]을 사용하는 슬롯 수를 K1, 프리코딩 행렬 F[i]를 사용하는 슬롯 수를 Ki(i=0, 1,2, …, N-1), 프리코딩 행렬 F[N-1] 를 사용하는 슬롯 수를 KN-1로 한 때,
<조건 #53>
K0=K1= … =Ki= … =KN -1, 즉, Ka=Kb, (for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
라고 좋다.
그리고, 통신시스템이 복수의 변조방식을 지원하고 있고, 지원하고 있는 변조방식에서 선택해서 사용하는 경우, 지원하고 있는 변조방식에 있어서 <조건 #53>이 성립하면 좋아진다.
그러나, 복수의 변조방식을 지원하고 있는 경우, 각 변조방식에 따라 1 심벌로 송신할 수 있는 비트 수가 다른 것이 일반적이고(경우에 따라서는 동일해지는 경우도 있을 수 있다), 경우에 따라서는 <조건 #53>을 만족할 수 없는 변조방식이 존재하는 경우도 있다. 이 경우 <조건 #53> 대신 이하의 조건을 만족하면 좋다.
<조건 #54>
Ka와 Kb의 차는 0 또는 1, 즉,|Ka―Kb|는 0 또는 1(for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
도 77은 블록부호를 이용한 때, 2개의 부호화 후의 블록에 필요한 심벌 수, 슬롯 수의 변화를 나타낸 도면이다. 도 77은 도 3의 송신장치 및 도 13의 송신장치에 나타낸 것과 같이 s1, s2의 2개의 스트림을 송신하고, 또한, 송신장치가 2개의 부호화기를 가지고 있는 경우의, 「블록부호를 이용한 때 1개의 부호화 후의 블록에 필요한 심벌 수, 슬롯 수의 변화를 나타낸 도면」이다(이때, 전송방식으로는 싱글 캐리어 전송, OFDM과 같은 멀티 캐리어 전송의 어느 하나를 이용해도 좋다).
도 77에 나타내는 것과 같이, 블록부호에서의 1개의 부호화 후의 블록을 구성하는 비트 수를 6000비트인 것으로 한다. 이 6000비트를 송신하기 위해서는 변조방식이 QPSK일 때 3000 심벌, 16QAM일 때 1500 심벌, 64QAM일 때 1000 심벌이 필요하다.
그리고, 도 3의 송신장치 및 도 13의 송신장치에서는 2개의 스트림을 동시에 송신하게 되고, 또, 2개의 부호화기가 존재하므로 2개의 스트림에서는 다른 부호 블록을 전송하게 된다. 따라서, 변조방식이 QPSK일 때 s1, s2에 의해 2개의 부호화블록이 동일 구간 내에서 송신됨으로써 예를 들어 s1에 의해 제 1의 부호화 후의 블록이 송신되고, s2에 의해 제 2 부호화블록이 송신되게 되므로, 제 1, 제 2의 부호화 후의 블록을 송신하기 위해서 3000 슬롯이 필요하다.
마찬가지로 생각하면, 변조방식이 16QAM일 때 2개의 부호화 후의 블록을 구성하는 모든 비트를 송신하기 위해서 1500 슬롯이 필요하고, 변조방식이 64QAM일 때 22 블록을 구성하는 모든 비트를 송신하기 위해서 1000 슬롯이 필요하다.
다음에, 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서 상술한 설명에서 정의한 슬롯과 프리코딩 행렬의 관계에 대해 설명한다.
여기에서는 규칙적으로 프리코딩 행렬을 전환하는 방법을 위해 준비하는 프리코딩 행렬의 수를 5로 한다. 즉, 도 3의 송신장치 및 도 13의 송신장치의 송신장치의 가중합성부를 위해 5개의 다른 프리코딩 행렬을 준비하는 것으로 한다. 이 5개의 다른 프리코딩 행렬을 F[0], F[1], F[2], F[3], F[4]로 나타내는 것으로 한다.
변조방식이 QPSK일 때, 2개의 부호화 후의 블록을 구성하는 비트 수 6000×2 비트를 송신하기 위한 상기에서 설명한 3000 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 600 슬롯일 필요가 있다. 이것은 사용하는 프리코딩 행렬에 치우침이 있으면 많은 수를 사용한 프리코딩 행렬의 영향이 큰 데이터의 수신 품질이 되기 때문이다.
또, 제 1 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 600회일 필요가 있고, 또, 제 2 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 600 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 600회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 600회이면 좋다.
마찬가지로, 변조방식이 16QAM일 때, 2개의 부호화 후의 블록을 구성하는 비트 수 6000×2 비트를 송신하기 위한 상기에서 설명한 1500 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 300 슬롯일 필요가 있다.
또, 제 1 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 300회일 필요가 있고, 또, 제 2 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 300 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 300회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 300회이면 좋다.
마찬가지로, 변조방식이 64QAM일 때, 2개의 부호화 후의 블록을 구성하는 비트 수 6000×2 비트를 송신하기 위한 상기에서 설명한 1000 슬롯에 있어서 프리코딩 행렬 F[0]을 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[1]을 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[2]를 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[4]를 사용하는 슬롯이 200 슬롯일 필요가 있다.
또, 제 1 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 200회일 필요가 있고, 또, 제 2 부호화블록을 송신하기 위해 프리코딩 행렬 F[0]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[1]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[2]를 사용하는 슬롯이 200 슬롯, 프리코딩 행렬 F[3]을 사용하는 슬롯이 200회, 프리코딩 행렬 F[4]를 사용하는 슬롯이 200회이면 좋다.
이상과 같이, 규칙적으로 프리코딩 행렬을 전환하는 방식에 있어서, 다른 프리코딩 행렬을 N개(N개의 다른 프리코딩 행렬을 F[0], F[1], F[2], …, F[N-2] , F[N-1]로 나타내는 것으로 한다)로 한 때, 2개의 부호화 후의 블록을 구성하는 비트를 모두 송신할 때에 프리코딩 행렬 F[0]을 사용하는 슬롯 수를 K0, 프리코딩 행렬 F[1]을 사용하는 슬롯 수를 K1, 프리코딩 행렬 F[i]를 사용하는 슬롯 수를 Ki(i=0, 1,2, …, N-1), 프리코딩 행렬 F[N-1] 를 사용하는 슬롯 수를 KN-1로 한 때,
<조건 #55>
K0=K1= … =Ki= … =KN -1, 즉, Ka=Kb, (for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
이며, 제 1의 부호화 후의 블록을 구성하는 비트를 모두 송신할 때에, 프리코딩 행렬 F[0]을 사용하는 횟수를 K0, 1, 프리코딩 행렬 F[1]을 사용하는 횟수를 K1, 1, 프리코딩 행렬 F[i]를 사용하는 횟수를 Ki , 1(i=0, 1,2, …, N-1), 프리코딩 행렬 F[N-1] 를 사용하는 횟수를 KN-1, 1로 한 때,
<조건 #56>
K0, 1=K1, 1= … =Ki , 1= … =KN -1, 1, 즉, Ka , 1=Kb, 1, (for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
이고, 제 2의 부호화 후의 블록을 구성하는 비트를 모두 송신할 때에 프리코딩 행렬 F[0]을 사용하는 횟수를 K0, 2, 프리코딩 행렬 F[1]을 사용하는 횟수를 K1, 2, 프리코딩 행렬 F[i]를 사용하는 횟수를 Ki , 2(i=0, 1,2, …, N-1), 프리코딩 행렬 F[N-1] 를 사용하는 횟수를 KN-1, 2로 한 때,
<조건 #57>
K0, 2=K1, 2= … =Ki , 2= … =KN -1, 2, 즉, Ka , 2=Kb, 2, (for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
라도 좋다.
그리고, 통신시스템이 복수의 변조방식을 지원하고 있고, 지원하고 있는 변조방식으로부터 선택해서 사용하는 경우, 지원하고 있는 변조방식에 있어서 <조건 #55><조건 #56><조건 #57>이 성립하면 좋아진다.
그러나, 복수의 변조방식을 지원하고 있는 경우, 각 변조방식에 따라 1 심벌로 송신할 수 있는 비트 수가 다른 것이 일반적이고(경우에 따라서는 동일이 되는 경우도 있을 수 있다), 경우에 따라서는 <조건 #55><조건 #56><조건 #57>을 만족할 수 없는 변조방식이 존재하는 경우도 있다. 이 경우, <조건 #55><조건 #56><조건 #57> 대신 이하의 조건을 만족하면 좋다.
<조건 #58>
Ka와 Kb의 차는 0 또는 1, 즉,|Ka―Kb|는 0 또는 1(for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
<조건 #59>
Ka , 1과 Kb, 1의 차는 0 또는 1, 즉,|Ka , 1―Kb, 1|은 0 또는 1(for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
<조건 #60>
Ka , 2와 Kb, 2의 차는 0 또는 1, 즉,|Ka , 2―Kb, 2|는 0 또는 1(for∀a,∀b, 다만, a, b=0, 1,2, …, N-1, a≠b)
이상과 같이, 부호화 후의 블록과 프리코딩 행렬의 관계부여를 함으로써 부호화블록을 전송하기 위해서 사용하는 프리코딩 행렬에 치우침이 없어지므로, 수신장치에서 데이터의 수신 품질이 향상한다고 하는 효과를 얻을 수 있다.
이때 사용되는 프리코딩 행렬 간의 치우침이 없게 하는 것은 물론, 송신장치에 기억되어 있는 프리코딩 행렬이 N개라고 한 경우, N개의 프리코딩 행렬 모두를 사용해서 프리코딩을 실행하는 것이 바람직하고, 그때에 N개의 프리코딩 행렬 각각을 균등하게 사용한 프리코딩을 실행하는 것이 바람직하다. 여기서 균등이란 상술한 것과 같이 각 프리코딩 행렬을 사용하는 횟수 중 가장 많은 회수와 가장 적은 횟수의 차가 많아야 1인 것을 의미한다.
또, N개의 모든 프리코딩 행렬을 사용하는 것이 바람직하기는 하나, 이는 각처의 수신 점에서의 수신 품질이 가능한 한 균등해지는 것이면 사용하는 프리코딩 행렬에 대해 기억되어 있는 N개의 모든 프리코딩 행렬을 사용하지 않고, 몇 개의 프리코딩 행렬을 솎아낸 다음, 규칙적으로 프리코딩 행렬을 전환한 프리코딩을 실행해도 좋다. 단, 프리코딩 행렬을 솎아냄에 있어서, 각처에 있는 수신 점에서의 수신 품질을 확보하기 위해서는 균등하게 프리코딩 행렬을 솎아낼 필요가 있다. 균등하게 솎아낸다는 것은 예를 들어 프리코딩 행렬이 F[0], F[1], F[2], F[3], F[4], F[5], F[6], F[7]의 8개가 준비되어 있었다고 하면 사용하는 프리코딩 행렬을 F[0], F[2], F[4], F[6]으로 하거나 하는 것이다. 혹은 프리코딩 행렬이 F[0], F[1], F[2], …, F[14], F[15]의 16개가 준비되어 있었다고 하면 사용하는 프리코딩 행렬을 F[0], F[4], F[8], F[12]로 하거나 하는 것이다. 또, 프리코딩 행렬이 F[0], F[1], F[2], …, F[14], F[15]의 16개가 준비되어 있는 경우 사용하는 프리코딩 행렬을 F[0], F[2], F[4], F[6], F[8], F[10], F[12], F[14]로 해도 균등하게 프리코딩 행렬을 솎아내고 있다고 할 수 있다.
본 실시형태에서는 규칙적으로 프리코딩 행렬을 전환하는 방법에 있어서 주기 N의 프리코딩 홉핑방법을 위해서는 N개의 다른 프리코딩 행렬이 필요하다. 이때, N개의 다른 프리코딩 행렬로 F[0], F[1], F[2], …, F[N-2], F[N-1]을 준비하게 되나, 주파수 축 방향으로 F[0], F[1], F[2], …, F[N-2], F[N-1]의 순으로 배열하는 방법도 있으나, 반드시 이에 한정되는 것은 아니며, 본 실시형태에서 생성한 N개의 다른 프리코딩 행렬 F[0], F[1], F[2], …, F[N-2], F[N-1]을 실시형태 1과 마찬가지로 시간 축, 주파수-시간 축에 대해 심벌을 배치함으로써 프리코딩 웨이트를 변경할 수 있다. 또한, 주기 N의 프리코딩 홉핑방법으로 설명하고 있으나, N개의 다른 프리코딩 행렬을 랜덤으로 이용하도록 해도 같은 효과를 얻을 수 있다, 즉, 반드시 규칙적인 주기를 가지도록 N개의 다른 프리코딩 행렬을 이용할 필요는 없다.
또, 실시형태 15에서 설명한 것과 같이 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드가 존재하고, 송신장치(방송국, 기지국)는 이들 모드에서 어느 하나의 송신방법을 선택할 수 있도록 해도 좋다. 이때, 공간 다중 MIMO 전송방식, 프리코딩 행렬이 고정의 MIMO 전송방식, 시공간블록부호화방식, 1 스트림만 송신, 규칙적으로 프리코딩 행렬을 전환하는 방법의 모드에 있어서, 규칙적으로 프리코딩 행렬을 전환하는 방법을 선택한 (서브)캐리어 군에서는 본 실시형태를 실시하면 좋다.
(실시형태 B1)
이하에서는 상기 각 실시형태에서 설명한 송신방법 및 수신방법의 응용 예와 그것을 이용한 시스템의 구성 예를 설명한다.
도 78는 상기 실시형태에서 설명한 송신방법 및 수신방법을 실행하는 장치를 포함한 시스템의 구성 예를 나타내는 도면이다. 상기 각 실시형태에서 나타내는 송신방법 및 수신방법은 도 78에 나타내는 것과 같은 방송국(7801)과 텔레비전(7811), DVD 리코더(7812), STB(Set Top Box)(7813), 컴퓨터(7820), 차량탑재용 텔레비전(7841) 및 휴대전화(7830) 등의 다양한 종류의 수신기를 포함하는 디지털방송용 시스템(7800)에서 실시된다. 구체적으로는 방송국(7801)이 영상데이터나 음성데이터 등이 다중화된 다중화데이터를 상기 각 실시형태에서 나타낸 송신방법을 이용하여 소정의 전송 대역에 송신한다.
방송국(7801)으로부터 송신된 신호는 각 수신기에 내장되거나 또는 외부에 설치된 당해 수신기와 접속된 안테나(예를 들어 안테나(7860, 7840))로 수신된다. 각 수신기는 안테나에서 수신된 신호를 상기 각 실시형태에서 나타낸 수신방법을 이용하여 복조하여 다중화데이터를 취득한다. 이에 의해 디지털방송용 시스템(7800)은 상기 각 실시형태에서 설명한 본원 발명의 효과를 얻을 수 있다.
여기서, 다중화데이터에 포함되는 영상데이터는 예를 들어 MPEG(Moving Picture Experts Group)2, MPEG4-AVC(Advanced Video Coding), VC-1 등의 규격에 준거한 동영상 부호화방법을 이용하여 부호화되어 있다. 또, 다중화데이터에 포함되는 음성데이터는 예를 들어 돌비 AC(Audio Coding)-3, Dolby Digital Plus, MLP(Meridian Lossless Packing), DTS(Digital Theater Systems), DTS-HD, 리니어 PCM(Pulse Coding Modulation) 등의 음성 부호화방법으로 부호화되어 있다.
도 79는 상기 각 실시형태에서 설명한 수신방법을 실시하는 수신기(7900)의 구성의 일례를 나타내는 도면이다. 도 79에 나타내는 것과 같이, 수신기(7900)의 하나의 구성의 일례로 모뎀부분을 하나의 LSI(또는 칩 세트)로 구성하고, 코덱 부분을 다른 하나의 LSI(또는 칩 세트)로 구성하는 구성방법을 생각할 수 있다. 도 79에 나타내는 수신기(7900)는 도 78에 나타낸 텔레비전(7811), DVD 리코더(7812), STB(Set Top Box)(7813), 컴퓨터(7820), 차량탑재용 텔레비전(7841) 및 휴대전화(7830) 등이 구비하는 구성에 상당한다. 수신기(7900)는 안테나(7960)에서 수신된 고주파신호를 베이스밴드신호로 변환하는 튜너(7901)와 주파수 변환된 베이스밴드신호를 복조하여 다중화데이터를 취득하는 복조부(7902)를 구비한다. 상기 각 실시형태에서 나타낸 수신방법은 복조부(7902)에서 실시되며, 이에 의해 상기 각 실시형태에서 설명한 본원 발명의 효과를 얻을 수 있다.
또, 수신기(7900)는 복조부(7902)에서 얻어진 다중화데이터로부터 영상데이터와 음성데이터를 분리하는 스트림 입출력부(7903)가 분리된 영상데이터에 대응하는 동화상 복호방법을 이용하여 영상데이터를 영상신호로 복호하고, 분리된 음성데이터에 대응하는 음성 복호방법을 이용하여 음성데이터를 음성신호로 복호하는 신호처리부(7904)와, 복호된 음성신호를 출력하는 스피커 등의 음성 출력부(7906)와, 복호된 영상신호를 표시하는 디스플레이 등의 영상 표시부(7907)를 갖는다.
예를 들어 사용자는 리모컨(리모트 컨트롤러)(7950)을 이용하여 선국한 채널(선국한 (텔레비전)프로그램, 선국한 음성 방송)의 정보를 조작 입력부(7910)에 송신한다. 그러면, 수신기(7900)는 안테나(7960)에서 수신한 수신신호에 대해 선국한 채널에 상당하는 신호를 복조, 오류정정 복호 등의 처리를 실행하여 수신데이터를 얻게 된다. 이때, 수신기(7900)는 선국한 채널에 상당하는 신호에 포함되는 전송방법(상기의 실시형태에서 설명한 전송방식, 변조방식, 오류정정방식 등)(이에 대해서는 실시형태 A1 ~ 실시형태 A4에서 설명하고 있고, 또, 도 5, 도 41에 기재한 것과 같다)의 정보를 포함한 제어심벌의 정보를 얻음으로써, 수신 동작, 복조방법, 오류정정 복호 등의 방법을 올바르게 설정함으로써, 방송국(기지국)에서 송신한 데이터심벌에 포함되는 데이터를 얻는 것이 가능해진다. 상술한 설명에서는 사용자는 리모컨(7950)에 의해 채널을 선국하는 예를 설명하였으나, 수신기(7900)가 탑재하고 있는 선국 키를 이용하여 채널을 선국해도 상기와 동일한 동작이 된다.
상기 구성에 의해 사용자는 수신기(7900)가 상기 각 실시형태에서 나타낸 수신방법에 의해 수신한 프로그램을 시청할 수 있다.
또, 본 실시형태의 수신기(7900)는 복조부(7902)에서 복조하고, 오류정정의 복호를 실시함으로써 얻어진 다중화데이터(경우에 따라서는 복조부(7902)에서 복조 되어 얻어진 신호에 대해 오류정정 복호를 실시하지 않을 수도 있다. 또, 수신기(7900)는 오류정정 복호 후에 다른 신호처리가 실시하는 경우도 있다. 이후에서 동일한 표현을 하고 있는 부분에 대해서도 이 점은 동일하다)에 포함되는 데이터 또는 그 데이터에 상당하는 데이터(예를 들어 데이터를 압축함으로써 얻어진 데이터)나, 동영상, 음성을 가공하여 얻어진 데이터를 자기디스크, 광디스크, 불휘발성의 반도체메모리 등의 기록 미디어에 기록하는 기록부(드라이브)(7908)를 구비한다. 여기서 광디스크란, 예를 들어 DVD(Digital Versatile Disc)나 BD(Blu-ray Disc) 등의 레이저광을 이용하여 정보의 기억과 판독이 이루어지는 기록 미디어이다. 자기 디스크란, 예를 들어 FD(Floppy Disk)(등록상표)나 하드 디스크(Hard Disk) 등의 자속을 이용하여 자성체를 자화함으로써 정보를 기억하는 기록 미디어이다. 불휘발성의 반도체메모리란, 예를 들어 플래시 메모리나 강유전체 메모리(Ferroelectric Random Access Memory) 등의 반도체소자에 의해 구성된 기록 미디어이며, 플래시 메모리를 이용한 SD카드나 Flash SSD(Solid State Drive) 등을 예로 들 수 있다. 또, 여기서 예로 든 기록 미디어의 종류는 어디까지나 그 일례이며, 상기 기록 미디어 이외의 기록 미디어를 이용하여 기록을 실행해도 좋은 것은 말할 필요도 없다.
상기 구성에 의해 사용자는 수신기(7900)가 상기 각 실시형태에서 설명한 수신방법에 의해 수신한 프로그램을 기록해서 보존하여, 프로그램이 방송되고 있는 시간 이후의 임의의 시간에 기록된 데이터를 읽어내어서 시청하는 것이 가능해진다.
또, 상기의 설명에서는 수신기(7900)는 복조부(7902)에서 복조하고, 오류정정의 복호를 실시함으로써 얻어진 다중화데이터를 기록부(7908)에서 기록하는 것으로 하였으나, 다중화데이터에 포함되는 데이터 중 일부의 데이터를 추출해서 기록해도 좋다. 예를 들어 복조부(7902)에서 복조하고, 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 영상데이터나 음성데이터 이외의 데이터방송 서비스의 콘텐츠 등이 포함되는 경우, 기록부(7908)는 복조부(7902)에서 복조 된 다중화데이터에서 영상데이터나 음성데이터를 추출하여 다중화한 새로운 다중화데이터를 기록해도 좋다. 또, 기록부(7908)는 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 영상데이터 및 음성데이터 중 어느 하나만을 다중화한 새로운 다중화데이터를 기록해도 좋다. 그리고 상기에서 설명한 다중화데이터에 포함되는 데이터방송 서비스의 콘텐츠를 기록부(7908)는 기록해도 좋다.
또, 텔레비전, 기록장치(예를 들어 DVD 리코더, Blu-ray 리코더, HDD 리코더, SD카드 등), 휴대전화에 본 발명에서 설명한 수신기(7900)가 탑재되어 있는 경우, 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 텔레비전이나 기록장치를 동작시키는데 사용하는 소프트웨어의 결함(버그)을 수정하기 위한 데이터나, 개인정보나 기록한 데이터의 유출을 막기 위한 소프트웨어의 결함(버그)을 수정하기 위한 데이터가 포함되어 있는 경우, 이와 같은 데이터를 인스톨함으로써 텔레비전이나 기록장치의 소프트웨어의 결함을 수정해도 좋다. 그리고 데이터에 수신기(7900)의 소프트웨어의 결함(버그)을 수정하기 위한 데이터가 포함되어 있은 경우, 이 데이터에 의해 수신기(7900)의 결함을 수정할 수도 있다. 이에 의해 수신기(7900)가 탑재되어 있는 텔레비전, 기록장치, 휴대전화를 보다 안정적으로 동작시키는 것이 가능해진다.
여기서, 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻어진 다중화데이터에 포함되는 복수의 데이터에서 일부의 데이터를 추출하여 다중화하는 처리는 예를 들어 스트림 입출력부(7903)에서 실행된다. 구체적으로는 스트림 입출력부(7903)가 도시하고 있지 않은 CPU 등의 제어부로부터의 지시에 의해 복조부(7902)에서 복조 된 다중화데이터를 영상데이터, 음성데이터, 데이터방송 서비스의 콘텐츠 등의 복수의 데이터로 분리하고, 분리 후의 데이터로부터 지정된 데이터만을 추출하여 다중화하여 새로운 다중화데이터를 생성한다. 또, 분리 후의 데이터로부터 어느 데이터를 추출할지에 대해서는 예를 들어 사용자가 결정해도 좋고, 기록 미디어의 종류별로 미리 결정되어 있어도 좋다.
상기 구성에 의해 수신기(7900)는 기록된 프로그램을 시청할 때에 필요한 데이터만을 추출하여 기록할 수 있으므로, 기록하는 데이터의 데이터 사이즈를 삭감할 수 있다.
또, 상기의 설명에서는 기록부(7908)는 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻은 다중화데이터를 기록하는 것으로 했으나, 복조부(7902)에서 복조하고, 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 영상데이터를 당해 영상데이터에서 데이터 사이즈 또는 비트 레이트가 낮아지도록 당해 영상데이터에 실시된 동화상 부호화방법과는 다른 동화상 부호화방법으로 부호화된 영상데이터로 변환하고, 변환 후의 영상데이터를 다중화한 새로운 다중화데이터를 기록해도 좋다. 이때, 원래의 영상데이터에 실시된 동화상 부호화방법과 변환 후의 영상데이터에 실시된 동화상 부호화방법은 서로 다른 규격에 준거하고 있어도 좋고, 동일한 규격에 준거하며 부호화 시에 사용하는 파라미터만이 차이가 나도 좋다. 마찬가지로 기록부(7908)는 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 음성데이터를 당해 음성데이터에서 데이터 사이즈 또는 비트 레이트가 낮아지도록 당해 음성데이터에 시행된 음성 부호화방법과는 다른 음성 부호화방법으로 부호화된 음성데이터로 변환하여, 변환 후의 음성데이터를 다중화한 새로운 다중화데이터를 기록해도 좋다.
여기서, 복조부(7902)에서 복조하고 오류정정의 복호를 실행함으로써 얻은 다중화데이터에 포함되는 영상데이터나 음성데이터를 데이터 사이즈 또는 비트 레이트가 다른 영상데이터나 음성데이터로 변환하는 처리는 예를 들어 스트림 입출력부(7903) 및 신호처리부(7904)에서 실행하게 된다. 구체적으로는 스트림 입출력부(7903)가 CPU 등의 제어부로부터의 지시에 의해 복조부(7902)에서 복조하고 오류정정의 복호를 실시함으로써 얻은 다중화데이터를 영상데이터, 음성데이터, 데이터방송 서비스의 콘텐츠 등의 복수의 데이터로 분리한다. 신호처리부(7904)는 제어부로부터의 지시에 의해 분리 후의 영상데이터를 당해 영상데이터에 실시된 동화상 부호화방법과는 다른 동화상 부호화방법으로 부호화된 영상데이터로 변환하는 처리 및 분리 후의 음성데이터를 당해 음성데이터에 실시된 음성 부호화방법과는 다른 음성 부호화방법으로 부호화된 음성데이터로 변환하는 처리를 실행한다. 스트림 입출력부(7903)는 제어부로부터의 지시에 의해 변환 후의 영상데이터와 변환 후의 음성데이터를 다중화하여 새로운 다중화데이터를 생성한다. 또, 신호처리부(7904)는 제어부로부터의 지시에 따라서 영상데이터와 음성데이터 중 어느 한쪽에 대해서만 변환의 처리를 실행해도 좋고, 양쪽 모두에 대해 변환의 처리를 실행해도 좋다. 또, 변환 후의 영상데이터 및 음성데이터의 데이터 사이즈 또는 비트 레이트는 사용자가 결정해도 좋고, 기록 미디어의 종류마다 미리 결정되어 있어도 좋다.
상기 구성에 의해 수신기(7900)는 기록 미디어에 기록 가능한 데이터 사이즈나 기록부(7908)가 데이터의 기록 또는 판독을 실행하는 속도에 맞추어 영상데이터나 음성데이터의 데이터 사이즈 또는 비트 레이트를 변경하여 기록할 수 있다. 이에 의해 기록 미디어에 기록 가능한 데이터 사이즈가 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터의 데이터 사이즈보다 작은 경우나, 기록부가 데이터의 기록 또는 판독을 실행하는 속도가 복조부(7902)에서 복조 된 다중화데이터의 비트 레이트보다 낮은 경우에도 기록부가 프로그램을 기록하는 것이 가능해지므로, 사용자는 프로그램이 방송되고 있는 시간 이후의 임의의 시간에 기록된 데이터를 판독하여 시청하는 것이 가능해진다.
또, 수신기(7900)는 복조부(7902)에서 복조된 다중화데이터를 외부 기기에 대해서 통신매체(7930)를 개재하여 송신하는 스트림 출력 IF(Interface:인터페이스)(7909)를 구비한다. 스트림 출력 IF(7909)의 일례로는 Wi-Fi(등록상표)(IEEE802. 11a, IEEE802. 11b, IEEE802. 11g, IEEE802. 11n 등), WiGiG, WirelessHD, Bluetooth, Zigbee 등의 무선통신 규격에 준거한 무선통신방법을 이용하여 변조한 다중화데이터를 무선매체(통신매체(7930)에 상당)를 개재하여 외부 기기에 송신하는 무선통신장치를 예로 들 수 있다. 또, 스트림 출력 IF(7909)는 이더넷(Ethernet)(등록상표)이나 USB(Universal Serial Bus), PLC(Power Line Communication), HDMI(High-Definition Multimedia Interface) 등의 유선통신규격에 준거한 통신방법을 이용하여 변조된 다중화데이터를 당해 스트림 출력 IF(7909)에 접속된 유선 전송로(통신매체(7930)에 상당)를 개재하여 외부 기기에 송신하는 유선통신장치라도 좋다.
상기 구성에 의해 사용자는 수신기(7900)가 상기 각 실시형태에서 나타낸 수신방법에 의해 수신한 다중화데이터를 외부 기기에서 이용할 수 있다. 여기서 말하는 다중화데이터의 이용은 사용자가 외부 기기를 이용하여 다중화데이터를 리얼 타임으로 시청하는 것이나, 외부 기기에 구비된 기록부에 의해 다중화데이터를 기록하는 것, 외부 기기에서 다른 외부 기기에 대해 다중화데이터를 송신하는 것 등을 포함한다.
또, 상기의 설명에서는 수신기(7900)는 복조부(7902)에서 복조하여 오류정정의 복호를 실행함으로써 얻은 다중화데이터를 스트림 출력 IF(7909)가 출력하는 것으로 했으나, 다중화데이터에 포함되는 데이터 중 일부의 데이터를 추출하여 출력해도 좋다. 예를 들어 복조부(7902)에서 복조하여 오류정정의 복호를 실행함으로써 얻은 다중화데이터에 영상데이터나 음성데이터 이외의 데이터방송 서비스의 콘텐츠 등이 포함되는 경우, 스트림 출력 IF(7909)는 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터로부터 영상데이터나 음성데이터를 추출하여 다중화한 새로운 다중화데이터를 출력해도 좋다. 또, 스트림 출력 IF(7909)는 복조부(7902)에서 복조된 다중화데이터에 포함되는 영상데이터 및 음성데이터 중 어느 한쪽만을 다중화한 새로운 다중화데이터를 출력해도 좋다.
여기서, 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 복수의 데이터로부터 일부의 데이터를 추출하여 다중화하는 처리는 예를 들어 스트림 입출력부(7903)에서 실행하게 된다. 구체적으로는 스트림 입출력부(7903)가 도시하고 있지 않은 CPU(Central Processing Unit) 등의 제어부로부터의 지시에 의해 복조부(7902)에서 복조된 다중화데이터를 영상데이터, 음성데이터, 데이터방송 서비스의 콘텐츠 등의 복수의 데이터로 분리하고, 분리 후의 데이터로부터 지정된 데이터만을 추출하여 다중화하여 새로운 다중화데이터를 생성한다. 또 분리 후의 데이터로부터 어느 데이터를 추출할지에 대해서는 예를 들어 사용자가 결정해도 좋고, 스트림 출력 IF(7909)의 종류마다 미리 결정되어 있어도 좋다.
상기 구성에 의해, 수신기(7900)는 외부 기기가 필요한 데이터만을 추출하여 출력할 수 있으므로, 다중화데이터의 출력에 의해 소비되는 통신 대역을 삭감할 수 있다.
또, 상기의 설명에서는 스트림 출력 IF(7909)는 복조부(7902)에서 복조하여 오류정정의 복호를 실행함으로써 얻은 다중화데이터를 기록하는 것으로 했으나, 복조부(7902)에서 복조하여 오류정정의 복호를 실행함으로써 얻은 다중화데이터에 포함되는 영상데이터를 당해 영상데이터에서 데이터 사이즈 또는 비트 레이트가 낮아지도록 당해 영상데이터에 실시된 동화상 부호화방법과는 다른 동화상 부호화방법으로 부호화된 영상데이터로 변환하고, 변환 후의 영상데이터를 다중화한 새로운 다중화데이터를 출력해도 좋다. 이때, 원래의 영상데이터에 실시된 동화상 부호화방법과 변환 후의 영상데이터에 실시된 동화상 부호화방법이란 서로 다른 규격에 준거하고 있어도 좋고, 동일한 규격에 준거하며, 부호화 시에 사용하는 파라미터만이 차이가 나도 좋다. 마찬가지로, 스트림 출력 IF(7909)는 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 음성데이터를 당해 음성데이터에서 데이터 사이즈 또는 비트 레이트가 낮아지도록 당해 음성데이터에 실시된 음성 부호화방법과는 다른 음성 부호화방법으로 부호화된 음성데이터로 변환하여 변환 후의 음성데이터를 다중화한 새로운 다중화데이터를 출력해도 좋다.
여기서, 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터에 포함되는 영상데이터나 음성데이터를 데이터 사이즈 또는 비트 레이트가 다른 영상데이터나 음성데이터로 변환하는 처리는 예를 들어 스트림 입출력부(7903) 및 신호처리부(7904)에서 실행하게 된다. 구체적으로는 스트림 입출력부(7903)가 제어부로부터의 지시에 의해 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터를 영상데이터, 음성데이터, 데이터방송 서비스의 콘텐츠 등의 복수의 데이터로 분리한다. 신호처리부(7904)는 제어부로부터의 지시에 의해 분리 후의 영상데이터를 당해 영상데이터에 실시된 동화상 부호화방법과는 다른 동화상 부호화방법으로 부호화된 영상데이터로 변환하는 처리 및 분리 후의 음성데이터를 당해 음성데이터에 실시된 음성 부호화방법과는 다른 음성 부호화방법으로 부호화된 음성데이터로 변환하는 처리를 실행한다. 스트림 입출력부(7903)는 제어부로부터의 지시에 의해 변환 후의 영상데이터와 변환 후의 음성데이터를 다중화하여 새로운 다중화데이터를 생성한다. 또, 신호처리부(7904)는 제어부로부터의 지시에 따라서 영상데이터와 음성데이터 중 어느 한쪽에 대해서만 변환의 처리를 실행해도 좋고, 양쪽 모두에 대해서 변환의 처리를 실행해도 좋다. 또, 변환 후의 영상데이터 및 음성데이터의 데이터 사이즈 또는 비트 레이트는 사용자가 결정해도 좋고, 스트림 출력 IF(7909)의 종류마다 미리 결정되어 있어도 좋다.
상기 구성에 의해 수신기(7911)는 외부 기기와의 사이의 통신속도에 맞춰서 영상데이터나 음성데이터의 비트 레이트를 변경하여 출력할 수 있다. 이에 의해 외부 기기와의 사이의 통신속도가 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터의 비트 레이트보다 낮은 경우에도 스트림 출력 IF로부터 외부 기기에 새로운 다중화데이터를 출력할 수 있게 되므로, 사용자는 다른 통신장치에 대해 새로운 다중화데이터를 이용하는 것이 가능해진다.
또, 수신기(7911)는 외부 기기에 대해 신호처리부(7904)에서 복호 된 영상신호 및 음성신호를 외부의 통신매체에 대해 출력하는 AV(Audio and Visual) 출력 IF(Interface)(7911)를 구비한다. AV출력 IF(7911)의 일례로는 Wi-Fi(등록상표)(IEEE802. 11a, IEEE802. 11b, IEEE802. 11g, IEEE802. 11n 등), WiGiG, WirelessHD, Bluetooth, Gigbee 등의 무선통신 규격에 준거한 무선통신방법을 이용하여 변조한 영상신호 및 음성신호를 무선매체를 개재하여 외부 기기에 송신하는 무선통신장치를 들 수 있다. 또, 스트림 출력 IF(7909)는 이더넷(Ethernet)이나 USB, PLC, HDMI 등의 유선통신규격에 준거한 통신방법을 이용하여 변조된 영상신호 및 음성신호를 당해 스트림 출력 IF(7909)에 접속된 유선 전송로를 개재하여 외부 기기에 송신하는 유선통신장치라도 좋다. 또, 스트림 출력 IF(7909)는 영상신호 및 음성신호를 아날로그 신호 그대로 출력하는 케이블을 접속하는 단자라도 좋다.
상기 구성에 의해 사용자는 신호처리부(7904)에서 복호 된 영상신호 및 음성신호를 외부 기기로 이용할 수 있다.
더욱이 수신기(7900)는 사용자 조작의 입력을 받아들이는 조작 입력부(7910)를 구비한다. 수신기(7900)는 사용자의 조작에 따라서 조작 입력부(7910)에 입력되는 제어신호에 의거하여 전원의 ON/OFF의 전환이나 수신하는 채널의 전환, 자막 표시의 유무나 표시하는 언어의 전환, 음성 출력부(7906)로부터 출력되는 음량의 변경 등의 다양한 동작의 전환이나 수신 가능한 채널의 설정 등의 설정의 변경을 실행한다.
또, 수신기(7900)는 당해 수신기(7900)에서 수신중인 신호의 수신품질을 나타내는 안테나 레벨을 표시하는 기능을 구비하고 있어도 좋다. 여기서, 안테나 레벨이란, 예를 들어 수신기(7900)가 수신한 신호의 RSSI(Received Signal Strength Indication, Received Signal Strength Indicator, 수신신호 강도), 수신 전계 강도, C/N(Carrier-to-noise power ratio), BER(Bit Error Rate:비트 에러율), 패킷 에러율, 프레임 에러율, 채널상태정보(Channel State Information) 등에 의거하여 산출되는 수신품질을 나타내는 지표이며, 신호레벨, 신호의 우열을 나타내는 신호이다. 이 경우, 복조부(7902)는 수신한 신호의 RSSI, 수신 전계 강도, C/N, BER, 패킷 에러율, 프레임 에러율, 채널상태정보 등을 측정하는 수신품질 측정부를 구비하며, 수신기(7900)는 사용자의 조작에 따라서 안테나 레벨(신호레벨, 신호의 우열을 나타내는 신호)을 사용자가 식별 가능한 형식으로 영상 표시부(7907)에 표시한다. 안테나 레벨(신호레벨, 신호의 우열을 나타내는 신호)의 표시 형식은 RSSI, 수신 전계 강도, C/N, BER, 패킷 에러율, 프레임 에러율, 채널상태정보 등에 따른 수치를 표시하는 것이라도 좋고, RSSI, 수신 전계 강도, C/N, BER, 패킷 에러율, 프레임 에러율, 채널상태정보 등에 따라서 다른 화상을 표시하는 것과 같은 것이라도 좋다. 또, 수신기(7900)는 상기 각 실시형태에서 나타낸 수신방법을 이용하여 수신하여 분리된 복수의 스트림 s1, s2, …마다 구한 복수의 안테나 레벨(신호 레벨, 신호의 우열을 나타내는 신호)을 표시해도 좋고, 복수의 스트림 s1, s2, …에서 구한 1개의 안테나 레벨(신호 레벨, 신호의 우열을 나타내는 신호)을 표시해도 좋다. 또, 프로그램을 구성하는 영상데이터나 음성데이터가 계층전송방식을 이용하여 송신되고 있는 경우에는 계층마다 신호의 레벨(신호의 우열을 나타내는 신호)을 나타내는 것도 가능하다.
상기 구성에 의해 사용자는 상기 각 실시형태에서 나타내는 수신방법을 이용하여 수신하는 경우의 안테나 레벨(신호레벨, 신호의 우열을 나타내는 신호)을 수치상으로 또는 시각적으로 파악할 수 있다.
또, 상기의 설명에서는 수신기(7900)가 음성 출력부(7906), 영상 표시부(7907), 기록부(7908), 스트림 출력 IF(7909) 및 AV출력 IF(7911)를 구비하고 있는 경우를 예로 들어 설명하였으나, 이와 같은 구성의 모두를 구비하고 있을 필요는 없다. 수신기(7900)가 상기의 구성 중 적어도 어느 하나를 구비하고 있으면 사용자는 복조부(7902)에서 복조하여 오류정정의 복호를 실시함으로써 얻은 다중화데이터를 이용할 수가 있으므로, 각 수신기는 그 용도에 맞추어 상기의 구성을 임의로 조합하여 구비하고 있으면 좋다.
(다중화데이터)
다음에, 다중화데이터의 구조의 일례에 대해 상세하게 설명한다. 방송에 이용되는 데이터 구조로는 MPEG2-트랜스포트 스트림(TS)이 일반적이며, 여기에서는 MPEG2-TS를 예로 들어 설명한다. 그러나 상기 각 실시형태에서 나타내는 송신방법 및 수신방법으로 전송되는 다중화데이터의 데이터 구조는 MPEG2-TS에 한정되지 않으며, 다른 어떠한 데이터 구조라도 상기의 각 실시형태에서 설명한 효과를 얻을 수 있는 것은 말할 필요도 없다.
도 80은 다중화데이터의 구성의 일례를 나타내는 도면이다. 도 80에 나타내는 것과 같이 다중화데이터는 각 서비스에서 현재 제공되고 있는 프로그램(Programme 또는 그 일부인 Event)을 구성하는 요소이며, 예를 들어 비디오 스트림, 오디오 스트림, 프레젠테이션 그래픽스 스트림(PG), 인터랙티브 그래픽디자인 스트림(IG) 등의 엘리멘터리 스트림 중 하나 이상을 다중화함으로써 얻을 수 있다. 다중화데이터로 제공되고 있는 프로그램이 영화인 경우, 비디오 스트림은 영화의 주 영상 및 부 영상을, 오디오 스트림은 영화의 주음성부분과 당해 주음성과 믹싱하는 부 음성을, 프레젠테이션 그래픽스 스트림은 영화의 자막을 각각 나타내고 있다. 여기서 주 영상이란 화면에 표시되는 통상의 영상을 나타내며, 부 영상이란 주 영상 안에 작은 화면으로 표시하는 영상(예를 들어 영화의 개요를 나타내는 텍스트 데이터의 영상 등)이다. 또, 인터랙티브 그래픽스 스트림은 화면상에 GUI 부품을 배치함으로써 작성되는 대화화면을 나타내고 있다.
다중화데이터에 포함되는 각 스트림은 각 스트림에 할당된 식별자인 PID에 의해 식별된다. 예를 들어 영화의 영상에 이용하는 비디오 스트림에는 0x1011이, 오디오 스트림에는 0x1100에서 0x111F까지가, 프레젠테이션 그래픽스에는 0x1200에서 0x121F까지가, 인터랙티브 그래픽스 스트림에는 0x1400에서 0x141F까지가, 영화의 부 영상에 이용하는 비디오 스트림에는 0x1B00에서 0x1B1F까지, 주음성과 믹싱하는 부 음성에 이용하는 오디오 스트림에는 0x1A00에서 0x1A1F가 각각 할당되고 있다.
도 81은 다중화데이터가 어떻게 다중화되어 있는가의 일례를 모식적으로 나타내는 도면이다. 먼저, 복수의 비디오 프레임으로 이루어지는 비디오 스트림(8101), 복수의 오디오 프레임으로 이루어지는 오디오 스트림(8104)을 각각 PES 패킷 열(8102 및 8105)로 변환하고, TS패킷(8103 및 8106)으로 변환한다. 마찬가지로 프레젠테이션 그래픽스 스트림(8111) 및 인터랙티브 그래픽스(8116)의 데이터를 각각 PES 패킷 열(8112 및 9115)로 변환하고, TS패킷(8113 및 8116)으로 더 변환한다. 다중화데이터(8117)는 이와 같은 TS패킷(8103, 8106, 8113, 8116)을 1개의 스트림에 다중화함으로써 구성된다.
도 82는 PES 패킷 열에 비디오 스트림이 어떻게 저장되는가를 더 상세하게 나타내고 있다. 도 82에서의 제 1 단째는 비디오 스트림의 비디오 프레임 열을 나타낸다. 제 2 단째는 PES 패킷 열을 나타낸다. 도 82의 화살표(yy1, yy2, yy3, yy4)로 나타내는 것과 같이, 비디오 스트림에서의 복수의 Video Presentation Unit인 I픽처, B픽처, P픽처는 픽처마다 분할되어 PES 패킷의 페이로드(Payload)에 저장된다. 각 PES 패킷은 PES 헤더를 가지며, PES 헤더에는 픽처의 표시 시각인 PTS(Presentation Time-Stamp)나 픽처의 복호 시각인 DTS(Decoding Time-Stamp)가 저장된다.
도 83은 다중화데이터에 최종적으로 기입되는 TS패킷의 형식을 나타내고 있다. TS패킷은 스트림을 식별하는 PID 등의 정보를 가지는 4Byte의 TS헤더와 데이터를 저장하는 184Byte의 TS 페이로드로 구성되는 188Byte 고정길이의 패킷이며, 상기 PES 패킷은 분할되어 TS 페이로드에 저장된다. BD-ROM의 경우, TS패킷에는 4Byte의 TP_Extra_Header가 부여되며, 192Byte의 소스 패킷을 구성하여 다중화데이터에 기입된다. TP_Extra_Header에는 ATS(Arrival_Time_Stamp) 등의 정보가 기재된다. ATS는 당해 TS패킷의 디코더의 PID 필터로의 전송 개시시각을 나타낸다. 다중화데이터에는 도 89 하단에 나타내는 것과 같이 소스 패킷이 배열되게 되며, 다중화데이터의 선두로부터 인크리먼트(Increment)하는 번호는 SPN(소스 패킷 넘버)이라고 불린다.
또, 다중화데이터에 포함되는 TS패킷에는 비디오 스트림, 오디오 스트림, 프레젠테이션 그래픽스 스트림 등의 각 스트림 이외에도 PAT(Program Association Table), PMT(Program Map Table), PCR(Program Clock Reference) 등이 있다. PAT는 다중화데이터 중에 이용되는 PMT의 PID가 무엇인가를 나타내고, PAT 자체의 PID는 0으로 등록된다. PMT는 다중화데이터 중에 포함되는 영상·음성·자막 등의 각 스트림의 PID와 각 PID에 대응하는 스트림의 속성정보(프레임 레이트, 종횡비 등)를 가지며, 또, 다중화데이터에 관한 각종 디스크립터(Descriptor)를 갖는다. 디스크립터에는 다중화데이터의 카피를 허가·불허가를 지시하는 카피컨트롤정보 등이 있다. PCR는 ATS의 시간 축인 ATC(Arrival Time Clock)와 PTS·DTS의 시간 축인 STC(System Time Clock)의 동기를 취하기 위해 그 PCR 패킷이 디코더에 전송되는 ATS에 대응하는 STC 시간의 정보를 갖는다.
도 84는 PMT의 데이터 구조를 상세하게 설명하는 도면이다. PMT의 선두에는 그 PMT에 포함되는 데이터의 길이 등을 기재한 PMT 헤더가 배치된다. 그 뒤에는 다중화데이터에 관한 디스크립터가 복수 배치된다. 상기 카피컨트롤정보 등이 디스크립터로 기재된다. 디스크립터의 뒤에는 다중화데이터에 포함되는 각 스트림에 관한 스트림 정보가 복수 배치된다. 스트림 정보는 스트림의 압축 코덱 등을 식별하기 위한 스트림 타입, 스트림의 PID, 스트림의 속성정보(프레임 레이트, 종횡비 등)가 기재된 스트림 디스크립터로 구성된다. 스트림 디스크립터는 다중화데이터에 존재하는 스트림의 수만큼 존재한다.
기록매체 등에 기록하는 경우에는 상기 다중화데이터는 다중화데이터정보 파일과 함께 기록된다.
도 85는 그 다중화데이터 정보파일의 구성을 나타내는 도면이다. 다중화데이터정보파일은 도 85에 나타내는 것과 같이 다중화데이터의 관리정보이며, 다중화데이터와 1 대 1에 대응하여 다중화데이터정보, 스트림 속성정보와 엔트리 맵으로 구성된다.
다중화데이터정보는 도 85에 나타내는 것과 같이 시스템 레이트, 재생 개시시각, 재생 종료시각으로 구성되어 있다. 시스템 레이트는 다중화데이터의 후술하는 시스템 타깃 디코더의 PID 필터에의 최대 전송 레이트를 나타낸다. 다중화데이터 중에 포함되는 ATS의 간격은 시스템 레이트 이하가 되도록 설정되어 있다. 재생 개시시각은 다중화데이터의 선두의 비디오 프레임의 PTS이며, 재생 종료시각은 다중화데이터의 종단의 비디오 프레임의 PTS에 1프레임 분의 재생간격을 더한 것이 설정된다.
도 86은 다중화데이터 파일정보에 포함되는 스트림 속성정보의 구성을 나타내는 도면이다. 스트림 속성정보는 도 86에 나타내는 것과 같이 다중화데이터에 포함되는 각 스트림에 대한 속성정보가 PID마다 등록된다. 속성정보는 비디오 스트림, 오디오 스트림, 프레젠테이션 그래픽스 스트림, 인터랙티브 그래픽스 스트림마다 다른 정보를 갖는다. 비디오 스트림 속성정보는 그 비디오 스트림이 어떠한 압축 코덱으로 압축되었는가, 비디오 스트림을 구성하는 개개의 픽처 데이터의 해상도가 얼마만큼인가, 종횡비는 얼마만큼인가, 프레임 레이트는 얼마만큼인가 등의 정보를 갖는다. 오디오 스트림 속성정보는 그 오디오 스트림이 어떠한 압축 코덱으로 압축되었는가, 그 오디오 스트림에 포함되는 채널 수는 얼마인가, 무슨 언어에 대응하는가, 샘플링 주파수가 얼만큼인가 등의 정보를 갖는다. 이와 같은 정보는 플레이어가 재생하기 전의 디코더의 초기화 등에 이용된다.
본 실시형태에서는 상기 다중화데이터 중 PMT에 포함되는 스트림 타입을 이용한다. 또, 기록매체에 다중화데이터가 기록되어 있는 경우에는 다중화데이터정보에 포함되는 비디오 스트림 속성정보를 이용한다. 구체적으로는 상기 각 실시형태에서 나타내는 동화상 부호화방법 또는 장치에서 PMT에 포함되는 스트림 타입 또는 비디오 스트림 속성정보에 대해, 상기 각 실시형태에서 나타낸 동화상 부호화방법 또는 장치에 의해 생성된 영상데이터인 것을 나타내는 고유의 정보를 설정하는 스텝 또는 수단을 설치한다. 이 구성에 의해 상기 각 실시형태에서 나타내는 동화상 부호화방법 또는 장치에 의해 생성한 영상데이터와 다른 규격에 준거하는 영상데이터를 식별하는 것이 가능해진다.
도 87은 방송국(기지국)으로부터 송신된 영상 및 음성의 데이터 또는 데이터방송을 위한 데이터를 포함한 변조신호를 수신하는 수신장치(8704)를 포함한 영상 음성 출력장치(8700)의 구성의 일례를 나타내고 있다. 또, 수신장치(8704)의 구성은 도 79의 수신장치(8500)에 상당한다. 영상 음성 출력장치(8700)에는 예를 들어 OS(Operating System: 오퍼레이팅 시스템)가 탑재되어 있고 또, 인터넷에 접속하기 위한 통신장치(8706)(예를 들어 무선 LAN(Local Area Network)이나 이더넷를 위한 통신장치)가 탑재되어 있다. 이에 의해 영상을 표시하는 부분(8701)에서는 영상 및 음성의 데이터 또는 데이터방송을 위한 데이터에서의 영상(8702) 및 인터넷상에서 제공되는 하이퍼 텍스트(Hyper text)(World Wide Web(월드 와이드 웹:WWW))(8703)을 동시에 표시하는 것이 가능해진다. 그리고 리모컨(휴대전화나 키보드라도 좋다)(8707)을 조작함으로써 데이터방송을 위한 데이터에서의 영상(8702), 인터넷상에서 제공되는 하이퍼 텍스트(Hyper text) (8703)의 어느 한쪽을 선택하여 동작을 변경하게 된다. 예를 들어 인터넷상에서 제공되는 하이퍼 텍스트(Hyper text)(8703)가 선택되었을 경우, 표시하고 있는 WWW의 사이트를 리모컨을 조작함으로써 변경하게 된다. 또, 영상 및 음성의 데이터 또는 데이터방송을 위한 데이터에서의 영상(8702)이 선택되고 있는 경우, 리모컨(8707)에 의해 선국한 채널(선국한 (텔레비전)프로그램, 선국한 음성 방송)의 정보를 송신한다. 그러면, IF(8705)는 리모컨에서 송신된 정보를 취득하고, 수신장치 (8704)는 선국한 채널에 상당하는 신호를 복조, 오류정정 복호 등의 처리를 실행하여 수신데이터를 얻게 된다. 이때, 수신장치(8704)는 선국한 채널에 상당하는 신호에 포함되는 전송방법(이에 대해서는 실시형태 A1 ~ 실시형태 A4에서 설명하고 있으며 또, 도 5, 도 41에 기재된 것과 같다)의 정보를 포함한 제어심벌의 정보를 얻음으로써, 수신동작, 복조방법, 오류정정 복호 등의 방법을 올바르게 설정함으로써 방송국(기지국)에서 송신한 데이터심벌에 포함되는 데이터를 얻는 것이 가능해진다. 상술한 설명에서는 사용자는 리모컨(8707)에 의해 채널을 선국하는 예를 설명하였으나, 영상 음성 출력장치(8700)가 탑재하고 있는 선국 키를 이용하여 채널을 선국해도 상기와 동일한 동작이 된다.
또, 인터넷을 이용하여 영상 음성 출력장치(8700)를 조작해도 좋다. 예를 들어 다른 인터넷에 접속하고 있는 단말로부터 영상 음성 출력장치(8700)에 대해 녹화(기억)의 예약을 실행한다(따라서 영상 음성 출력장치(8700)는 도 79와 같이 기록부(7908)를 가지고 있게 된다). 그리고 녹화를 개시하기 전에 채널을 선국하게 되며, 수신장치(8704)는 선국한 채널에 상당하는 신호를 복조, 오류정정 복호 등의 처리를 실행하여 수신데이터를 얻게 된다. 이때, 수신장치(8704)는 선국한 채널에 상당하는 신호에 포함되는 전송방법(상기의 실시형태에서 설명한 전송방식, 변조방식, 오류정정방식 등)(이에 대해서는 실시형태 A1 ~ 실시형태 A4에서 설명하고 있으며, 또, 도 5, 도 41에 기재한 것과 같다)의 정보를 포함한 제어심벌의 정보를 얻음으로써 수신동작, 복조방법, 오류정정 복호 등의 방법을 올바르게 설정함으로써 방송국(기지국)으로 송신한 데이터심벌에 포함되는 데이터를 얻는 것이 가능해진다.
(그 외 보충)
본 명세서에서 송신장치를 구비하고 있는 것은 예를 들어 방송국, 기지국, 액세스 포인트, 단말, 휴대전화(Mobile phone) 등의 통신·방송 기기인 것을 생각할 수 있고, 이때, 수신장치를 구비하고 있는 것은 텔레비전, 라디오, 단말, 퍼스널컴퓨터, 휴대전화, 액세스 포인트, 기지국 등의 통신 기기인 것을 생각할 수 있다. 또, 본 발명에서의 송신장치, 수신장치는 통신 기능이 있는 기기이며, 그 기기가 텔레비전, 라디오, 퍼스널컴퓨터, 휴대전화 등의 애플리케이션을 실행하기 위한 장치에 어떤 인터페이스(예를 들어 USB)를 개재하여 접속할 수 있는 것과 같은 형태인 것도 생각할 수 있다.
또, 본 실시형태에서는 데이터심벌 이외의 심벌, 예를 들어 파일럿 심벌(프리앰블, 유니크 워드, 포스트앰블(Postamble), 레퍼런스 심벌 등), 제어정보용의 심벌 등이 프레임에 어떻게 배치되어 있어도 좋다. 그리고 여기에서는 파일럿 심벌, 제어정보용의 심벌이라고 명명하고 있으나, 어떠한 명명법으로 해도 좋고, 기능 자체가 중요해진다.
파일럿 심벌은 예를 들어 송수신기에서 PSK 변조를 이용하여 변조한 기존의 심벌(또는 수신기가 동기를 취함으로써 수신기는 송신기가 송신한 심벌을 알 수 있어도 좋다)이면 좋고, 수신기는 이 심벌을 이용하여 주파수 동기, 시간 동기, (각 변조신호의) 채널 추정(CSI(Channel State Information)의 추정), 신호의 검출 등을 실행하게 된다.
또, 제어정보용의 심벌은 (애플리케이션 등의) 데이터 이외의 통신을 실현하기 위한 통신 상대에게 전송할 필요가 있는 정보(예를 들어 통신에 이용하고 있는 변조방식·오류정정 부호화방식·오류정정 부호화방식의 부호화 율, 상위층에서의 설정 정보 등)를 전송하기 위한 심벌이다.
또, 본 발명은 상기 모든 실시형태에 한정되지 않으며, 여러 가지로 변경하여 실시하는 것이 가능하다. 예를 들어 상기 실시형태에서는 통신장치로서 실행하는 경우에 대해 설명하고 있으나, 이에 한정되는 것은 아니며 이 통신방법을 소프트웨어로서 실행하는 것도 가능하다.
또, 상기에서는 2개의 변조신호를 2개의 안테나로부터 송신하는 방법에서의 프리코딩 변환방법에 대해 설명하였으나, 이에 한정되는 것은 아니며, 4개의 매핑 후의 신호에 대해 프리코딩을 실행하여 4개의 변조신호를 생성하고, 4개의 안테나로부터 송신하는 방법, 즉, N개의 매핑 후의 신호에 대해 프리코딩을 실행하여 N개의 변조신호를 생성하며, N개의 안테나로부터 송신하는 방법에서도 동일하게 프리코딩 웨이트(행렬)를 변경하는 프리코딩 전환방법으로서도 마찬가지로 실시할 수 있다.
본 명세서에서는 「프리코딩」, 「프리코딩 웨이트」, 「프리코딩 행렬」등의 용어를 사용하고 있으나, 호칭 자체는 어떤 것이라도 좋고(예를 들어 코드 북(codebook)이라고 불러도 좋다), 본 발명에서는 그 신호처리 자체가 중요해진다.
또, 본 명세서에 있어서, 수신장치에서 ML연산, APP, Max-logAPP, ZF, MMSE 등을 이용하여 설명하고 있으나, 이 결과 송신장치가 송신한 데이터의 각 비트의 연판정(Soft decision) 결과(대수 우도, 대수 우도 비)나 경판정 결과(「0」또는 「1」)를 얻게 되나, 이들을 총칭하여 검파, 복조, 검출, 추정, 분리라고 불러도 좋다.
2 스트림의 베이스밴드신호 s1(i), s2(i)(단, i는 (시간, 또는 주파수(캐리어)의) 순번을 나타낸다)에 대해 규칙적으로 프리코딩 행렬을 전환하는 프리코딩을 실행하여 생성된 프리코딩 후의 베이스밴드신호 z1(i), z2(i)에 있어서, 프리코딩 후의 베이스밴드신호 z1(i)의 동상 I성분을 I1(i), 직교성분을 Q1(i)로 하고, 프리코딩 후의 베이스밴드신호 z2(i)의 동상 I성분을 I2(i), 직교성분을 Q2(i)로 한다. 이때, 기저 대역 성분의 교체를 실행하여,
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 Q1(i)로 하여, 교체 후의 베이스밴드신호 r1(i)에 상당하는 변조신호를 송신안테나 1, 교체 후의 베이스밴드신호 r2(i)에 상당하는 변조신호를 송신안테나 2로부터 동일 시각에 동일 주파수를 이용하여 송신하는 것과 같이, 교체 후의 베이스밴드신호 r1(i)에 상당하는 변조신호와 교체 후의 베이스밴드신호 r2(i)를 다른 안테나로부터 동일 시각에 동일 주파수를 이용하여 송신하는 것으로 해도 좋다. 또,
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
ㆍ교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 I2(i)
로 해도 좋다. 또, 상술한 설명에서는 2 스트림의 신호에 대해 프리코딩을 실행하여 프리코딩 후의 신호의 동상성분과 직교성분의 교체에 대해 설명하였으나, 이에 한정되는 것은 아니며, 2 스트림보다 많은 신호에 대해 프리코딩을 실행하고 프리코딩 후의 신호의 동상성분과 직교성분의 교체를 실행하는 것도 가능하다.
송신장치의 송신안테나, 수신장치의 수신안테나 모두 도면에 기재되어 있는 1개의 안테나는 복수의 안테나에 의해 구성되어 있어도 좋다.
본 명세서에서 「∀」은 전칭기호(Universal quantifier)를 나타내고 있고, 「∃」은 존재기호(Existential quantifier)를 나타내고 있다.
또, 본 명세서에서 복소 평면에서의, 예를 들어 편각과 같은 위상의 단위는 「라디안(radian)」으로 하고 있다.
복소 평면을 이용하면 복소수의 극좌표에 의한 표시로 하여 극 형식으로 표시할 수 있다. 복소수 z = a + jb(a, b는 모두 실수이며, j는 허수 단위이다)에 복소 평면의 점 (a, b)을 대응시켰을 때 이 점이 극좌표에서 [r, θ]로 나타내게 되면,
a=r×cosθ,
b=r×sinθ
Figure 112018069724742-pat00307
이 성립하고, r은 z의 절대값 (r = |z|)이며, θ가 편각(Argument)이 된다. 그리고 z= a + jb는 re로 나타내게 된다.
본 발명의 설명에서 베이스밴드신호, 변조신호 s1, 변조신호 s2, 변조신호 z1, 변조신호 z2는 복소 신호가 되나, 복소 신호란 동상신호를 I, 직교 신호를 Q로 한 때, 복소 신호는 I + jQ(j는 허수 단위)로 나타내게 된다. 이때, I가 제로가 되어도 좋고, Q가 제로가 되어도 좋다.
또, 본 명세서에서 설명한 다른 프리코딩 행렬을 프레임(시간 축 및/또는 주파수 축)에 할당하는 방법(예를 들어 실시형태 1)에서는 본 명세서에서 설명한 다른 프리코딩 행렬과는 다른 프리코딩 행렬을 이용해도 마찬가지로 실시할 수 있다. 마찬가지로 규칙적으로 프리코딩 행렬을 전환하는 방법과 다른 송신방법을 공존시키거나 전환하는 경우에 대해서도 본 명세서에서 설명한 다른 프리코딩 행렬을 이용하여 규칙적으로 전환하는 방법과는 다른 프리코딩 행렬을 이용하여 규칙적으로 전환하는 방법으로 해도 실시할 수 있다.
본 명세서에서 설명한 규칙적으로 프리코딩 행렬을 전환하는 방법을 이용한 방송시스템의 일례를 도 59에 나타낸다. 도 59에서 영상 부호화부 (5901)는 영상을 입력으로 하여 영상 부호화를 실행하여 영상 부호화 후의 데이터 (5902)를 출력한다. 음성 부호화부(5903)는 음성을 입력으로 하여 음성 부호화를 실행하여 음성 부호화 후의 데이터(5904)를 출력한다. 데이터 부호화부(5905)는 데이터를 입력으로 하여 데이터의 부호화(예를 들어 데이터 압축)를 실행하여 데이터 부호화 후의 데이터(5906)를 출력한다. 이들을 정보원 부호화부(5900)라고 한다.
송신부(5907)는 영상 부호화 후의 데이터(5902), 음성 부호화 후의 데이터(5904), 데이터 부호화 후의 데이터(5906)를 입력으로 하여, 이들 데이터의 어느 하나 또는 이들 데이터 모두를 송신데이터로 하여 오류정정부호화, 변조, 프리코딩 등의 처리(예를 들어 도 3의 송신장치에서의 신호처리)를 시행하여 송신신호(5908_1이나 5908_N)를 출력한다. 그리고 송신신호(5908_1에서 5908_N)는 각각 안테나(5909_1에서 5909_N)에 의해 전파로서 송신된다.
수신부(5912)는 안테나(5910_1에서 5910_M)로 수신한 수신신호(5911_1에서 5911_M)를 입력으로 하여, 주파수 변환, 프리코딩의 디코드, 대수 우도 비 산출, 오류정정 복호 등의 처리(예를 들어 도 7의 수신장치에서의 처리)를 시행하여 수신데이터(5913, 5915, 5917)를 출력한다. 정보원 복호부 (5919)는 수신데이터(5913, 5915, 5917)를 입력으로 하고, 영상 복호화부(5914)는 수신데이터(5913)을 입력으로 하여 영상용의 복호를 실시하여 영상신호를 출력하고, 영상은 텔레비전, 디스플레이에 표시된다. 또, 음성 복호화부(5916)는 수신데이터(5915)를 입력으로 하여 음성용의 복호를 실행하여 음성신호를 출력하며, 음성은 스피커에서 흘러나온다. 또, 데이터 복호화부(5918)는 수신데이터(5917)를 입력으로 하여 데이터용의 복호를 실행하여 데이터의 정보를 출력한다.
또, 본 발명의 설명을 하고 있는 실시형태에서 이전에도 설명한 것과 같이 OFDM 방식과 같은 멀티 캐리어 전송방식에서 송신장치가 보유하고 있는 부호화기의 수는 몇 개라도 좋다. 따라서 예를 들어 도 4와 같이 송신장치가 부호화기를 1개 구비하고, 출력을 분배하는 방법을 OFDM 방식과 같은 멀티 캐리어 전송방식에도 적용하는 것도 당연히 가능하다. 이때, 도 4의 무선부(310A, 310B)를 도 13의 OFDM 방식관련 처리부(1301A, 1301B)로 치환하면 좋아진다. 이때, OFDM 방식관련 처리부의 설명은 실시형태 1과 같다.
또, 본 명세서에서 「다른 프리코딩 행렬을 전환하는 방법」으로 기술하고 있으나, 본 명세서에서 구체적으로 기재한 「다른 프리코딩 행렬을 전환하는 방법」은 예이며, 본 명세서에서 기재한 모든 실시형태에 있어서 「다른 프리코딩 행렬을 전환하는 방법」으로 「다른 복수의 프리코딩 행렬을 이용하여 규칙적으로 프리코딩 행렬을 전환하는 방법」으로 치환하여 실시해도 마찬가지로 실시할 수 있다.
또 예를 들어 상기 통신방법을 실행하는 프로그램을 미리 ROM(Read Only Memory)에 저장해 두고, 그 프로그램을 CPU(Central Processor Unit)에 의해 동작시키도록 해도 좋다.
또, 상기 통신방법을 실행하는 프로그램을 컴퓨터로 판독 가능한 기억매체에 저장하고, 기억매체에 저장된 프로그램을 컴퓨터의 RAM(Random Access Memory)에 기록하며, 컴퓨터를 그 프로그램에 따라 동작시키도록 해도 좋다.
그리고 상기의 각 실시형태 등의 각 구성은 전형적으로는 집적회로인 LSI(Large Scale Integration)로 실현되어도 좋다. 이들은 개별적으로 1 칩화되어도 좋고, 각 실시형태의 모든 구성 또는 일부의 구성을 포함하도록 1 칩화되어도 좋다. 여기에서는 LSI로 했으나, 집적도의 차이에 따라 IC(Integrated Circuit), 시스템 LSI, 슈퍼 LSI, 울트라 LSI라고 호칭 되는 경우도 있다. 또, 집적회로화의 수법은 LSI에 한정되는 것은 아니며, 전용 회로 또는 범용 프로세서로 실현되어도 좋다. LSI 제조 후에, 프로그램 가능한 FPGA(Field Programmable Gate Array)나, LSI 내부의 회로 셀의 접속이나 설정을 재구성 가능한 리콘피규라블·프로세서(Reconfigurable Processor)를 이용해도 좋다.
더욱이, 반도체 기술의 진보 또는 파생하는 다른 기술에 의해 LSI에 치환되는 집적회로화의 기술이 등장하면 당연히 그 기술을 이용하여 기능 블록의 집적화를 실행해도 좋다. 바이오 기술의 적용 등이 가능성이 있을 수 있다.
또한, 본 발명의 1 실시형태에 관한 프리코딩 방법은 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하여, 생성한 송신신호 각각을 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신하는 송신장치가 실행하는 프리코딩 방법으로, 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택하여, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행해서 프리코딩 후의 확장 변조신호를 생성하고, 제 1 송신신호 및 제 2 송신신호는 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 생성되는 것을 특징으로 한다.
또, 본 발명의 1 실시형태에 관한 프리코딩 방법을 실행하는 신호처리장치는 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하여, 생성한 송신신호 각각을 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신하는 송신장치에 탑재되는 신호처리장치이며, 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택해서, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행하여 프리코딩 후의 확장 변조신호를 생성하고, 제 1 송신신호 및 제 2 송신신호는 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 생성되는 것을 특징으로 한다.
또, 본 발명의 1 실시형태에 관한 송신방법은 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하여, 생성한 송신신호 각각을 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신장치가 송신하는 송신방법으로, 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택하여, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행하여 프리코딩 후의 확장 변조신호를 생성하고, 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하고, 상기 제 1 송신신호를 1 이상의 제 1 출력구로부터 송신하고, 상기 제 2 송신신호를 상기 제 1 출력구와는 다른 1 이상의 제 2 출력구로부터 송신하며, 상기 확장 변조신호에 의거한 부호화블록을 프리코딩 할 때에 상기 부호화블록을 변조방식에 따라서 상기 제 1 송신신호 및 상기 제 2 송신신호로서 송신하기 위해서 필요로 하는 슬롯 수를 M으로 하고, 서로 다른 상기 복수의 프리코딩 행렬의 개수를 N, 상기 복수의 프리코딩 행렬 각각을 식별하기 위한 인덱스를 F(F는 1~N의 어느 하나)로 하고, 인덱스 F의 프리코딩 행렬을 할당하는 슬롯 수를 C[F](C[F]는 M미만)로 한 경우에, 임의의 a, b(a, b는 1~N의 어느 하나, 단, a≠b)에 대해 C[a]와 C[b]의 차분은 0 또는 1이 되도록 복수의 프리코딩 행렬의 어느 하나를 상기 부호화블록의 송신에 이용하는 M개의 슬롯 각각에 할당하는 것을 특징으로 한다.
또, 본 발명의 1 실시형태에 관한 송신장치는 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하고, 생성한 송신신호 각각을 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신하는 송신장치이며, 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택하여, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행하여 프리코딩 후의 확장 변조신호를 생성하는 가중합성부와 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 제 1 송신신호 및 제 2 송신신호를 생성하고, 상기 제 1 송신신호를 1 이상의 제 1 출력구로부터 송신하고, 상기 제 2 송신신호를 상기 제 1 출력구와는 다른 1 이상의 제 2 출력구로부터 송신하는 송신부를 구비하며, 상기 가중합성부는 상기 확장 변조신호에 의거한 부호화블록을 프리코딩할 때에 상기 부호화블록을 변조방식에 따라서 상기 제 1 송신신호 및 상기 제 2 송신신호로 송신하기 위해서 필요로 하는 슬롯 수를 M으로 하고, 서로 다른 상기 복수의 프리코딩 행렬의 개수를 N, 상기 복수의 프리코딩 행렬 각각을 식별하기 위한 인덱스를 F(F는 1~N의 어느 하나)로 하며, 인덱스 F의 프리코딩 행렬을 할당한 슬롯 수를 C[F](C[F]는 M 미만)로 한 경우에, 임의의 a, b(a, b는 1~N의 어느 하나, 단, a≠b)에 대해 C[a]와 C[b]의 차분은 0 또는 1이 되도록 복수의 프리코딩 행렬의 어느 하나를 상기 부호화블록을 송신하기 위해서 이용하는 M개의 슬롯의 각각에 할당하는 것을 특징으로 한다.
또, 본 발명의 1 실시형태에 관한 수신방법은 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신장치가 송신한 제 1 송신신호와 제 2 송신신호를 수신장치가 수신하는 수신방법으로, 상기 제 1 송신신호 및 상기 제 2 송신신호는 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호에 대해 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택하여, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행하여 프리코딩 후의 확장 변조신호를 생성하고, 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 생성된 것이며, 수신한 상기 제 1 송신신호 및 상기 제 2 송신신호 각각을 상기 기본 변조신호 및 상기 확장 변조신호에 이용된 변조 방식에 따른 복조방식에 의해 복조하여, 오류정정 복호를 실시해서 데이터를 얻는 것을 특징으로 하며, 당해 수신방법에 있어서 상기 확장 변조신호에 의거하는 부호화블록이 프리코딩 될 때에, 상기 부호화블록을 변조방식에 따라서 상기 제 1 송신신호 및 상기 제 2 송신신호로서 송신하기 위해서 필요로 하는 슬롯 수를 M으로 하고, 서로 다른 상기 복수의 프리코딩 행렬의 개수를 N, 상기 복수의 프리코딩 행렬 각각을 식별하기 위한 인덱스를 F(F는 1~N의 어느 하나)로 하며, 인덱스 F의 프리코딩 행렬을 할당한 슬롯 수를 C[F](C[F]는 M미만)로 한 경우에, 임의의 a, b(a, b는 1~N의 어느 하나, 다만, a≠b)에 대해서 C[a]와 C[b]와의 차분은 0 또는 1이 되도록 복수의 프리코딩 행렬 중 한쪽이 상기 부호화블록을 송신하기 위해서 이용되는 M개의 슬롯 각각에 할당되어 있는 것을 특징으로 한다.
또, 본 발명의 1 실시형태에 관한 수신장치는 동일 주파수 대역이면서 동일 타이밍에 각각 다른 1 이상의 출력구로부터 송신장치가 송신한 제 1 송신신호와 제 2 송신신호를 수신장치가 수신하는 수신장치로, 상기 제 1 송신신호 및 상기 제 2 송신신호는 기본 스트림으로 이루어지는 기본 변조신호와 상기 기본 스트림과는 다른 데이터의 확장 스트림으로 이루어지는 확장 변조신호에 대해, 상기 확장 변조신호에 대해서 복수의 프리코딩 행렬 중에서 하나의 프리코딩 행렬을 규칙적으로 전환하면서 선택하여, 선택된 프리코딩 행렬을 이용해서 프리코딩을 실행하여 프리코딩 후의 확장 변조신호를 생성하여, 상기 기본 변조신호에 의거한 신호와 상기 프리코딩 후의 확장 변조신호로부터 생성된 것이며, 수신한 상기 제 1 송신신호 및 상기 제 2 송신신호 각각을 상기 기본 변조신호 및 상기 확장 변조신호에 이용된 변조방식에 따른 복조방식에 의해 복조하고, 오류정정 복호를 실시하여 데이터를 얻는 것을 특징으로 하고, 해당 수신장치에 대해 상기 확장 변조신호에 의거하는 부호화블록이 프리코딩 될 때에 상기 부호화블록을 변조방식에 따라서 상기 제 1 송신신호 및 상기 제 2 송신신호로 송신하기 위해서 필요로 하는 슬롯 수를 M으로 하고, 서로 다른 상기 복수의 프리코딩 행렬의 개수를 N, 상기 복수의 프리코딩 행렬 각각을 식별하기 위한 인덱스를 F(F는 1~N의 어느 하나)로 며, 인덱스 F의 프리코딩 행렬을 할당한 슬롯 수를 C[F](C[F]는 M미만)로 했을 경우에, 임의의 a, b(a, b는 1~N의 언젠가, 다만, a≠b)에 대해, C[a]와 C[b]의 차분은 0 또는 1이 되도록 복수의 프리코딩 행렬 중 한쪽이 상기 부호화블록을 송신하기 위해서 이용되는 M개의 슬롯 각각에 할당되어 있는 것을 특징으로 한다.
(그 외의 보충 2)
2 스트림의 베이스밴드신호 s1(i), s2(i)(어떤 변조방식의 매핑 후의 베이스밴드신호)(다만, i는 (시간, 또는 주파수(캐리어)의) 순번을 나타낸다)에 대해 규칙적으로 프리코딩 행렬을 전환하는 프리코딩을 실행하여 생성된 프리코딩 후의 베이스밴드신호 z1(i), z2(i)에 있어서, 프리코딩 후의 베이스밴드신호 z1(i)의 동상 I성분을 I1(i), 직교성분을 Q1(i)로 하고, 프리코딩 후의 베이스밴드신호 z2(i)의 동상 I성분을 I2(i), 직교성분을 Q2(i)로 한다. 이때, 베이시밴드 성분의 교체를 실행하여,
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 Q1(i)
로 하고, 교체 후의 베이스밴드신호 r1(i)에 상당하는 변조신호를 송신안테나 1, 교체 후의 베이스밴드신호 r2(i)에 상당하는 변조신호를 송신안테나 2로부터 동일 시각에 동일 주파수를 이용해 송신하는 것과 같이, 교체 후의 베이스밴드신호 r1(i)에 상당하는 변조신호와 교체 후의 베이스밴드신호 r2(i)를 다른 안테나로부터 동일 시각에 동일 주파수를 이용해 송신하는 것으로 해도 좋다. 또,
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 Q2(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 I2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i), 직교성분을 Q2(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 I2(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i), 직교성분을 Q1(i),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i), 직교성분을 I1(i), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i), 직교성분을 I2(i)
로 해도 좋다. 또, 상술한 설명에서는 2 스트림의 신호에 대해 프리코딩을 실행하여, 프리코딩 후의 신호의 동상성분과 직교성분의 교체에 대해 설명하였으나, 이에 한정되는 것은 아니며, 2 스트림보다 많은 신호에 대해 프리코딩을 실행하여, 프리코딩 후의 신호의 동상성분과 직교성분의 교체를 하는 것도 가능하다.
또, 상기의 예에서는 동일 시각(동일 주파수((서브)캐리어))의 베이스밴드신호의 교체를 설명하고 있으나, 동일 시각의 베이스밴드신호의 교체가 아니라도 좋다. 예로 이하와 같이 기술할 수 있다
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i+v), 직교성분을 Q2(i+w), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i+w), 직교성분을 Q1(i+v)
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i+v), 직교성분을 I2(i+w), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i+v), 직교성분을 Q2(i+w),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i+v), 직교성분을 Q2(i+w),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i+v), 직교성분을 I2(i+w), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 I1(i+v), 직교성분을 Q2(i+w), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i+v), 직교성분을 I2(i+w),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q1(i+v), 직교성분을 I2(i+w),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i+v), 직교성분을 I2(i+w), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i+v), 직교성분을 Q2(i+w),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i+v), 직교성분을 Q2(i+w),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i+v), 직교성분을 I2(i+w), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i+v), 직교성분을 Q2(i+w), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 I1(i+v), 직교성분을 Q2(i+w), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i+v), 직교성분을 I2(i+w),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 I2(i+w), 직교성분을 Q1(i+v),
·교체 후의 베이스밴드신호 r2(i)의 동상성분을 Q2(i+w), 직교성분을 I1(i+v), 교체 후의 베이스밴드신호 r1(i)의 동상성분을 Q1(i+v), 직교성분을 I2(i+w).
도 88은 상기 기재를 설명하기 위한 베이스밴드신호 교체부(8802)를 나타내는 도면이다. 도면 1에 나타내는 것과 같이, 프리코딩 후의 베이스밴드신호 z1(i)(8801-1), z2(i)(8801-2)에서 프리코딩 후의 베이스밴드신호 z1(i)(8801-1)의 동상 I성분을 I1(i), 직교성분을 Q1(i)라 하고, 프리코딩 후의 베이스밴드신호 z2(i)(8801-2)의 동상 I성분을 I2(i), 직교성분을 Q2(i)라 한다. 그리고, 교체 후의 베이스밴드신호 r1(i)(8803-1)의 동상성분을 Ir1(i), 직교성분을 Qr1(i), 교체 후의 베이스밴드신호 r2(i)(8803-2)의 동상성분을 Ir2(i), 직교성분을 Qr2(i)로 하면 교체 후의 베이스밴드신호 r1(i)(8803-1)의 동상성분 Ir1(i), 직교성분 Qr1(i), 교체 후의 베이스밴드신호 r2(i)(8803-2)의 동상성분 Ir2(i), 직교성분을 Qr2(i)는 상기에서 설명한 어느 하나로 나타내는 것으로 한다. 또한, 이 예에서는 동일 시각(동일 주파수((서브)캐리어))의 프리코딩 후의 베이스밴드신호의 교체에 대해 설명하였으나, 위에서 설명한 바와 같이, 다른 시각(다른 주파수((서브)캐리어))의 프리코딩 후의 베이스밴드신호의 교체라도 좋다.
그리고, 교체 후의 베이스밴드신호 r1(i)(8803-1)에 상당하는 변조신호를 송신안테나 1, 교체 후의 베이스밴드신호 r2(i)(8803-2)에 상당하는 변조신호를 송신안테나 2로부터 동일 시각에 동일 주파수를 이용해서 송신하는 것과 같이, 교체 후의 베이스밴드신호 r1(i)(8803-1)에 상당하는 변조신호와 교체 후의 베이스밴드신호 r2(i)(8803-2)를 다른 안테나로부터 동일 시각에 동일 주파수를 이용해 송신하게 된다.
또, 실시형태 A1부터 실시형태 A4 및 실시형태 1에서 설명한 심벌의 배치방법에서는 본 명세서에서 설명한 「다른 프리코딩 행렬을 전환하는 방법」은 다른 복수의 프리코딩 행렬을 이용해 규칙적으로 프리코딩 행렬을 전환하는 프리코딩 방법으로 해도 마찬가지로 실시할 수 있다. 또, 다른 실시형태에 대해서도 같다. 또한, 이하에서는 다른 복수의 프리코딩 행렬에 대해 보충 설명한다.
규칙적으로 프리코딩 행렬을 전환하는 프리코딩 방법을 위해 N개의 준비하는 프리코딩을 F[0], F[1], F[2], F[N-3], F[N-2], F[N-1]로 나타내는 것으로 한다. 이때, 상기에서 설명한 「다른 복수의 프리코딩 행렬」은 이하의 2개의 조건(조건*1 및 조건*2)을 만족하는 것인 것으로 한다.
Figure 112018069724742-pat00308
이 조건*1에 의하면, 「(x는 0부터 N-1의 정수, y는 0부터 N-1의 정수이며, x≠y로 하는) 그리고 앞의 설명을 만족하는 모든 x, 모든 y에 대해서 F[x]≠F[y]가 성립하는 것으로 한다」라는 것이 된다.
Figure 112018069724742-pat00309
또한, 2×2의 행렬을 예로 하여 보충 설명한다. 2 X 2의 행렬 R, S를 이하와 같이 나타내는 것으로 한다.
Figure 112018069724742-pat00310
Figure 112018069724742-pat00311
a=Aejδ11, b=Bejδ12, c=Cejδ21, d=Dejδ22 및 e=Eejγ11, f=Fejγ12, g=Gejγ21, h=Hejγ22jγ22로 나타나는 것으로 한다. 다만, A, B, C, D, E, F, G, H는 0 이상의 실수로 하고, δ11, δ12, δ21, δ22, γ11, γ12, γ21, γ22의 단위는 라디안으로 나타내는 것으로 한다. 이때, R≠S이라는 것은 (1) a≠e, (2) b≠f, (3) c≠g, (4) d≠h로 한 때, 이 (1), (2), (3), (4)의 적어도 하나가 성립하게 된다.
또, 프리코딩 행렬로 행렬 R에 있어서, a, b, c, d의 어느 하나가 「제로」인 행렬을 이용해도 좋다. 즉, (1) a가 제로이며, b, c, d는 제로가 아니거나, (2) b가 제로이며, a, c, d는 제로가 아니거나, (3) c가 제로이며, a, b, d는 제로가 아니거나, (4) d가 제로이며, a, b, c는 제로가 아니라도 좋은 것이 된다.
그리고, 본 발명의 설명에서 나타낸 시스템 예에서는 2개의 변조신호를 2개의 안테나로부터 송신하고, 각각을 2개의 안테나로 수신하는 MIMO 방식의 통신시스템을 개시하였으나, 본 발명은 당연히 MISO(Multiple Input Single Output) 방식의 통신시스템에도 적용할 수 있다. MISO 방식의 경우, 송신장치에 있어서 복수의 프리코딩 행렬을 규칙적으로 전환하는 프리코딩 방법을 적용하고 있다는 점은 지금까지의 설명과 같다. 한편, 수신장치는 도 7에 나타내는 구성 가중 안테나(701-Y), 무선부(703-Y), 변조신호 z1의 채널변동 추정부(707-1), 변조신호 z2의 채널변동 추정부(707-2)가 없는 구성이 되나, 이 경우에도 본 명세서 중에서 설명한 처리를 실행함으로써 송신장치가 송신한 데이터를 추정할 수 있다. 또한, 동일 주파수대, 동일 시간에 있어서 송신된 복수의 신호를 1개의 안테나로 수신하여 복호 할 수 있는 것은 주지의 사실(1 안테나 수신에 있어서 ML연산 등 (Max-log APP등 )의 처리를 실시하면 좋다)이며, 본 발명에서는 도 7의 신호처리부(711)에서 송신 측에서 이용한 규칙적으로 전환하는 프리코딩 방법을 고려한 복조(검파)를 실시하면 좋다.
본 발명은 복수의 안테나로부터 각각 다른 변조신호를 송신하는 무선시스템에 넓게 적용할 수 있고, 예를 들어 OFDM-MIMO 통신시스템에 적용하기에 매우 적합하다. 또, 복수의 송신 개소를 가지는 유선통신시스템(예를 들어 PLC(Power Line Communication)시스템, 광통신시스템, DSL(Digital Subscriber Line:디지털 가입자 선) 시스템)에 있어서 MIMO 전송을 하는 경우에 대해서도 적용할 수 있고, 이때, 복수의 송신 개소를 이용해서 본 발명에서 설명한 것과 같은 복수의 변조신호를 송신하게 된다. 또, 변조신호는 복수의 송신 개소로부터 송신되어도 좋다.
302A, 302B 부호화기
304A, 304B 인터리버
306A, 306B  매핑부
314 가중 합성정보 생성부
308A, 308B 가중합성부
310A, 310B 무선부
312A, 312B 안테나
402 부호화기
404 분배부
504 #1, 504 #2 송신 안테나
505 #1, 505 #2 수신 안테나
600 가중합성부
703_X 무선부
701_X 안테나
705_1 채널변동 추정부
705_2 채널변동 추정부
707_1 채널변동 추정부
707_2 채널변동 추정부
709 제어정보 복호부
711 신호처리부
803 INNER MIMO 검파부
805A, 805B 대수 우도 산출부
807A, 807B 디 인터리버
809A, 809B 대수 우도비 산출부
811A, 811B Soft-in/soft-out 디코더
813A, 813B 인터리버
815 기억부
819 가중계수 생성부
901 Soft-in/soft-out 디코더
903 분배기
1301A, 1301B OFDM방식 관련 처리부
1402A, 1402A 직렬 병렬 변환부
1404A, 1404B 재배열 대체부
1406A, 1406B 역 고속 푸리에 변환부
1408A, 1408B 무선부
2200 프리코딩 웨이트 생성부
2300 재배열부
4002 부호화기 군

Claims (4)

  1. 송신장치에서의 송신방법으로,
    복수의 제 1 변조심벌 s1과 복수의 제 2 변조심벌 s2에 N 개의 행렬 F[i] 중 어느 하나를 슬롯마다 적용하여 복수의 제 1 송신심벌 z1과 복수의 제 2 송신심벌 z2를 생성하며,
    상기 복수의 제 1 변조심벌 s1은 슬롯마다 생성되고,
    상기 복수의 제 2 변조심벌 s2은 슬롯마다 생성되며,
    N은 2이고,
    상기 N 개의 행렬 F[i]는 2 슬롯을 1주기로 하여 규칙적으로 전환되며,
    상기 N 개의 행렬 F[i]는,
    Figure 112018126960164-pat00312

    를 만족하고,
    i는 0 및 2이며, j는 허수 단위이고,
    상기 복수의 제 1 송신심벌 z1을 포함하는 1 이상의 제 1 OFDM 심벌을 제 1 안테나로부터 송신하고,
    상기 복수의 제 2 송신심벌 z2를 포함하는 1 이상의 제 2 OFDM 심벌을 제 2 안테나로부터 송신하며,
    상기 1 이상의 제 1 OFDM 심벌과 상기 1 이상의 제 2 OFDM 심벌은 동일 시간에, 또한, 동일 주파수로 송신되는 것을 특징으로 하는 송신방법.
  2. 송신장치로,
    복수의 제 1 변조심벌 s1과 복수의 제 2 변조심벌 s2에 N 개의 행렬 F[i] 중 어느 하나를 슬롯마다 적용하여 복수의 제 1 송신심벌 z1과 복수의 제 2 송신심벌 z2를 생성하는 신호처리회로와,
    상기 복수의 제 1 송신심벌 z1을 포함하는 1 이상의 제 1 OFDM 심벌을 제 1 안테나로부터 송신하고, 상기 복수의 제 2 송신심벌 z2를 포함하는 1 이상의 제 2 OFDM 심벌을 제 2 안테나로부터 송신하는 송신회로를 구비하며,
    상기 복수의 제 1 변조심벌 s1은 슬롯마다 생성되고,
    상기 복수의 제 2 변조심벌 s2은 슬롯마다 생성되며,
    N은 2이고,
    상기 N 개의 행렬 F[i]는 2 슬롯을 1주기로 하여 규칙적으로 전환되며,
    상기 N 개의 행렬 F[i]는,
    Figure 112018126960164-pat00313

    를 만족하고,
    i는 0 및 2이며, j는 허수 단위이고,
    상기 1 이상의 제 1 OFDM 심벌과 상기 1 이상의 제 2 OFDM 심벌은 동일 시간에, 또한, 동일 주파수로 송신되는 것을 특징으로 하는 송신장치.
  3. 수신장치에서의 수신방법으로,
    1 이상의 제 1 OFDM 심벌과 1 이상의 제 2 OFDM 심벌을 수신하며,
    상기 1 이상의 제 1 OFDM 심벌은 복수의 제 1 송신심벌 z1을 포함하고,
    상기 1 이상의 제 2 OFDM 심벌은 복수의 제 2 송신심벌 z2를 포함하며,
    상기 1 이상의 제 1 OFDM 심벌을 복조하여 상기 복수의 제 1 송신심벌 z1을 생성하고, 상기 1 이상의 제 2 OFDM 심벌을 복조하여 상기 복수의 제 2 송신심벌 z2를 생성하며,
    상기 1 이상의 제 1 OFDM 심벌과 상기 1 이상의 제 2 OFDM 심벌은 동일 시간에, 또한, 동일 주파수로 송신장치의 다른 안테나로 송신되고,
    상기 복수의 제 1 송신심벌 z1과 상기 복수의 제 2 송신심벌 z2은 상기 송신장치에서 복수의 제 1 변조심벌 s1과 복수의 제 2 변조심벌 s2에 N 개의 행렬 F[i] 중 어느 하나를 슬롯마다 적용하여 생성되고,
    N은 2이며,
    상기 N 개의 행렬 F[i]는 2 슬롯을 1주기로 하여 규칙적으로 전환되고,
    상기 N 개의 행렬 F[i]는,
    Figure 112018126960164-pat00314

    를 만족하며,
    i는 0 및 2이고, j는 허수 단위인 것을 특징으로 하는 수신방법.
  4. 수신장치로,
    수신회로와 복조회로를 구비하고,
    상기 수신회로는 1 이상의 제 1 OFDM 심벌과 1 이상의 제 2 OFDM 심벌을 수신하며, 상기 1 이상의 제 1 OFDM 심벌은 복수의 제 1 송신심벌 z1을 포함하고, 상기 1 이상의 제 2 OFDM 심벌은 복수의 제 2 송신심벌 z2를 포함하며,
    상기 복조회로는, 상기 1 이상의 제 1 OFDM 심벌을 복조하여 상기 복수의 제 1 송신심벌 z1을 생성하고, 상기 1 이상의 제 2 OFDM 심벌을 복조하여 상기 복수의 제 2 송신심벌 z2를 생성하며,
    상기 1 이상의 제 1 OFDM 심벌과 상기 1 이상의 제 2 OFDM 심벌은 동일 시간에, 또한, 동일 주파수로 송신장치의 다른 안테나로 송신되고,
    상기 복수의 제 1 송신심벌 z1과 상기 복수의 제 2 송신심벌 z2은 상기 송신장치에서 복수의 제 1 변조심벌 s1과 복수의 제 2 변조심벌 s2에 N 개의 행렬 F[i] 중 어느 하나를 슬롯마다 적용하여 생성되며,
    N은 2이고,
    상기 N 개의 행렬 F[i]는 2 슬롯을 1주기로 하여 규칙적으로 전환되며,
    상기 N 개의 행렬 F[i]는,
    Figure 112018126960164-pat00315

    를 만족하며,
    i는 0 및 2이고, j는 허수 단위인 것을 특징으로 하는 수신장치.
KR1020187020333A 2010-10-18 2011-10-17 송신방법, 송신장치, 수신방법 및 수신장치 KR101995761B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2010-234061 2010-10-18
JP2010234061 2010-10-18
JPJP-P-2010-275164 2010-12-09
JP2010275164A JP5578617B2 (ja) 2010-10-18 2010-12-09 送信方法、送信装置、受信方法および受信装置
PCT/JP2011/005801 WO2012053185A1 (ja) 2010-10-18 2011-10-17 送信方法、送信装置、受信方法および受信装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020137000344A Division KR101880943B1 (ko) 2010-10-18 2011-10-17 송신방법, 송신장치, 수신방법 및 수신장치

Publications (2)

Publication Number Publication Date
KR20180084156A KR20180084156A (ko) 2018-07-24
KR101995761B1 true KR101995761B1 (ko) 2019-07-03

Family

ID=45974915

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187020333A KR101995761B1 (ko) 2010-10-18 2011-10-17 송신방법, 송신장치, 수신방법 및 수신장치
KR1020137000344A KR101880943B1 (ko) 2010-10-18 2011-10-17 송신방법, 송신장치, 수신방법 및 수신장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020137000344A KR101880943B1 (ko) 2010-10-18 2011-10-17 송신방법, 송신장치, 수신방법 및 수신장치

Country Status (19)

Country Link
US (15) US8831134B2 (ko)
EP (3) EP4012937A3 (ko)
JP (1) JP5578617B2 (ko)
KR (2) KR101995761B1 (ko)
CN (3) CN103004120B (ko)
AR (1) AR083419A1 (ko)
AU (3) AU2011319338B2 (ko)
BR (1) BR112013003680B1 (ko)
CA (3) CA3066278C (ko)
EA (1) EA031617B1 (ko)
IL (3) IL223915A (ko)
MX (1) MX2013000955A (ko)
MY (1) MY161371A (ko)
PE (2) PE20180583A1 (ko)
PH (1) PH12016501580A1 (ko)
SG (2) SG187029A1 (ko)
TW (4) TWI618381B (ko)
WO (1) WO2012053185A1 (ko)
ZA (2) ZA201300697B (ko)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
CL2013000511A1 (es) * 2010-10-18 2013-08-09 Panasonic Corp Metodo de de precodificacion para generar a partir de multiples señales de banda base, multiples señales precodificadas que deben transmitirse por el mismo ancho de banda de frecuencias al mismo tiempo; y aparato asociado
EP2701328B1 (en) 2011-04-19 2016-03-23 Panasonic Intellectual Property Corporation of America Communication method and device
CN103477583B (zh) * 2011-04-19 2016-11-09 太阳专利托管公司 预编码方法、预编码装置
US8811545B2 (en) * 2011-11-08 2014-08-19 Mitsubishi Electric Research Laboratories, Inc. Method for reducing interference in OFDM wireless networks
WO2014087674A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 信号生成方法、送信装置、受信方法および受信装置
US9860021B2 (en) * 2013-04-15 2018-01-02 Lg Electronics Inc. Broadcast signal transmitting device, broadcast signal receiving method, broadcast signal transmitting method and broadcast signal receiving method
US9548836B2 (en) * 2013-11-26 2017-01-17 Broadcom Corporation Upstream burst noise detection
WO2015100546A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 一种数据传输方法及装置
KR102191290B1 (ko) 2014-01-29 2020-12-15 삼성전자 주식회사 이동통신 시스템에서 통신 채널 추정 방법 및 장치
WO2015119009A1 (ja) * 2014-02-06 2015-08-13 日本電信電話株式会社 基地局装置、無線通信システム、および通信方法
JP6404479B2 (ja) 2015-01-05 2018-10-10 エルジー エレクトロニクス インコーポレイティド 放送信号送信装置、放送信号受信装置、放送信号送信方法、及び放送信号受信方法
JP6502764B2 (ja) * 2015-02-10 2019-04-17 日本放送協会 送信装置、受信装置、及び半導体チップ
WO2017076446A1 (en) * 2015-11-05 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Radio precoding
WO2017150418A1 (ja) 2016-02-29 2017-09-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法、受信装置
WO2017162296A1 (en) * 2016-03-24 2017-09-28 Huawei Technologies Co., Ltd. Method and node in a wireless communication network
WO2018012520A1 (ja) 2016-07-14 2018-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法、および受信装置
JP6696336B2 (ja) * 2016-07-20 2020-05-20 富士通株式会社 送信制御装置、無線通信システム及びキャリブレーション方法
KR101825301B1 (ko) * 2016-08-22 2018-02-02 한양대학교 산학협력단 신호 전송 장치 및 방법과, 신호 수신 장치
EP3537623B1 (en) * 2016-11-04 2021-12-22 Panasonic Intellectual Property Corporation of America Transmitting device, transmitting method, receiving device and receiving method
EP3525357A4 (en) * 2016-11-11 2020-04-29 Nippon Telegraph and Telephone Corporation RADIO COMMUNICATION SYSTEM AND RADIO COMMUNICATION METHOD
JP7024216B2 (ja) * 2017-06-15 2022-02-24 富士通株式会社 送信制御装置、無線通信システム及び無線リソース割当方法
CN107911152B (zh) * 2017-10-27 2020-11-24 西安电子科技大学 适用于任意发送天线数量的空间编码调制系统和方法
KR101938334B1 (ko) * 2017-10-30 2019-04-11 서울과학기술대학교 산학협력단 스테레오스코픽 3차원 영상 송수신 장치 및 방법
US10726843B2 (en) * 2017-12-20 2020-07-28 Facebook, Inc. Methods and systems for responding to inquiries based on social graph information
CN112396819B (zh) * 2019-08-16 2022-06-03 北京小米移动软件有限公司 红外通信装置、系统、方法、终端设备及存储介质
CN110784864B (zh) * 2019-11-01 2022-03-18 中国电子科技集团公司第三十研究所 一种星地链路设备射频指纹识别及安全接入认证方法
US11863359B1 (en) * 2021-05-11 2024-01-02 Amazon Technologies, Inc. Subcarrier pre-equalization technology for frequency selective fading characteristics of wireless channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091307A1 (en) 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353338B1 (ko) * 1999-03-17 2002-09-18 소니 가부시끼 가이샤 확산 스펙트럼 통신 장치
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US6859503B2 (en) * 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7072413B2 (en) * 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
KR100866195B1 (ko) * 2001-11-10 2008-10-30 삼성전자주식회사 직교주파수분할다중 방식의 이동통신시스템에서 시공간-주파수 부호화/복호화 장치 및 방법
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
JP2003332940A (ja) * 2002-05-09 2003-11-21 Matsushita Electric Ind Co Ltd 移動体通信装置
DE10220892A1 (de) * 2002-05-10 2003-12-18 Fraunhofer Ges Forschung Sendevorrichtung und Empfangsvorrichtung
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8027704B2 (en) * 2003-08-21 2011-09-27 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
CN101969325B (zh) * 2003-11-21 2014-05-07 哈里公司 多天线发送装置和方法以及多天线接收装置和方法
US7212821B2 (en) * 2003-12-05 2007-05-01 Qualcomm Incorporated Methods and apparatus for performing handoffs in a multi-carrier wireless communications system
WO2005088882A1 (en) * 2004-03-15 2005-09-22 Nortel Netowrks Limited Pilot design for ofdm systems with four transmit antennas
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US10277290B2 (en) * 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
KR100754795B1 (ko) * 2004-06-18 2007-09-03 삼성전자주식회사 직교주파수분할다중 시스템에서 주파수 공간 블록 부호의부호화/복호화 장치 및 방법
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US7525988B2 (en) * 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7561632B1 (en) * 2005-04-28 2009-07-14 Qualcomm Incorporated Beamforming techniques for MIMO communication systems
KR101124932B1 (ko) 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
US7564917B2 (en) * 2005-11-01 2009-07-21 Intel Corporation Multicarrier receiver and method for generating common phase error estimates for use in systems that employ two or more transmit antennas with independent local oscillators
US7881258B2 (en) * 2006-03-22 2011-02-01 Sibeam, Inc. Mechanism for streaming media data over wideband wireless networks
US7991090B2 (en) * 2006-05-04 2011-08-02 Broadcom Corporation Method and system for reordered QRV-LST (layered space time) detection for efficient processing for multiple input multiple output (MIMO) communication systems
JP4946159B2 (ja) * 2006-05-09 2012-06-06 富士通株式会社 無線送信方法及び無線受信方法並びに無線送信装置及び無線受信装置
US7949064B2 (en) 2006-08-14 2011-05-24 Texas Instruments Incorporated Codebook and pre-coder selection for closed-loop mimo
EP2060020A2 (en) * 2006-08-17 2009-05-20 Interdigital Technology Corporation Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system
KR100878768B1 (ko) * 2006-09-15 2009-01-14 삼성전자주식회사 Mimo ofdm 송수신 방법 및 장치
KR20080026010A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
CN101523791B (zh) * 2006-10-04 2014-04-09 高通股份有限公司 无线通信系统中用于sdma的上行链路ack传输
WO2008048060A1 (en) * 2006-10-18 2008-04-24 Electronics And Telecommunications Research Institute Tdm based cell search method for ofdm system
EP2084844A2 (en) * 2006-10-23 2009-08-05 LG Electronics Inc. Method for transmitting data using cyclic delay diversity
JP5089339B2 (ja) * 2006-11-02 2012-12-05 パナソニック株式会社 送信方法、送信装置及び受信方法
CN101536389B (zh) * 2006-11-22 2013-01-16 富士通株式会社 Mimo-ofdm通信系统和mimo-ofdm通信方法
US20080151831A1 (en) * 2006-12-22 2008-06-26 Farooq Khan Orthogonal repetition and hybrid ARQ scheme
US9065714B2 (en) * 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
US8422581B2 (en) 2007-01-19 2013-04-16 Panasonic Corporation Multi-antenna transmission device, multi-antenna reception device, multi-antenna transmission method, multi-antenna reception method, terminal device, and base station device
US8290079B2 (en) * 2007-04-19 2012-10-16 Interdigital Technology Corporation Method and apparatus for precoding validation in wireless communications
US8254492B2 (en) * 2007-04-26 2012-08-28 Samsung Electronics Co., Ltd. Transmit diversity in a wireless communication system
CN101682387B (zh) * 2007-06-19 2013-06-12 株式会社Ntt都科摩 发送装置以及发送方法
US8160177B2 (en) 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
KR20080114452A (ko) * 2007-06-26 2008-12-31 엘지전자 주식회사 다중 안테나 시스템에서 데이터 전송방법 및 코드북구성방법
US8184726B2 (en) * 2007-09-10 2012-05-22 Industrial Technology Research Institute Method and apparatus for multi-rate control in a multi-channel communication system
DK2056510T3 (da) * 2007-10-30 2013-05-21 Sony Corp Anordning og fremgangsmåde til databehandling
US20090116589A1 (en) * 2007-11-01 2009-05-07 Renesas Technology Corporation Performance-based link adaptation techniques
KR101328961B1 (ko) * 2008-03-14 2013-11-13 엘지전자 주식회사 개루프 공간 다중화 모드에서 신호 송수신 방법
KR20090101804A (ko) * 2008-03-24 2009-09-29 엘지전자 주식회사 랭크 적응형 4Tx 시스템을 위한 개루프 방식의 공간분할 다중화 방법
CA2720187A1 (en) * 2008-03-31 2009-10-08 Sirius Xm Radio Inc. Improving slow speed mute resistance via selective cofdm bin loading
WO2009128030A1 (en) 2008-04-18 2009-10-22 Koninklijke Philips Electronics N.V. An improved dual carrier modulation precoding
US9083399B2 (en) * 2008-06-18 2015-07-14 Centre Of Excellence In Wireless Technology Precoding for single transmission streams in multiple antenna systems
KR101527009B1 (ko) * 2008-07-11 2015-06-18 엘지전자 주식회사 다중 셀 기반에서 멀티-셀 mimo 적용 방법
KR101027237B1 (ko) * 2008-07-30 2011-04-06 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
KR101056614B1 (ko) * 2008-07-30 2011-08-11 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
EP2312778B1 (en) * 2008-08-05 2016-04-13 Panasonic Intellectual Property Corporation of America Radio communication device using two different cdd precodings
KR101440628B1 (ko) * 2008-08-11 2014-09-17 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
WO2010038474A1 (ja) * 2008-10-03 2010-04-08 パナソニック株式会社 無線送信装置、移動局装置及びプリコーディング方法
KR101435846B1 (ko) * 2008-10-30 2014-08-29 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 간섭 제어 방법
EP2340621B1 (en) * 2008-10-31 2012-12-05 Telefonaktiebolaget L M Ericsson (publ) Channel-assisted iterative precoder selection
MY153494A (en) 2008-11-02 2015-02-13 Lg Electronics Inc Pre-coding method for spatial multiplexing in multiple input and output system
KR101582685B1 (ko) * 2008-12-03 2016-01-06 엘지전자 주식회사 다중안테나를 이용한 데이터 전송장치 및 방법
CN102273113A (zh) * 2009-01-08 2011-12-07 夏普株式会社 发送装置、发送方法、通信系统以及通信方法
WO2010096329A2 (en) 2009-02-18 2010-08-26 Massachusetts Institute Of Technology Method and apparatus for synchronizing a wireless communication system
KR101753391B1 (ko) * 2009-03-30 2017-07-04 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN101867426A (zh) * 2009-04-15 2010-10-20 Lg电子株式会社 广播接收系统及广播信号处理方法
JP2011004161A (ja) 2009-06-18 2011-01-06 Sharp Corp 通信システム、通信装置および通信方法
KR20120089635A (ko) * 2009-08-18 2012-08-13 주식회사 팬택 무선 통신 시스템에서의 피드백 채널 정보
EP2293483B1 (en) * 2009-09-04 2016-07-27 STMicroelectronics Srl Method and device for soft-output detection in multiple antenna communication systems
EP2477345B1 (en) * 2009-09-07 2018-11-21 LG Electronics Inc. Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
JP5149257B2 (ja) * 2009-10-02 2013-02-20 シャープ株式会社 無線通信システム、通信装置および無線通信方法
EP2346224A1 (en) * 2010-01-13 2011-07-20 Panasonic Corporation Pilot Patterns for OFDM Systems with Four Transmit Antennas
KR101814394B1 (ko) * 2010-01-17 2018-01-03 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
TWI581578B (zh) * 2010-02-26 2017-05-01 新力股份有限公司 編碼器及提供遞增冗餘之編碼方法
US8520572B2 (en) * 2010-05-05 2013-08-27 Motorola Mobility Llc Multiplexing control and data on multilayer uplink transmissions
US9160486B2 (en) * 2010-05-13 2015-10-13 Lg Electronics Inc. Method and apparatus for multiplexing control information and data, and for transmitting the multiplexed control information and data in a MIMO wireless communication system
US8494033B2 (en) * 2010-06-15 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Methods providing precoder feedback using multiple precoder indices and related communications devices and systems
EP2445131B1 (en) * 2010-06-17 2016-02-10 Panasonic Intellectual Property Corporation of America Pre-coding method and transmitter
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US8687727B2 (en) * 2010-11-05 2014-04-01 Intel Corporation Coordinated multi-point transmission using interference feedback
JP5991572B2 (ja) * 2011-02-28 2016-09-14 サン パテント トラスト 送信方法および送信装置
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
EP2701328B1 (en) * 2011-04-19 2016-03-23 Panasonic Intellectual Property Corporation of America Communication method and device
CN103477583B (zh) * 2011-04-19 2016-11-09 太阳专利托管公司 预编码方法、预编码装置
US9167451B2 (en) * 2013-01-02 2015-10-20 Lg Electronics Inc. Method and apparatus for measuring interference in wireless communication system
JP2017011689A (ja) * 2015-06-19 2017-01-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、受信方法、送信装置、及び受信装置
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091307A1 (en) 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications

Also Published As

Publication number Publication date
CA2803905A1 (en) 2012-04-26
US10560160B2 (en) 2020-02-11
CA3066278C (en) 2023-07-25
EP3522409B1 (en) 2021-12-01
KR101880943B1 (ko) 2018-08-24
US20160373169A1 (en) 2016-12-22
JP2012109919A (ja) 2012-06-07
US20230327926A1 (en) 2023-10-12
PE20131091A1 (es) 2013-10-16
KR20180084156A (ko) 2018-07-24
CN105721111B (zh) 2019-11-19
SG187029A1 (en) 2013-02-28
CA3017162A1 (en) 2012-04-26
US11729033B2 (en) 2023-08-15
AU2018253552B2 (en) 2020-06-25
AR083419A1 (es) 2013-02-21
MX2013000955A (es) 2013-03-22
CA2803905C (en) 2018-11-13
CN105577326A (zh) 2016-05-11
US20150326294A1 (en) 2015-11-12
ZA201902449B (en) 2021-05-26
MY161371A (en) 2017-04-14
ZA201300697B (en) 2023-10-25
AU2011319338B2 (en) 2016-08-04
EP2632067A1 (en) 2013-08-28
KR20130112851A (ko) 2013-10-14
SG10201508441WA (en) 2015-11-27
TWI643481B (zh) 2018-12-01
US9136929B2 (en) 2015-09-15
US20150188615A1 (en) 2015-07-02
CN103004120A (zh) 2013-03-27
US8831134B2 (en) 2014-09-09
US20180006685A1 (en) 2018-01-04
US20190215036A1 (en) 2019-07-11
BR112013003680A2 (pt) 2020-08-25
CN105577326B (zh) 2020-08-11
US10050685B2 (en) 2018-08-14
WO2012053185A1 (ja) 2012-04-26
US9344171B2 (en) 2016-05-17
US20230023516A1 (en) 2023-01-26
US20210184731A1 (en) 2021-06-17
AU2018253552A1 (en) 2018-11-22
EA201390045A1 (ru) 2013-06-28
TW201921853A (zh) 2019-06-01
US20200153486A1 (en) 2020-05-14
PH12016501580B1 (en) 2017-07-17
AU2016253675B2 (en) 2018-11-08
CN105721111A (zh) 2016-06-29
TW201701629A (zh) 2017-01-01
US10700746B2 (en) 2020-06-30
IL249556B (en) 2019-06-30
EP4012937A2 (en) 2022-06-15
TW201818701A (zh) 2018-05-16
EA031617B1 (ru) 2019-01-31
AU2011319338A1 (en) 2013-01-24
EP4012937A3 (en) 2022-07-06
US20200280346A1 (en) 2020-09-03
AU2016253675A1 (en) 2016-11-24
US20160233934A1 (en) 2016-08-11
US9935697B2 (en) 2018-04-03
TWI687066B (zh) 2020-03-01
EP3522409A1 (en) 2019-08-07
US9467215B2 (en) 2016-10-11
IL264213A (en) 2019-02-28
US20180175914A1 (en) 2018-06-21
CN103004120B (zh) 2016-03-23
US20180323833A1 (en) 2018-11-08
US10270503B2 (en) 2019-04-23
US11456785B2 (en) 2022-09-27
CA3017162C (en) 2020-02-25
EP2632067B1 (en) 2019-04-24
US9048985B2 (en) 2015-06-02
TWI618381B (zh) 2018-03-11
BR112013003680B1 (pt) 2021-12-21
US9800306B2 (en) 2017-10-24
TWI540854B (zh) 2016-07-01
US20140341317A1 (en) 2014-11-20
US20130121441A1 (en) 2013-05-16
CA3066278A1 (en) 2012-04-26
IL249556A0 (en) 2017-02-28
PH12016501580A1 (en) 2017-07-17
JP5578617B2 (ja) 2014-08-27
US10965354B2 (en) 2021-03-30
IL223915A (en) 2016-12-29
EP2632067A4 (en) 2017-06-21
TW201223184A (en) 2012-06-01
IL264213B (en) 2019-11-28
PE20180583A1 (es) 2018-04-05

Similar Documents

Publication Publication Date Title
JP7008253B2 (ja) 送信方法、送信装置、受信方法および受信装置
KR101995761B1 (ko) 송신방법, 송신장치, 수신방법 및 수신장치
KR101375064B1 (ko) 프리코딩방법, 송신장치
KR102247352B1 (ko) 송신방법, 송신장치, 수신방법 및 수신장치
KR101874394B1 (ko) 프리코딩방법, 송신장치
WO2011158496A1 (ja) プリコーディング方法、送信装置
JP2019149803A (ja) 送信方法、送信装置、受信方法および受信装置
JP5578620B2 (ja) プリコーディング方法、送信装置
JP6344660B2 (ja) プリコーディング方法、送信装置
JP5971573B2 (ja) プリコーディング方法、送信装置
JP2019198079A (ja) プリコーディング方法、送信装置
JP2018148573A (ja) プリコーディング方法、送信装置
JP2014225887A (ja) プリコーディング方法、送信装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant