JP6344660B2 - プリコーディング方法、送信装置 - Google Patents

プリコーディング方法、送信装置 Download PDF

Info

Publication number
JP6344660B2
JP6344660B2 JP2016128618A JP2016128618A JP6344660B2 JP 6344660 B2 JP6344660 B2 JP 6344660B2 JP 2016128618 A JP2016128618 A JP 2016128618A JP 2016128618 A JP2016128618 A JP 2016128618A JP 6344660 B2 JP6344660 B2 JP 6344660B2
Authority
JP
Japan
Prior art keywords
signal
precoding
weighted
symbol
weighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128618A
Other languages
English (en)
Other versions
JP2016213858A (ja
Inventor
村上 豊
豊 村上
知弘 木村
知弘 木村
幹博 大内
幹博 大内
Original Assignee
サン パテント トラスト
サン パテント トラスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン パテント トラスト, サン パテント トラスト filed Critical サン パテント トラスト
Priority to JP2016128618A priority Critical patent/JP6344660B2/ja
Publication of JP2016213858A publication Critical patent/JP2016213858A/ja
Application granted granted Critical
Publication of JP6344660B2 publication Critical patent/JP6344660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、特にマルチアンテナを用いた通信を行うプリコーディング方法、プリコーディング装置、送信方法、送信装置、受信方法および受信装置に関する。
従来、マルチアンテナを用いた通信方法として例えばMIMO(Multiple−Input Multiple−Output)と呼ばれる通信方法がある。MIMOに代表されるマルチアンテナ通信では、複数系列の送信データをそれぞれ変調し、各変調信号を異なるアンテナから同時に送信することで、データの通信速度を高めるようになっている。
図28は、送信アンテナ数2、受信アンテナ数2、送信変調信号(送信ストリーム)数2のときの送受信装置の構成の一例を示している。送信装置では、符号化されたデータをインタリーブし、インタリーブ後のデータを変調し、周波数変換等を行い送信信号が生成され、送信信号はアンテナから送信される。このとき、送信アンテナからそれぞれ異なる変調信号が同一時刻に同一周波数に送信する方式が空間多重MIMO方式である。
このとき、特許文献1では送信アンテナごとに異なるインタリーブパターンを具備する送信装置が提案されている。つまり、図28の送信装置において2つのインタリーブ(πa、πb)が互いに異なるインタリーブパターンを有していることになる。そして、受信装置において、非特許文献1、非特許文献2に示されているように、ソフト値を用いた検波方法(図28におけるMIMO detector)を、反復して行うことによって、受信品質が向上することになる。
ところで、無線通信における実伝搬環境のモデルとして、レイリーフェージング環境で代表されるNLOS(non−line of sight)環境、ライスフェージング環境で代表されるLOS(line of sight)環境が存在する。送信装置においてシングルの変調信号を送信し、受信装置において複数のアンテナで受信した信号に対して最大比合成を行い、最大比合成後の信号に対して復調、及び復号を行う場合、LOS環境、特に、散乱波の受信電力に対する直接派の受信電力の大きさを示すライスファクタが大きい環境では、良好な受信品質を得ることができる。しかし、例えば、空間多重MIMO伝送方式では、ライスファクタが大きくなると受信品質が劣化するという問題が発生する。(非特許文献3参照)
図29の(A)(B)は、レイリ−フェージング環境、及びライスファクタK=3、10、16dBのライスフェージング環境において、LDPC(low−density parity−check)符号化されたデータを2×2(2アンテナ送信、2アンテナ受信)空間多重MIMO伝送した場合のBER(Bit Error Rate)特性(縦軸:BER、横軸:SNR(signal−to−noise power ratio))のシミュレーション結果の一例を示している。図29の(A)は、反復検波を行わないMax−log−APP(非特許文献1、非特許文献2参照)(APP:a posterior probability)のBER特性、図29の(B)は、反復検波を行ったMax−log−APP(非特許文献1、非特許文献2参照)(反復回数5回)のBER特性を示している。図29(A)(B)からわかるように、反復検波を行う、または行わないに関係なく、空間多重MIMOシステムでは、ライスファクタが大きくなると受信品質が劣化することが確認できる。このことから、「空間多重MIMOシステムでは、伝搬環境が安定的になると受信品質が劣化する」という従来のシングルの変調信号を送信するシステムにはない、空間多重MIMOシステム固有の課題をもつことがわかる。
放送やマルチキャスト通信は、見通し内のユーザに対するサービスであり、ユーザが所持する受信機と放送局との間の電波伝搬環境はLOS環境であることが多い。前述の課題をもつ空間多重MIMOシステムを、放送やマルチキャスト通信に用いた場合、受信機において、電波の受信電界強度は高いが、受信品質の劣化によりサービスを受けることができない、という現象が発生する可能性がある。つまり、空間多重MIMOシステムを放送やマルチキャスト通信で用いるには、NLOS環境、及びLOS環境のいずれの場合においても、ある程度の受信品質が得られるMIMO伝送方式の開発が望まれる。
非特許文献8では、通信相手からのフィードバック情報からプリコーディングに用いるコードブック(プリコーディング行列)を選択する方法について述べられているが、上記のように、放送やマルチキャスト通信のように、通信相手からのフィードバック情報が得られない状況において、プリコーディングを行う方法については全く記載されていない。
一方、非特許文献4では、フィードバック情報が無い場合にも適用することができる、時間とともに、プリコーディング行列を切り替える方法について述べられている。この文献では、プリコーディングに用いる行列として、ユニタリ行列を用いること、また、ユニタリ行列をランダムに切り替えることについて述べられているが、上記で示したLOS環境での受信品質の劣化に対する適用方法については全く記載されていなく、単にランダムに切り替えることのみが記載されている。当然であるが、LOS環境の受信品質の劣化を改善するためのプリコーディング方法、および、プリコーディング行列の構成方法に関する記述は一切されていない。
国際公開第2005/050885号
"Achieving near−capacity on a multiple−antenna channel" IEEE Transaction on communications, vol.51, no.3, pp.389−399, March 2003. "Performance analysis and design optimization of LDPC−coded MIMO OFDM systems" IEEE Trans. Signal Processing., vol.52, no.2, pp.348−361, Feb. 2004. "BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels," IEICE Trans. Fundamentals, vol.E91−A, no.10, pp.2798−2807, Oct. 2008. "Turbo space−time codes with time varying linear transformations, "IEEE Trans. Wireless communications, vol.6, no.2, pp.486−493, Feb. 2007. "Likelihood function for QR−MLD suitable for soft−decision turbo decoding and its performance," IEICE Trans. Commun., vol.E88−B, no.1, pp.47−57, Jan. 2004. 「Shannon限界への道標:"Parallel concatenated (Turbo) coding", "Turbo (iterative) decoding"とその周辺」電子情報通信学会、信学技法IT98−51 "Advanced signal processing for PLCs: Wavelet−OFDM," Proc. of IEEE International symposium on ISPLC 2008, pp.187−192, 2008. D. J. Love, and R. W. heath, Jr., "Limited feedback unitary precoding for spatial multiplexing systems," IEEE Trans. Inf. Theory, vol.51, no.8, pp.2967−1976, Aug. 2005. DVB Document A122, Framing structure, channel coding and modulation for a second generation digital terrestrial television broadcasting syste,m (DVB−T2), June 2008. L. Vangelista, N. Benvenuto, and S. Tomasin, "Key technologies for next−generation terrestrial digital television standard DVB−T2," IEEE Commun. Magazine, vo.47, no.10, pp.146−153, Oct. 2009. T. Ohgane, T. Nishimura, and Y. Ogawa, "Application of space division multiplexing and those performance in a MIMO channel," IEICE Trans. Commun., vo.88−B, no.5, pp.1843−1851, May 2005. R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inform. Theory, IT-8, pp-21-28, 1962. D. J. C. Mackay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol.45, no.2, pp399-431, March 1999. ETSI EN 302 307, "Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, " v.1.1.2, June 2006. Y.-L. Ueng, and C.-C. Cheng, "a fast-convergence decoding method and memory-efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16e standards," IEEE VTC-2007 Fall, pp.1255-1259.
本発明は、LOS環境における受信品質を改善することが可能なMIMOシステムを提供することを目的とする。
かかる課題を解決するため、本発明に係るプリコーディング方法は、それぞれ同相成分及び直交成分で表される複数の選択された変調方式に基づく信号から、同一の周波数帯域に同時に送信される複数のプリコーディングされた信号を生成するプリコーディング方法であって、複数のプリコーディングウェイト行列の中から一つのプリコーディングウェイト行列を規則的に切り替えながら選択し、前記選択されたプリコーディングウェイト行列を前記複数の選択された変調方式に基づく信号に乗算することで前記複数のプリコーディングされた信号を生成し、前記複数のプリコーディングウェイト行列は、正の実数αを用いて表される、式(339)〜式(347)(詳細は後述)の9個の行列である、プリコーディング方法。
上記の本発明の各態様によると、複数のプリコーディングウェイト行列の中から規則的に切り替えながら選択された一つのプリコーディングウェイト行列によりプリコーディングされた信号を送受信することにより、プリコーディングに使用されるプリコーディングウェイト行列が予め決められた複数のプリコーディングウェイト行列のいずれかとなるため、複数のプリコーディングウェイト行列の設計に応じてLOS環境における受信品質を改善することができる。
このように本発明によれば、LOS環境における受信品質の劣化を改善するプリコーディング方法、プリコーディング装置、送信方法、受信方法、送信装置、受信装置を提供することができるため、放送やマルチキャスト通信において見通し内のユーザに対して、品質の高いサービスを提供することができる。
空間多重MIMO伝送システムにおける送受信装置の構成の例 フレーム構成の一例 プリコーディングウェイト切り替え方法適用時の送信装置の構成の例 プリコーディングウェイト切り替え方法適用時の送信装置の構成の例 フレーム構成の例 プリコーディングウェイト切り替え方法の例 受信装置の構成例 受信装置の信号処理部の構成例 受信装置の信号処理部の構成例 復号処理方法 受信状態の例 BER特性例 プリコーディングウェイト切り替え方法適用時の送信装置の構成の例 プリコーディングウェイト切り替え方法適用時の送信装置の構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 受信品質劣悪点の位置 受信品質劣悪点の位置 フレーム構成の一例 フレーム構成の一例 マッピング方法の一例 マッピング方法の一例 重み付け合成部の構成の例 シンボルの並び換え方法の一例 空間多重MIMO伝送システムにおける送受信装置の構成の例 BER特性例 空間多重型の2x2MIMOシステムモデルの例 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の複素平面における最小距離の特性例 受信劣悪点の複素平面における最小距離の特性例 受信劣悪点の位置 受信劣悪点の位置 実施の形態7における送信装置の構成の一例 送信装置が送信する変調信号のフレーム構成の一例 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 受信劣悪点の位置 時間−周波数軸におけるフレーム構成の一例 時間−周波数軸におけるフレーム構成の一例 信号処理方法 時空間ブロック符号を用いたときの変調信号の構成 時間−周波数軸におけるフレーム構成の詳細の例 送信装置の構成の一例 図52の変調信号生成部#1〜#Mの構成の一例 図52におけるOFDM方式関連処理部(5207_1、および、5207_2)の構成を示す図 時間−周波数軸におけるフレーム構成の詳細の例 受信装置の構成の一例 図56におけるOFDM方式関連処理部(5600_X、5600_Y)の構成を示す図 時間−周波数軸におけるフレーム構成の詳細の例 放送システムの一例 受信劣悪点の位置 フレーム構成の例 時間−周波数軸におけるフレーム構成の一例 送信装置の構成の一例 周波数−時間軸におけるフレーム構成の一例 フレーム構成の例 シンボルの配置方法の一例 シンボルの配置方法の一例 シンボルの配置方法の一例 フレーム構成の一例 時間−周波数軸におけるフレーム構成 時間−周波数軸におけるフレーム構成の一例 送信装置の構成の一例 受信装置の構成の一例 受信装置の構成の一例 受信装置の構成の一例 周波数―時間軸におけるフレーム構成の一例 周波数―時間軸におけるフレーム構成の一例 プリコーディング行列の割り当ての例 プリコーディング行列の割り当ての例 プリコーディング行列の割り当ての例 信号処理部の構成の一例 信号処理部の構成の一例 送信装置の構成の一例 デジタル放送用システムの全体構成図 受信機の構成例を示すブロック図 多重化データの構成を示す図 各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図 PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図 多重化データにおけるTSパケットとソースパケットの構造を示す図 PMTのデータ構成を示す図 多重化データ情報の内部構成を示す図 ストリーム属性情報の内部構成を示す図 映像表示、音声出力装置の構成図 16QAMの信号点配置の例 QPSKの信号点配置の例 ベースバンド信号入れ替え部を示す図
以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
本実施の形態の送信方法、送信装置、受信方法、受信装置について詳しく説明する。
本説明を行う前に、従来システムである空間多重MIMO伝送システムにおける、送信方法、復号方法の概要について説明する。
xN空間多重MIMOシステムの構成を図1に示す。情報ベクトルzは、符号化およびインタリーブが施される。そして、インタリーブの出力として、符号化後ビットのベクトルu=(u,…,uNt)が得られる。ただし、u=(ui1,…,uiM)とする(M:シンボル当たりの送信ビット数)。送信ベクトルs=(s,…,sNtとすると送信アンテナ#iから送信信号s=map(u)とあらわし、送信エネルギーを正規化するとE{|s}=Es/Ntとあらわされる(E:チャネル当たりの総エネルギー)。そして、受信ベクトルをy=(y,…,yNrとすると、式(1)のようにあらわされる。
このとき、HNtNrはチャネル行列、n=(n,…,nNrはノイズベクトルであり、nは平均値0、分散σのi.i.d.複素ガウス雑音である。受信機で導入する送信シンボルと受信シンボルの関係から、受信ベクトルに関する確率は、式(2)のように多次元ガウス分布で与えることができる。
ここで、outer soft−in/soft−outデコーダとMIMO検波からなる図1のような反復復号を行う受信機を考える。図1における対数尤度比のベクトル(L−value)は式(3)−(5)のようにあらわされる。
<反復検波方法>
ここでは、NxN空間多重MIMOシステムにおけるMIMO信号の反復検波について述べる。
mnの対数尤度比を式(6)のように定義する。
ベイズの定理より、式(6)は、式(7)のようにあらわすことができる。
ただし、Umn,±1={u|umn=±1}とする。そして、lnΣa〜max l
n aで近似すると式(7)は式(8)のように近似することができる。なお、上の「〜」の記号は近似を意味する。
式(8)におけるP(u|umn)とln P(u|umn)は以下のようにあらわされる。
ところで、式(2)で定義した式の対数確率は式(12)のようにあらわされる。
したがって、式(7),(13)から、MAP、または、APP(a posteriori probability)では、事後のL−valueは、以下のようにあらわされる。
以降では、反復APP復号と呼ぶ。また、式(8),(12)から、Max−Log近似に基づく対数尤度比(Max−Log APP)では、事後のL−valueは、以下の
ようにあらわされる。
以降では、反復Max−log APP復号と呼ぶ。そして、反復復号のシステムで必要とする外部情報は、式(13)または(14)から事前入力を減算することで、求めることができる。
<システムモデル>
図28に、以降の説明につながるシステムの基本構成を示す。ここでは、2×2空間多重MIMOシステムとし、ストリームA,Bではそれぞれにouterエンコーダがあり、2つのouterエンコーダは同一のLDPC符号のエンコーダとする(ここではouterエンコーダとしてLDPC符号のエンコーダを用いる構成を例に挙げて説明するが、outerエンコーダが用いる誤り訂正符号はLDPC符号に限ったものではなく、ターボ符号、畳み込み符号、LDPC畳み込み符号等の他の誤り訂正符号を用いても同様に実施することができる。また、outerエンコーダは、送信アンテナごとに有する構成としているがこれに限ったものではなく、送信アンテナが複数であっても、outerエンコーダは一つであってもよく、また、送信アンテナ数より多くのouterエンコーダを有していてもよい。)。そして、ストリームA,Bではそれぞれにインタリーバ(π,π)がある。ここでは、変調方式を2−QAMとする(1シンボルでhビットを送信することになる。)。
受信機では、上述のMIMO信号の反復検波(反復APP(またはMax−log APP)復号)を行うものとする。そして、LDPC符号の復号としては、例えば、sum−product復号を行うものとする。
図2はフレーム構成を示しており、インタリーブ後のシンボルの順番を記載している。このとき、以下の式のように(i,j),(i,j)をあらわすものとする。
このとき、i,i:インタリーブ後のシンボルの順番、j,j:変調方式におけるビット位置(j,j=1,・・・,h)、π,π:ストリームA,Bのインタリーバ、Ω ia,ja,Ω ib,jb:ストリームA,Bのインタリーブ前のデータの順番、を示している。ただし、図2では、i=iのときのフレーム構成を示している。
<反復復号>
ここでは、受信機におけるLDPC符号の復号で用いるsum−product復号およびMIMO信号の反復検波のアルゴリズムについて詳しく述べる。
sum−product復号
2元MxN行列H={Hmn}を復号対象とするLDPC符号の検査行列とする。集合[1,N]={1,2,・・・,N}の部分集合A(m),B(n)を次式のように定義する。
このとき、A(m)は検査行列Hのm行目において、1である列インデックスの集合を意味し、B(n)は検査行列Hのn行目において1である行インデックスの集合である。sum−product復号のアルゴリズムは以下のとおりである。
Step A・1(初期化):Hmn=1を満たす全ての組(m,n)に対して事前値対数比βmn=0とする。ループ変数(反復回数)lsum=1とし、ループ最大回数をlsum,maxと設定する。
Step A・2(行処理):m=1,2,・・・,Mの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比αmnを更新する。
このとき、fはGallagerの関数である。そして、λの求め方については以降で詳しく説明する。
Step A・3(列処理):n=1,2,・・・,Nの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比βmnを更新する。
Step A・4(対数尤度比の計算):n∈[1,N]について対数尤度比Lを以下のように求める。
Step A・5(反復回数のカウント):もしlsum<lsum,maxならばlsumをインクリメントして、step A・2に戻る。lsum=lsum,maxの場合、この回のsum−product復号は終了する。

以上が、1回のsum−product復号の動作である。その後、MIMO信号の反復検波が行われる。上述のsum−product復号の動作の説明で用いた変数m,n,αmn,βmn,λ,Lにおいて、ストリームAにおける変数をm,n,α mana,β mana,λna,Lna、ストリームBにおける変数をm,n,α mbnb,β mbnb,λnb,Lnbであらわすものとする。
<MIMO信号の反復検波>
ここでは、MIMO信号の反復検波におけるλの求め方について詳しく説明する。
式(1)から、次式が成立する。
図2のフレーム構成から、式(16)(17)から、以下の関係式が成立する。
このとき、n,n∈[1,N]となる。以降では、MIMO信号の反復検波の反復回数kのときのλna,Lna,λnb,Lnbをそれぞれλk,na,Lk,na,λk,nb,Lk,nbとあらわすものとする。
Step B・1(初期検波;k=0):初期検波のとき、λ0,na,λ0,nbを以下のように求める。
反復APP復号のとき:
反復Max−log APP復号のとき:
ただし、X=a,bとする。そして、MIMO信号の反復検波の反復回数をlmimo=0とし、反復回数の最大回数をlmimo,maxと設定する。
Step B・2(反復検波;反復回数k):反復回数kのときのλk,na,λk,nbは、式(11)(13)−(15)(16)(17)から式(31)−(34)のようにあらわされる。ただし、(X,Y)=(a,b)(b,a)となる。
反復APP復号のとき:
反復Max−log APP復号のとき:
Step B・3(反復回数のカウント、符号語推定):もしlmimo<lmimo,maxならばlmimoをインクリメントして、step B・2に戻る。lmimo=lmimo,maxの場合、推定符号語を以下のようにもとめる。
ただし、X=a,bとする。
図3は、本実施の形態における送信装置300の構成の一例である。符号化部302Aは、情報(データ)301A、フレーム構成信号313を入力とし、フレーム構成信号313(符号化部302Aがデータの誤り訂正符号化に使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Aを出力する。
インタリーバ304Aは、符号化後のデータ303A、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Aを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
マッピング部306Aは、インタリーブ後のデータ305A、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Aを出力する。(フレーム構成信号
313に基づき、変調方式は、切り替えても良い。)
図24は、QPSK変調におけるベースバンド信号を構成する同相成分Iと直交成分QのIQ平面におけるマッピング方法の一例としている。例えば、図24(A)のように、入力データが「00」の場合、I=1.0、Q=1.0が出力され、以下同様に、入力データが「01」の場合、I=―1.0、Q=1.0が出力され、・・・、が出力される。図24(B)は、図24(A)とは異なるQPSK変調のIQ平面におけるマッピング方法の例であり、図24(B)が図24(A)と異なる点は、図24(A)における信号点が、原点を中心に回転させることで図24(B)の信号点を得ることができる。このようなコンスタレーションの回転方法については、非特許文献9、非特許文献10に示されており、また、非特許文献9、非特許文献10に示されているCyclic Q Delayを適用してもよい。図24とは別の例として、図25に16QAMのときのIQ平面における信号点配置を示しており、図24(A)に相当する例が図25(A)であり、図24(B)に相当する例が図25(B)となる。
符号化部302Bは、情報(データ)301B、フレーム構成信号313を入力とし、フレーム構成信号313(使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Bを出力する。
インタリーバ304Bは、符号化後のデータ303B、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Bを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
マッピング部306Bは、インタリーブ後のデータ305B、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Bを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
重み付け合成情報生成部314は、フレーム構成信号313を入力とし、フレーム構成信号313に基づいた重み付け合成方法に関する情報315を出力する。なお、重み付け合成方法は、規則的に重み付け合成方法が切り替わりことが特徴となる。
重み付け合成部308Aは、ベースバンド信号307A、ベースバンド信号307B、重み付け合成方法に関する情報315を入力とし、重み付け合成方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号309Aを出力する。なお。重み付け合成の方法の詳細については、後で詳しく説明する。
無線部310Aは、重み付け合成後の信号309Aを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Aを出力し、送信信号511Aは、アンテナ312Aから電波として出力される。
重み付け合成部308Bは、ベースバンド信号307A、ベースバンド信号307B、重み付け合成方法に関する情報315を入力とし、重み付け合成方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号309Bを出力する。
図26に重み付け合成部の構成を示す。ベースバンド信号307Aは、w11(t)と
乗算し、w11(t)s1(t)を生成し、w21(t)と乗算し、w21(t)s1(t)を生成する。同様に、ベースバンド信号307Bは、w12(t)と乗算し、w12(t)s2(t)を生成し、w22(t)と乗算し、w22(t)s2(t)を生成する。次に、z1(t)=w11(t)s1(t)+w12(t)s2(t)、z2(t)=w21(t)s1(t)+w22(t)s2(t)を得る。
なお。重み付け合成の方法の詳細については、後で詳しく説明する。
無線部310Bは、重み付け合成後の信号309Bを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Bを出力し、送信信号511Bは、アンテナ312Bから電波として出力される。
図4は、図3とは異なる送信装置400の構成例を示している。図4において、図3と異なる部分について説明する。
符号化部402は、情報(データ)401、フレーム構成信号313を入力とし、フレーム構成信号313に基づき、誤り訂正符号化を行い、符号化後のデータ402を出力する。
分配部404は符号化後のデータ403を入力とし、分配し、データ405Aおよびデータ405Bを出力する。なお、図4では、符号化部が一つの場合を記載したが、これに限ったものではなく、符号化部をm(mは1以上の整数)とし、各符号化部で作成された符号化データを分配部が、2系統のデータにわけて出力する場合についても、本発明は同様に実施することができる。
図5は、本実施の形態における送信装置の時間軸におけるフレーム構成の一例を示している。シンボル500_1は、受信装置に、送信方法を通知するためのシンボルであり、例えば、データシンボルを伝送するために用いる誤り訂正方式、その符号化率の情報、データシンボルを伝送するために用いる変調方式の情報等を伝送する。
シンボル501_1は、送信装置が送信する変調信号z1(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_1は変調信号z1(t)が(時間軸における)シンボル番号uに送信するデータシンボル、シンボル503_1は変調信号z1(t)がシンボル番号u+1に送信するデータシンボルである。
シンボル501_2は、送信装置が送信する変調信号z2(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_2は変調信号z2(t)がシンボル番号uに送信するデータシンボル、シンボル503_2は変調信号z2(t)がシンボル番号u+1に送信するデータシンボルである。
送信装置が送信する変調信号z1(t)と変調信号z2(t)、及び、受信装置における受信信号r1(t)、r2(t)の関係について説明する。
図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
図6は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)に関連する図であり、重み付け合成部600は、図3の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号同相I、直交Q成分となる。そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、重み付け情報に関する情報315を入力とし、重み付け情報に関する情報315にしたがった重み付け方法を施し、図3の重み付け合成後の信号309A(z1(t))、309B(z2(t))を出力する。このとき、z1(t)、z2(t)は以下のようにあらわされる。
シンボル番号4iのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
このように、図6の重み付け合成部は、4スロット周期で規則的にプリコーディングウェイトを切り替えるものとする。(ただし、ここでは、4スロットで規則的にプリコーディングウェイトを切り替える方式としているが、規則的に切り替えるスロット数は4スロットに限ったものではない。)
ところで、非特許文献4において、スロットごとにプリコーディングウェイトを切り替えることが述べられており、非特許文献4では、プリコーディングウェイトをランダムに切り替えることを特徴としている。一方で、本実施の形態では、ある周期を設け規則的にプリコーディングウェイトを切り替えることを特徴としており、また、4つのプリコーディングウェイトで構成される2行2列のプリコーディングウェイト行列において、4つのプリコーディングウェイトの各絶対値が等しく(1/sqrt(2))、この特徴をもつプリコーディングウェイト行列を規則的に切り替えることを特徴としている。
LOS環境では、特殊なプリコーディング行列を用いると、受信品質が大きく改善する可能性があるが、直接波の状況により、その特殊なプリコーディング行列は異なる。しかし、LOS環境には、ある規則があり、この規則に従い特殊なプリコーディング行列を規則的に切り替えれば、データの受信品質が大きく改善する。一方、ランダムにプリコーディング行列を切り替えた場合、先にのべた特殊なプリコーディング行列以外のプリコーディング行列も存在することになる可能性、また、LOS環境には適さない片寄ったプリコーディング行列のみでプリコーディングを行う可能性も存在し、これにより、必ずしもLOS環境で、良好な受信品質が得られるとは限らない。したがって、LOS環境に適したプリコーディング切り替え方法を実現する必要があり、本発明は、それに関するプリコーディング方法を提案している。
図7は、本実施の形態における受信装置700の構成の一例を示している。無線部703_Xは、アンテナ701_Xで受信された受信信号702_Xを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Xを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(36)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部705_2は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(36)のh12に相当する値を推定し、チャネル推定信号706_2を出力する。
無線部703_Yは、アンテナ701_Yで受信された受信信号702_Yを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Yを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(36)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部707_2は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(36)のh22に相当する値を推定し、チャネル推定信号708_2を出力する。
制御情報復号部709は、ベースバンド信号704_Xおよび704_Yを入力とし、図5の送信方法を通知するためのシンボル500_1を検出し、送信装置が通知した送信方法の情報に関する信号710を出力する。
信号処理部711は、ベースバンド信号704_X、704_Y、チャネル推定信号706_1、706_2、708_1、708_2、及び、送信装置が通知した送信方法の情報に関する信号710を入力とし、検波、復号を行い、受信データ712_1および712_2を出力する。
次に、図7の信号処理部711の動作について詳しく説明する。図8は、本実施の形態における信号処理部711の構成の一例を示している。図8は、主にINNER MIMO検波部とsoft−in/soft−outデコーダ、重み付け係数生成部から構成されている。この構成における反復復号の方法については、非特許文献2、非特許文献3で詳細が述べられているが、非特許2、非特許文献3に記載されているMIMO伝送方式は空間多重MIMO伝送方式であるが、本実施の形態における伝送方式は、時間とともにプリコーディングウェイトを変更するMIMO伝送方式である点が、非特許文献2、非特許文献3と異なる点である。式(36)における(チャネル)行列をH(t)、図6におけるプリコーディングウェイト行列をW(t)(ただし、tによりプリコーディングウェイト行列は変化する。)、受信ベクトルをR(t)=(r1(t),r2(t))、ストリームベクトルS(t)=(s1(t),s2(t))とすると以下の関係式が成立する。
このとき、受信装置は、H(t)W(t)をチャネル行列と考えることで、受信ベクトル
をR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる。
したがって、図8の重み付け係数生成部819は、送信装置が通知した送信方法の情報に関する信号818(図7の710に相当)を入力とし、重み付け係数の情報に関する信号820を出力する。
INNNER MIMO検波部803は、重み付け係数の情報に関する信号820を入力とし、この信号を利用して、式(41)の演算を行うことになる。そして、反復検波・復号を行うことになるがその動作について説明する。
図8の信号処理部では、反復復号(反復検波)を行うため図10に示すような処理方法を行う必要がある。初めに、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の復号を行う。その結果、soft−in/soft−outデコーダから、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の各ビットの対数尤度比(LLR:Log−Likelihood Ratio)が得られる。そして、そのLLRを用いて再度、検波・復号が行われる。この操作が複数回行われる(この操作を反復復号(反復検波)と呼ぶ。)。以降では、1フレームにおける特定の時間のシンボルの対数尤度比(LLR)の作成方法を中心に説明する。
図8において、記憶部815は、ベースバンド信号801X(図7のベースバンド信号704_Xに相当する。)、チャネル推定信号郡802X(図7のチャネル推定信号706_1、706_2に相当する。)、ベースバンド信号801Y(図7のベースバンド信号704_Yに相当する。)、チャネル推定信号郡802Y(図7のチャネル推定信号708_1、708_2に相当する。)を入力とし、反復復号(反復検波)を実現するために、式(41)におけるH(t)W(t)を実行(算出)し、算出した行列を変形チャネル信号群として記憶する。そして、記憶部815は、必要なときに上記信号を、ベースバンド信号816X、変形チャネル推定信号郡817X、ベースバンド信号816Y、変形チャネル推定信号郡817Yとして出力する。
その後の動作については、初期検波の場合と反復復号(反復検波)の場合を分けて説明する。
<初期検波の場合>
INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号郡802X、ベースバンド信号801Y、チャネル推定信号郡802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
INNER MIMO検波部803は、まず、チャネル推定信号郡802X、チャネル推定信号郡802YからH(t)W(t)を実行し、ベースバンド信号801Xに対応する候補信号点を求める。そのときの様子を図11に示す。図11において、●(黒丸)は、IQ平面における候補信号点であり、変調方式が16QAMのため、候補信号点は256個存在する。(ただし、図11では、イメージ図を示しているため、256個の候補信号点は示していない。)ここで、変調信号s1で伝送する4ビットをb0、b1、b2、b3、変調信号s2で伝送する4ビットをb4、b5、b6、b7とすると、図11において(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点が存在することになる。そして、受信信号点1101(ベースバンド信号801Xに相当する。)と候補信号点それぞれとの2乗ユークリッド距離を求める。そして、それぞれの2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離を
ノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
同様に、チャネル推定信号郡802X、チャネル推定信号郡802YからH(t)W(t)を実行し、ベースバンド信号801Yに対応する候補信号点をもとめ、受信信号点(ベースバンド信号801Yに相当する。)との2乗ユークリッド距離を求め、この2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
そして、E(b0,b1,b2,b3,b4,b5,b6,b7)+E(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。
INNER MIMO検波部803は、E(b0,b1,b2,b3,b4,b5,b6,b7)を信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。
デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図3のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
同様に、デインタリーバ(807B)は、対数尤度信号806Bを入力とし、インタリーバ(図3のインタリーバ(304B))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Bを出力する。
対数尤度比算出部809Aは、デインタリーブ後の対数尤度信号808Aを入力とし、図3の符号化器302Aで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Aを出力する。
同様に、対数尤度比算出部809Bは、デインタリーブ後の対数尤度信号808Bを入力とし、図3の符号化器302Bで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Bを出力する。
Soft−in/soft−outデコーダ811Aは、対数尤度比信号810Aを入力とし、復号を行い、復号後の対数尤度比812Aを出力する。
同様に、Soft−in/soft−outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
<反復復号(反復検波)の場合、反復回数k>
インタリーバ(813A)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリ
ーブのパターンは、図3のインタリーバ(304A)のインタリーブパターンと同様である。
インタリーバ(813B)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Bを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Bを出力する。このとき、インタリーブ(813B)のインタリーブのパターンは、図3のインタリーバ(304B)のインタリーブパターンと同様である。
INNER MIMO検波部803は、ベースバンド信号816X、変形チャネル推定信号郡817X、ベースバンド信号816Y、変形チャネル推定信号郡817Y、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを入力とする。ここで、ベースバンド信号801X、チャネル推定信号郡802X、ベースバンド信号801Y、チャネル推定信号郡802Yではなく、ベースバンド信号816X、変形チャネル推定信号郡817X、ベースバンド信号816Y、変形チャネル推定信号郡817Yを用いているのは、反復復号のため、遅延時間が発生しているためである。
INNER MIMO検波部803の反復復号時の動作と、初期検波時の動作の異なる点は、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを信号処理の際に用いていることである。INNNER MIMO検波部803は、まず、初期検波のときと同様に、E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。加えて、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比914Bから、式(11)、式(32)に相当する係数を求める。そして、E(b0,b1,b2,b3,b4,b5,b6,b7)の値をこの求めた係数を用いて補正し、その値をE’(b0,b1,b2,b3,b4,b5,b6,b7)とし、信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(31)、式(数32)、式(33)、式(34)、式(35)に示した通りであり、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。デインタリーバ以降の動作は、初期検波と同様である。
なお、図8では、反復検波を行う場合の、信号処理部の構成について示したが、反復検波は必ずしも良好な受信品質を得る上で必須の構成ではなく、反復検波のみに必要とする構成部分、インタリーバ813A、813Bを有していない構成でもよい。このとき、INNNER MIMO検波部803は、反復的な検波を行わないことになる。
そして、本実施の形態で重要な部分は、H(t)W(t)の演算を行うことである。なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。
また、非特許文献11に示されているように、H(t)W(t)に基づき、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよ
い。
図9は、図8と異なる信号処理部の構成であり、図4の送信装置が送信した変調信号の
ための信号処理部である。図8と異なる点は、soft−in/soft−outデコーダの数であり、soft−in/soft−outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
図12に、図29のときと同様の条件で、伝送方式を本実施の形態のプリコーディングウェイトを用いた送信方法としたときのBER特性を示す。図12の(A)は、反復検波を行わないMax−log−APP(非特許文献1、非特許文献2参照)(APP:a posterior probability)のBER特性、図12の(B)は、反復検波を行ったMax−log−APP(非特許文献1、非特許文献2参照)(反復回数5回)のBER特性を示している。図12と図29を比較すると、本実施の形態の送信方法を用いると、ライスファクタが大きいときのBER特性が、空間多重MIMO伝送を用いたときのBER特性より大きく改善していることがわかり、本実施の形態の方式の有効性が確認できる。
以上のように、本実施の形態のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
本実施の形態において、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。また、本実施の形態では、特にLDPC符号を例に説明したがこれに限ったものではなく、また、復号方法についても、soft−in/soft−outデコーダとして、sum−product復号を例に限ったものではなく、他のsoft−in/soft−outの復号方法、例えば、BCJRアルゴリズム、SOVAアルゴリズム、Msx−log−MAPアルゴリズムなどがある。詳細については、非特許文献6に示されている。
また、本実施の形態では、シングルキャリア方式を例に説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency−Division Multiplexing)方式、SC−FDMA(Single Carrier Frequency Division Multiple Access)、SC−OFDM(Single Carrier Orthogonal Frequency−Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
以下では、マルチキャリア方式の一例として、OFDM方式を用いたときの例を説明する。
図13は、OFDM方式を用いたときの送信装置の構成を示している。図13において、図3と同様に動作するものについては、同一符号を付した。
OFDM方式関連処理部1301Aは、重み付け後の信号309Aを入力とし、OFDM方式関連の処理を施し、送信信号1302Aを出力する。同様に、OFDM方式関連処
理部1301Bは、重み付け後の信号309Bを入力とし、送信信号1302Bを出力する。
図14は、図13のOFDM方式関連処理部1301A、1301B以降の構成の一例を示しており、図13の1301Aから312Aに関連する部分が、1401Aから1410Aであり、1301Bから312Bに関連する部分が1401Bから1410Bである。
シリアルパラレル変換部1402Aは、重み付け後の信号1401A(図13の重み付け後の信号309Aに相当する)シリアルパラレル変換を行い、パラレル信号1403Aを出力する。
並び換え部1404Aは、パラレル信号1403Aを入力とし、並び換えを行い、並び換え後の信号1405Aを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1406Aは、並び換え後の信号1405Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1407Aを出力する。
無線部1408Aは、逆フーリエ変換後の信号1407Aを入力とし、周波数変換、増幅等の処理を行い、変調信号1409Aを出力し、変調信号1409Aはアンテナ1410Aから電波として出力される。
シリアルパラレル変換部1402Bは、重み付け後の信号1401B(図13の重み付け後の信号309Bに相当する)シリアルパラレル変換を行い、パラレル信号1403Bを出力する。
並び換え部1404Bは、パラレル信号1403Bを入力とし、並び換えを行い、並び換え後の信号1405Bを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1406Bは、並び換え後の信号1405Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1407Bを出力する。
無線部1408Bは、逆フーリエ変換後の信号1407Bを入力とし、周波数変換、増幅等の処理を行い、変調信号1409Bを出力し、変調信号1409Bはアンテナ1410Bから電波として出力される。
図3の送信装置では、マルチキャリアを用いた伝送方式でないため、図6のように、4周期となるようにプリコーディングを切り替え、プリコーディング後のシンボルを時間軸方向に配置している。図13に示すようなOFDM方式のようなマルチキャリア伝送方式を用いている場合、当然、図3のようにプリコーディング後のシンボルを時間軸方向に配置し、それを各(サブ)キャリアごとに行う方式が考えられるが、マルチキャリア伝送方式の場合、周波数軸方向、または、周波数軸・時間軸両者を用いて配置する方法が考えられる。以降では、この点について説明する。
図15は、横軸周波数、縦軸時間における、図14の並び替え部1401A、1401Bにおけるシンボルの並び替え方法の一例を示しており、周波数軸は、(サブ)キャリア0から(サブ)キャリア9で構成されており、変調信号z1とz2は、同一時刻(時間)に同一の周波数帯域を使用しており、図15(A)は変調信号z1のシンボルの並び替え方法、図15(B)は変調信号z2のシンボルの並び替え方法を示している。シリアルパラレル変換部1402Aが入力とする重み付け後の信号1401Aのシンボルに対し、順番に、#1、#2、#3、#4、・・・と番号をふる。このとき、図15(a)のように、シンボル#1、#2、#3、#4、・・・をキャリア0から順番に配置し、シンボル#1から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置す
るというように規則的に配置するものとする。
同様に、シリアルパラレル変換部1402Bが入力とする重み付け後の信号1401Bのシンボルに対し、順番に、#1、#2、#3、#4、・・・と番号をふる。このとき、図15(b)のように、シンボル#1、#2、#3、#4、・・・をキャリア0から順番に配置し、シンボル#1から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。
そして、図15に示すシンボル群1501、シンボル群1502は、図6示すプリコーディングウェイト切り替え方法を用いたときの1周期分のシンボルであり、シンボル#0は図6のスロット4iのプリコーディングウェイトを用いたときのシンボルであり、シンボル#1は図6のスロット4i+1のプリコーディングウェイトを用いたときのシンボルであり、シンボル#2は図6のスロット4i+2のプリコーディングウェイトを用いたときのシンボルであり、シンボル#3は図6のスロット4i+3のプリコーディングウェイトを用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 4が0のとき、シンボル#xは図6のスロット4iのプリコーディングウェイトを用いたときのシンボルであり、x mod 4が1のとき、シンボル#xは図6のスロット4i+1のプリコーディングウェイトを用いたときのシンボルであり、x mod 4が2のとき、シンボル#xは図6のスロット4i+2のプリコーディングウェイトを用いたときのシンボルであり、x mod 4が3のとき、シンボル#xは図6のスロット4i+3のプリコーディングウェイトを用いたときのシンボルである。
このように、OFDM方式などのマルチキャリア伝送方式を用いた場合、シングルキャリア伝送のときとは異なり、シンボルを周波数軸方向に並べることができるという特徴を持つことになる。そして、シンボルの並べ方については、図15のような並べ方に限ったものではない。他の例について、図16、図17を用いて説明する。
図16は、図15とは異なる、横軸周波数、縦軸時間における、図14の並び替え部1401A、1401Bにおけるシンボルの並び替え方法の一例を示しており、図16(A)は変調信号z1のシンボルの並び替え方法、図16(B)は変調信号z2のシンボルの並び替え方法を示している。図16(A)(B)が図15と異なる点は、変調信号z1のシンボルの並び替え方法と変調信号z2のシンボルの並び替え方法が異なる点であり、図16(B)では、シンボル#0から#5をキャリア4からキャリア9に配置し、シンボル#6から#9をキャリア0から3に配置し、その後、同様の規則で、シンボル#10から#19を各キャリアに配置する。このとき、図15と同様に、図16に示すシンボル群1601、シンボル群1602は、図6示すプリコーディングウェイト切り替え方法を用いたときの1周期分のシンボルである。
図17は、図15と異なる、横軸周波数、縦軸時間における、図14の並び替え部1401A、1401Bにおけるシンボルの並び替え方法の一例を示しており、図17(A)は変調信号z1のシンボルの並び替え方法、図17(B)は変調信号z2のシンボルの並び替え方法を示している。図17(A)(B)が図15と異なる点は、図15では、シンボルをキャリアに順々に配置しているのに対し、図17では、シンボルをキャリアに順々に配置していない点である。当然であるが、図17において、図16と同様に、変調信号z1のシンボルの並び替え方法と変調信号z2の並び替え方法を異なるようにしてもよい。
図18、図15〜17とは異なる、横軸周波数、縦軸時間における、図14の並び替え部1401A、1401Bにおけるシンボルの並び替え方法の一例を示しており、図18(A)は変調信号z1のシンボルの並び替え方法、図18(B)は変調信号z2のシンボ
ルの並び替え方法を示している。図15〜17では、シンボルを周波数軸方向に並べているが、図18ではシンボルを周波数、時間軸の両者を利用して配置している。
図6では、プリコーディングウェイトの切り替えを4スロットで切り替える場合の例を説明したが、ここでは、8スロットで切り替える場合を例に説明する。図18に示すシンボル群1801、シンボル群1802は、プリコーディングウェイト切り替え方法を用いたときの1周期分のシンボル(したがって、8シンボル)であり、 シンボル#0はスロット8iのプリコーディングウェイトを用いたときのシンボルであり、シンボル#1はスロット8i+1のプリコーディングウェイトを用いたときのシンボルであり、シンボル#2はスロット8i+2のプリコーディングウェイトを用いたときのシンボルであり、シンボル#3はスロット8i+3のプリコーディングウェイトを用いたときのシンボルであり、シンボル#4はスロット8i+4のプリコーディングウェイトを用いたときのシンボルであり、シンボル#5はスロット8i+5のプリコーディングウェイトを用いたときのシンボルであり、シンボル#6はスロット8i+6のプリコーディングウェイトを用いたときのシンボルであり、シンボル#7はスロット8i+7のプリコーディングウェイトを用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 8が0のとき、シンボル#xはスロット8iのプリコーディングウェイトを用いたときのシンボルであり、x mod 8が1のとき、シンボル#xはスロット8i+1のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が2のとき、シンボル#xはスロット8i+2のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が3のとき、シンボル#xはスロット8i+3のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が4のとき、シンボル#xはスロット8i+4のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が5のとき、シンボル#xはスロット8i+5のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が6のとき、シンボル#xはスロット8i+6のプリコーディングウェイトを用いたときのシンボルであり、x mod 8が7のとき、シンボル#xはスロット8i+7のプリコーディングウェイトを用いたときのシンボルである。図18のシンボルの並べ方では、時間軸方向に4スロット、周波数軸方向で2スロットの計4×2=8スロットを用いて、1周期分のシンボルを配置しているが、このとき、1周期分のシンボルの数をm×nシンボル(つまり、プリコーディングウェイトはm×n種類存在する。)1周期分のシンボルを配置するのに使用する周波数軸方向のスロット(キャリア数)をn、時間軸方向に使用するスロットをmとすると、m>nとするとよい。これは、直接波の位相は、時間軸方向の変動は、周波数軸方向の変動と比較し、緩やかである。したがって、定常的な直接波の影響を小さくするために本実施の形態のプリコーディングウェイト変更を行うので、プリコーディングウェイトの変更を行う周期では直接波の変動を小さくしたい。したがって、m>nとするとよい。また、以上の点を考慮すると、周波数軸方向のみ、または、時間軸方向のみにシンボルを並び替えるより、図18のように周波数軸と時間軸の両者を用いて並び換えを行うほうが、直接波は定常的になる可能性が高く、本発明の効果を得やすいという効果が得られる。ただし、周波数軸方向に並べると、周波数軸の変動が急峻であるため、ダイバーシチゲインを得ることが出来る可能性があるので、必ずしも周波数軸と時間軸の両者を用いて並び換えを行う方法が最適な方法であるとは限らない。
図19は、図18とは異なる、横軸周波数、縦軸時間における、図14の並び替え部1401A、1401Bにおけるシンボルの並び替え方法の一例を示しており、図19(A)は変調信号z1のシンボルの並び替え方法、図19(B)は変調信号z2のシンボルの並び替え方法を示している。図19は、図18と同様、シンボルを周波数、時間軸の両者を利用して配置しているが、図18と異なる点は、図18では、周波数方向を優先し、その後、時間軸方向にシンボルを配置しているのに対し、図19では、時間軸方向を優先し、その後、時間軸方向にシンボルを配置している点である。図19において、シンボル群
1901、シンボル群1902は、プリコーディング切り替え方法を用いたときの1周期分のシンボルである。
なお、図18、図19では、図16と同様に、変調信号z1のシンボルの配置方法と変調信号z2のシンボル配置方法が異なるように配置しても同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。また、図18、図19において、図17のようにシンボルを順々に配置していなくても、同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。
図27は、上記とは異なる、横軸周波数、縦軸時間における図14の並び替え部1401A、140Bにおけるシンボルの並び換え方法の一例を示している。式(37)〜式(40)のような4スロットを用いて規則的にプリコーディング行列を切り替える場合を考える。図27において特徴的な点は、周波数軸方向にシンボルを順に並べているが、時間軸方向に進めた場合、サイクリックにn(図27の例ではn=1)シンボルサイクリックシフトさせている点である。図27における周波数軸方向のシンボル群2710に示した4シンボルにおいて、式(37)〜式(40)のプリコーディング行列の切り替えを行うものとする。
このとき、#0のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#1では式(38)のプリコーディング行列を用いたプリコーディング、#2では式(39)のプリコーディング行列を用いたプリコーディング、#3では式(40)のプリコーディング行列を用いたプリコーディングを行うものとする。
周波数軸方向のシンボル群2720についても同様に、#4のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#5では式(38)のプリコーディング行列を用いたプリコーディング、#6では式(39)のプリコーディング行列を用いたプリコーディング、#7では式(40)のプリコーディング行列を用いたプリコーディングを行うものとする。
時間$1のシンボルにおいて、上記のようなプリコーディング行列の切り替えを行ったが、時間軸方向において、サイクリックシフトしているため、シンボル群2701、2702、2703、2704については以下のようにプリコーディング行列の切り替えを行うことになる。
時間軸方向のシンボル群2701では、#0のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#9では式(38)のプリコーディング行列を用いたプリコーディング、#18では式(39)のプリコーディング行列を用いたプリコーディング、#27では式(40)のプリコーディング行列を用いたプリコーディングを行うものとする。
時間軸方向のシンボル群2702では、#28のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#1では式(38)のプリコーディング行列を用いたプリコーディング、#10では式(39)のプリコーディング行列を用いたプリコーディング、#19では式(40)のプリコーディング行列を用いたプリコーディングを行うものとする。
時間軸方向のシンボル群2703では、#20のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#29では式(38)のプリコーディング行列を用いたプリコーディング、#1では式(39)のプリコーディング行列を用いたプリコーディング、#10では式(40)のプリコーディング行列を用いたプリコーディングを行
うものとする。
時間軸方向のシンボル群2704では、#12のシンボルでは式(37)のプリコーディング行列を用いたプリコーディング、#21では式(38)のプリコーディング行列を用いたプリコーディング、#30では式(39)のプリコーディング行列を用いたプリコーディング、#3では式(40)のプリコーディング行列を用いたプリコーディングを行うものとする。
図27においての特徴は、例えば#11のシンボルに着目した場合、同一時刻の周波数軸方向の両隣のシンボル(#10と#12)は、ともに#11とは異なるプリコーディング行列を用いてプリコーディングを行っているとともに、#11のシンボルの同一キャリアの時間軸方向の両隣のシンボル(#2と#20)は、ともに#11とは異なるプリコーディング行列を用いてプリコーディングを行っていることである。そして、これは#11のシンボルに限ったものではなく、周波数軸方向および時間軸方向ともに両隣にシンボルが存在するシンボルすべてにおいて#11のシンボルと同様の特徴をもつことになる。これにより、効果的にプリコーディング行列を切り替えていることになり、直接波の定常的な状況に対する影響を受けづらくなるため、データの受信品質が改善される可能性が高くなる。
図27では、n=1として説明したが、これに限ったものではなく、n=3としても同様に実施することができる。また、図27では、周波数軸にシンボルを並べ、時間が軸方向にすすむ場合、シンボルの配置の順番をサイクリックシフトするという特徴を持たせることで、上記の特徴を実現したが、シンボルをランダム(規則的であってもよい)に配置することで上記特徴を実現するような方法もある。
(実施の形態2)
実施の形態1では、図6に示すようなプリコーディングウェイトを規則的に切り替える場合について説明したが、本実施の形態では、図6のプリコーディングウェイトとは異なる具体的なプリコーディングウェイトの設計方法について説明する。
図6では、式(37)〜式(40)のプリコーディングウェイトを切り替える方法を説明した。これを一般化した場合、プリコーディングウェイトは以下のように変更することができる。(ただし、プリコーディングウェイトの切り替え周期は4とし、式(37)〜式(40)と同様の記載を行う。)
シンボル番号4iのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
そして、式(36)および式(41)から、受信ベクトルをR(t)=(r1(t),r2(t))を以下のようにあらわすことができる。
シンボル番号4iのとき:
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
このとき、チャネル要素h11(t)、h12(t)、h21(t)、h22(t)において、直接波の成分しか存在しないと仮定し、その直接波の成分の振幅成分は全て等しく、また、時間において、変動が起こらないとする。すると、式(46)〜式(49)は以下のようにあらわすことができる。
シンボル番号4iのとき:
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
ただし、式(50)〜式(53)において、Aは正の実数であり、qは複素数であるものとする。このA及びqの値は、送信装置と受信装置との位置関係に応じて決まる。そして、式(50)〜式(53)を以下のようにあらわすものとする。
シンボル番号4iのとき:
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
すると、qが以下のようにあらわされるとき、r1、r2に、s1またはs2のいずれか一方に基づく信号成分が含まれなくなるため、s1、s2のいずれかの信号を得ることができなくなる。
シンボル番号4iのとき:
シンボル番号4i+1のとき:
シンボル番号4i+2のとき:
シンボル番号4i+3のとき:
このとき、シンボル番号4i、4i+1、4i+2、4i+3において、qが同一の解をもつと、直接波のチャネル要素は大きな変動がないため、qの値が上記の同一解と等しいチャネル要素を有する受信装置は、いずれのシンボル番号においても、良好な受信品質を得ることができなくなるため、誤り訂正符号を導入しても、誤り訂正能力を得ることが難しい。したがって、qが同一の解をもたないためには、qの2つの解のうち、δを含まないほうの解に着目すると、式(58)〜式(61)から、以下の条件が必要となる。
(xは0,1,2,3であり、yは0,1,2,3であり、x≠yである。)

条件#1を満たす例として、
(例#1)
<1> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0ラジアン
とし、
<2> θ21(4i)=0ラジアン
<3> θ21(4i+1)=π/2ラジアン
<4> θ21(4i+2)=πラジアン
<5> θ21(4i+3)=3π/2ラジアン
と設定する方法が考えられる。(上記は例であり、(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))のセットには、0ラジアン、π/2ラジアン、πラジアン、3π/2ラジアンが一つずつ存在すればよい。)このとき、特に、<1>の条件があると、ベースバンド信号S1(t)に対し、信号処理(回転処理)を与える必要がないため、回路規模の削減を図ることができるという利点がある。別の例として、
(例#2)
<6> θ11(4i)=0ラジアン
<7> θ11(4i+1)=π/2ラジアン
<8> θ11(4i+2)=πラジアン
<9> θ11(4i+3)=3π/2ラジアン
とし、
<10> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 ラジアン
と設定する方法も考えられる。(上記は例であり、(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))のセットには、0ラジアン、π/2ラジアン、πラジアン、3π/2ラジアンが一つずつ存在すればよい。)このとき、特に、<6>の条件があると、ベースバンド信号S2(t)に対し、信号処理(回転処理)を与える必要がないため、回路規模の削減を図ることができるという利点がある。さらに別の例として、以下をあげる。
(例#3)
<11> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0 ラジアン
とし、
<12> θ21(4i)=0ラジアン
<13> θ21(4i+1)=π/4ラジアン
<14> θ21(4i+2)=π/2ラジアン
<15> θ21(4i+3)=3π/4ラジアン
(上記は例であり、(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))のセットには、0ラジアン、π/4ラジアン、π/2ラジアン、3π/4ラジアンが一つずつ存在すればよい。)
(例#4)
<16> θ11(4i)=0ラジアン
<17> θ11(4i+1)=π/4ラジアン
<18> θ11(4i+2)=π/2ラジアン
<19> θ11(4i+3)=3π/4ラジアン
とし、
<20> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 ラジアン
(上記は例であり、(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))のセットには、0ラジアン、π/4ラジアン、π/2ラジアン、3π/4ラジアンが一つずつ存在すればよい。)
なお、4つの例をあげたが、条件#1を満たす方法はこれに限ったものではない。
次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
この場合、δに対し、π/2ラジアン≦|δ|≦πラジアン、とすると、特に、LOS環境において、良好な受信品質を得ることができる。
ところで、シンボル番号4i、4i+1、4i+2、4i+3において、それぞれ、悪い受信品質となるqは2点存在する。したがって、2×4=8点の点が存在することになる。LOS環境において、特定の受信端末において受信品質が劣化することを防ぐためには、これら8点がすべて異なる解であるとよい。この場合、<条件#1>に加え、<条件#2>の条件が必要となる。
加えて、これら8点の位相が均一に存在するとよい。(直接波の位相は、一様分布となる可能性が高いと考えられるので)以下では、この要件を満たすδの設定方法について説明する。
(例#1)(例#2)の場合、δを±3π/4ラジアンと設定することで、受信品質の悪い点を、位相が均一に存在するようになる。例えば、(例#1)とし、δを3π/4ラジアンとすると、(Aは正の実数とする)図20のように、4スロットに1回受信品質が悪くなる点が存在する。(例#3)(例#4)の場合、δを±πラジアンと設定することで、受信品質の悪い点を、位相が均一に存在するようになる。例えば、(例#3)とし、δをπラジアンとすると図21のように、4スロットに1回受信品質が悪くなる点が存在する。(チャネル行列Hにおける要素qが、図20、図21に示す点に存在すると、受信品質が劣化することになる。)
以上のようにすることで、LOS環境において、良好な受信品質を得ることができる。上記では、4スロット周期で、プリコーディングウェイトを変更する例で説明したが、以下では、Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。実施の形態1、および、上述の説明と同様に考えると、シンボル番後に対し、以下であ
らわされるような処理を行うことになる。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
よって、r1、r2は以下のようにあらわされる。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
このとき、チャネル要素h11(t)、h12(t)、h21(t)、h22(t)において、直接波の成分しか存在しないと仮定し、その直接波の成分の振幅成分は全て等しく、また、時間において、変動が起こらないとする。すると、式(66)〜式(69)は以
下のようにあらわすことができる。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
ただし、式(70)〜式(73)において、Aは実数であり、qは複素数であるものとする。このA及びqの値は、送信装置と受信装置との位置関係に応じて決まる。そして、式(70)〜式(73)を以下のようにあらわすものとする。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
すると、qが以下のようにあらわされるとき、r1、r2に、s1またはs2のいずれか一方に基づく信号成分が含まれなくなるため、s1、s2のいずれかの信号を得ることができなくなる。
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
このとき、シンボル番号N〜Ni+N−1において、qが同一の解をもつと、直接波のチャネル要素は大きな変動がないため、qの値が上記の同一解と等しい受信装置は、いずれのシンボル番号においても、良好な受信品質を得ることができなくなるため、誤り訂正符号を導入しても、誤り訂正能力を得ることが難しい。したがって、qが同一の解をもたないためには、qの2つの解のうち、δを含まないほうの解に着目すると、式(78)〜式(81)から、以下の条件が必要となる。
(xは0,1,2,・・・,N−2,N−1であり、yは0,1,2,・・・,N−2,N−1であり、x≠yである。)

次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
この場合、4スロット周期でプリコーディングウェイトを変更する方法のときと同様に、δに対し、π/2ラジアン≦|δ|≦πラジアン、とすると、特に、LOS環境において、良好な受信品質を得ることができる。
シンボル番号Ni〜Ni+N−1において、それぞれ、悪い受信品質となるqは2点存在する、したがって、2N点の点が存在することになる。LOS環境において、良好な特性を得るためには、これら2N点がすべて異なる解であるとよい。この場合、<条件#3>に加え、<条件#4>の条件が必要となる。
加えて、これら2N点の位相が均一に存在するとよい。(各受信装置における直接波の位相は、一様分布となる可能性が高いと考えられるので)
以上のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
本実施の形態において、受信装置の構成は、実施の形態1で説明したとおりであり、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。また、本実施の形態では、実施の形態1と同様に、誤り訂正符号は限定されるものではない。
また、本実施の形態では、実施の形態1と対比させ、時間軸におけるプリコーディングウェイト変更方法について説明したが、実施の形態1で説明したように、マルチキャリア伝送方式を用い、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイト変更方法しても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報用のシンボルなどが、フレームにどのように配置されていても
よい。
(実施の形態3)
実施の形態1、実施の形態2では、プリコーディングウェイトを規則的に切り替える方式において、プリコーディングウェイトの行列の各要素の振幅が等しい場合について説明したが、本実施の形態では、この条件を満たさない例について説明する。
実施の形態2と対比するために、Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。実施の形態1、および、実施の形態2と同様に考えると、シンボル番号に対し、以下であらわされるような処理を行うことになる。ただし、βは正の実数とし、β≠1とする。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
よって、r1、r2は以下のようにあらわされる。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
このとき、チャネル要素h11(t)、h12(t)、h21(t)、h22(t)において、直接波の成分しか存在しないと仮定し、その直接波の成分の振幅成分は全て等しく、また、時間において、変動が起こらないとする。すると、式(86)〜式(89)は以下のようにあらわすことができる。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
ただし、式(90)〜式(93)において、Aは実数であり、qは複素数であるものとする。そして、式(90)〜式(93)を以下のようにあらわすものとする。
シンボル番号Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
すると、qが以下のようにあらわされるとき、s1、s2のいずれかの信号を得ることができなくなる。
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:



シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号Ni+N−1のとき:
このとき、シンボル番号N〜Ni+N−1において、qが同一の解をもつと、直接波のチャネル要素は大きな変動がないため、いずれのシンボル番号においても、良好な受信品質を得ることができなくなるため、誤り訂正符号を導入しても、誤り訂正能力を得ることが難しい。したがって、qが同一の解をもたないためには、qの2つの解のうち、δを含まないほうの解に着目すると、式(98)〜式(101)から、以下の条件が必要となる。
(xは0,1,2,・・・,N−2,N−1であり、yは0,1,2,・・・,N−2,N−1であり、x≠yである。)

次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
この場合、4スロット周期でプリコーディングウェイトを変更する方法のときと同様に、δに対し、π/2ラジアン≦|δ|≦πラジアン、とすると、特に、LOS環境において、良好な受信品質を得ることができる。
シンボル番号Ni〜Ni+N−1において、それぞれ、悪い受信品質となるqは2点存在する、したがって、2N点の点が存在することになる。LOS環境において、良好な特性を得るためには、これら2N点がすべて異なる解であるとよい。この場合、<条件#5>に加え、βは正の実数とし、β≠1であることを考慮すると、<条件#6>の条件が必要となる。
以上のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
本実施の形態において、受信装置の構成は、実施の形態1で説明したとおりであり、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。また、本実施の形態では、実施の形態1と同様に、誤り訂正符号は限定されるものではない。
また、本実施の形態では、実施の形態1と対比させ、時間軸におけるプリコーディングウェイト変更方法について説明したが、実施の形態1で説明したように、マルチキャリア伝送方式を用い、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイト変更方法しても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニ
ークワード等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。
(実施の形態4)
実施の形態3では、プリコーディングウェイトを規則的に切り替える方式において、プリコーディングウェイトの行列の各要素の振幅を1とβ
の2種類の場合を例に説明した。
なお、ここでは、
は無視している。

続いて、βの値をスロットで切り替える場合の例について説明する。
実施の形態3と対比するために、2×Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。
実施の形態1、実施の形態2、実施の形態3と同様に考えると、シンボル番号に対し、以下であらわされるような処理を行うことになる。ただし、βは正の実数とし、β≠1とする。また、αは正の実数とし、α≠βとする。
シンボル番号2Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+1のとき:



シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+Nのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+N+1のとき:



シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+2N−1のとき:
よって、r1、r2は以下のようにあらわされる。
シンボル番号2Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+1のとき:



シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+Nのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+N+1のとき:



シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+2N−1のとき:
このとき、チャネル要素h11(t)、h12(t)、h21(t)、h22(t)において、直接波の成分しか存在しないと仮定し、その直接波の成分の振幅成分は全て等しく、また、時間において、変動が起こらないとする。すると、式(110)〜式(117)は以下のようにあらわすことができる。
シンボル番号2Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+1のとき:



シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+Nのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+N+1のとき:



シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+2N−1のとき:
ただし、式(118)〜式(125)において、Aは実数であり、qは複素数であるものとする。そして、式(118)〜式(125)を以下のようにあらわすものとする。
シンボル番号2Niのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+1のとき:



シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+Nのとき(iは0以上の整数とする):
ただし、jは虚数単位。
シンボル番号2Ni+N+1のとき:



シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+2N−1のとき:
すると、qが以下のようにあらわされるとき、s1、s2のいずれかの信号を得ることができなくなる。
シンボル番号2Niのとき(iは0以上の整数とする):
シンボル番号2Ni+1のとき:



シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+Nのとき(iは0以上の整数とする):
シンボル番号2Ni+N+1のとき:



シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:



シンボル番号2Ni+2N−1のとき:
このとき、シンボル番号2N〜2Ni+N−1において、qが同一の解をもつと、直接波のチャネル要素は大きな変動がないため、いずれのシンボル番号においても、良好な受信品質を得ることができなくなるため、誤り訂正符号を導入しても、誤り訂正能力を得ることが難しい。したがって、qが同一の解をもたないためには、qの2つの解のうち、δを含まないほうの解に着目すると、式(134)〜式(141)および、α≠βより、<条件#7>または<条件#8>が必要となる。
このとき、<条件#8>は、実施の形態1〜実施の形態3で述べた条件と、同様の条件であるが、<条件#7>は、α≠βであるが故に、qの2つの解のうち、δを含まないほうの解は、異なる解を持つことになる。
次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
この場合、4スロット周期でプリコーディングウェイトを変更する方法のときと同様に、δに対し、π/2ラジアン≦|δ|≦πラジアン、とすると、特に、LOS環境において、良好な受信品質を得ることができる。
シンボル番号2Ni〜2Ni+2N−1において、それぞれ、悪い受信品質となるqは2点存在する、したがって、4N点の点が存在することになる。LOS環境において、良好な特性を得るためには、これら4N点がすべて異なる解であるとよい。このとき、振幅に着目すると、<条件#7>または<条件#8>に対して、α≠βであるので以下の条件が必要となる。
以上のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
本実施の形態において、受信装置の構成は、実施の形態1で説明したとおりであり、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。また、本実施の形態では、実施の形態1と同様に、誤り訂正符号は限定されるものではない。
また、本実施の形態では、実施の形態1と対比させ、時間軸におけるプリコーディングウェイト変更方法について説明したが、実施の形態1で説明したように、マルチキャリア伝送方式を用い、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイト変更方法しても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。
(実施の形態5)
実施の形態1〜実施の形態4では、プリコーディングウェイトを規則的に切り替える方法について説明したが、本実施の形態では、その変形例について説明する。
実施の形態1〜実施の形態4では、プリコーディングウェイトを図6のように規則的に切り替える方法について説明した。本実施の形態では、図6とは異なる規則的にプリコーディングウェイトを切り替える方法について説明する。
図6と同様に、4つの異なるプリコーディングウェイト(行列)を切り替える方式で、図6とは異なる切り替え方法に関する図を図22に示す。図22において、4つの異なるプリコーディングウェイト(行列)をW、W、W、Wとあらわすものとする。(例えば、Wを式(37)におけるプリコーディングウェイト(行列)、Wを式(38)におけるプリコーディングウェイト(行列)、Wを式(39)におけるプリコーディングウェイト(行列)、Wを式(40)におけるプリコーディングウェイト(行列)とする。)そして、図3と図6と同様に動作するものについては同一符号を付している。図22において、固有な部分は、
・第1の周期2201、第2の周期2202、第3の周期2203、・・・はすべて、4スロットで構成されている。
・4スロットではスロットごとに異なるプリコーディングウェイト行列、つまり、W、W、W、Wをそれぞれ1度用いる。
・第1の周期2201、第2の周期2202、第3の周期2203、・・・において、必ずしもW、W、W、Wの順番を同一とする必要がない。
である。これを実現するために、プリコーディングウェイト行列生成部2200は重み付け方法に関する信号を入力とし、各周期における順番にしたがったプリコーディングウェイトに関する情報2210を出力する。そして、重み付け合成部600は、この信号と、s1(t)、s2(t)を入力とし、重み付け合成を行い、z1(t)、z2(t)を出力する。
図23は、上述のプリコーディング方法に対し、図22とは重み付け合成方法を示している。図23において、図22の異なる点は、重み付け合成部以降に並び換え部を配置し、信号の並び換えを行うことで、図22と同様な方法を実現している点である。
図23において、プリコーディングウェイト生成部2200は、重み付け方法に関する情報315を入力とし、プリコーディングウェイトW、W、W、W4、、W、W、W4、・・・の順にプリコーディングウェイトの情報2210を出力する。したがって、重み付け合成部600は、プリコーディングウェイトW、W、W、W4、、W、W、W4、・・・の順にプリコーディングウェイトを用い、プリコーディング後の信号2300A、2300Bを出力する。
並び替え部2300は、プリコーディング後の信号2300A、2300Bを入力とし、図23の第1の周期2201、第2の周期2202、第3の周期2203の順番となるように、プリコーディング後の信号2300A、2300Bについて並び換えを行い、z1(t)、z2(t)を出力する。
なお、上述では、プリコーディングウェイトの切り替え周期を図6と比較するために4として説明したが、実施の形態1〜実施の形態4のように、周期4以外のときでも同様に実施することが可能である。
また、実施の形態1〜実施の形態4、および、上述のプリコーディング方法において、周期内では、δ、βの値をスロットごとに同一であるとして説明したが、スロットごとにδ、βの値を切り替えるようにしてもよい。
以上のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
本実施の形態において、受信装置の構成は、実施の形態1で説明したとおりであり、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。また、本実施の形態では、実施の形態1と同様に、誤り訂正符号は限定されるものではない。
また、本実施の形態では、実施の形態1と対比させ、時間軸におけるプリコーディングウェイト変更方法について説明したが、実施の形態1で説明したように、マルチキャリア伝送方式を用い、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイト変更方法しても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。
(実施の形態6)
実施の形態1〜4において、プリコーディングウェイトを規則的に切り替える方法について述べたが、本実施の形態では、実施の形態1〜4で述べた内容を含め、再度、プリコーディングウェイトを規則的に切り替える方法について説明する。
ここでは、まず、LOS環境を考慮した、通信相手からのフィードバックが存在しないプ
リコーディングを適用した空間多重型の2x2MIMOシステムのプリコーディング行列の設計
方法について述べる。
図30は、通信相手からのフィードバックが存在しないプリコーディングを適用した空間多重型の2x2MIMOシステムモデルを示している。情報ベクトルzは、符号化およびインタリーブが施される。そして、インタリーブの出力として、符号化後ビットのベクトルu(p)=(u1(p),u2(p))が得られる(pはスロット時間である。)。ただし、ui(p)=(ui1(p)…,uih(p))とする(h:シンボル当たりの送信ビット数)。変調後(マッピング後)の信号をs(p)=(s1(p),s2(p))Tとすると、プリコーディング行列をF(p)とするとプリコーディング後の
信号x(p)=(x1(p),x2(p))Tは次式であらわされる。
したがって、受信ベクトルをy(p)=(y1(p), y2(p))Tとすると、次式であらわされる。
このとき、H(p)はチャネル行列、n(p)=(n1(p),n2(p))Tはノイズベクトルであり、ni(p)は平均値0、分散σ2のi.i.d.複素ガウス雑音である。そして、ライスファクタをKとした
とき、上式は、以下のようにあらわすことができる。
このとき、Hd(p)は直接波成分のチャネル行列、Hs(p)は散乱波成分のチャネル行列である。したがって、チャネル行列H(p)を以下のようにあらわす。
式(145)において、直接波の環境は通信機同士の位置関係で一意に決定すると仮定し、直接波成分のチャネル行列Hd(p)は時間的には変動がないものとする。また、直接波
成分のチャネル行列Hd(p)において、送信アンテナ間隔と比較し、送受信機間の距離が十
分長い環境となる可能性が高いため、直接波成分のチャネル行列正則行列であるものとする。したがって、チャネル行列Hd(p)を以下のようにあらわすものとする。
ここで、Aは正の実数であり、qは複素数であるものとする。以下では、LOS環境を考慮
した、通信相手からのフィードバックが存在しないプリコーディングを適用した空間多重型の2x2MIMOシステムのプリコーディング行列の設計方法について述べる。
式(144),(145)から、散乱波を含んだ状態での解析は困難であることから、散乱波を含んだ状態で適切なフィードバックなしのプリコーディング行列を求めるのは困難となる。加えて、NLOS環境では、LOS環境と比較し、データの受信品質の劣化が少ない
。したがって、LOS環境での適切なフィードバックなしのプリコーディング行列の設計方
法(時間とともにプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列)について述べる。
上述したように、式(144),(145)から、散乱波を含んだ状態での解析は困難であることから、直接波のみの成分を含むチャネル行列において、適切なプリコーディング行列を求めることにする。したがって、式(144)において、チャネル行列が直接波のみの成分を含む場合を考える。したがって、式(146)から、以下のようにあらわすことができる。
ここで、プリコーディング行列として、ユニタリ行列を用いるものとする。したがって、プリコーディング行列を以下のようにあらわす。
このときλは固定値である。したがって、式(147)は、以下のようにあらわすことができる。
式(149)からわかるように、受信機がZF(zero forcing)やMMSE(minimum mean squared error)の線形演算を行った場合、s1(p), s2(p)によって送信したビットを判定することはできない。このことから、実施の形態1で述べたような反復APP(または、反復Max-log APP)またはAPP(または、Max-log APP)を行い(以降ではML(Maximum Likelihood)演算とよぶ)、s1(p), s2(p)で送信した各ビットの対数尤度比を求め、誤り訂正符号における復号を行うことになる。したがって、ML演算を行う受信機に対するLOS環境での
適切なフィードバックなしのプリコーディング行列の設計方法について説明する。
式(149)におけるプリコーディングを考える。1行目の右辺、および、左辺にe-jΨを乗算し、同様に、2行目の右辺、および、左辺にe-jΨを乗算する。すると、次式のようにあらわされる。
e-jΨy1(p), e-jΨy2(p), e-jΨqをそれぞれy1(p), y2(p), qと再定義し、また、e-jΨn(p)=(e-jΨn1(p), e-jΨn2(p))Tとなり、e-jΨn1(p), e-jΨn2(p)は平均値0、分散σ2のi.i.d.(independent identically distributed)複素ガウス雑音となるので、e-jΨn(p)をn(p)と再定義する。すると、式(150)を式(151)のようにしても一般性は失われていない。
次に、式(151)を理解しやすいように式(152)のように変形する。
このとき、受信信号点と受信候補信号点とのユークリッド距離の最小値をdmin 2とした
とき、dmin 2がゼロという最小値をとる劣悪点であるとともに、s1(p)で送信するすべてのビット、または、s2(p)で送信するすべてのビットが消失するという劣悪な状態となるqが2つ存在する。
式(152)においてs1(p)が存在しない:
式(152)においてs2(p)が存在しない:
(以降では、式(153),(154)を満たすqをそれぞれ「s1, s2の受信劣悪点」
と呼ぶ)
式(153)を満たすとき、s1(p)により送信したビットすべてが消失しているためs1(p)により送信したビットすべての受信対数尤度比を求めることができず、式(154)を満たすとき、s2(p)により送信したビットすべてが消失しているためs2(p)により送信したビットすべての受信対数尤度比を求めることができない。
ここで、プリコーディング行列を切り替えない場合の放送・マルチキャスト通信システムを考える。このとき、プリコーディング行列を切り替えないプリコーディング方式を用いて変調信号を送信する基地局あり、基地局が送信した変調信号を受信する端末が複数(Γ個)存在するシステムモデルを考える。
基地局・端末間の直接波の状況は、時間による変化は小さいと考えられる。すると、式(153),(154)から、式(155)または式(156)の条件にあてはまるような位置にあり、ライスファクタが大きいLOS環境にある端末は、データの受信品質が劣化
するという現象に陥る可能性がある。したがって、この問題を改善するためは、時間的にプリコーディング行列を切り替える必要がある。
そこで、時間周期をNスロットとし、規則的にプリコーディング行列を切り替える方法
(以降ではプリコーディングホッピング方法と呼ぶ)を考える。
時間周期Nスロットのために、式(148)に基づくN種類のプリコーディング行列F[i]を用意する(i=0,1,…,N-1)。このとき、プリコーディング行列F[i]を以下のようにあらわす。
ここで、αは時間的に変化しないものとし、λも時間的に変化しないものとする(変化させてもよい。)。
そして、実施の形態1と同様に、時点(時刻)N×k+i(kは0以上の整数、i=0,1,…,N-1)の式(142)におけるプリコーディング後の信号x(p= N×k+i)を得るために用いられるプ
リコーディング行列がF[i]となる。これについては、以降でも同様である。
このとき、式 (153),(154)に基づき、以下のようなプリコーディングホッ
ピングのプリコーディング行列の設計条件が重要となる。
<条件#10>により、Γ個の端末すべてにおいて、時間周期内のNにおいて、s1の受
信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s1(p)で
送信したビットの対数尤度比を得ることができる。同様に、<条件#11>により、Γ個の端末すべてにおいて、時間周期内のNにおいて、s2の受信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s2(p)で送信したビットの対数尤度比を得ることができる。
このように、<条件#10>、<条件#11>のプリコーディング行列の設計規範を与えることで、s1(p)で送信したビットの対数尤度比が得られるビット数、および、s2(p)で送信したビットの対数尤度比が得られるビット数をΓ個の端末すべてにおいて一定数以上に保証することで、Γ個の端末すべてにおいて、ライスファクタが大きいLOS環境でのデ
ータ受信品質の劣化を改善することを考える。
以下では、プリコーディングホッピング方法におけるプリコーディング行列の例を記載する。
直接波の位相の確率密度分布は[0 2π]の一様分布であると考えることができる。した
がって、式(151),(152)におけるqの位相の確率密度分布も[0 2π]の一様分布であると考えることができる。よって、qの位相のみが異なる同一のLOS環境において、Γ個の端末に対し、可能な限り公平なデータの受信品質を与えるための条件として、以下を与える。
<条件#12>
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、時間周期内のNにおいて、s1の受信劣悪点を位相に対し一様分布となるように配置し、かつ、s2の受信劣悪点を位相に対し一様分布となるように配置する。
そこで、<条件#10>から<条件#12>に基づくプリコーディングホッピング方法におけるプリコーディング行列の例を説明する。式(157)のプリコーディング行列のα=1.0とする。
(例#5)
時間周期N=8とし、<条件#10>から<条件#12>を満たすために、次式のような
時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える
ただし、jは虚数単位であり、i=0,1,…,7である。式(160)のかわりに式(161)と与えてもよい(λ、θ11[i]は時間的に変化しないものとする(変化してもよい)。
)。
したがって、s1, s2の受信劣悪点は図31(a)(b)のようになる。(図31において、横軸は実軸、縦軸は虚軸となる。)また、式(160)、式(161)のかわりに式(162)、式(163)と与えてもよい(i=0,1,…,7)(λ、θ11[i]は時間的に変化しない
ものとする(変化してもよい)。)。
次に、条件12とは異なる、qの位相のみが異なる同一のLOS環境において、Γ個の端末に対し、可能な限り公平なデータの受信品質を与えるための条件として、以下を与える。<条件#13>
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、
の条件を付加し、また、時間周期内のNにおいて、s1の受信劣悪点を位相とs2の受信劣悪
点を位相に対し、一様分布となるように配置する。
そこで、<条件#10>, <条件#11>, <条件#13>に基づくプリコーディングホッピング方法におけるプリコーディング行列の例を説明する。式(157)のプリコーディング行列のα=1.0とする。
(例#6)
時間周期N=4とし、次式のような時間周期N=4のプリコーディングホッピング方法におけるプリコーディング行列を与える。
ただし、jは虚数単位であり、i=0,1,2,3である。式(165)のかわりに式(166
)と与えてもよい(λ、θ11[i]は時間的に変化しないものとする(変化してもよい)。
)。
したがって、s1, s2の受信劣悪点は図32のようになる。(図32において、横軸は実軸、縦軸は虚軸となる。)また、式(165)、式(166)のかわりに式(167)、式(168)と与えてもよい(i=0,1,2,3)(λ、θ11[i]は時間的に変化しないものとする(変化してもよい)。)。
次に、非ユニタリ行列を用いたプリコーディングホッピング方法について述べる。
式(148)に基づき、本検討で扱うプリコーディング行列を以下のようにあらわす。
すると、式(151),(152)に相当する式は、次式のようにあらわされる。
このとき、受信信号点と受信候補信号点とのユークリッド距離の最小値dmin 2がゼロと
なるqが2つ存在する。
式(171)においてs1(p)が存在しない:
式(171)においてs2(p)が存在しない:
時間周期Nのプリコーディングホッピング方法において、式(169)を参考にし、N種類のプリコーディング行列F[i]を以下のようにあらわす。
ここで、αおよびδは時間的に変化しないものとする。このとき、式(34), (35)に基づき、以下のようなプリコーディングホッピングのプリコーディング行列の設計条件を与える。
(例#7)
式(174)のプリコーディング行列のα=1.0とする。そして、時間周期N=16とし、
<条件#12>, <条件#14>, <条件#15>を満たすために、次式のような時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える。
i=0,1,…,7のとき:
i=8,9,…,15のとき:
また、式(177)、式(178)と異なるプリコーディング行列として、以下のように与えることができる。
i=0,1,…,7のとき:
i=8,9,…,15のとき:
したがって、s1, s2の受信劣悪点は図33(a)(b)のようになる。
(図33において、横軸は実軸、縦軸は虚軸となる。)また、式(177)、式(178)および式(179)、式(180)のかわりに以下のようにプリコーディング行列を与えても良い。
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
(また、式(177)〜(184)において、7π/8を−7π/8としてもよい。)
次に、<条件#12>とは異なる、qの位相のみが異なる同一のLOS環境において、Γ個の端末に対し、可能な限り公平なデータの受信品質を与えるための条件として、以下を与える。
<条件#16>
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、
の条件を付加し、また、時間周期内のNにおいて、s1の受信劣悪点を位相とs2の受信劣悪
点を位相に対し、一様分布となるように配置する。
そこで、<条件#14>, <条件#15>, <条件#16>に基づくプリコーディングホッピング方法におけるプリコーディング行列の例を説明する。式(174)のプリコーディング行列のα=1.0とする。
(例#8)
時間周期N=8とし、次式のような時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える。
ただし、i=0,1,…,7である。
また、式(186)と異なるプリコーディング行列として、以下のように与えることが
できる(i=0,1,…,7)(λ、θ11[i]は時間的に変化しないものとする(変化してもよい
)。)。
したがって、s1, s2の受信劣悪点は図34のようになる。また、式(186)、式(187)のかわりに以下のようにプリコーディング行列を与えても良い(i=0,1,…,7)(λ、θ11[i]は時間的に変化しないものとする(変化してもよい)。)。
または、
(また、式(186)〜式(189)において、7π/8を−7π/8としてもよい。)
次に、式(174)のプリコーディング行列において、α≠1とし、受信劣悪点同士の
複素平面における距離の点を考慮した(例#7), (例#8)と異なるプリコーディングホッピング方法について考える。
ここでは、式(174)の時間周期Nのプリコーディングホッピング方法を扱っている
が、このとき、<条件#14>により、Γ個の端末すべてにおいて、時間周期内のNにお
いて、s1の受信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s1(p)で送信したビットの対数尤度比を得ることができる。同様に、<条件#15>
により、Γ個の端末すべてにおいて、時間周期内のNにおいて、s2の受信劣悪点をとるス
ロットは1スロット以下となる。したがって、N-1スロット以上s2(p)で送信したビットの
対数尤度比を得ることができる。
したがって、時間周期Nは大きい値をしたほうが、対数尤度比を得ることができるスロ
ット数が大きくなることがわかる。
ところで、実際のチャネルモデルでは、散乱波成分の影響をうけるため、時間周期Nが
固定の場合、受信劣悪点の複素平面上の最小距離は可能な限り大きい方が、データの受信品質が向上する可能性があると考えられる。したがって、(例#7), (例#8)において、α≠1とし、(例#7), (例#8)を改良したプリコーディングホッピング方法に
ついて考える。まず、理解が容易となる、(例#8)を改良したプリコーディング方法に
ついて述べる。
(例#9)
式(186)から、(例#7)を改良した時間周期N=8のプリコーディングホッピング
方法におけるプリコーディング行列を次式で与える。
ただし、i=0,1,…,7である。また、式(190)と異なるプリコーディング行列として、以下のように与えることができる(i=0,1,…,7)(λ、θ11[i]は時間的に変化しない
ものとする(変化してもよい)。)。
または、
または、
または、
または、
または、
または、
したがって、s1, s2の受信劣悪点はα<1.0のとき図35(a)、α>1.0のとき図35(b)のようにあらわされる。
(i)α<1.0のとき
α<1.0のとき、受信劣悪点の複素平面における最小距離は、受信劣悪点#1と#2の距離(d#1,#2)および、受信劣悪点#1と#3の距離(d#1,#3)に着目すると、min{d#1,#2, d#1,#3}とあらわされる。このとき、αとd#1,#2およびd#1,#3の関係を図36に示す。そし
て、min{d#1,#2, d#1,#3}を最も大きくするαは
となる。このときのmin{d#1,#2, d#1,#3}は
となる。したがって、式(190)〜式(197)においてαを式(198)で与えるプリコーディング方法が有効となる。ただし、αの値を式(198)と設定することは、良好なデータの受信品質を得るための一つの適切な方法である。しかし、式(198)に近いような値をとるようにαを設定しても、同様に、良好なデータの受信品質を得ることができる可能性がある。したがって、αの設定値は、式(198)に限ったものではない。
(ii)α>1.0のとき
α>1.0のとき、受信劣悪点の複素平面における最小距離は、受信劣悪点#4と#5の距離(d#4,#5)および、受信劣悪点#4と#6の距離(d#4,#6)に着目すると、min{d#4,#5, d#4,#6}とあらわされる。このとき、αとd#4,#5およびd#4,#6の関係を図37に示す。そし
て、min{d#4,#5, d#4,#6}を最も大きくするαは
となる。このときのmin{d#4,#5, d#4,#6}は
となる。したがって、式(190)〜式(197)においてαを式(200)で与えるプリコーディング方法が有効となる。ただし、αの値を式(200)と設定することは、良好なデータの受信品質を得るための一つの適切な方法である。しかし、式(200)に近いような値をとるようにαを設定しても、同様に、良好なデータの受信品質を得ることができる可能性がある。したがって、αの設定値は、式(200)に限ったものではない。
(例#10)
(例#9)の検討から(例#7)を改良した時間周期N=16のプリコーディングホッピング方法におけるプリコーディング行列は次式で与えることができる(λ、θ11[i]は時間
的に変化しないものとする(変化してもよい)。)。
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
または、
i=0,1,…,7のとき:
i=8,9,…,15のとき:
ただし、αは式(198)または式(200)となると良好なデータの受信品質を得るのに適している。このとき、s1の受信劣悪点はα<1.0のとき図38(a)(b)、α>1.0のとき図39(a)(b)のようにあらわされる。
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーデ
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の
異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
<条件#10>から<条件#16>に基づき、例#5から例#10を示したが、プリコーディング行列の切り替え周期を長くするために、例えば、例#5から例#10から複数の例を選び、その選択した例で示したプリコーディング行列を用いて長い周期のプリコーディング行列切り替え方法を実現してもよい。例えば、例#7で示したプリコーディング行列と例#10で示したプリコーディング行列を用いて、長い周期のプリコーディング行列切り替え方法を実現するということになる。この場合、<条件#10>から<条件#16>に必ずしもしたがうとはかぎらない。(<条件#10>の式(158)、<条件#11>の式(159)、<条件#13>の式(164)、<条件#14>の式(175)、<条件#15>の式(176)において、「すべてのx、すべてのy」としているところを「存在することのx、存在することのy」という条件が、良好な受信品質を与える上で重要となる、ということになる。)別の視点で考えた場合、周期N(Nは大きな自然数とする)のプリコーディング行列切り替え方法において、例#5から例#10のいずれかのプリコーディング行列が含まれると良好な受信品質を与える可能性が高くなる。
(実施の形態7)
本実施の形態では、実施の形態1〜6で説明した規則的にプリコーディング行列を切り替える送信方法で送信された変調信号を受信する受信装置の構成について説明する。
実施の形態1では、規則的にプリコーディング行列を切り替える送信方法を用いて変調信号を送信する送信装置が、プリコーディング行列に関する情報を送信し、受信装置が、その情報に基づき、送信フレームに用いられている規則的なプリコーディング行列切り替え情報を得、プリコーディングの復号、および、検波を行い、送信ビットの対数尤度比を得、その後、誤り訂正復号を行う方法について説明した。
本実施の形態では、上記とは異なる受信装置の構成、および、プリコーディング行列の切り替え方法について説明する。
図40は、本実施の形態における送信装置の構成の一例を示しており、図3と同様に動作するものについては同一符号を付した。符号化器群(4002)は、送信ビット(4001)を入力とする。このとき、符号化器群(4002)は、実施の形態1で説明したように、誤り訂正符号の符号化部を複数個保持しており、フレーム構成信号313に基づき、例えば、1つの符号化、2つの符号化器、4つの符号化器のいずれかの数の符号化器が動作することになる。
1つの符号化器が動作する場合、送信ビット(4001)は、符号化が行われ、符号化後の送信ビットが得られ、この符号化後の送信ビットを2系統に分配し、分配されたビット(4003A)および分配されたビット(4003B)を符号化器群(4002)は出力する。
2つの符号化器が動作する場合、送信ビット(4001)を2つに分割して(分割ビットA、Bと名付ける)、第1の符号化器は、分割ビットAを入力とし、符号化を行い、符号化後のビットを分配されたビット(4003A)として出力する。第2の符号化器は、分割ビットBを入力とし、符号化を行い、符号化後のビットを分配されたビット(4003B)として出力する。
4つの符号化器が動作する場合、送信ビット(4001)を4つに分割して(分割ビットA、B、C、Dと名付ける)、第1の符号化器は、分割ビットAを入力とし、符号化を行い、符号化後のビットAを出力する。第2の符号化器は、分割ビットBを入力とし、符号化を行い、符号化後のビットBを出力する。第3の符号化器は、分割ビットCを入力とし、符号化を行い、符号化後のビットCを出力する。第4の符号化器は、分割ビットDを入力とし、符号化を行い、符号化後のビットDを出力する。そして、符号化後のビットA、B、C、Dを分配されたビット(4003A)、分配されたビット(4003B)に分割する。
送信装置は、一例として、以下の表1(表1Aおよび表1B)のような送信方法をサポートすることになる。
表1に示すように、送信信号数(送信アンテナ数)としては、1ストリームの信号の送信と2ストリームの信号の送信をサポートする。また、変調方式はQPSK、16QAM、64QAM、256QAM、1024QAMをサポートする。特に、送信信号数が2のとき、ストリーム#1とストリーム#2は別々に変調方式を設定することが可能であり、
例えば、表1において、「#1: 256QAM, #2: 1024QAM」は「ストリーム#1の変調方式は
256QAM、ストリーム#2の変調方式は1024QAM」ということを示している(他についても同様に表現している)。誤り訂正符号化方式としては、A、B、Cの3種類をサポートしているものとする。このとき、A、B、Cはいずれも異なる符号であってもよいし、A、B、Cは異なる符号化率であってもよいし、A、B、Cは異なるブロックサイズの符号化方法であってもよい。
表1の送信情報は、「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」を定めた各モードに対し、各送信情報を割り当てる。したがって、例えば、「送信信号数:2」「変調方式:#1:1024QAM、#2:1024QAM」「符号化器数:4」「誤り訂正符号化方法:C」の場合、送信情報を01001101と設定する。そして、送信装置は、フレームにおいて、送信情報、および、送信データを伝送する。そして、送信データを伝送する際、特に、「送信信号数」が2のとき、表1にしたがって、「プリコーディング行列切り替え方法」を用いることになる。表1において、「プリコーディング行列切り替え方法」としては、D,E,F,G,Hの5種類を用意しておき、この5種類のいずれかを、表1にしたがって、設定することになる。このとき、異なる5種類の実現方法としては、
・プリコーディング行列が異なる5種類を用意し、実現する。
・異なる5種類の周期、例えば、Dの周期を4、Eの周期を8、・・・、とすることで、実現する。
・異なるプリコーディング行列、異なる周期の両者を併用することで、実現する。
等が考えられる。
図41は、図40の送信装置が送信する変調信号のフレーム構成の一例を示しており、送信装置は、2つの変調信号z1(t)とz2(t)を送信するようなモードの設定、および、1つの変調信号を送信するモードの両者の設定が可能であるものとする。
図41において、シンボル(4100)は、表1に示されている「送信情報」を伝送するためのシンボルである。シンボル(4101_1、および、4101_2)は、チャネル推定用のリファレンス(パイロット)シンボルである。シンボル(4102_1、4103_1)は、変調信号z1(t)で送信するデータ伝送用のシンボル、シンボル(4102_2、4103_2)は、変調信号z2(t)で送信するデータ伝送用のシンボルであり、シンボル(4102_1)およびシンボル(4102_2)は同一時刻に同一(共通)周波数を用いて伝送され、また、シンボル(4103_1)およびシンボル(4103_2)は同一時刻に同一(共通)周波数を用いて伝送される。そして、シンボル(4102_1、4103_1)、および、シンボル(4102_2、4103_2)は、実施の形態1〜4、および、実施の形態6で説明した規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列演算後のシンボルとなる(したがって、実施の形態1で説明したように、ストリームs1(t)、s2(t)の構成は、図6のとおりである。)
さらに、図41において、シンボル(4104)は、表1に示されている「送信情報」を伝送するためのシンボルである。シンボル(4105)は、チャネル推定用のリファレンス(パイロット)シンボルである。シンボル(4106、4107)は、変調信号z1(t)で送信するデータ伝送用のシンボルであり、このとき、変調信号z1(t)で送信するデータ伝送用のシンボルは、送信信号数が1なので、プリコーディングが行われていないことになる。
よって、図40の送信装置は、図41のフレーム構成、および、表1にしたがった変調信号を生成し、送信することになる。図40において、フレーム構成信号313は、表1に基づき設定した「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に
関する情報を含んでいることになる。そして、符号化部(4002)、マッピング部306A,B、重み付け合成部308A,B、は、フレーム構成信号を入力とし、表1に基づき設定した「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に基づく動作を行うことになる。また、設定した「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に相当する「送信情報」についても受信装置に送信することになる。
受信装置の構成は、実施の形態1と同様図7であらわすことができる。実施の形態1と異なる点は、表1の情報を、送受信装置が予め共有しているため、送信装置が、規則的に切り替えるプリコーディング行列の情報を送信しなくても、「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に相当する「送信情報」を送信装置が送信し、受信装置がこの情報を得ることで、表1から、規則的に切り替えるプリコーディング行列の情報を得ることができる、という点である。したがって、図7の受信装置は、制御情報復号部709が、図40の送信装置が送信した「送信情報」を得ることで、表1に相当する情報から、規則的に切り替えるプリコーディング行列の情報を含む送信装置が通知した送信方法の情報に関する信号710を得ることができる。したがって、信号処理部711は、送信信号数2のとき、プリコーディング行列の切り替えパターンに基づく検波を行うことができ、受信対数尤度比を得ることができる。
なお、上述では、表1のように、「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に対し、「送信情報」を設定し、これに対し、プリコーディング行列切り替え方法を設定しているが、必ずしも、「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に対し、「送信情報」を設定しなくてもよく、例えば、表2のように、「送信信号数」「変調方式」に対し、「送信情報」を設定し、これに対し、プリコーディング行列切り替え方法を設定してもよい。
ここで、「送信情報」、および、プリコーディング行列切り替え方法の設定方法は、表1や表2に限ったものではなく、プリコーディング行列切り替え方法は、「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」等の送信パラメータに基づいて切り替えるように予め規則が決められていれば(送信装置、受信装置で予め決められている規則が共有されていれば)、(つまり、プリコーディング行列切り替え方法を、送信パラメータのいずれか、(または、送信パラメータの複数で構成されたいずれか)によって、切り替えていれば)、送信装置は、プリコーディング行列切り替え方法に関する情報を伝送する必要がなく、受信装置は、送信パラメータの情報を判別することで、送信装置が用いたプリコーディング行列切り替え方法を判別することができるので、的確な復号、検波を行うことができる。なお、表1、表2では、送信変調信号数が2のとき、規則的にプリコーディング行列を切り替える送信方法を用いるものとしているが、送信変調信号数が2以上であれば、規則的にプリコーディング行列を切り替える送信方法を適用することができる。
したがって、送受信装置が、プリコーディング切り替え方法に関する情報を含む送信パラメータに関する表を共有していれば、送信装置が、プリコーディング切り替え方法に関する情報を送信せず、プリコーディング切り替え方法に関する情報を含まない制御情報を送信し、受信装置が、この制御情報を得ることで、プリコーディング切り替え方法を推定することができることになる。
以上のように、本実施の形態では、送信装置が、規則的にプリコーディング行列を切り替える方法に関する直接の情報を送信せずに、受信装置が、送信装置が用いた「規則的にプリコーディング行列を切り替える方法」のプリコーディングに関する情報を推定する方法について、説明した。これにより、送信装置は、規則的にプリコーディング行列を切り替える方法に関する直接の情報を送信しないので、その分、データの伝送効率が向上するという効果を得ることができる。
なお、本実施の形態において、時間軸におけるプリコーディングウェイト変更するときの実施の形態を説明したが、実施の形態1で説明したように、OFDM伝送等のマルチキャリア伝送方式を用いたときでも本実施の形態は同様に実施することができる。
また、特に、プリコーディング切り替え方法が、送信信号数のみによって変更されているとき、受信装置は、送信装置が送信する送信信号数の情報を得ることで、プリコーディング切り替え方法をしることができる。
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。
また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
なお、本発明は上記実施の形態1〜5に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能であ
る。
また、上記では、2つの変調信号を2つのアンテナから送信する方法におけるプリコーディング切り替え方法について説明したが、これに限ったものではなく、4つのマッピング後の信号に対し、プリコーディングを行い、4つの変調信号を生成し、4つのアンテナから送信する方法、つまり、N個のマッピング後の信号に対し、プリコーディングを行い、N個の変調信号を生成し、N個のアンテナから送信する方法においても同様にプリコーディングウェイト(行列)を変更する、プリコーディング切り替え方法としても同様に実施することができる。
本明細書では、「プリコーディング」「プリコーディングウェイト」等の用語を用いているが、呼び方自身は、どのようなものでもよく、本発明では、その信号処理自身が重要となる。
ストリームs1(t)、s2(t)により、異なるデータを伝送してもよいし、同一のデータを伝送してもよい。
送信装置の送信アンテナ、受信装置の受信アンテナ、共に、図面で記載されている1つのアンテナは、複数のアンテナにより構成されていても良い。
なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only
Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。

(実施の形態8)
本実施の形態では、実施の形態1〜4、実施の形態6で説明したプリコーディングウェイトを規則的に切り替える方法の応用例について、ここでは説明する。
図6は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)に関連する図であり、重み付け合成部600は、図3の重み付け合成部308A
と308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号同相I、直交Q成分となる。そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、重み付け情報に関する情報315を入力とし、重み付け情報に関する情報315にしたがった重み付け方法を施し、図3の重み付け合成後の信号309A(z1(t))、309B(z2(t))を出力する。
このとき、例えば、実施の形態6における例8の周期N=8のプリコーディング行列切り
替え方法を用いた場合、z1(t)、z2(t)は以下のようにあらわされる。
シンボル番号8iのとき(iは0以上の整数とする):
ただし、jは虚数単位、k=0。
シンボル番号8i+1のとき:
ただし、k=1。
シンボル番号8i+2のとき:
ただし、k=2。
シンボル番号8i+3のとき:
ただし、k=3。
シンボル番号8i+4のとき:
ただし、k=4。
シンボル番号8i+5のとき:
ただし、k=5。
シンボル番号8i+6のとき:
ただし、k=6。
シンボル番号8i+7のとき:
ただし、k=7。
ここで、シンボル番号と記載しているが、シンボル番号は時刻(時間)と考えてもよい。他の実施の形態で説明したとおり、例えば、式(225)において、時刻8i+7のz1(8i+7)とz2(8i+7)は、同一時刻の信号であり、かつ、z1(8i+7)とz2(8i+7)は同一(共通の)周波数を用いて送信装置が送信することになる。つまり、時刻Tの信号をs1(T)、s2(T)、z1(T)、z2(T)とすると、何らかのプリコーディング行列とs1(T)およびs2(T)から、z1(T)およびz2(T)を求め、z1(T)およびz2(T)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。また、OFDM等のマルチキャリア伝送方式を用いた場合、(サブ)キャリアL、時刻Tにおけるs1、s2、z1、z2に相当する信号をs1(T,L)、s2(T,L)、z1(T,L)、z2(T,L)とすると、何らかのプリコーディング行列とs1(T,L)およびs2(T,L)から、z1(T,L)およびz
2(T,L)を求め、z1(T,L)およびz2(T,L)は同一(共通の)周波数を用い
て(同一時刻(時間)に)送信装置が送信することになる。
このとき、αの適切な値として、式(198)、または、式(200)がある。
本実施の形態では、上記で述べた式(190)のプリコーディング行列をもとにし、周期を大きくするプリコーディング切り替え方法について述べる。
プリコーディング切り替え行列の周期を8Mとしたとき、異なるプリコーディング行列8M個を以下のようにあらわす。
このとき、i=0,1,2,3,4,5,6,7、k=0,1,・・・, M-2, M-1となる。
例えば、M=2としたとき、α<1とすると、k=0のときのs1の受信劣悪点(○)、お
よび、s2の受信劣悪点(□)は、図42(a)のようにあらわされる。同様に、k=1のと
きのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、図42(b)のようにあらわされる。このように、式(190)のプリコーディング行列をもとにすると、受信劣悪点は図42(a)ようになり、この式(190)の右辺の行列の2行目の各要素にejXを乗算した行列をプリコーディング行列とすることで(式(226)参照)、受信劣悪点が図42(a)に対し、回転した受信劣悪点をもつようにする(図42(b)参照)。(ただし、図42(a)と図42(b)の受信劣悪点は重なっていない。このように、ejXを乗算しても、受信劣悪点は重ならないようにするとよい。また、式(190)の右辺の行列の2行目の各要素にejXを乗算するのではなく、式(190)の右辺の行列の1行目の各要素にejXを乗算した行列をプリコーディング行列としてもよい。)このとき、プリコーディング行列F[0]〜F[15]は次式であらわされる。
ただし、i=0,1,2,3,4,5,6,7、k=0,1となる。
すると、M=2のとき、F[0]〜F[15]のプリコーディング行列が生成されたことになる
(F[0]〜F[15]のプリコーディング行列は、どのような順番にならべてもよい。また、F[0]〜F[15]の行列がそれぞれ異なる行列であるとよい。)。そして、例えば、シンボル番号16iのときF[0]を用いてプリコーディングを行い、シンボル番号16i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号16i+hのときF[h]を用い
てプリコーディングを行う(h=0、1、2、・・・、14、15)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
以上をまとめると、式(82)〜式(85)を参考にし、周期Nのプリコーディング行
列を次式であらわす。
このとき、周期がNであるので、i=0,1,2,・・・,N-2,N-1となる。そして、式(228
)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、
・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(229)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。

なお、式(229)および式(230)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが一つの特徴的な構成であり(δの条件については、他の実施の形態のときも同様である。)、良好なデータの受信品質が得られることになる。別の構成として、ユニタリ行列の場合もあるが、実施の形態10や実施の形態16において、詳しく述べるが、式(229)、式(230)において、Nを奇数とすると、良好なデータの受信品質を得ることができ
る可能性が高くなる。

(実施の形態9)
本実施の形態では、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
実施の形態8で述べたように周期Nの規則的にプリコーディング行列を切り替える方法
において、式(82)〜式(85)を参考にした、周期Nのために用意するプリコーディ
ング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。(α>0であるものとする。)本実施の形態では、ユニタリ行列を扱うので、式(231)のプリコーディング行列は次式であらわすことができる。
このとき、i=0,1,2,・・・,N-2,N-1となる。(α>0であるものとする。)このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

実施の形態6で説明した際、受信劣悪点間の距離について述べたが、受信劣悪点間の距離を大きくするためには、周期Nは3以上の奇数であることが重要となる。以下では、こ
の点について説明する。
実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件19>または<条件20>を与える。


つまり、<条件19>では、位相の差が2π/Nラジアンであることを意味している。また、<条件20>では、位相の差が−2π/Nラジアンであることを意味している。


そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α<1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(a)
に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(
b)に示す。また、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図4
4(a)に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を
図44(b)に示す。
このとき、受信劣悪点と原点とで形成する線分と、Realの軸において、Real≧0の半直
線とで形成する位相(図43(a)参照。)を考えた場合、α>1、α<1いずれの場合についても、N=4のとき、s1に関する受信劣悪点における前述の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合が必ず発生する。(図43の4301、4302、および図44の4401、4402参照)このとき、複素平面において、受信劣悪点間の距離が小さくなる。一方で、N=3のとき、s1に関する受信劣悪点における前述
の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合は発生しない。
以上から、周期Nが偶数のときs1に関する受信劣悪点における前述の位相とs2に関する
受信劣悪点における前述の位相とが同一の値となる場合が必ず発生することを考慮すると、周期Nが奇数のときのほうが、周期Nが偶数のときと比較し、複素平面において、受信劣
悪点間の距離が大きくなる可能性が高い。ただし、周期Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であ
っても、データの受信品質を確保することができる場合が存在する可能性がある。
したがって、式(232)に基づく規則的にプリコーディング行列を切り替える方式において、周期Nは奇数にすると、データの受信品質を向上させることができる可能性が高
い。なお、式(232)に基づきF[0]〜F[N-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N-1]のプリコーディング行列は、周期Nに対しどのような順番にならべ
て使用してもよい。)。そして、例えば、シンボル番号NiのときF[0]を用いてプリコー
ディングを行い、シンボル番号Ni+1のときF[1]を用いてプリコーディングを行い、・
・・、シンボル番号N×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N-2、N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを
とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーデ
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の
異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期Nはより
大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性
が高くなる。このとき、<条件#17><条件#18>は以下のような条件に置き換えることができる。(周期はNとして考える。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(実施の形態10)
本実施の形態では、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について、実施の形態9とは異なる例を述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。
α>0であるものとし、(iによらず)固定値であるものとする。(式(234)のαと式(235)のαは同一の値であるものとする。)
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(234)に対し、以下の条件が、良好なデータの受信品質を得るためには重要とな
る。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

そして、以下の条件を付加することを考える。
次に、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#24>または<条件#25>を与える。
つまり、<条件24>では、位相の差が2π/Nラジアンであることを意味している。また、<条件25>では、位相の差が−2π/Nラジアンであることを意味している。

そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図45(a)(b)
に示す。図45(a)(b)からわかるように、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保てている。そして、α<1のときにも同様な状態となる。また、実施の形態9と同様に考えると、Nが奇数のときのほうが、Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、デー
タの受信品質を確保することができる場合が存在する可能性がある。
したがって、式(234)、(235)に基づく規則的にプリコーディング行列を切り替える方式において、Nは奇数にすると、データの受信品質を向上させることができる可
能性が高い。なお、式(234)、(235)に基づきF[0]〜F[2N-1]のプリコーディン
グ行列が生成されたことになる(F[0]〜F[2N-1]のプリコーディング行列は、周期2Nに対
しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2NiのときF[0]を用いてプリコーディングを行い、シンボル番号2Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2N×i+hのときF[h]を用いてプリコー
ディングを行う(h=0、1、2、・・・、2N-2、2N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを式(233)とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
また、<条件#23>と異なる条件として、以下の条件を考える。
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
このとき、<条件#21>かつ<条件#22>かつ<条件#26>かつ<条件#27>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態11)
本実施の形態では、非ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。また、δ≠πラジアン
とする。
α>0であるものとし、(iによらず)固定値であるものとする。(式(236)のαと式(237)のαは同一の値であるものとする。)
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(236)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

そして、以下の条件を付加することを考える。

なお、式(237)のかわりに、次式のプリコーディング行列を与えてもよい。
α>0であるものとし、(iによらず)固定値であるものとする。(式(236)のαと式(238)のαは同一の値であるものとする。)
例として、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#31>または<条件#32>を与える。


つまり、<条件31>では、位相の差が2π/Nラジアンであることを意味している。また、<条件32>では、位相の差が−2π/Nラジアンであることを意味している。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1とし、δ=(3π)/4ラジアンとしたとき、N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面
上での配置を図46(a)(b)に示す。このようにすることで、プルコーディング行列を切り替える周期を大きくすることができ、かつ、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保つことができるため、良好な受信品質を得ることができる。ここでは、α>1、δ=(3π)/4ラジアン、N=4のときを例に説明したがこれに限ったものではなく、π/2ラジアン
≦|δ|<πラジアン、かつ、α>0、かつ、α≠1であれば同様の効果を得ることができる。
また、<条件#30>と異なる条件として、以下の条件を考える。
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
このとき、<条件#28>かつ<条件#29>かつ<条件#33>かつ<条件#34>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態12)
本実施の形態では、非ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。また、δ≠πラジアン
(iによらず固定値)、i=0,1,2,・・・,N-2,N-1とする。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(239)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
例として、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#37>または<条件#38>を与える。


つまり、<条件37>では、位相の差が2π/Nラジアンであることを意味している。また、<条件38>では、位相の差が−2π/Nラジアンであることを意味している。
このとき、π/2ラジアン≦|δ|<πラジアン、かつ、α>0、かつ、α≠1であれば、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。なお、<条件#37>、<条件#38>は必ず必要となる条件ではない。
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーデ
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期Nはより
大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性
が高くなる。このとき、<条件#35><条件#36>は以下のような条件に置き換えることができる。(周期はNとして考える。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

(実施の形態13)
本実施の形態では、実施の形態8の別の例について説明する。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。
α>0であるものとし、(iによらず)固定値であるものとする。(式(240)のαと式(241)のαは同一の値であるものとする。)
そして、式(240)および式(241)をベースとする周期2×N×Mのプリコーディ
ング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであっ
てもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用し
てもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコー
ディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを
行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。

なお、周期2×N×Mのプリコーディング行列の式(242)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(243)を式(245)〜式(24
7)のいずれかとしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。
なお、受信劣悪点について着目すると、式(242)から式(247)において、
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

のすべてを満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件#39>および<条件#40>を満たすとよい。
また、式(242)から式(247)のXk, Ykに着目すると、
(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、sは整数である。

(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件42>を満たすとよい。
なお、式(242)および式(247)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが一つの特徴的な構成であり、良好なデータの受信品質が得られることになる。別の構成として、ユニタリ行列の場合もあるが、実施の形態10や実施の形態16において、詳しく述べるが、式(242)から式(247)において、Nを奇数とすると、良好なデータの
受信品質を得ることができる可能性が高くなる。

(実施の形態14)
本実施の形態では、規則的にプリコーディング行列を切り替える方式において、プリコーディング行列として、ユニタリ行列を用いる場合と非ユニタリ行列を用いる場合の使い分けの例について説明する。
例えば、2行2列のプリコーディング行列(各要素は複素数で構成されているものとする)を用いた場合、つまり、ある変調方式に基づいた2つの変調信号(s1(t)およびs2(t))に対し、プリコーディングを施し、プリコーディング後の2つの信号を2つのアンテナから送信する場合について説明する。
規則的にプリコーディング行列を切り替える方法を用いてデータを伝送する場合、図3の
図13の送信装置は、フレーム構成信号313により、マッピング部306A、306Bは、変調方式を切り替えることになる。このとき、変調方式の変調多値数(変調多値数:IQ平面における変調方式の信号点の数)とプリコーディング行列の関係について説明する。
規則的にプリコーディング行列を切り替える方法の利点は、実施の形態6において説明したようにLOS環境において、良好なデータの受信品質を得ることができる点であり、特に、受信装置がML演算やML演算に基づくAPP(または、Max-log APP)を施した場合、その効果が大きい。ところで、ML演算は、変調方式の変調多値数に伴い、回路規模(演算規模)に大きな影響を与える。例えば、プリコーディング後の2つの信号を2つのアンテナから送信し、2つの変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式を用いているものとする場合、変調方式がQPSKの場合、IQ平面における候補信号点(図11の受信信号点1101)の数は4×4=16個、16QAMの場合16×16=256個、64QAMの場合64×64=4096個、256QAMの場合256×256=65536個、1024QAMの場合1024×1024=1048576個となり、受信装置の演算規模をある程度の回路規模で抑えるためには、変調方
式がQPSK, 16QAM, 64QAMの場合は、受信装置において、ML演算(ML演算に基づく(Max-log)APP)を用い、256QAM, 1024QAMの場合は、MMSE, ZFのような線形演算を用いた検波を
用いることになる。(場合によっては、256QAMの場合、ML演算を用いても良い。)
このような受信装置を想定した場合、多重信号分離後のSNR(signal-to-noise power ratio)を考えた場合、受信装置でMMSE, ZFのような線形演算を用いている場合は、プリコーディング行列としてユニタリ行列が適しており、ML演算を用いている場合は、プリコーディング行列としてユニタリ行列・非ユニタリ行列のいずれをもちいてもよい。上述のいずれかの実施の形態の説明を考慮すると、プリコーディング後の2つの信号を2つのアンテナから送信し、2つの変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式を用いているものとする場合、変調方式の変調多値数が64値以下(または、256値以下)のとき、規則的にプリコーディング行列を切り替える方式を用いたと
きのプリコーディング行列として非ユニタリ行列を用い、64値より大きい(または256値
より大きい)場合、ユニタリ行列を用いると、通信システムがサポートしている全ての変調方式において、どの変調方式の場合においても、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。
また、変調方式の変調多値数が64値以下(または、256値以下)の場合においてもユニ
タリ行列を用いたほうがよい場合がある可能性がある。このようなことを考慮すると、変調方式の変調多値数が64値以下(または、256値以下)の複数の変調方式をサポートして
いる場合、サポートしている複数の64値以下の変調方式のいずれかの変調方式で規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在することが重要となる。
上述では、一例として、プリコーディング後の2つの信号を2つのアンテナから送信する場合について説明したが、これに限ったものではなく、プリコーディング後のN個の信
号をN個のアンテナから送信し、N個の変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式を用いているものとする場合、変調方式の変調多値数にβNという閾値を設け、変調方式の変調多値数がβN以下の複数の変調方式をサポートしている場合、サポートしているβN以下の複数の変調方式のいずれかの変調方式で規則的に
プリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在し、変調方式の変調多値数がβNより大きい変調方式の場
合、ユニタリ行列を用いると、通信システムがサポートしている全ての変調方式において、どの変調方式の場合においても、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。(変調方
式の変調多値数がβN以下のとき、規則的にプリコーディング行列を切り替える方式を用
いたときのプリコーディング行列として非ユニタリ行列を常に用いてもよい。)
上述では、同時に送信するN個の変調信号の変調方式が、同一の変調方式を用いている
場合で説明したが、以下では、同時に送信するN個の変調信号において、2種類以上の変
調方式が存在する場合について説明する。
例として、プリコーディング後の2つの信号を2つのアンテナから送信する場合について説明する。2つの変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式、または、異なる変調方式であるものとしたとき、変調多値数が2a1値の変調方式と変調多値数が2a2値の変調方式を用いているものとする。このとき、受信装置においてML演算(ML演算に基づく(Max-log)APP)を用いている場合、IQ平面における候補信号点(図11の受信信号点1101)の数は、2a1×2a2=2a1+a2の候補信号点が存在することになる。このとき、上記で述べたように、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるためには、2a1+a2に対し2βという閾値を設け、2a1+a2≦2βのとき、規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用い、2a1+a2>2β場合、ユニタリ行列を用いるとよい。
また、2a1+a2≦2βの場合においてもユニタリ行列を用いたほうがよい場合がある可能性がある。このようなことを考慮すると、2a1+a2≦2βの複数の変調方式の組み合わせをサポートしている場合、サポートしている2a1+a2≦2βの複数の変調方式の組み合わせのいずれかの変調方式の組み合わせで規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在することが重要となる。
上述では、一例として、プリコーディング後の2つの信号を2つのアンテナから送信する場合について説明したが、これに限ったものではない。例えば、N個の変調信号(プリ
コーディング前の変調方式に基づく信号)がいずれも同一の変調方式、または、異なる変調方式が存在する場合のとき、第iの変調信号の変調方式の変調多値数を2aiとする(i=1、2、・・・、N-1、N)。
このとき、受信装置においてML演算(ML演算に基づく(Max-log)APP)を用いている場合、IQ平面における候補信号点(図11の受信信号点1101)の数は、2a1×2a2×・・・×2ai×・・・×2aN=2a1+a2+・・・+ai+・・・+aNの候補信号点が存在することになる。このとき、上記で述べたように、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるためには、2a1+a2+・・・+ai+・・・+aNに対し2βという閾値を設け、
<条件#44>を満たす複数の変調方式の組み合わせをサポートしている場合、サポートしている<条件#44>を満たす複数の変調方式の組み合わせのいずれかの変調方式の組み合わせで規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在し、
<条件#45>を満たすすべての変調方式の組み合わせの場合、ユニタリ行列を用いると、通信システムがサポートしている全ての変調方式において、どの変調方式の組み合わせの場合においても、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。(サポートしている<条件#44>を満たす複数の変調方式の組み合わせすべてにおいて、規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いてもよい。)
(実施の形態15)
本実施の形態では、OFDMのようなマルチキャリア伝送方式を用いた、規則的にプリコーディング行列を切り替える方式のシステム例について説明する。
図47は、本実施の形態におけるOFDMのようなマルチキャリア伝送方式を用いた、規則的にプリコーディング行列を切り替える方式のシステムにおいて、放送局(基地局)が送信する送信信号の、時間−周波数軸におけるフレーム構成の一例を示している。(時間$1から時間$Tまでのフレーム構成とする。)図47(A)は、実施の形態1等で説明したストリームs1の時間−周波数軸におけるフレーム構成、図47(B)は、実施の形態1等で説明したストリームs2の時間−周波数軸におけるフレーム構成を示している。ストリームs1とストリームs2の同一時間、同一(サブ)キャリアのシンボルは、複数のアンテナを用いて、同一時間、同一周波数で送信されることになる。
図47(A)(B)では、OFDMを用いたときに使用される(サブ)キャリアは、(サブ)キャリアa〜(サブ)キャリアa+Naで構成されたキャリア群#A、(サブ)キャリアb〜(サブ)キャリアb+Nbで構成されたキャリア群#B、(サブ)キャリアc〜(サブ)キャリアc+Ncで構成されたキャリア群#C、(サブ)キャリアd〜(サブ)キャリアd+Ndで構成されたキャリア群#D、・・・で分割するものとする。そして、各サブキャリア群では、複数の送信方法をサポートするものとする。ここで、複数の送信方法をサポートすることで、各送信方法がもつ利点を効果的に活用することが可能となる。例えば、図47(A)(B)では、キャリア群#Aは、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いるものとし、キャリア群#Bは規則的にプリコーディング行列を切り替えるMIMO伝送方式を用いるものとし、キャリア群#Cはストリームs1のみ送信し、キャリア群#Dは時空間ブロック符号を用いて送信するものとする。
図48は、本実施の形態におけるOFDMのようなマルチキャリア伝送方式を用いた、規則的
にプリコーディング行列を切り替える方式のシステムにおいて、放送局(基地局)が送信する送信信号の、時間−周波数軸におけるフレーム構成の一例を示しており、図47とは異なる時間の時間$Xから時間$X+T’までのフレーム構成を示している。図48は、図47と同様に、OFDMを用いたときに使用される(サブ)キャリアは、(サブ)キャリアa〜(サブ)キャリアa+Naで構成されたキャリア群#A、(サブ)キャリアb〜(サブ)キャリアb+Nbで構成されたキャリア群#B、(サブ)キャリアc〜(サブ)キャリアc+Ncで構成されたキャリア群#C、(サブ)キャリアd〜(サブ)キャリアd+Ndで構成されたキャリア群#D、・・・で分割するものとする。そして、図48が図47と異なる点は、図47で用いられている通信方式と図48で用いられている通信方式が異なるキャリア群が存在することである。図48では、(A)(B)では、キャリア群#Aは、時空間ブロック符号を用いて送信するものとし、キャリア群#Bは規則的にプリコーディング行列を切り替えるMIMO伝送方式を用いるものとし、キャリア群#Cは規則的にプリコーディング行列を切り替えるMIMO伝送方式を用いるものとし、キャリア群#Dはストリームs1のみ送信するものとする。
次に、サポートする送信方法について説明する。
図49は、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いたときの信号処理方法を示しており、図6と同様の番号を付している。ある変調方式にしたがったベースバンド信号である、重み付け合成部600は、ストリームs1(t)(307A)およびストリームs2(t)(307B)、および、重み付け方法に関する情報315を入力とし、重み付け後の変調信号z1(t)(309A)および重み付け後の変調信号z2(t)(309B)を出力する。ここで、重み付け方法に関する情報315が、空間多重MIMO伝送方式を示していた場合、図49の方式#1の信号処理が行われる。つまり、以下の処理が行われる。
ただし、1つの変調信号を送信する方式をサポートしている場合、送信電力の点から、式(250)は、式(251)のようにあらわされることもある。
そして、重み付け方法に関する情報315が、プリコーディング行列が固定のMIMO伝送方式を示している場合、例えば、図49の方式#2の信号処理が行われる。つまり、以下の処理が行われる。
ここで、θ11、θ12、λ、δは固定値となる。
図50は、時空間ブロック符号を用いたときの変調信号の構成を示している。図50の時空間ブロック符号化部(5002)は、ある変調信号に基づくベースバンド信号が入力とする。例えば、時空間ブロック符号化部(5002)は、シンボルs1、シンボルs2、・・・を入力とする。すると、図50のように、時空間ブロック符号化が行われ、z1(5003A)は、「シンボル#0としてs1」「シンボル#1として−s2」「シンボル#2としてs3」「シンボル#3として−s4」・・・となり、z2(5003B)は、「シンボル#0としてs2」「シンボル#1としてs1」「シンボル#2としてs4」「シンボル#3としてs3」・・・となる。このとき、z1におけるシンボル#X、z2におけるシンボル#Xは同一時間に同一周波数によりアンテナから送信されることになる。
図47、図48では、データを伝送するシンボルのみを記載しているが、実際には、伝送方式、変調方式、誤り訂正方式等の情報を伝送する必要がある。例えば、図51のように、1つの変調信号z1のみでこれらの情報を定期的に伝送すれば、これらの情報を通信相手に伝送することができる。また、伝送路の変動、つまり、受信装置がチャネル変動を推定するためのシンボル(例えば、パイロットシンボル、リファレンスシンボル、プリアンブル、送受信で既知の(PSK:Phase Shift Keying)シンボル)を伝送する必要がある。図47、図48では、これらのシンボルを省略して記述しているが、実際は、チャネル変動を推定するためのシンボルが時間―周波数軸のフレーム構成において、含まれることになる。したがって、各キャリア群は、データを伝送するためのシンボルのみだけで構成されているわけではない。(この点については、実施の形態1においても同様である。)
図52は、本実施の形態における放送局(基地局)の送信装置の構成の一例を示している。送信方法決定部(5205)は、各キャリア群のキャリア数、変調方式、誤り訂正方式、誤り訂正符号の符号化率、送信方法等の決定を行い、制御信号(5205)として出力する。
変調信号生成部#1(5201_1)は、情報(5200_1)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、図47、図48のキャリア群#Aの変調信号z1(5202_1)および変調信号z2(5203_1)を出力する。
同様に、変調信号生成部#2(5201_2)は、情報(5200_2)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、図47、図48のキャリア群#Bの変調信号z1(5202_2)および変調信号z2(5203_2)を出力する。
同様に、変調信号生成部#3(5201_3)は、情報(5200_3)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、図47、図48のキャリア群#Cの変調信号z1(5202_3)および変調信号z2(5203_3)を出力する。
同様に、変調信号生成部#4(5201_4)は、情報(5200_4)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、図47、図48のキャリア群#Dの変調信号z1(5202_4)および変調信号z2(5203_4)を出力する。



同様に、変調信号生成部#M(5201_M)は、情報(5200_M)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、あるキャリア群の変調信号z1(5202_M)および変調信号z2(5203_M)を出力する。
OFDM方式関連処理部(5207_1)は、キャリア群#Aの変調信号z1(5202_1)、キャリア群#Bの変調信号z1(5202_2)、キャリア群#Cの変調信号z1(5202_3)、キャリア群#Dの変調信号z1(5202_4)、・・・、あるキャリア群の変調信号z1(5202_M)、および、制御信号(5206)を入力とし、並び換え、逆フーリエ変換、周波数変換、増幅等の処理を施し、送信信号(5208_1)を出力し、送信信号(5208_1)は、アンテナ(5209_1)から電波として出力される。
同様に、OFDM方式関連処理部(5207_2)は、キャリア群#Aの変調信号z1(5203_1)、キャリア群#Bの変調信号z2(5203_2)、キャリア群#Cの変調信号z2(5203_3)、キャリア群#Dの変調信号z2(5203_4)、・・・、あるキャリア群の変調信号z2(5203_M)、および、制御信号(5206)を入力とし、並び換え、逆フーリエ変換、周波数変換、増幅等の処理を施し、送信信号(5208_2)を出力し、送信信号(5208_2)は、アンテナ(5209_2)から電波として出力される。
図53は、図52の変調信号生成部#1〜#Mの構成の一例を示している。誤り訂正符号化部(5302)は、情報(5300)および、制御信号(5301)を入力とし、制御信号(5301)にしたがって、誤り訂正符号化方式、誤り訂正符号化の符号化率を設定し、誤り訂正符号化を行い、誤り訂正符号化後のデータ(5303)を出力する。(誤り訂正符号化方式、誤り訂正符号化の符号化率の設定により、例えば、LDPC符号、ターボ符号、畳み込み符号等を用いたとき、符号化率によっては、パンクチャを行い、符号化率を実現する場合がある。)
インタリーブ部(5304)は、誤り訂正符号化後のデータ(5303)、制御信号(5301)を入力とし、制御信号(5301)に含まれるインタリーブ方法の情報に従い、誤り訂正符号化後のデータ(5303)の並び換えを行い、インタリーブ後のデータ(5305)を出力する。
マッピング部(5306_1)は、インタリーブ後のデータ(5305)および制御信号(5301)を入力とし、制御信号(5301)に含まれる変調方式の情報に従い、マッピング処理を行い、ベースバンド信号(5307_1)を出力する。
同様に、マッピング部(5306_2)は、インタリーブ後のデータ(5305)および制御信号(5301)を入力とし、制御信号(5301)に含まれる変調方式の情報に従い、マッピング処理を行い、ベースバンド信号(5307_2)を出力する。
信号処理部(5308)は、ベースバンド信号(5307_1)、ベースバンド信号(5307_2)および制御信号(5301)を入力とし、制御信号(5301)に含まれる伝送方法(ここでは、例えば、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式)の情報に基づき、信号処理を行い、信号処理後の信号z1(5309_1)および信号処理後のz2(5309_2)を出力する。なお、ストリームs1のみを送信する伝送方式が選択された場合、信号処理部(5308)は、信号処理後のz2(5309_2)を出力しないこともある。また、図53では、誤り訂正符号化部が一つの場合の構成を示したがこれに限ったものではなく、例えば、図3に示すように、複数の符号化器を具備していてもよい。
図54は、図52におけるOFDM方式関連処理部(5207_1、および、5207_2)の構成の一例を示しており、図14と同様に動作するものについては同一符号を付している。並び替え部(5402A)は、キャリア群#Aの変調信号z1(5400_1)、キャリア群#Bの変調信号z1(5400_2)、キャリア群#Cの変調信号z1(5400_3)、キャリア群#Dの変調信号z1(5400_4)、・・・、あるキャリア群の変調信号z1(5400_M)、および、制御信号(5403)を入力とし、並び替えを行い、並び替え後の信号1405Aおよび1405Bを出力する。なお、図47、図48、図51では、キャリア群の割り当てを、集合したサブキャリアで構成する例で説明しているが、これに限ったものではなく、時間ごとに離散的なサブキャリアによりキャリア群を構成してもよい。また、図47、図48、図51では、キャリア群のキャリア数は、時間において変更しない例で説明しているが、これに限ったものではない。この点については、別途、後で、説明する。
図55は、図47、図48、図51のようにキャリア群ごとに伝送方式を設定する方式の時間−周波数軸におけるフレーム構成の詳細の例を示している。図55において、制御情報シンボルを5500、個別制御情報シンボルを5501、データシンボルを5502、パイロットシンボルを5503で示す。また、図55(A)はストリームs1の時間―周波数軸におけるフレーム構成を示しており、図55(B)はストリームs2の時間―周波数軸におけるフレーム構成を示している。
制御情報シンボルは、キャリア群共通の制御情報を伝送するためのシンボルであり、送受信機が周波数、時間同期を行うためのシンボル、(サブ)キャリアの割り当てに関する情報等で構成されている。そして、制御制御シンボルは、時刻$1において、ストリームs1のみから送信されるものとする。
個別制御情報シンボルは、サブキャリア群個別の制御情報を伝送するためのシンボルであり、データシンボルの、伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報、パイロットシンボルの挿入方法の情報、パイロットシンボルの送信パワーの情報等で構成されている。個別制御情報シンボルは、時刻$1において、ストリームs1のみから送信されるものとする。
データシンボルは、データ(情報)を伝送するためのシンボルであり、図47〜図50を用いて説明したように、例えば、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式のいずれかの伝送方式の
シンボルである。なお、キャリア群#A、キャリア群#B、キャリア群#C、キャリア群#Dにおいて、ストリームs2にデータシンボルが存在するように記載しているが、ストリームs1のみ送信する伝送方式を用いている場合は、ストリームs2にデータシンボルが存在しない場合もある。
パイロットシンボルは、受信装置が、チャネル推定、つまり、式(36)のh11(t)、h12(t)、h21(t)、h22(t)に相当する変動を推定するためのシンボルである。(ここでは、OFDM方式のようなマルチキャリア伝送方式を用いているため、サブキャリアごとにh11(t)、h12(t)、h21(t)、h22(t)に相当する変動を推定するためのシンボルということになる。)したがって、パイロットシンボルは、例えば、PSK伝送方式を用いており、送受信機で既知のパターンとなるように構成することになる。また、パイロットシンボルを、受信装置は、周波数オフセットの推定、位相ひずみ推定、時間同期に用いてもよい。
図56は、図52の送信装置が送信した変調信号を受信するための受信装置の構成の一例を示しており、図7と同様に動作するものについては同一符号を付している。
図56において、OFDM方式関連処理部(5600_X)は、受信信号702_Xを入力とし、所定の処理を行い、信号処理後の信号704_Xを出力する。同様に、OFDM方式関連処理部(5600_Y)は、受信信号702_Yを入力とし、所定の処理を行い、信号処理後の信号704_Yを出力する。
図56の制御情報復号部709は、信号処理後の信号704_Xおよび信号処理後の信号704_Yを入力とし、図55における制御情報シンボルおよび個別制御情報シンボルを抽出し、これらのシンボルで伝送した制御情報を得、この情報を含む制御信号710を出力する。
変調信号z1のチャネル変動推定部705_1は、信号処理後の信号704_X、および、制御信号710を入力とし、この受信装置が必要とするキャリア群(所望のキャリア群)におけるチャネル推定を行い、チャネル推定信号706_1を出力する。
同様に、変調信号z2のチャネル変動推定部705_2は、信号処理後の信号704_X、および、制御信号710を入力とし、この受信装置が必要とするキャリア群(所望のキャリア群)におけるチャネル推定を行い、チャネル推定信号706_2を出力する。
同様に、変調信号z1のチャネル変動推定部705_1は、信号処理後の信号704_Y、および、制御信号710を入力とし、この受信装置が必要とするキャリア群(所望のキャリア群)におけるチャネル推定を行い、チャネル推定信号708_1を出力する。
同様に、変調信号z2のチャネル変動推定部705_2は、信号処理後の信号704_Y、および、制御信号710を入力とし、この受信装置が必要とするキャリア群(所望のキャリア群)におけるチャネル推定を行い、チャネル推定信号708_2を出力する。
そして、信号処理部711は、信号706_1、706_2、708_1、708_2、704_X、704_Y、および制御信号710を入力とし、制御信号710に含まれている、所望のキャリア群で伝送したデータシンボルにおける、伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ712を出力する。
図57は、図56におけるOFDM方式関連処理部(5600_X、5600_Y)の構成を示しており、周波数変換部(5701)は、受信信号(5700)を入力とし、周
波数変換を行い、周波数変換後の信号(5702)を出力する。
フーリエ変換部(5703)は、周波数変換後の信号(5702)を入力とし、フーリエ変換を行い、フーリエ変換後の信号(5704)を出力する。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用いているとき、複数のキャリア群に分割し、キャリア群ごとに伝送方式を設定することで、キャリア群ごとに受信品質、かつ、伝送速度を設定することができるため、柔軟なシステムを構築できるという効果を得ることができる。このとき、他の実施の形態で述べたような、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、このとき、時空間符号として、図50の方式を説明したがこれに限ったものではなく、また、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、キャリア群ごとに「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」のいずれか伝送方式を選択できるようにすれば、同様の効果を得ることができる。
図58は、図47、図48、図51とは異なるキャリア群の割り当て方法を示している。図47、図48、図51、図55では、キャリア群の割り当てを、集合したサブキャリアで構成する例で説明しているが、図58では、キャリア群のキャリアを離散的に配置していることが特徴となっている。図58は、図47、図48、図51、図55とは異なる、時間−周波数軸におけるフレーム構成の一例を示しており、図58では、キャリア1からキャリアH、時間$1から時間$Kのフレーム構成を示しており、図55と同様のものについては同一符号を付している。図58のデータシンボルにおいて、「A」と記載されているシンボルはキャリア群Aのシンボルであること、「B」と記載されているシンボルはキャリア群Bのシンボルであること、「C」と記載されているシンボルはキャリア群Cのシンボルであること、「D」と記載されているシンボルはキャリア群Dのシンボルであること、を示している。このようにキャリア群は、(サブ)キャリア方向において、離散的に配置しても同様に実施することができ、また、時間軸方向において、常に同一のキャリアを使用する必要はない。このような配置を行うことで、時間、周波数ダイバーシチゲインを得ることができるという効果を得ることができる。
図47、図48、図51、図58において、制御情報シンボル、固有制御情報シンボルをキャリア群ごとに同一の時間に配置しているが、異なる時間に配置してもよい。また、キャリア群が使用する(サブ)キャリア数は、時間とともに変更してもよい。


(実施の形態16)
本実施の形態では、実施の形態10と同様、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について、Nを奇数とする場合について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。
α>0であるものとし、(iによらず)固定値であるものとする。(式(253)のαと式(254)のαは同一の値であるものとする。)
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(253)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)

そして、以下の条件を付加することを考える。

次に、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#49>または<条件#50>を与える。


つまり、<条件49>では、位相の差が2π/Nラジアンであることを意味している。また、<条件50>では、位相の差が−2π/Nラジアンであることを意味している。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、N=3のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図60(a)(b)
に示す。図60(a)(b)からわかるように、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保てている。そして、α<1のときにも同様な状態となる。また、実施の形態10の図45と比較すると、実施の形態9と同様に考えると、Nが奇数のときのほうが、Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、Nが小
さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣
悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、データの受信品質を確保することができる場合が存
在する可能性がある。
したがって、式(253)、(254)に基づく規則的にプリコーディング行列を切り替える方式において、Nは奇数にすると、データの受信品質を向上させることができる可
能性が高い。なお、式(253)、(254)に基づきF[0]〜F[2N-1]のプリコーディン
グ行列が生成されたことになる(F[0]〜F[2N-1]のプリコーディング行列は、周期2Nに対
しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2NiのときF[0]を用いてプリコーディングを行い、シンボル番号2Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2N×i+hのときF[h]を用いてプリコー
ディングを行う(h=0、1、2、・・・、2N-2、2N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを式(233)とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
また、<条件#48>と異なる条件として、以下の条件を考える。
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)

(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
このとき、<条件#46>かつ<条件#47>かつ<条件#51>かつ<条件#52>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べる
場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態17)
本実施の形態では、実施の形態8に基づく具体的なプリコーディングウェイトを規則的に切り替える方法の例を説明する。
図6は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)に関連する図であり、重み付け合成部600は、図3の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号同相I、直交Q成分となる。
そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、重み付け情報に関する情報315を入力とし、重み付け情報に関する情報315にしたがった重み付け方法を施し、図3の重み付け合成後の信号309A(z1(t))、309B(z2(t))を出力する。
このとき、例えば、実施の形態6における例8の周期N=8のプリコーディング行列切り替え方法を用いた場合、z1(t)、z2(t)は以下のようにあらわされる。
シンボル番号8iのとき(iは0以上の整数とする):
ただし、jは虚数単位、k=0。
シンボル番号8i+1のとき:
ただし、k=1。
シンボル番号8i+2のとき:
ただし、k=2。
シンボル番号8i+3のとき:
ただし、k=3。
シンボル番号8i+4のとき:
ただし、k=4。
シンボル番号8i+5のとき:
ただし、k=5。
シンボル番号8i+6のとき:
ただし、k=6。
シンボル番号8i+7のとき:
ただし、k=7。
ここで、シンボル番号と記載しているが、シンボル番号は時刻(時間)と考えてもよい。他の実施の形態で説明したとおり、例えば、式(262)において、時刻8i+7のz1(8i+7)とz2(8i+7)は、同一時刻の信号であり、かつ、z1(8i+7)とz2(8i+7)は同一(共通の)周波数を用いて送信装置が送信することになる。つまり、時刻Tの信号をs1(T)、s2(T)、z1(T)、z2(T)とすると、何らかのプリコーディング行列とs1(T)およびs2(T)から、z1(T)およびz2(T)を求め、z1(T)およびz2(T)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。また、OFDM等のマルチキャリア伝送方式を用いた場合、(サブ)キャリアL、時刻Tにおけるs1、s2、z1、z2に相当する信号をs1(T,L)、s2(T,L)、z1(T,L)、z2(T,L)とすると、何らかのプリコーディング行列とs1(T,L)およびs2(T,L)から、z1(T,L)およびz2(T,L)を求め、z1(T,L)およびz2(T,L)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。
このとき、αの適切な値として、式(198)、または、式(200)がある。また、式(255)〜式(262)において、αの値をそれぞれに異なる値に設定してもよい。つまり、式(255)〜式(262)のうち2つの式を抽出したとき(式(X)と式(Y)とする)式(X)のαと式(Y)のαが異なる値であってもよい。
本実施の形態では、上記で述べた式(190)のプリコーディング行列をもとにし、周期を大きくするプリコーディング切り替え方法について述べる。
プリコーディング切り替え行列の周期を8Mとしたとき、異なるプリコーディング行列8M個を以下のようにあらわす。
このとき、i=0,1,2,3,4,5,6,7、k=0,1,・・・, M-2, M-1となる。
例えば、M=2としたとき、α<1とすると、k=0のときのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、図42(a)のようにあらわされる。同様に、k=1のときのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、追追図1(b)のようにあらわされる。このように、式(190)のプリコーディング行列をもとにすると、受信劣悪点は図42(a)ようになり、この式(190)の右辺の行列の2行目の各要素にejXを乗算した行列をプリコーディング行列とすることで(式(226)参照)、受信劣悪点が図42(a)に対し、回転した受信劣悪点をもつようにする(図42(b)参照)。(ただし、図42(a)と図42(b)の受信劣悪点は重なっていない。このように、ejXを乗算しても、受信劣悪点は重ならないようにするとよい。また、式(190)の右辺の行列の2行目の各要素にejXを乗算するのではなく、式(190)の右辺の行列の1行目の各要素にejXを乗算した行列をプリコーディング行列としてもよい。)このとき、プリコーディング行列F[0]〜F[15]は次式であらわされる。
ただし、i=0,1,2,3,4,5,6,7、k=0,1となる。
すると、M=2のとき、F[0]〜F[15]のプリコーディング行列が生成されたことになる(F[0]〜F[15]のプリコーディング行列は、どのような順番にならべてもよい。また、F[0]〜F[15]の行列がそれぞれ異なる行列であるとよい。)。そして、例えば、シンボル番号16iのときF[0]を用いてプリコーディングを行い、シンボル番号16i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号16i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、14、15)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
以上をまとめると、式(82)〜式(85)を参考にし、周期Nのプリコーディング行列を次式であらわす。
このとき、周期がNであるので、i=0,1,2,・・・,N-2,N-1となる。そして、式(265)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(266)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
なお、式(265)および式(266)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが特徴的な構成であり(δの条件については、他の実施の形態のときも同様である。)、良好なデータの受信品質が得られることになるが、ユニタリ行列であってもよい。
なお、本実施の形態では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
(実施の形態18)
本実施の形態では、実施の形態9に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
実施の形態8で述べたように周期Nの規則的にプリコーディング行列を切り替える方法において、式(82)〜式(85)を参考にした、周期Nのために用意するプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。(α>0であるものとする。)本実施の形態では、ユニタリ行列を扱うので、式(268)のプリコーディング行列は次式であらわすことができる。
このとき、i=0,1,2,・・・,N-2,N-1となる。(α>0であるものとする。)このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、以下の条件が、良好なデータの受信品質を得るためには重要となる。
実施の形態6で説明した際、受信劣悪点間の距離について述べたが、受信劣悪点間の距離を大きくするためには、周期Nは3以上の奇数であることが重要となる。以下では、この点について説明する。
実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件55>または<条件56>を与える。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α<1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(a)に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(b)に示す。また、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図44(a)に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図44(b)に示す。
このとき、受信劣悪点と原点とで形成する線分と、Realの軸において、Real≧0の半直線とで形成する位相(図43(a)参照。)を考えた場合、α>1、α<1いずれの場合についても、N=4のとき、s1に関する受信劣悪点における前述の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合が必ず発生する。(図43の4301、追4302、および図44の4401、4402参照)このとき、複素平面において、受信劣悪点間の距離が小さくなる。一方で、N=3のとき、s1に関する受信劣悪点における前述の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合は発生しない。
以上から、周期Nが偶数のときs1に関する受信劣悪点における前述の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合が必ず発生することを考慮すると、周期Nが奇数のときのほうが、周期Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、周期Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、データの受信品質を確保することができる場合が存在する可能性がある。
したがって、式(269)に基づく規則的にプリコーディング行列を切り替える方式において、周期Nは奇数にすると、データの受信品質を向上させることができる可能性が高い。なお、式(269)に基づきF[0]〜F[N-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N-1]のプリコーディング行列は、周期Nに対しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号NiのときF[0]を用いてプリコーディングを行い、シンボル番号Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N-2、N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを
とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
図94は、同相I-直交Q平面における16QAMの信号点配置の例を示している。図94の信号点9400は、送信するビット(入力ビット)をb0〜b3とすると、(b0、b1、b2、b3)=(1、0、0、0)(この値は、図94に記載されている値である。)のときの信号点であり、同相I-直交Q平面における座標は、(−3×g、3×g)であり、信号点9400以外の信号点についても送信するビットと信号点の関係、および、信号点の同相I-直交Q平面における座標は、図94から読み取ることができる。
図95は、同相I-直交Q平面におけるQPSKの信号点配置の例を示している。図95の信号点9500は、送信するビット(入力ビット)をb0、b1とすると、(b0、b1)=(1、0)(この値は、図95に記載されている値である。)のときの信号点であり、同相I-直交Q平面における座標は、(−1×h、1×h)であり、信号点9500以外の信号点についても送信するビットと信号点の関係、および、信号点の同相I-直交Q平面における座標は、図95から読み取ることができる。

また、s1の変調方式をQPSK変調とし、s2の変調方式を16QAMとしたとき、αを
とすると、IQ平面における候補信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
なお、16QAMのI−Q平面における信号点配置は図94のとおりであり、QPSKのI−Q平面における信号点配置は図95のとおりである。そして、図94のgが、
とすると、図94のhは、
となる。
周期Nのために用意する式(269)に基づくプリコーディング行列の例として、N=5としたとき、以下のような行列が考えられる。
このように、送信装置の上記プリコーディングによる演算規模を少なくするためには、式(269)において、θ11(i)=0ラジアン、λ=0ラジアンに設定するとよい。ただし、λは、式(269)において、iにより、異なる値としてもよいし、同一の値であってもよい。つまり、式(269)において、F[i=x]におけるλとF[i=y]におけるλ(x≠y)は同一の値であってもよいし、異なる値であってもよい。
αの設定値としては、上述で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期Nのプリコーディングホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。このとき、<条件#55><条件#56>は以下のような条件に置き換えることができる。(周期はNとして考える。)
なお、本実施の形態では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
(実施の形態19)
本実施の形態では、実施の形態10に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、以下の条件が、良好なデータの受信品質を得るためには重要となる。
そして、以下の条件を付加することを考える。
次に、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#60>または<条件#61>を与える。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(a)(b)に示す。図43(a)(b)からわかるように、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保てている。そして、α<1のときにも同様な状態となる。また、実施の形態9と同様に考えると、Nが奇数のときのほうが、Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、データの受信品質を確保することができる場合が存在する可能性がある。
したがって、式(279)、(280)に基づく規則的にプリコーディング行列を切り替える方式において、Nは奇数にすると、データの受信品質を向上させることができる可能性が高い。なお、式(279)、(280)に基づきF[0]〜F[2N-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2N-1]のプリコーディング行列は、周期2Nに対しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2NiのときF[0]を用いてプリコーディングを行い、シンボル番号2Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2N×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2N-2、2N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを式(270)とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
そして、s1の変調方式をQPSK変調とし、s2の変調方式を16QAMとしたとき、αを式(271)とすると、IQ平面における候補信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。 なお、16QAMのI−Q平面における信号点配置は図60のとおりであり、QPSKのI−Q平面における信号点配置は図94のとおりである。そして、図60のgが、式(272)とすると、図94のhは、式(273)となる。
また、<条件#59>と異なる条件として、以下の条件を考える。
このとき、<条件#57>かつ<条件#58>かつ<条件#62>かつ<条件#63>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
周期2Nのために用意する式(279)、式(280)に基づくプリコーディング行列の例として、N=15としたとき、以下のような行列が考えられる。
このように、送信装置の上記プリコーディングによる演算規模を少なくするためには、式(279)において、θ11(i)=0ラジアン、λ=0ラジアンに設定し、式(280)において、θ21(i)=0ラジアン、λ=0ラジアンに設定するとよい。
ただし、λは、式(279)、式(280)において、iにより、異なる値としてもよいし、同一の値であってもよい。つまり、式(279)、式(280)において、F[i=x]におけるλとF[i=y]におけるλ(x≠y)は同一の値であってもよいし、異なる値であってもよい。また、別の方法として、式(279)において、λを固定の値とし、式(280)において、λを固定の値とし、かつ、式(279)における固定したλの値と式(280)における固定したλの値を異なる値としてもよい。(別の手法として、式(279)における固定したλの値と式(280)における固定したλの値とする方法でもよい。)
αの設定値としては、上述で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
なお、本実施の形態では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
(実施の形態20)
本実施の形態では、実施の形態13に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
α>0であるものとし、(iによらず)固定値であるものとする。
α>0であるものとし、(iによらず)固定値であるものとする。(α<0であってもよい。)
そして、式(311)および式(312)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであってもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(313)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(314)を式(316)〜式(318)のいずれかとしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。


なお、受信劣悪点について着目すると、式(313)から式(318)において、
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
のすべてを満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件#39>および<条件#40>を満たすとよい。
また、式(313)から式(318)のXk, Ykに着目すると、
(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、sは整数である。
(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件42>を満たすとよい。
なお、式(313)および式(318)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが特徴的な構成であり、良好なデータの受信品質が得られることになるが、ユニタリ行列であってもよい。
次に、本実施の形態におけるプリコーディング方法におけるプリコーディング行列の例をあげる。周期2×N×Mの式(313)〜式(318)をベースとするプリコーディング行列の例として、N=5、M=2としたときの行列を以下に記載する。
このように、上記の例では、送信装置の上記プリコーディングによる演算規模を少なくするために、式(313)において、λ=0ラジアン、δ=πラジアン、X1=0ラジアン、X2=πラジアンに設定し、式(314)において、λ=0ラジアン、δ=πラジアン、Y1=0ラジアン、Y2=πラジアンに設定している。ただし、λは、式(313)、式(314)において、iにより、異なる値としてもよいし、同一の値であってもよい。つまり、式(313)、式(314)において、F[i=x]におけるλとF[i=y]におけるλ(x≠y)は同一の値であってもよいし、異なる値であってもよい。また、別の方法として、式(313)において、λを固定の値とし、式(314)において、λを固定の値とし、かつ、式(313)における固定したλの値と式(314)における固定したλの値を異なる値としてもよい。(別の手法として、式(313)における固定したλの値と式(314)における固定したλの値とする方法でもよい。)
αの設定値としては、実施の形態18で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
なお、本実施の形態では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
(実施の形態21)
本実施の形態では、実施の形態の18で述べた規則的にプリコーディング行列を切り替えるプリコーディング方法の例を示す。
周期Nのために用意する式(269)に基づくプリコーディング行列の例として、N=9としたとき、以下のような行列が考えられる。
また、上式において、特に、αを1と設定するとよい場合がある。このとき、式(339)〜式(347)は、以下のようにあらわされる。

別の例として、周期Nのために用意する式(269)に基づくプリコーディング行列の例として、N=15としたとき、以下のような行列が考えられる。
また、上式において、特に、αを1と設定するとよい場合がある。このとき、式(357)〜式(371)は、以下のようにあらわされる。
αの設定値として、ここでは一例として、1と設定しているがこれに限ったものではない。αの設定値の一つの応用例としては、送信するデータに対し、図3等で示したように符号化部により、誤り訂正符号化が行われる。誤り訂正符号化で用いられる誤り訂正符号の符号化率により、αの値を変更してもよい。例えば、符号化率1/2の時にαを1と設定し、符号化率を2/3の時にαを1以外、例えば、α>1(またはα<1)とする方法が考えられる。このようにすることで、受信装置において、いずれの符号化率においても、良好なデータの受信品質を得ることができる可能性がある。(αを固定としても、良好なデータの受信品質が得られることもある。)
別の例としては、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期Nのプリコーディングホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
(実施の形態22)
本実施の形態では、実施の形態の19で述べた規則的にプリコーディング行列を切り替えるプリコーディング方法の例を示す。
周期2Nのために用意する式(279)、式(280)に基づくプリコーディング行列の例として、N=9としたとき、以下のような行列が考えられる。
また、上式において、特に、αを1と設定するとよい場合がある。このとき、式(387)〜式(404)は、以下のようにあらわされる。
また、実施の形態19の式(281)〜式(310)の例に対し、αを1と設定するとよい。別のαの設定値としては、上述で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態23)
実施の形態9ではユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について説明したが、本実施の形態では、実施の形態9とは異なる行列を用いたプリコーディング行列を規則的に切り替える方法について説明する。
まず、プリコーディング行列として基礎となるプリコーディング行列Fを次式であらわす。
式(423)において、A,B,Cは実数であり、また、μ11、μ12、μ21は実数であり、単位はラジアンであらわすものとする。そして、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。そして、式(424)の形式であらわされる行列をプリコーディング行列として扱った場合、他の実施の形態で説明した受信劣悪点が、プリコーディング行列の要素の一つに「0」が存在するため、少なくすることができるという利点をもつことになる。
また、式(423)と異なる基礎となるプリコーディング行列として、次式を与える。
式(425)において、A,B,Dは実数であり、また、μ11、μ12、μ22は実数であり、単位はラジアンであらわすものとする。そして、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,B,Dは、iによらず固定値であり、μ11、μ12、μ22は、iによらず固定値である。そして、式(426)の形式であらわされる行列をプリコーディング行列として扱った場合、他の実施の形態で説明した受信劣悪点が、プリコーディング行列の要素の一つに「0」が存在するため、少なくすることができるという利点をもつことになる。
また、式(423)、式(425)と異なる基礎となるプリコーディング行列として、次式を与える。
式(427)において、A,C、Dは実数であり、また、μ11、μ21、μ22は実数であり、単位はラジアンであらわすものとする。そして、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,C,Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。そして、式(428)の形式であらわされる行列をプリコーディング行列として扱った場合、他の実施の形態で説明した受信劣悪点が、プリコーディング行列の要素の一つに「0」が存在するため、少なくすることができるという利点をもつことになる。
また、式(423)、式(425)、式(427)と異なる基礎となるプリコーディング行列として、次式を与える。
式(429)において、B,C,Dは実数であり、また、μ12、μ21、μ22は実数であり、単位はラジアンであらわすものとする。そして、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、B,C,Dは、iによらず固定値であり、μ12、μ21、μ22は、iによらず固定値である。そして、式(430)の形式であらわされる行列をプリコーディング行列として扱った場合、他の実施の形態で説明した受信劣悪点が、プリコーディング行列の要素の一つに「0」が存在するため、少なくすることができるという利点をもつことになる。このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6と同様に考えればよいので、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件71>または<条件72>を与える。
このようにしても、受信装置は、特にLOS環境において、受信劣悪点を有効に回避することができるため、データの受信品質が改善するという効果を得ることができる。
なお、上記で説明した規則的にプリコーディング行列を切り替えるプリコーディング方法の例として、θ11(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、θ11(i)およびθ21(i)が上述で説明した条件を満たす方法がある。また、θ11(i)を固定値とするのではなく、θ21(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、θ11(i)およびθ21(i)が上述で説明した条件を満たす方法がある。
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期Nのプリコーディングホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。このとき、<条件#69><条件#70>は以下のような条件に置き換えることができる。(周期はNとして考える。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(実施の形態24)
実施の形態10ではユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について説明したが、本実施の形態では、実施の形態10とは異なる行列を用いたプリコーディング行列を規則的に切り替える方法について説明する。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,B,Cは実数であり、また、μ11、μ12、μ21は実数であり、単位はラジアンであらわすものとする。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。
このとき、α,β,δは実数であり、また、ν11、ν12、ν22は実数であり、単位はラジアンであらわすものとする。また、α,β,δは、iによらず固定値であり、ν11、ν12、ν22は、iによらず固定値である。

式(431)、式(432)とは異なる周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,B,Cは実数であり、また、μ11、μ12、μ21は実数であり、単位はラジアンであらわすものとする。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。
このとき、β,γ、δは実数であり、また、ν12、ν21、ν22は実数であり、単位はラジアンであらわすものとする。また、β,γ、δは、iによらず固定値であり、ν12、ν21、ν22は、iによらず固定値である。

これらとは別の周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,C、Dは実数であり、また、μ11、μ21、μ22は実数であり、単位はラジアンであらわすものとする。また、A,C、Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。
このとき、α,β,δは実数であり、また、ν11、ν12、ν22は実数であり、単位はラジアンであらわすものとする。また、α,β,δは、iによらず固定値であり、ν11、ν12、ν22は、iによらず固定値である。

これらとは別の周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,C、Dは実数であり、また、μ11、μ21、μ22は実数であり、単位はラジアンであらわすものとする。また、A,C、Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。
このとき、β,γ、δは実数であり、また、ν12、ν21、ν22は実数であり、単位はラジアンであらわすものとする。また、β,γ、δは、iによらず固定値であり、ν12、ν21、ν22は、iによらず固定値である。

このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6と同様に考えると、以下の条件が、良好なデータの受信品質を得るためには重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)

次に、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#77>または<条件#78>を与える。

同様に、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#79>または<条件#80>を与える。
以上のようにすることで、他の実施の形態で説明した受信劣悪点が、プリコーディング行列の要素の一つに「0」が存在するため、少なくすることができるという利点をもつことになり、また、受信装置は、特にLOS環境において、受信劣悪点を有効に回避することができるため、データの受信品質が改善するという効果を得ることができる。
なお、上記で説明した規則的にプリコーディング行列を切り替えるプリコーディング方法の例として、θ11(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、θ11(i)およびθ21(i)が上述で説明した条件を満たす方法がある。また、θ11(i)を固定値とするのではなく、θ21(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、θ11(i)およびθ21(i)が上述で説明した条件を満たす方法がある。
同様に、Ψ11(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、Ψ11(i)およびΨ21(i)が上述で説明した条件を満たす方法がある。また、Ψ11(i)を固定値とするのではなく、Ψ21(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、Ψ11(i)およびΨ21(i)が上述で説明した条件を満たす方法がある。
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2Nはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2N個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態25)
本実施の形態では、実施の形態23のプリコーディング行列に対し、実施の形態17を適用し、プリコーディング行列の切り替えに関する周期を大きくする方法について説明する。
実施の形態23より、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列は、次式であらわされる。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。そして、式(439)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(440)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
実施の形態23より、上記とは別の周期Nの規則的にプリコーディング行列を切り替える方法のための、周期Nのために用意するプリコーディング行列は、次式であらわされる。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,B,Dは、iによらず固定値であり、μ11、μ12、μ22は、iによらず固定値である。そして、式(441)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(443)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
実施の形態23より、上記とは別の周期Nの規則的にプリコーディング行列を切り替える方法のための、周期Nのために用意するプリコーディング行列は、次式であらわされる。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、A,C,Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。そして、式(445)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(446)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
実施の形態23より、上記とは別の周期Nの規則的にプリコーディング行列を切り替える方法のための、周期Nのために用意するプリコーディング行列は、次式であらわされる。
このとき、i=0,1,2,・・・,N-2,N-1となる。また、B,C,Dは、iによらず固定値であり、μ12、μ21、μ22は、iによらず固定値である。そして、式(448)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(449)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
このとき、i=0,1,2,・・・,N-2,N-1、k=0,1,・・・,M-2,M-1となる。
本実施の形態では、時間周期N×Mのプリコーディングホッピング方法のためのN×M個の異なるプリコーディング行列の構成方法について説明した。このとき、N×M個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN×M個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期N×Mのプリコーディングホッピング方法として説明しているが、N×M個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN×M個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期N×Mはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN×M個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態26)
本実施の形態では、実施の形態24のプリコーディング行列に対し、実施の形態20を適用し、プリコーディング行列の切り替えに関する周期を大きくする方法について説明する。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,B,Cは実数であり、また、μ11、μ12、μ21は実数であり、単位はラジアンであらわすものとする。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。
このとき、α,β,δは実数であり、また、ν11、ν12、ν22は実数であり、単位はラジアンであらわすものとする。また、α,β,δは、iによらず固定値であり、ν11、ν12、ν22は、iによらず固定値である。そして、式(451)および式(452)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであってもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(453)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(454)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。

上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,B,Cは実数であり、また、μ11、μ12、μ21は実数であり、単位はラジアンであらわすものとする。また、A,B,Cは、iによらず固定値であり、μ11、μ12、μ21は、iによらず固定値である。
このとき、β,γ、δは実数であり、また、ν12、ν21、ν22は実数であり、単位はラジアンであらわすものとする。また、β,γ、δは、iによらず固定値であり、ν12、ν21、ν22は、iによらず固定値である。そして、式(457)および式(458)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであってもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(459)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(460)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。

上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,C、Dは実数であり、また、μ11、μ21、μ22は実数であり、単位はラジアンであらわすものとする。また、A,C、Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。
このとき、α,β,δは実数であり、また、ν11、ν12、ν22は実数であり、単位はラジアンであらわすものとする。また、α,β,δは、iによらず固定値であり、ν11、ν12、ν22は、iによらず固定値である。そして、式(463)および式(464)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであってもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(465)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(466)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。

上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、A,C、Dは実数であり、また、μ11、μ21、μ22は実数であり、単位はラジアンであらわすものとする。また、A,C、Dは、iによらず固定値であり、μ11、μ21、μ22は、iによらず固定値である。
このとき、β,γ、δは実数であり、また、ν12、ν21、ν22は実数であり、単位はラジアンであらわすものとする。また、β,γ、δは、iによらず固定値であり、ν12、ν21、ν22は、iによらず固定値である。そして、式(469)および式(470)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このとき、k=0,1,・・・,M-2,M-1となる。
このとき、k=0,1,・・・,M-2,M-1となる。また、Xk=Ykであってもよいし、Xk≠Ykであってもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(471)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。
また、周期2×N×Mのプリコーディング行列の式(472)を次式のようにしてもよい。
このとき、k=0,1,・・・,M-2,M-1となる。

なお、上述の例において、受信劣悪点について着目すると、以下の条件が重要となる。
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)
を満たすと良好なデータの受信品質を得ることができる可能性がある。また、以下の条件を満たすとよい。(実施の形態24参照)
(xは0,1,2,・・・,N-2,N-1であり、yは0,1,2,・・・,N-2,N-1であり、x≠yである。)
(xはN,N+1,N+2,・・・,2N-2,2N-1であり、yはN,N+1,N+2,・・・,2N-2,2N-1であり、x≠yである。)

また、Xk, Ykに着目すると、
(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、sは整数である。
(aは0,1,2,・・・,M-2, M -1であり、bは0,1,2,・・・, M-2, M-1であり、a≠bである。)
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる可能性がある。なお、実施の形態25では、<条件87>を満たすとよい。
本実施の形態では、周期2N×Mのプリコーディングホッピング方法のための2×N×M個の異なるプリコーディング行列の構成方法について説明した。このとき、2×N×M個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2×N×M-2]、F[2×N×M-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2×N×M-2]、F[2×N×M-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2×N×M個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2×N×M-2]、F[2×N×M-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2×N×Mのプリコーディングホッピング方法として説明しているが、2×N×M個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2×N×M個の異なるプリコーディング行列を用いる必要はない。
また、周期H(Hは上記規則的にプリコーディング行列を切り替える方式の周期2×N×Mはより大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態における2×N×M個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性が高くなる。
(実施の形態A1)
本実施の形態では、これまで説明してきた規則的にプリコーディング行列を切り替える送信方法をDVB(Digital Video Broadcasting)−T2(T:Terrestrial)規格を用いた通信システムに適用する方法について、詳しく説明する。
図61は、DVB−T2規格における、放送局が送信する信号のフレーム構成の概要を示している。DVB−T2規格では、OFDM方式を用いているため、時間―周波数軸にフレームが構成されている。図61は、時間−周波数軸におけるフレーム構成を示しており、フレームは、P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されている(PLP:Physical Layer Pipe)。 (ここで、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)をP2シンボルと呼ぶ。)このように、P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されているフレームをT2フレームと名付けており、フレーム構成の一つの単位となっている。
P1 Signalling data(6101)により、受信装置が信号検出、周波数同期(周波数オフセット推定も含む)を行うためのシンボルであると同時に、フレームでにおけるFFT(Fast Fourier Transform)サイズの情報、SISO(Single-Input Single-Output)/MISO(Multiple-Input Single-Output)のいずれの方式で変調信号を送信するかの情報等を伝送する。(SISO方式の場合、一つの変調信号を送信する方式で、MISO方式の場合、複数の変調信号を送信する方法であり、かつ、時空間ブロック符号を用いている。)
L1 Pre-Signalling data(6102)により、送信フレームで使用するガードインターバルの情報、PAPR(Peak to Average Power Ratio)の方法に関する情報、L1 Post-Signalling dataを伝送する際の変調方式、誤り訂正方式(FEC: Forward Error Correction)、誤り訂正方式の符号化率の情報、L1 Post-Signalling dataのサイズおよび情報サイズの情報、パイロットパターンの情報、セル(周波数領域)固有番号の情報、ノーマルモードおよび拡張モード(ノーマルモードと拡張モードでは、データ伝送に用いるサブキャリア数が異なる。)のいずれの方式を用いているかの情報等を伝送する。
L1 Post-Signalling data(6103)により、PLPの数の情報、使用する周波数領域に関する情報、各PLPの固有番号の情報、各PLPを伝送するのに使用する変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、各PLPの送信するブロック数の情報等を伝送する。
Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は、データを伝送するための領域である。
図61のフレーム構成では、P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は時分割で送信されているように記載いるが、実際は、同一時刻に2種類以上の信号が存在している。その例を図62に示す。図62に示すように、同一時刻に、L1 Pre-Signalling data、L1 Post-Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
図63は、DVB−T2規格における(例えば、放送局)の送信装置に対し、これまでに説明してきた規則的にプリコーディング行列を切り替える送信方法を適用した送信装置の構成の一例を示している。PLP信号生成部6302は、PLP用の送信データ6301(複数PLP用のデータ)、制御信号6309を入力とし、制御信号6309に含まれる各PLPの誤り訂正符号化の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、PLPの(直交)ベースバンド信号6303を出力する。
P2シンボル信号生成部6305は、P2シンボル用送信データ6304、制御信号6309を入力とし、制御信号6309に含まれるP2シンボルの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、P2シンボルの(直交)ベースバンド信号6306を出力する。
制御信号生成部6308は、P1シンボル用の送信データ6307、P2シンボル用送信データ6304を入力とし、図61における各シンボル群(P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N))の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号6309として出力する。
フレーム構成部6310は、PLPのベースバンド信号6312、P2シンボルのベースバンド信号6306、制御信号6309を入力とし、制御信号に含まれるフレーム構成の情報に基づき、周波数、時間軸における並び替えを施し、フレーム構成にしたがった、ストリーム1の(直交)ベースバンド信号6311_1、ストリーム2の(直交)ベースバンド信号6311_2を出力する。
信号処理部6312は、ストリーム1のベースバンド信号6311_1、ストリーム2のベースバンド信号6311_2、制御信号6309を入力とし、制御信号6309に含まれる送信方法に基づいた信号処理後の変調信号1(6313_1)および信号処理後の変調信号2(6313_2)を出力する。ここで特徴的な点は、送信方法として、規則的にプリコーディング行列を切り替える送信方法が選択されたとき、信号処理部は、図6、図22、図23、図26と同様に、規則的にプリコーディング行列を切り替えるとともに、重み付け合成(プリコーディング)を行い、プリコーディング後の信号が、信号処理後の変調信号1(6313_1)および信号処理後の変調信号2(6313_2)となる。
パイロット挿入部6314_1は、信号処理後の変調信号1(6313_1)、制御信号6309を入力とし、制御信号6309に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号1(6313_1)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号6315_1を出力する。
パイロット挿入部6314_2は、信号処理後の変調信号2(6313_2)、制御信号6309を入力とし、制御信号6309に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号2(6313_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号6315_2を出力する。
IFFT(Inverse Fast Fourier Transform)部6316_1は、パイロットシンボル挿入後の変調信号6315_1、制御信号6309を入力とし、制御信号6309に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号6317_1を出力する。
IFFT部6316_2は、パイロットシンボル挿入後の変調信号6315_2、制御信号6309を入力とし、制御信号6309に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号6317_2を出力する。
PAPR削減部6318_1は、IFFT後の信号6317_1、制御信号6309を入力とし、制御信号6309に含まれるPAPR削減に関する情報に基づき、IFFT後の信号6317_1にPAPR削減のための処理を施し、PAPR削減後の信号6319_1を出力する。
PAPR削減部6318_2は、IFFT後の信号6317_2、制御信号6309を入力とし、制御信号6309に含まれるPAPR削減に関する情報に基づき、IFFT後の信号6317_2にPAPR削減のための処理を施し、PAPR削減後の信号6319_2を出力する。
ガードインターバル挿入部6320_1は、PAPR削減後の信号6319_1、制御信号6309を入力とし、制御信号6309に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号6319_1にガードインターバルを挿入し、ガードインターバル挿入後の信号6321_1を出力する。
ガードインターバル挿入部6320_2は、PAPR削減後の信号6319_2、制御信号6309を入力とし、制御信号6309に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号6319_2にガードインターバルを挿入し、ガードインターバル挿入後の信号6321_2を出力する。
P1シンボル挿入部6322は、ガードインターバル挿入後の信号6321_1、ガードインターバル挿入後の信号6321_2、P1シンボル用の送信データ6307を入力とし、P1シンボル用の送信データ6307からP1シンボルの信号を生成し、ガードインターバル挿入後の信号6321_1に対し、P1シンボルを付加し、P1シンボル用処理後の信号6323_1、および、ガードインターバル挿入後の信号6321_2に対し、P1シンボルを付加し、P1シンボル用処理後の信号6323_2を出力する。なお、P1シンボルの信号は、P1シンボル用処理後の信号6323_1、P1シンボル用処理後の信号6323_2両者に付加されていてもよく、また、いずれもか一方に付加されていてもよい。一方に付加されている場合、付加されている信号の付加されている区間では、付加されていない信号には、ベースバンド信号としてゼロの信号が存在することになる。
無線処理部6324_1は、P1シンボル用処理後の信号6323_1を入力とし、周波数変換、増幅等の処理が施され、送信信号6325_1を出力する。そして、送信信号6325_1は、アンテナ6326_1から電波として出力される。
無線処理部6324_2は、P1シンボル用処理後の信号6323_2を入力とし、周波数変換、増幅等の処理が施され、送信信号6325_2を出力する。そして、送信信号6325_2は、アンテナ6326_2から電波として出力される。
次に、DVB−T2システムに対し、規則的にプリコーディング行列を切り替える方法を適用したときの放送局(基地局)の送信信号のフレーム構成、制御情報(P1シンボルおよびP2シンボルにより送信する情報)の伝送方法について、詳しく説明する。
図64は、P1シンボル、P2シンボル、Common PLPを送信後、複数のPLPを送信する場合の周波数−時間軸におけるフレーム構成の一例を示している。図64において、ストリームs1は、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いており、同様にストリームs2も、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いている。したがって、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図64に示すように、区間1は、ストリームs1、ストリームs2を用いてPLP#1のシンボル群6401を伝送しており、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。
区間2は、ストリームs1を用いてPLP#2のシンボル群6402を伝送しており、一つの変調信号を送信することでデータを伝送するものとする。
区間3は、ストリームs1、ストリームs2を用いてPLP#3のシンボル群6403を伝送しており、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。
区間4は、ストリームs1、ストリームs2を用いてPLP#4のシンボル群6404を伝送しており、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
放送局が、図64のように各PLPを送信した場合、図64の送信信号を受信する受信装置では、各PLPの送信方法を知る必要がある。したがって、前述で述べたように、P2シンボルであるL1 Post-Signalling data(図61の6103)を用いて、各PLPの送信方法の情報を伝送する必要がある。以下では、このときのP1シンボルの構成方法、および、P2シンボルの構成方法の一例について説明する。
表3にP1シンボルを用いて送信する制御情報の具体例を示す。
DVB−T2規格では、S1の制御情報(3ビットの情報)により、DVB−T2の規格を用いているかどうか、また、DVB−T2規格を用いている場合、用いている送信方法を受信装置が判断できるようになっている。3ビットのS1情報として、“000”を設定した場合、送信する変調信号が、「DVB−T2規格の一つの変調信号送信」に準拠していることになる。
また、3ビットのS1情報として、“001”を設定した場合、送信する変調信号が、「DVB−T2規格の時空間ブロック符号を用いた送信」に準拠していることになる。
DVB−T2規格では、“010”〜“111”は将来のために「Reserve」となっている。ここで、DVB−T2との互換性があるように本発明を適用するために、3ビットのS1情報として、例えば“010”と設定した場合(“000”“001”以外であればよい。)、送信する変調信号がDVB−T2以外の規格に準拠しているを示すことにし、端末の受信装置は、この情報が“010”であることがわかると、放送局が送信した変調信号がDVB−T2以外の規格に準拠していることを知ることができる。
次に、放送局が送信した変調信号がDVB−T2以外の規格に準拠している場合のP2シンボルの構成方法の例を説明する。最初の例では、DVB−T2規格におけるP2シンボルを利用した方法について説明する。
表4に、P2シンボルのうち、L1 Post-Signalling dataにより送信する、制御情報の第1の例を示す。
SISO: Single-Input Single-Output (一つの変調信号送信、一つのアンテナで受信)
SIMO: Single-Input Multiple-Output(一つの変調信号送信、複数のアンテナで受信)
MISO: Multiple-Input Single-Output(複数の変調信号を複数アンテナで送信、一つのアンテナで受信)
MIMO: Multiple-Input Multiple-Output(複数の変調信号を複数アンテナで送信、複数のアンテナで受信)
表4に示した2ビットの情報である「PLP_MODE」は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための制御情報であり、PLP_MODEの情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報、PLP#2のためのPLP_MODEの情報、PLP#3のためのPLP_MODEの情報、PLP#4のためのPLP_MODEの情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“00”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“01”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」することにより、データが伝送される。“10”と設定した場合、そのPLPは、「規則的にプリコーディング行列を切り替えるプリコーディング方法」を用いて、データが伝送される。“11”と設定した場合、そのPLPは、「プリコーディング行列が固定的なMIMO方式、または、空間多重MIMO伝送方式」を用いて、データが伝送される。
なお、「PLP_MODE」として、“01”〜“11”と設定された場合、放送局が具体的にどのような処理を施したか(例えば、規則的にプリコーディング行列を切り替える方法における具体的な切り替え方法、使用した時空間具ロック符号化方法、プリコーディング行列として使用した行列の構成)を端末に伝送する必要がある。このときの制御情報の構成を含めた、表4とは異なる制御情報の構成方法について以下では説明する。
表5は、P2シンボルのうち、L1 Post-Signalling dataにより送信する、制御情報の表4とは異なる第2の例である。
表5のように、1ビットの情報である「PLP_MODE」、1ビットの情報である「MIMO_MODE」、2ビットの情報である「MIMO_PATTERN#1」、2ビットの情報である「MIMO_PATTER#2」が存在し、これら4つの制御情報は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための情報であり、したがって、これら4つの制御情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#2のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#3のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#4のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“0”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“1”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」、「規則的にプリコーディング行列を切り替えるプリコーディング方法」、「プリコーディング行列が固定的なMIMO方式」、「空間多重MIMO伝送方式」のいずれかの方式で、データが伝送される。
「PLP_MODE」が「1」と設定された場合、「MIMO_MODE」の情報は有効な情報となり、「MIMO_MODE」として、“0”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用しないで、データが伝送される。「MIMO_MODE」として、“1”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用して、データが伝送される。
「PLP_MODE」が「1」、「MIMO_MODE」が「0」と設定された場合、「MIMO_PATTERN#1」の情報は有効な情報となり、「MIMO_PATTERN#1」として、“00”と設定した場合、時空間ブロック符号を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列#1を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列#2を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。(ただし、プリコーディング行列#1とプリコーディング行列#2はことなる行列である。)“11”と設定した場合、空間多重MIMO伝送方式を用いて、データが伝送される。(当然であるが、図49の方式1のプリコーディング行列が選択された、とも解釈することができる。)
「PLP_MODE」が「1」、「MIMO_MODE」が「1」と設定された場合、「MIMO_PATTERN#2」の情報は有効な情報となり、「MIMO_PATTERN#2」として、“00”と設定した場合、プリコーディング行列切り替え方法#1の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列切り替え方法#2の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列切り替え方法#3の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“11”と設定した場合、プリコーディング行列切り替え方法#4の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。ここで、プリコーディング行列切り替え方法#1〜#4はそれぞれ異なる方法となるが、このとき、異なる方法とは、例えば、#Aと#Bが異なる方法とすると、
・#Aに用いる複数のプリコーディング行列と#Bに用いる複数のプリコーディング行列の中に、同一のプリコーディング行列を含むが、周期が異なる、
・#Aには含まれるいるが#Bには含まれていないプリコーディング行列が存在する、
・#Aで使用する複数のプリコーディング行列を、#Bの方法では使用するプリコーディングに含まない
という方法がある。
上述では、表4、表5の制御情報を、P2シンボルのうち、L1 Post-Signalling dataにより送信するものとして説明した。ただし、DVB−T2規格では、P2シンボルとして送信できる情報量に制限がある。したがって、DVB−T2規格におけるP2シンボルで伝送する必要がある情報に加え、表4、表5の情報を加えることで、P2シンボルとして送信できる情報量の制限を超えた場合、図65に示すように、Signalling PLP(6501)を設け、DVB−T2規格以外の規格で必要となる制御情報(一部でもよい、つまり、L1 Post-Signalling dataとSignalling PLPの両者で伝送する)を伝送すればよい。なお、図65では、図61と同様のフレーム構成としているが、このようなフレーム構成に限ったものではなく、図62のL1 Pre-signalling data等のように、Signalling PLPを時間−周波数軸において、特定の時間−特定のキャリアの領域に割り当てるようにしてもよい、つまり、時間−周波数軸において、Signalling PLPをどのように割り当ててもよい。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用い、かつ、DVB−T2規格に対し、互換性を保ちながら、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。
そして、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」を放送局が選択可能としている例で説明したが、これらすべての送信方法が選択可能な送信方法でなくてもよく、例えば、
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
のように、規則的にプリコーディング行列を切り替えるMIMO方式を含むことで、LOS環境で、高速なデータ伝送を行うことができ、かつ、受信装置の受信データ品質を確保することができるという効果を得ることができる。
このとき、上記で述べたようにP1シンボルにおけるS1を設定する必要があるとともに、P2シンボルとして、表4とは異なる制御情報の設定方法(各PLPの伝送方式の設定方法)として、例えば、表6が考えられる。
表6が表4とは異なる点は、「PLP_MODE」を“11”としたときはReserveとしている点である。このように、PLPの伝送方式として、選択可能な伝送方式が上記で示した例のような場合、選択可能な伝送方式の数によって、例えば、表4、表6のPLP_MODEを構成するビット数を大きく、または、小さくすればよい。
表5についても同様で、例えば、MIMO伝送方式として、規則的にプリコーディング行列を切り替えるプリコーディング方法しかサポートしていない場合は、「MIMO_MODE」の制御情報は必要ないことになる。また、「MIMO_PATTER#1」において、例えば、プリコーディング行列が固定的なMIMO方式をサポートしていない場合、「MIMO_PATTER#1」の制御情報を必要としない場合もあり、また、プリコーディング行列が固定的なMIMO方式に用いるプリコーディング行列が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列を設定可能とする場合は、2ビット以上の制御情報としてもよい。
「MIMO_PATTERN#2」について同様に考えることができ、規則的にプリコーディング行列を切り替えるプリコーディング方法としてプリコーディング行列の切り替え方法が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列の切り替え方法を設定可能とする場合は、2ビット以上の制御情報としてもよい。
また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、同様に、制御情報を送信すればよい。このとき、2アンテナを用いて変調信号を送信する場合に加え、4アンテナを用いて変調信号を送信する場合を実施するために、各制御情報を構成するビット数を増やす必要がある場合が発生する。このとき、P1シンボルで制御情報を送信する、P2シンボルで制御情報を送信する、という点は、上記で説明した場合と同様である。
放送局が送信するPLPのシンボル群のフレーム構成について、図64のように時分割で送信する方法を説明したが、以下では、その変形例について説明する。
図66は、図64とは異なる、P1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図66において、「#1」と記載されているシンボルは、図64におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図64におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図64におけるPLP#3のシンボル群のうちの1シンボルを示しており、「#4」と記載されているシンボルは、図64におけるPLP#4のシンボル群のうちの1シンボルを示している。そして、図64と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、一つの変調信号を送信することでデータを伝送するものとする。PLP#3は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#4は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図66において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図66が図64と異なる点は、前述のように、図64では、複数のPLPを時分割に配置する例を示したが、図66では、図64と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在しており、時刻3では、PLP#3のシンボルとPLP#4のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図66では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図66に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。
図67は、図64とは異なるP1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図67における特徴的な部分は、T2フレームにおいて、PLPの伝送方式として、複数アンテナ送信を基本とした場合、「ストリームs1のみ送信する伝送方式」を選択できないという点である。
したがって、図67において、PLP#1のシンボル群6701は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」により、データが伝送されるものとする。PLP#2のシンボル群6702は、「規則的にプリコーディング行列を切り替えるプリコーディング方式」により、データが伝送されるものとする。PLP#3のシンボル群6703は、「時空間ブロック符号」により、データが伝送されるものとする。そして、PLP#3のシンボル群6703以降のT2フレーム内でのPLPシンボル群は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」のいずれかの送信方法により、データが伝送されることになる。
図68は、図66とは異なる、P1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図68において、「#1」と記載されているシンボルは、図67におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図67におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図67におけるPLP#3のシンボル群のうちの1シンボルを示している。そして、図67と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#3は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図68において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図68が図67と異なる点は、前述のように、図67では、複数のPLPを時分割に配置する例を示したが、図68では、図67と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図68では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図68に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。一方で、時刻3のように、ある時刻において、一つのPLPのシンボルのみを割り当ててもよい。つまり、PLPのシンボルを時間―周波数におけるフレーム方法において、どのように割り当ててもよい。
このように、T2フレーム内において、「ストリームs1のみ送信する伝送方式」を用いたPLPが存在しないため、端末が受信する受信信号のダイナミックレンジを抑えることができるため、良好な受信品質を得る可能性を高くすることができという効果を得ることができる。
なお、図68で説明するにあたって、送信方法として、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」をいずれかを選択する例で説明したが、これらの送信方法をすべて選択可能であるとする必要がなく、例えば、
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
としてもよい。
上述では、T2フレーム内に複数のPLPが存在する場合について説明したが、以降では、T2フレーム内に一つのPLPのみ存在する場合について説明する。
図69は、T2フレーム内に一つのみPLPが存在する場合の、時間―周波数軸におけるストリームs1およびs2のフレーム構成の一例を示している。図69において、「制御シンボル」と記載しているが、これは、上述で説明したP1シンボル、および、P2シンボル等のシンボルを意味している。そして、図69では、区間1を用いて第1のT2フレームを送信しており、同様に、区間2を用いて第2のT2フレームを送信しており、区間3を用いて第3のT2フレームを送信しており、区間4を用いて第4のT2フレームを送信している。
また、図69において、第1のT2フレームでは、PLP#1−1のシンボル群6801を送信しており、送信方法としては、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」を選択している。
第2のT2フレームでは、PLP#2−1のシンボル群6802を送信しており、送信方法としては、「一つの変調信号を送信する方法」を選択している。
第3のT2フレームでは、PLP#3−1のシンボル群6803を送信しており、送信方法としては、「規則的にプリコーディング行列を切り替えるプリコーディング方式」を選択している。
第4のT2フレームでは、PLP#4−1のシンボル群6804を送信しており、送信方法としては、「時空間ブロック符号」を選択している。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図69において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
このようにすることで、PLPごとに、データの伝送速度、端末のデータ受信品質を考慮して、送信方法を設定できるので、データの伝送速度の向上とデータの受信品質の確保の両立を図ることが可能となる。なお、P1シンボル、P2シンボル(場合によっては、Signalling PLP)の伝送方法等の制御情報の構成方法の例は、上記の表3から表6のように構成すれば、同様に実施することができる。異なる点は、図64等のフレーム構成では、一つのT2フレームに、複数のPLPを有しているため、複数のPLPに対する伝送方法等の制御情報を必要としていたが、図69のフレーム構成の場合、一つのT2フレームには、一つのPLPしか存在しないため、その一つのPLPに対する伝送方法等の制御情報のみ必要となるという点である。
上述では、P1シンボル、P2シンボル(場合によっては、Signalling PLP)を用いて、PLPの伝送方法に関する情報を伝送する方法について述べたが、以降では、特に、P2シンボルを用いずにPLPの伝送方法に関する情報を伝送する方法について説明する。
図70は、放送局がデータを伝送する相手である端末が、DVB−T2規格でない規格に対応している場合の、時間−周波数軸におけるフレーム構成である。図70において、図61と同様に動作するものについては、同一符号を付している。図70のフレームは、P1 Signalling data(6101)、第1 Signalling data(7001)、第2 Signalling data(7002)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されている(PLP:Physical Layer Pipe)。このように、P1 Signalling data(6101)、第1 Signalling data(7001)、第2 Signalling data(7002)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されているフレームが一つのフレームの単位となっている。
P1 Signalling data(6101)により、受信装置が信号検出、周波数同期(周波数オフセット推定も含む)を行うためのシンボルであると同時に、この場合、DVB−T2規格のフレームであるかどうかを識別するためのデータ、例えば、表3で示したS1により、DVB−T2規格の信号であること/信号でないことを伝送する必要がある。
第1 Signalling data(7001)により、例えば、送信フレームで使用するガードインターバルの情報、PAPR(Peak to Average Power Ratio)の方法に関する情報、第2 Signalling dataを伝送する際の変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、第2 Signalling dataのサイズおよび情報サイズの情報、パイロットパターンの情報、セル(周波数領域)固有番号の情報、ノーマルモードおよび拡張モードのいずれの方式を用いているかの情報等を伝送する方法が考えられる。このとき、第1 Signalling data(7001)は、DVB−T2規格に準拠したデータを必ずしも伝送する必要はない。
第2 Signalling data(7002)により、例えば、PLPの数の情報、使用する周波数領域に関する情報、各PLPの固有番号の情報、各PLPを伝送するのに使用する変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、各PLPの送信するブロック数の情報等を伝送する。
図70のフレーム構成では、第1 Signalling data(7001)、第2 Signalling data(7002)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は時分割で送信されているように記載いるが、実際は、同一時刻に2種類以上の信号が存在している。その例を図71に示す。図71に示すように、同一時刻に、第1 Signalling data、第2 Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
図72は、DVB−T2とは異なる規格における(例えば、放送局)の送信装置に対し、これまでに説明してきた規則的にプリコーディング行列を切り替える送信方法を適用した送信装置の構成の一例を示している。図72において、図63と同様に動作するものについては、同一符号を付しており、その動作についての説明は、上述と同様となる。制御信号生成部6308は、第1、第2 Signalling data用の送信データ7201、P1シンボル用の送信データ6307を入力とし、図70における各シンボル群の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号6309として出力する。
制御シンボル信号生成部7202は、第1、第2 Signalling data用の送信データ7201、制御信号6309を入力とし、制御信号6309に含まれる第1、第2 Signalling dataの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、第1、第2 Signalling dataの(直交)ベースバンド信号7203を出力する。
次に、DVB−T2とは異なる規格のシステムに対し、規則的にプリコーディング行列を切り替える方法を適用したときの放送局(基地局)の送信信号のフレーム構成、制御情報(P1シンボルおよび、第1、第2 Signalling dataにより送信する情報)の伝送方法について、詳しく説明する。
図64は、P1シンボル、第1、第2 Signalling data、Common PLPを送信後、複数のPLPを送信する場合の周波数−時間軸におけるフレーム構成の一例を示している。図64において、ストリームs1は、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いており、同様にストリームs2も、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いている。したがって、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図64に示すように、区間1は、ストリームs1、ストリームs2を用いてPLP#1のシンボル群6401を伝送しており、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。
区間2は、ストリームs1を用いてPLP#2のシンボル群6402を伝送しており、一つの変調信号を送信することでデータを伝送するものとする。
区間3は、ストリームs1、ストリームs2を用いてPLP#3のシンボル群6403を伝送しており、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。
区間4は、ストリームs1、ストリームs2を用いてPLP#4のシンボル群6404を伝送しており、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
放送局が、図64のように各PLPを送信した場合、図64の送信信号を受信する受信装置では、各PLPの送信方法を知る必要がある。したがって、前述で述べたように、第1、第2 Signalling dataを用いて、各PLPの送信方法の情報を伝送する必要がある。以下では、このときのP1シンボルの構成方法、および、第1、第2 Signalling dataの構成方法の一例について説明する。表3にP1シンボルを用いて送信する制御情報の具体例は表3のとおりである。
DVB−T2規格では、S1の制御情報(3ビットの情報)により、DVB−T2の規格を用いているかどうか、また、DVB−T2規格を用いている場合、用いている送信方法を受信装置が判断できるようになっている。3ビットのS1情報として、“000”を設定した場合、送信する変調信号が、「DVB−T2規格の一つの変調信号送信」に準拠していることになる。
また、3ビットのS1情報として、“001”を設定した場合、送信する変調信号が、「DVB−T2規格の時空間ブロック符号を用いた送信」に準拠していることになる。
DVB−T2規格では、“010”〜“111”は将来のために「Reserve」となっている。ここで、DVB−T2との互換性があるように本発明を適用するために、3ビットのS1情報として、例えば“010”と設定した場合(“000”“001”以外であればよい。)、送信する変調信号がDVB−T2以外の規格に準拠しているを示すことにし、端末の受信装置は、この情報が“010”であることがわかると、放送局が送信した変調信号がDVB−T2以外の規格に準拠していることを知ることができる。
次に、放送局が送信した変調信号がDVB−T2以外の規格に準拠している場合の第1、第2 Signalling dataの構成方法の例を説明する。第1、第2 Signalling dataの制御情報の第1の例は表4のとおりである。
表4に示した2ビットの情報である「PLP_MODE」は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための制御情報であり、PLP_MODEの情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報、PLP#2のためのPLP_MODEの情報、PLP#3のためのPLP_MODEの情報、PLP#4のためのPLP_MODEの情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“00”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“01”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」することにより、データが伝送される。“10”と設定した場合、そのPLPは、「規則的にプリコーディング行列を切り替えるプリコーディング方法」を用いて、データが伝送される。“11”と設定した場合、そのPLPは、「プリコーディング行列が固定的なMIMO方式、または、空間多重MIMO伝送方式」を用いて、データが伝送される。
なお、「PLP_MODE」として、“01”〜“11”と設定された場合、放送局が具体的にどのような処理を施したか(例えば、規則的にプリコーディング行列を切り替える方法における具体的な切り替え方法、使用した時空間具ロック符号化方法、プリコーディング行列として使用した行列の構成)を端末に伝送する必要がある。このときの制御情報の構成を含めた、表4とは異なる制御情報の構成方法について以下では説明する。
第1、第2 Signalling dataの制御情報の第2の例は表5のとおりである。
表5のように、1ビットの情報である「PLP_MODE」、1ビットの情報である「MIMO_MODE」、2ビットの情報である「MIMO_PATTERN#1」、2ビットの情報である「MIMO_PATTER#2」が存在し、これら4つの制御情報は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための情報であり、したがって、これら4つの制御情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#2のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#3のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#4のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“0”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“1”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」、「規則的にプリコーディング行列を切り替えるプリコーディング方法」、「プリコーディング行列が固定的なMIMO方式」、「空間多重MIMO伝送方式」のいずれかの方式で、データが伝送される。
「PLP_MODE」が「1」と設定された場合、「MIMO_MODE」の情報は有効な情報となり、「MIMO_MODE」として、“0”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用しないで、データが伝送される。「MIMO_MODE」として、“1”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用して、データが伝送される。
「PLP_MODE」が「1」、「MIMO_MODE」が「0」と設定された場合、「MIMO_PATTERN#1」の情報は有効な情報となり、「MIMO_PATTERN#1」として、“00”と設定した場合、時空間ブロック符号を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列#1を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列#2を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。(ただし、プリコーディング行列#1とプリコーディング行列#2はことなる行列である。)“11”と設定した場合、空間多重MIMO伝送方式を用いて、データが伝送される。(当然であるが、図49の方式1のプリコーディング行列が選択された、とも解釈することができる。)
「PLP_MODE」が「1」、「MIMO_MODE」が「1」と設定された場合、「MIMO_PATTERN#2」の情報は有効な情報となり、「MIMO_PATTERN#2」として、“00”と設定した場合、プリコーディング行列切り替え方法#1の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列切り替え方法#2の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列切り替え方法#3の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“11”と設定した場合、プリコーディング行列切り替え方法#4の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。ここで、プリコーディング行列切り替え方法#1〜#4はそれぞれ異なる方法となるが、このとき、異なる方法とは、例えば、#Aと#Bが異なる方法とすると、
・#Aに用いる複数のプリコーディング行列と#Bに用いる複数のプリコーディング行列の中に、同一のプリコーディング行列を含むが、周期が異なる、
・#Aには含まれるいるが#Bには含まれていないプリコーディング行列が存在する、
・#Aで使用する複数のプリコーディング行列を、#Bの方法では使用するプリコーディングに含まない
という方法がある。
上述では、表4、表5の制御情報を、第1、第2 Signalling dataにより送信するものとして説明した。この場合、制御情報を伝送するために、特に、PLPを利用する必要がないという利点がある。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用い、かつ、DVB−T2規格との識別が可能でありながら、DVB−T2とは異なる規格に対し、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。
そして、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」を放送局が選択可能としている例で説明したが、これらすべての送信方法が選択可能な送信方法でなくてもよく、例えば、
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
のように、規則的にプリコーディング行列を切り替えるMIMO方式を含むことで、LOS環境で、高速なデータ伝送を行うことができ、かつ、受信装置の受信データ品質を確保することができるという効果を得ることができる。
このとき、上記で述べたようにP1シンボルにおけるS1を設定する必要があるとともに、第1、第2 Signalling dataとして、表4とは異なる制御情報の設定方法(各PLPの伝送方式の設定方法)として、例えば、表6が考えられる。
表6が表4とは異なる点は、「PLP_MODE」を“11”としたときはReserveとしている点である。このように、PLPの伝送方式として、選択可能な伝送方式が上記で示した例のような場合、選択可能な伝送方式の数によって、例えば、表4、表6のPLP_MODEを構成するビット数を大きく、または、小さくすればよい。
表5についても同様で、例えば、MIMO伝送方式として、規則的にプリコーディング行列を切り替えるプリコーディング方法しかサポートしていない場合は、「MIMO_MODE」の制御情報は必要ないことになる。また、「MIMO_PATTER#1」において、例えば、プリコーディング行列が固定的なMIMO方式をサポートしていない場合、「MIMO_PATTER#1」の制御情報を必要としない場合もあり、また、プリコーディング行列が固定的なMIMO方式に用いるプリコーディング行列が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列を設定可能とする場合は、2ビット以上の制御情報としてもよい。
「MIMO_PATTERN#2」について同様に考えることができ、規則的にプリコーディング行列を切り替えるプリコーディング方法としてプリコーディング行列の切り替え方法が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列の切り替え方法を設定可能とする場合は、2ビット以上の制御情報としてもよい。
また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、同様に、制御情報を送信すればよい。このとき、2アンテナを用いて変調信号を送信する場合に加え、4アンテナを用いて変調信号を送信する場合を実施するために、各制御情報を構成するビット数を増やす必要がある場合が発生する。このとき、P1シンボルで制御情報を送信する、第1、第2 Signalling dataで制御情報を送信する、という点は、上記で説明した場合と同様である。
放送局が送信するPLPのシンボル群のフレーム構成について、図64のように時分割で送信する方法を説明したが、以下では、その変形例について説明する。
図66は、図64とは異なる、P1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。
図66において、「#1」と記載されているシンボルは、図64におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図64におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図64におけるPLP#3のシンボル群のうちの1シンボルを示しており、「#4」と記載されているシンボルは、図64におけるPLP#4のシンボル群のうちの1シンボルを示している。そして、図64と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、一つの変調信号を送信することでデータを伝送するものとする。PLP#3は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#4は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図66において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図66が図64と異なる点は、前述のように、図64では、複数のPLPを時分割に配置する例を示したが、図66では、図64と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在しており、時刻3では、PLP#3のシンボルとPLP#4のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図66では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図66に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。
図67は、図64とは異なるP1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図67における特徴的な部分は、T2フレームにおいて、PLPの伝送方式として、複数アンテナ送信を基本とした場合、「ストリームs1のみ送信する伝送方式」を選択できないという点である。
したがって、図67において、PLP#1のシンボル群6701は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」により、データが伝送されるものとする。PLP#2のシンボル群6702は、「規則的にプリコーディング行列を切り替えるプリコーディング方式」により、データが伝送されるものとする。PLP#3のシンボル群6703は、「時空間ブロック符号」により、データが伝送されるものとする。そして、PLP#3のシンボル群6703以降の単位フレーム内でのPLPシンボル群は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」のいずれかの送信方法により、データが伝送されることになる。
図68は、図66とは異なる、P1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。
図68において、「#1」と記載されているシンボルは、図67におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図67におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図67におけるPLP#3のシンボル群のうちの1シンボルを示している。そして、図67と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#3は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図68において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図68が図67と異なる点は、前述のように、図67では、複数のPLPを時分割に配置する例を示したが、図68では、図67と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図68では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図68に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。一方で、時刻3のように、ある時刻において、一つのPLPのシンボルのみを割り当ててもよい。つまり、PLPのシンボルを時間―周波数におけるフレーム方法において、どのように割り当ててもよい。
このように、単位フレーム内において、「ストリームs1のみ送信する伝送方式」を用いたPLPが存在しないため、端末が受信する受信信号のダイナミックレンジを抑えることができるため、良好な受信品質を得る可能性を高くすることができという効果を得ることができる。
なお、図68で説明するにあたって、送信方法として、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」をいずれかを選択する例で説明したが、これらの送信方法をすべて選択可能であるとする必要がなく、例えば、
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
としてもよい。
上述では、単位フレーム内に複数のPLPが存在する場合について説明したが、以降では、単位フレーム内に一つのPLPのみ存在する場合について説明する。
図69は、単位フレーム内に一つのみPLPが存在する場合の、時間―周波数軸におけるストリームs1およびs2のフレーム構成の一例を示している。
図69において、「制御シンボル」と記載しているが、これは、上述で説明したP1シンボル、および、第1、第2 Signalling data等のシンボルを意味している。そして、図69では、区間1を用いて第1の単位フレームを送信しており、同様に、区間2を用いて第2の単位フレームを送信しており、区間3を用いて第3の単位フレームを送信しており、区間4を用いて第4の単位フレームを送信している。
また、図69において、第1の単位フレームでは、PLP#1−1のシンボル群6801を送信しており、送信方法としては、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」を選択している。
第2の単位フレームでは、PLP#2−1のシンボル群6802を送信しており、送信方法としては、「一つの変調信号を送信する方法」を選択している。
第3の単位フレームでは、PLP#3−1のシンボル群6803を送信しており、送信方法としては、「規則的にプリコーディング行列を切り替えるプリコーディング方式」を選択している。
第4の単位フレームでは、PLP#4−1のシンボル群6804を送信しており、送信方法としては、「時空間ブロック符号」を選択している。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図69において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
このようにすることで、PLPごとに、データの伝送速度、端末のデータ受信品質を考慮して、送信方法を設定できるので、データの伝送速度の向上とデータの受信品質の確保の両立を図ることが可能となる。なお、P1シンボル、第1、第2 Signalling dataの伝送方法等の制御情報の構成方法の例は、上記の表3から表6のように構成すれば、同様に実施することができる。異なる点は、図64等のフレーム構成では、一つの単位フレームに、複数のPLPを有しているため、複数のPLPに対する伝送方法等の制御情報を必要としていたが、図69のフレーム構成の場合、一つの単位フレームには、一つのPLPしか存在しないため、その一つのPLPに対する伝送方法等の制御情報のみ必要となるという点である。
本実施の形態では、規則的にプリコーディング行列を切り替えるプリコーディング方法を、DVB規格を用いたシステムに適用した場合の適用方法について述べた。このとき、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
また、本実施の形態では、制御情報を特別な呼び方をしているが、呼び方は、本発明に影響を与えるものではない。
(実施の形態A2)
本実施の形態では、実施の形態A1で説明した、DVB−T2規格を用いた通信システムに、規則的にプリコーディング行列を切り替える方法を適用した方法を用いた時の受信方法、および、受信装置の構成について詳しく説明する。
図73は、図63の放送局の送信装置が、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときの、端末の受信装置の構成の一例を示しており、図7、図56と同様に動作するものについては同一符号を付している。
図73において、P1シンボル検出、復号部7301は、放送局が送信した信号を受信し、信号処理後の信号704_X、704_Yを入力とし、P1シンボルを検出することで、信号検出、時間周波数同期を行うと同時に、P1シンボルに含まれる制御情報を(復調、および、誤り訂正復号を行うことで)得、P1シンボル制御情報7302を出力する。
OFDM方式関連処理部5600_X、および、5600_Yは、P1シンボル制御情報7302を入力としており、この情報に基づき、OFDM方式のための信号処理方法を変更する。(実施の形態A1に記載したように、放送局が送信する信号の伝送方法の情報が、P1シンボルに含まれているからである。)
P2シンボル(Signalling PLPを含む場合もある。)復調部7303は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、信号処理を行い、復調(誤り訂正復号を含む)を行い、P2シンボル制御情報7304を出力する。
制御情報生成部7305は、P1シンボル制御情報7302、および、P2シンボル制御情報7304を入力とし、(受信動作に関係する)制御情報をたばね、制御信号7306として出力する。そして、制御信号7306は、図73に示したように、各部に入力されることになる。
信号処理部711は、信号706_1、706_2、708_1、708_2、704_X、704_Y、および、制御信号7306を入力とし、制御信号7306に含まれている、各PLPを伝送するために用いた伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ712を出力する。
このとき、PLPを伝送するために、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかの伝送方式を用いている場合、(数41)の式(41)、(数153)の式(143)の関係式を用いて、信号処理部711は、復調処理を行えばよい。なお、チャネル行列(H)は、チャネル変動推定部(705_1、705_2、707_1、707_2)の出力結果から得ることができ、プリコーディング行列(FまたはW)は、用いた伝送方式により、その行列の構成は異なる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法を用いた場合、都度、用いているプリコーディング行列を切り替え、復調することになる。また、時空間ブロック符号を用いているときも、チャネル推定値、受信(ベースバンド)信号を用いて、復調を行うことになる。
図74は、図72の放送局の送信装置が、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときの、端末の受信装置の構成の一例を示しており、図7、図56、図73と同様に動作するものについては同一符号を付している。
図74の受信装置と図73の受信装置の異なる点は、図73の受信装置は、DVB−T2規格とそれ以外の規格の信号を受信し、データを得ることができるに対し、図74の受信装置は、DVB−T2規格以外の信号のみ受信し、データを得ることができる点である。
図74において、P1シンボル検出、復号部7301は、放送局が送信した信号を受信し、信号処理後の信号704_X、704_Yを入力とし、P1シンボルを検出することで、信号検出、時間周波数同期を行うと同時に、P1シンボルに含まれる制御情報を(復調、および、誤り訂正復号を行うことで)得、P1シンボル制御情報7302を出力する。
OFDM方式関連処理部5600_X、および、5600_Yは、P1シンボル制御情報7302を入力としており、この情報に基づき、OFDM方式のための信号処理方法を変更する。(実施の形態A1に記載したように、放送局が送信する信号の伝送方法の情報が、P1シンボルに含まれているからである。)
第1、第2 Signalling data復調部7401は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、信号処理を行い、復調(誤り訂正復号を含む)を行い、第1、第2 Signalling data制御情報7402を出力する。
制御情報生成部7305は、P1シンボル制御情報7302、および、第1、第2 Signalling data制御情報7402を入力とし、(受信動作に関係する)制御情報をたばね、制御信号7306として出力する。そして、制御信号7306は、図73に示したように、各部に入力されることになる。
信号処理部711は、信号706_1、706_2、708_1、708_2、704_X、704_Y、および、制御信号7306を入力とし、制御信号7306に含まれている、各PLPを伝送するために用いた伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ712を出力する。
このとき、PLPを伝送するために、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかの伝送方式を用いている場合、(数41)の式(41)、(数153)の式(143)の関係式を用いて、信号処理部711は、復調処理を行えばよい。なお、チャネル行列(H)は、チャネル変動推定部(705_1、705_2、707_1、707_2)の出力結果から得ることができ、プリコーディング行列(FまたはW)は、用いた伝送方式により、その行列の構成は異なる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法を用いた場合、都度、用いているプリコーディング行列を切り替え、復調することになる。また、時空間ブロック符号を用いているときも、チャネル推定値、受信(ベースバンド)信号を用いて、復調を行うことになる。
図75は、DVB−T2規格に対応し、かつ、DVB−T2以外の規格に対応した、端末の受信装置の構成を示しており、図7、図56、図73と同様に動作するものについては同一符号を付している。
図75の受信装置と図73、図74の受信装置の異なる点は、図75の受信装置は、DVB−T2規格とそれ以外の規格の信号の両者に対し、復調が可能となるように、P2シンボル、または、第1、第2 Signalling data復調部7501を具備している点である。
第1、第2 Signalling data復調部7501は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、受信した信号が、DVB−T2規格に対応した信号か、または、それ以外の規格に対応した信号なのか、を判断し(例えば、表3により判断が可能である。)、信号処理を行い、復調(誤り訂正復号を含む)を行い、受信信号が対応している規格が何であるかの情報を含んだ制御情報7502を出力する。それ以外の部分については、図73、図74と同様の動作となる。
以上のように、本実施の形態で示したような受信装置の構成とすることで、実施の形態A1で記載した放送局の送信装置が送信した信号を受信し、適切な信号処理を施すことで、受信品質の高いデータを得ることができる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法の信号を受信したときは、LOS環境において、データの伝送効率の向上とデータ受信品質の向上の両立を実現することができる。
なお、本実施の形態において、実施の形態A1で述べた放送局の送信方法に対応する受信装置の構成について説明したため、受信アンテナ数を2本のときの受信装置の構成について説明したが、受信装置のアンテナ数は2本に限ったものではなく、3本以上としても同様に実施することができ、このとき、ダイバーシチゲインが向上するため、データの受信品質を向上させることができる。また、放送局の送信装置の送信アンテナ数を3本以上とし、送信変調信号数を3以上としたときも、端末の受信装置の受信アンテナ数を増加させることで、同様に実施することができる。このとき、送信方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用していることが望ましい。
また、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
(実施の形態A3)
実施の形態A1で記載した、DVB−T2規格に、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したシステムにおいて、L1 Pre-Signallingで、パイロットの挿入パターンを指定する制御情報が存在する。本実施の形態では、L1 pre-signallingでパイロット挿入パターンを変更するときの、規則的にプリコーディング行列を切り替えるプリコーディング方法の適用方法について説明する。
図76、図77は、同一周波数帯域を用いて、複数の変調信号を複数アンテナから送信する送信方法を用いているときの、DVB−T2規格の周波数―時間軸におけるフレーム構成の一例を示している。図76、図77において、横軸は周波数、つまり、キャリア番号を示しており、縦軸は、時間を示しており、(A)は、これまで説明した実施の形態における、変調信号z1のフレーム構成、(B)は、これまで説明した実施の形態における、変調信号z2のフレーム構成を示している。キャリア番号として、「f0、f1、f2、・・・」、時間として、「t1、t2、t3、・・・」というインデックスを付している。そして、図76、図77において、同一キャリア番号、同一時間のシンボルは、同一周波数、同一時刻に存在しているシンボルとなる。
図76、図77は、DVB−T2規格におけるパイロットシンボルの挿入位置の例である。(DVB−T2規格において、複数アンテナを用いて複数の変調信号を送信する場合、パイロットの挿入位置に関する方法は、8種類存在するが、図76、図77は、そのうちの2つを示している。)図76、図77において、パイロットのためのシンボル、データ伝送のためのシンボルの2種類のシンボルが記載されている。他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディング方法、または、プリコーディング行列が固定的なプリコーディング方法を用いているとき、変調信号z1のデータ伝送のためのシンボルは、ストリームs1とストリームs2の重み付け後合成後のシンボルとなり、また、変調信号z2のデータ伝送のためのシンボルも、ストリームs1とストリームs2の重み付け合成後のシンボルとなる。時空間ブロック符号、空間多重MIMO伝送方式を用いている場合、変調信号z1のデータ伝送のためのシンボルは、ストリームs1またはストリームs2のいずれかのシンボルとなり、また、変調信号z2のデータ伝送のためのシンボルも、ストリームs1またはストリームs2のいずれかのシンボルとなる。図76、図77において、パイロットのためのシンボルには、「PP1」または「PP2」のインデックスのいずれかが付されており、「PP1」と「PP2」では異なる構成方法のパイロットシンボルとなる。前述でも述べたように、DVB−T2規格では、8種類のパイロット挿入方法(パイロットシンボルのフレームにおける挿入頻度が異なる)のいずれかの挿入方法を放送局が指定することができるようになっており、図76、図77は、前述の8種類のうちの2種類のパイロット挿入方法を示している。そして、放送局が8種類のうちから選択したパイロット挿入方法に関する情報は、実施の形態A1で述べた、P2シンボルのうちのL1 Pre-Signalling dataとして、送信相手である端末に、伝送される。
次に、パイロット挿入方法に伴う、規則的にプリコーディング行列を切り替えるプリコーディング方法の適用方法について説明する。例として、規則的にプリコーディング行列を切り替えるプリコーディング方法における用意する複数の異なるプリコーディング行列Fを10種類とし、プリコーディング行列をF[0],F[1],F[2],F[3],F[4],F[5],F[6],F[7],F[8],F[9]とあらわすものとする。図76の周波数―時間軸におけるフレーム構成において、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときのプリコーディング行列の割り当てを行ったときの状況を図78に、図77の周波数−時間におけるフレーム構成において、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときのプリコーディング行列の割り当てを行ったときの状況を図79に示す。例えば、図78の(A)の変調信号z1のフレーム構成、(B)の変調信号z2のフレーム構成、いずれにおいても、f1,t1のシンボルにおいて「#1」と記載されているが、これは、f1,t1のシンボルは、F[1]のプリコーディング行列を用いてプリコーディングが行われることを意味している。したがって、図78、図79において、キャリアfx(x=0、1、2、・・・)、ty(y=1、2、3、・・・)のシンボルにおいて「#Z」と記載されていた場合、fx,tyのシンボルは、F[Z]のプリコーディング行列を用いてプリコーディングが行われることを意味している。
当然であるが、図78、図79の周波数―時間軸におけるフレーム構成において、パイロットシンボルの挿入方法(挿入間隔)は異なる。また、パイロットシンボルにたいしては、規則的なプリコーディング行列を切り替えるプリコーディング方法は適用しない。このため、図78、図79において、ともに同一周期(規則的にプリコーディング行列を切り替えるプリコーディング方法として用意する異なるプリコーディング行列の数)の規則的にプリコーディング行列を切り替えるプリコーディング方法を適用しても、図78、図79からわかるように、図78,図79において、同一キャリア、同一時間のシンボルでも、割り当てられるプリコーディング行列は異なる場合が発生する。例えば、図78のf5,t2のシンボルは、「#7」と示されており、F[7]でプリコーディング行列によりプリコーディングが行われることになる。一方、図79のf5,t2のシンボルは、「#8」と示されており、F[8]でプリコーディング行列によりプリコーディングが行われることになる。
したがって、L1 Pre-Signalling dataにより、パイロットパターン(パイロット挿入方法)を示す制御情報を放送局は送信することになるが、このパイロットパターンを示す制御情報は、パイロット挿入方法を示すと同時に、表4または表5の制御情報により、放送局がPLPを伝送する伝送方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を選択した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を示すようにしてもよい。したがって、放送局が送信した変調信号を受信する端末の受信装置は、L1 Pre-Signnaling dataにおけるパイロットパターンを示す制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を知ることができる。(このとき、表4または表5の制御情報により、放送局がPLPを伝送する伝送方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を選択していることが前提となる。)なお、ここでは、L1 Pre-Signalling dataを用いて説明しているが、P2シンボルが存在しない図70のフレーム構成の場合は、パイロットパターン、および、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を示す制御情報は、第1、第2 Signalling dataに存在することになる。
以下では、さらなる別の例を説明する。例えば、表2のように、変調方式が指定されると同時に規則的にプリコーディング行列を切り替えるプリコーディング方法で使用するプリコーディング行列が決定される場合、上述の説明と同様に考えることができ、P2シンボルの、パイロットパターンの制御情報とPLPの伝送方法の制御情報と変調方式の制御情報のみを伝送することで、端末の受信装置は、これらの制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法を推定することができる。同様に、表1Bのように、変調方式および誤り訂正符号の方法が指定されると同時に規則的にプリコーディング行列を切り替えるプリコーディング方法で使用するプリコーディング行列が決定される場合、P2シンボルの、パイロットパターンの制御情報とPLPの伝送方法の制御情報と変調方式の制御情報、誤り訂正符号の方法のみを伝送することで、端末の受信装置は、これらの制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法を推定することができる。
しかし、表1B、表2と異なり、変調方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかを選択できる(例えば、周期が異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる、または、プリコーディング行列自身が異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる)、または、変調方式・誤り訂正方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替える方法のいずれかを選択できる、または、誤り訂正方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる場合、表5のように、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列切り替え方法を伝送することになるが、これに加え、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法に関する情報を伝送してもよい。
そのときの、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法に関する情報に関する制御情報の構成例を表7に示す。
例えば、放送局の送信装置が、パイロットの挿入パターンとして、図76を選択したものとし、かつ、規則的にプリコーディング行列を切り替えるプリコーディング方法として、Aという方法を選択したものとする。このとき、放送局の送信装置は、プリコーディング行列の(周波数―時間軸における)割り当て方法として、図78,図80のいずれかを選択可能であるとする。例えば、放送局の送信装置が、図78を選択した場合、表7の「MATRIX_FRAME_ARRANGEMENT」を「00」と設定し、図80を選択した場合、表7の「MATRIX_FRAME_ARRANGEMENT」を「01」と設定するものとする。そして、端末の受信装置は、表7の制御情報を得ることで、プリコーディング行列の(周波数―時間軸における)割り当て方法を知ることができる。なお、表7の制御情報は、P2シンボルにより伝送することが可能であり、また、第1、第2、Signalling dataにより、伝送することも可能である。
以上のように、パイロット挿入方法に基づいた、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の割り当て方法を実現し、かつ、その割り当て方法の情報を的確に送信相手に伝送することで、送信相手である端末の受信装置は、データの伝送効率の向上と、データの受信品質の向上の両立を図ることができるという効果を得ることができる。
なお、本実施の形態において、放送局の送信信号数を2とした場合を説明したが、放送局の送信装置の送信アンテナ数を3本以上とし、送信変調信号数を3以上としたときも、同様に実施することができる。また、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
(実施の形態A4)
本実施の形態では、規則的にプリコーディング行列を切り替えるプリコーディング方法において、データの受信品質を向上させるためのレペティション(repetition)方法について述べる。
規則的にプリコーディング行列を切り替えるプリコーディング方法を適用した送信装置の構成は、図3、図4、図13、図40、図53に示したとおりであるが、本実施の形態では、規則的にプリコーディング行列を切り替えるプリコーディング方法に対し、レペティションを適用した場合の応用例について説明する。
図81は、レペティション適用時の規則的にプリコーディング行列を切り替えるプリコーディング方法の信号処理部の構成の一例を示している。図81は、図53で考えた場合、信号処理部5308に相当する。
図81のベースバンド信号8101_1は、図53のベースバンド信号5307_1に相当し、マッピング後のベースバンド信号であり、ストリームs1のベースバンド信号となる。同様に、図81のベースバンド信号8101_2は、図53のベースバンド信号5307_2に相当し、マッピング後のベースバンド信号であり、ストリームs2のベースバンド信号となる。
信号処理部(複製部)8102_1は、ベースバンド信号8101_1、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_1が、時間軸に対し、s11、s12、s13、s14、・・・の信号となっている場合、信号処理部(複製部)8102_1は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_1の出力、つまり、レベティション後のベースバンド信号8103_1は、時間軸に対し、s11、s11、s11、s11のようにs11を4個出力し、その後、s12、s12、s12、s12のようにs12を4個出力し、その後、s13、s13、s13、s13、s14、s14、s14、s14、・・・と出力する。
信号処理部(複製部)8102_2は、ベースバンド信号8101_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_2が、時間軸に対し、s21、s22、s23、s24、・・・の信号となっている場合、信号処理部(複製部)8102_2は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_2の出力、つまり、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個出力し、その後、s22、s22、s22、s22のようにs22を4個出力し、その後、s23、s23、s23、s23、s24、s24、s24、s24、・・・と出力する。
重み付け合成部(プリコーディング演算部)8105は、レベティション後のベースバンド信号8103_1、8103_2、制御信号8104を入力とし、制御信号8104に含まれている規則的にプリコーディング行列を切り替えるプリコーディング方法の情報に基づくプリコーディングを施す、つまり、レベティション後のベースバンド信号8103_1、8103_2に対し、重み付け合成を行い、プリコーディング後のベースバンド信号8106_1(ここでは、z1(i)とあらわす。)、プリコーディング後のベースバンド信号8106_2(ここでは、z2(i)とあらわす。)を出力する(ただし、iは、(時間、または、周波数の)順番をあらわす)
レベティション後のベースバンド信号8103_1、8103_2をそれぞれ、y1(i)、y2(i)、プリコーディング行列をF(i)とすると、以下の関係が成り立つ。
ただし、規則的にプリコーディング行列を切り替えるプリコーディング方法のために用意するN(Nは2以上の整数)個のプリコーディング行列をF[0], F[1], F[2], F[3], ・・・, F[N-1]とすると、式(475)において、プリコーディング行列をF(i)は、F[0], F[1], F[2], F[3], ・・・, F[N-1]のいずれかを用いるものとする。
ここで、例えば、iが0、1、2、3において、y1(i)は、4個の複製ベースバンド信号s11、s11、s11、s11であり、y2(i)は、4個の複製ベースバンド信号s21、s21、s21、s21であるものとする。すると、以下の条件が成立することが重要となる。
以上を一般化して考える。レペティション回数をK回とし、iがg、g、g,・・・、gK−1(つまり、g jは0からK−1の整数)において、y1(i)は、s11であるものとする。すると、以下の条件が成立することが重要となる。
同様に、レペティション回数をK回とし、iがh、h、h,・・・、hK−1(つまり、h jは0からK−1の整数)において、y2(i)は、s21であるものとする。すると、以下の条件が成立することが重要となる。
このとき、g=hが成立すしてもよいし、成立しなくてもよい。このようにすることで、レペティションすることにより発生した同一のストリームを異なるプリコーディング行列を利用することで、伝送することになるので、データの受信品質が向上するという効果を得ることができる。
なお、本実施の形態において、放送局の送信信号数を2とした場合を説明したが、放送局の送信装置の送信アンテナ数を3本以上とし、送信変調信号数を3以上としたときも、同様に実施することができる。送信信号数をQとしたとき、レペティション回数をK回とし、iがg、g、g,・・・、gK−1(つまり、g jは0からK−1の整数)において、yb(i)は、sb1であるものとする(bは1からQの整数)。すると、以下の条件が成立することが重要となる。
ただし、F(i)は、送信信号数をQのときのプリコーディング行列となる。
次に、図81とは異なる実施例を、図82を用いて説明する。図82において、図81と同様に動作するものについては同一符号を付した。図82において、図81と異なる点は、同一のデータを異なるアンテナから送信するように、データの並び替えを行っている点である。
図82のベースバンド信号8101_1は、図53のベースバンド信号5307_1に相当し、マッピング後のベースバンド信号であり、ストリームs1のベースバンド信号となる。同様に、図81のベースバンド信号8101_2は、図53のベースバンド信号5307_2に相当し、マッピング後のベースバンド信号であり、ストリームs2のベースバンド信号となる。
信号処理部(複製部)8102_1は、ベースバンド信号8101_1、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_1が、時間軸に対し、s11、s12、s13、s14、・・・の信号となっている場合、信号処理部(複製部)8102_1は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_1の出力、つまり、レベティション後のベースバンド信号8103_1は、時間軸に対し、s11、s11、s11、s11のようにs11を4個出力し、その後、s12、s12、s12、s12のようにs12を4個出力し、その後、s13、s13、s13、s13、s14、s14、s14、s14、・・・と出力する。
信号処理部(複製部)8102_2は、ベースバンド信号8101_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_2が、時間軸に対し、s21、s22、s23、s24、・・・の信号となっている場合、信号処理部(複製部)8102_2は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_2の出力、つまり、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個出力し、その後、s22、s22、s22、s22のようにs22を4個出力し、その後、s23、s23、s23、s23、s24、s24、s24、s24、・・・と出力する。
並び替え部8201は、レベティション後のベースバンド信号8103_1、レベティション後のベースバンド信号8103_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション方法の情報に基づき、データの並び換えを行い、並び替え後のベースバンド信号8202_1および8202_2を出力する。例えば、レベティション後のベースバンド信号8103_1が、時間軸に対し、s11、s11、s11、s11のようにs11を4個で構成されており、同様に、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個で構成されているものとする。図82では、s11を、式(475)のy1(i)、y2(i)の両者として出力し、同様に、s21を、式(475)のy1(i)、y2(i)の両者として出力する。したがって、s11と同様の並び替えを(s12、s13、・・・)に対しても施し、また、s21と同様の並び替えを(s22、s23、・・・)に対しても施す。したがって、並び替え後のベースバンド信号8202_1は、s11、s21、s11、s21、s12、s22、s12、s22、s13、s23、s13、s23、・・・となり、これが、式(475)のy1(i)に相当する。なお、s11、s21の順番(ここでは、s11、s21、s11、s21としている)はこれに限ったものではなく、どのような順番となってもよく、同様に、s12、s22についても、また、s13、s23についても順番は、どのような順番となってもよい。そして、並び替え後のベースバンド信号8202_2は、s21、s11、s21、s11、s22、s12、s22、s12、s23、s13、s23、s13、・・・となり、これが、式(475)のy2(i)に相当する。なお、s11、s21の順番(ここでは、s21、s11、s21、s11としている)はこれに限ったものではなく、どのような順番となってもよく、同様に、s12、s22についても、また、s13、s23についても順番は、どのような順番となってもよい。
重み付け合成部(プリコーディング演算部)8105は、並び替え後のベースバンド信号8202_1および8202_2、制御信号8104を入力とし、制御信号8104に含まれている規則的にプリコーディング行列を切り替えるプリコーディング方法の情報に基づくプリコーディングを施す、つまり、並び替え後のベースバンド信号8202_1および8202_2に対し、重み付け合成を行い、プリコーディング後のベースバンド信号8106_1(ここでは、z1(i)とあらわす。)、プリコーディング後のベースバンド信号8106_2(ここでは、z2(i)とあらわす。)を出力する(ただし、iは、(時間、または、周波数の)順番をあらわす)
並び替え後のベースバンド信号8202_1および8202_2をそれぞれ、前述のとおり、y1(i)、y2(i)、プリコーディング行列をF(i)とすると、式(475)の関係が成立する。
ただし、規則的にプリコーディング行列を切り替えるプリコーディング方法のために用意するN(Nは2以上の整数)個のプリコーディング行列をF[0], F[1], F[2], F[3], ・・・, F[N-1]とすると、式(475)において、プリコーディング行列をF(i)は、F[0], F[1], F[2], F[3], ・・・, F[N-1]のいずれかを用いるものとする。
上述では、レペティション回数を4回として説明したがこれに限ったものではない。そして、図81を用いて説明したときと同様に、図82の構成のときに対しても、数304から数307の条件が成立すると、高い受信品質を得ることができる。
受信装置の構成は、図7、図56に示したとおりであり、式(144)および式(475)の関係が成立することを利用し、信号処理部では、(s11、s12、s13、s14、・・・)のそれぞれで送信されているビットの復調を行い、また、(s21、s22、s23、s24、・・・)のそれぞれで送信されているビットの復調を行う。なお、各ビットは対数尤度比として算出してもよく、また、硬判定値として得てもよい。また、例えば、s11は、K回のレペティションが行われているので、これを利用することで、信頼性の高い、s1で送信されたビットの推定値を得ることが可能となる。(s12、s13、・・・)および、を(s21、s22、s23、・・・)に対しても同様で、信頼性の高い送信されたビットの推定値を得ることができる。
本実施の形態では、レペティションを行ったときに、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用する方法について説明した。このとき、レペティションを行ってデータを送信しているスロットとレペティションを行なわずにデータを送信しているスロットの両者が存在したとき、レペティションを行なわずにデータを送信しているスロットの通信方式は、規則的にプリコーディング行列を切り替えるプリコーディング方法、プリコーディング行列が固定的なプリコーディング方法を含むいずれの伝送方式を用いてもよい。つまり、レペティションを行ったスロットに対し、本実施の形態の送信方法を用いること自身が、受信装置において、高いデータの受信品質を得る上で重要となる。
また、実施の形態A1から実施の形態A3で説明したDVB規格に関連するシステムでは、P2シンボル、第1、第2 signalling dataは、PLPより受信品質を確保する必要があるので、P2シンボル、第1、第2 signalling dataを伝送する方式として、本実施の形態で説明した、レペティションを適用した、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用すると、制御情報の受信装置における受信品質が向上するため、システムを安定的に動作させるためには重要となる。
なお、本実施の形態において、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
(実施の形態A5)
本実施の形態では、実施の形態A1で説明した送信方法に対し、共通増幅を行うことで、変調信号を送信する方法について説明する。
図83は、送信装置の構成の一例を示しており、図52と同様に動作するものについては、同一符号を付した。
図83の変調信号生成部#1から#M(5201_1から5201_M)は、入力信号(入力データ)から、図63、または、図72のP1シンボル用処理後の信号6323_1および6323_2を生成するためのものであり、変調信号z1(5202_1から5202_M)および変調信号z2(5203_1から5203_M)を出力する。
図83の無線処理部8301_1は、変調信号z1(5202_1から5202_M)を入力とし、周波数変換等の信号処理を行い、増幅を行い、変調信号8302_1を出力し、変調信号8302_1はアンテナ8303_1から電波として出力さる。
同様に、無線処理部8301_2は、変調信号z1(5203_1から5203_M)を入力とし、周波数変換等の信号処理を行い、増幅を行い、変調信号8302_2を出力し、変調信号8302_2はアンテナ8303_2から電波として出力さる。
以上のように、実施の形態A1の送信方法に対し、異なる周波数帯の変調信号を一度に周波数変換し、増幅するという送信方法をとってもよい。
(実施の形態B1)
以下では、上記各実施の形態で示した送信方法及び受信方法の応用例とそれを用いたシステムの構成例を説明する。
図84は、上記実施の形態で示した送信方法及び受信方法を実行する装置を含むシステムの構成例を示す図である。上記各実施の形態で示した送信方法及び受信方法は、図84に示すような放送局と、テレビ(テレビジョン)8411、DVDレコーダ8412、STB(Set Top Box)8413、コンピュータ8420、車載のテレビ8441及び携帯電話8430等の様々な種類の受信機を含むデジタル放送用システム8400において実施される。具体的には、放送局8401が、映像データや音声データ等が多重化された多重化データを上記各実施の形態で示した送信方法を用いて所定の伝送帯域に送信する。
放送局8401から送信された信号は、各受信機に内蔵された、または外部に設置され当該受信機と接続されたアンテナ(例えば、アンテナ8560、8440)で受信される。各受信機は、アンテナにおいて受信された信号を上記各実施の形態で示した受信方法を用いて復調し、多重化データを取得する。これにより、デジタル放送用システム8400は、上記各実施の形態で説明した本願発明の効果を得ることができる。
ここで、多重化データに含まれる映像データは、例えばMPEG(Moving Picture Experts Group)2、MPEG4−AVC(Advanced Video Coding)、VC−1などの規格に準拠した動画符号化方法を用いて符号化されている。また、多重化データに含まれる音声データは例えばドルビーAC(Audio Coding)−3、Dolby Digital Plus、MLP(Meridian Lossless Packing)、DTS(Digital Theater Systems)、DTS−HD、リニアPCM(Pulse Coding Modulation)等の音声符号化方法で符号化されている。
図85は、上記各実施の形態で説明した受信方法を実施する受信機8500の構成の一例を示す図である。図85に示すように、受信機8500の一つの構成の一例として、モデム部分を一つのLSI(またはチップセット)で構成し、コーデックの部分を別の一つのLSI(またはチップセット)で構成するという構成方法が考えられる。図85に示す受信機8500は、図84に示したテレビ(テレビジョン)8411、DVDレコーダ8412、STB(Set Top Box)8413、コンピュータ8420、車載のテレビ8441及び携帯電話8430等が備える構成に相当する。受信機8500は、アンテナ8560で受信された高周波信号をベースバンド信号に変換するチューナ8501と、周波数変換されたベースバンド信号を復調して多重化データを取得する復調部8502とを備える。上記各実施の形態で示した受信方法は復調部8502において実施され、これにより上記各実施の形態で説明した本願発明の効果を得ることができる。
また、受信機8500は、復調部8502で得られた多重化データから映像データと音声データとを分離するストリーム入出力部8520と、分離された映像データに対応する動画像復号方法を用いて映像データを映像信号に復号し、分離された音声データに対応する音声復号方法を用いて音声データを音声信号に復号する信号処理部8504と、復号された音声信号を出力するスピーカ等の音声出力部8506と、復号された映像信号を表示するディスプレイ等の映像表示部8507とを有する。
例えば、ユーザは、リモコン(リモートコントローラ)8550を用いて、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を操作入力部8510に送信する。すると、受信機8500は、アンテナ8560で受信した受信信号において、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信機8500は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、実施の形態A1〜実施の形態A4で述べており、また、図5、図41に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン8550によって、チャネルを選局する例を説明したが、受信機8500が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
上記の構成により、ユーザは、受信機8500が上記各実施の形態で示した受信方法により受信した番組を視聴することができる。
また、本実施の形態の受信機8500は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データ(場合によっては、復調部8502で復調されて得られる信号に対して誤り訂正復号を行わないこともある。また、受信機8500は、誤り訂正復号後に他の信号処理が施されることもある。以降について、同様の表現を行っている部分についても、この点は同様である。)に含まれるデータ、または、そのデータに相当するデータ(例えば、データを圧縮することによって得られたデータ)や、動画、音声を加工して得られたデータを、磁気ディスク、光ディスク、不揮発性の半導体メモリ等の記録メディアに記録する記録部(ドライブ)8508を備える。ここで光ディスクとは、例えばDVD(Digital Versatile Disc)やBD(Blu−ray Disc)等の、レーザ光を用いて情報の記憶と読み出しがなされる記録メディアである。磁気ディスクとは、例えばFD(Floppy Disk)(登録商標)やハードディスク(Hard Disk)等の、磁束を用いて磁性体を磁化することにより情報を記憶する記録メディアである。不揮発性の半導体メモリとは、例えばフラッシュメモリや強誘電体メモリ(Ferroelectric Random Access Memory)等の、半導体素子により構成された記録メディアであり、フラッシュメモリを用いたSDカードやFlash SSD(Solid State Drive)などが挙げられる。なお、ここで挙げた記録メディアの種類はあくまでその一例であり、上記の記録メディア以外の記録メディアを用いて記録を行っても良いことは言うまでもない。
上記の構成により、ユーザは、受信機8500が上記各実施の形態で示した受信方法により受信した番組を記録して保存し、番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
なお、上記の説明では、受信機8500は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを記録部8508で記録するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して記録しても良い。例えば、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、記録部8508は、復調部8502で復調された多重化データから映像データや音声データを抽出して多重した新しい多重化データを記録しても良い。また、記録部8508は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを記録しても良い。そして、上記で述べた多重化データに含まれるデータ放送サービスのコンテンツを記録部8508は、記録してもよい。
さらには、テレビ、記録装置(例えば、DVDレコーダ、Blu−rayレコーダ、HDDレコーダ、SDカード等)、携帯電話に、本発明で説明した受信機8500が搭載されている場合、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに、テレビや記録装置を動作させるのに使用するソフトウェアの欠陥(バグ)を修正するためのデータや個人情報や記録したデータの流出を防ぐためのソフトウェアの欠陥(バグ)を修正するためのデータが含まれている場合、これらのデータをインストールすることで、テレビや記録装置のソフトウェアの欠陥を修正してもよい。そして、データに、受信機8500のソフトウェアの欠陥(バグ)を修正するためのデータが含まれていた場合、このデータにより、受信機8500の欠陥を修正することもできる。これにより、受信機8500が搭載されているテレビ、記録装置、携帯電話が、より安定的の動作させることが可能となる。
ここで、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部8503で行われる。具体的には、ストリーム入出力部8503が、図示していないCPU等の制御部からの指示により、復調部8502で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
上記の構成により、受信機8500は記録された番組を視聴する際に必要なデータのみを抽出して記録することができるので、記録するデータのデータサイズを削減することができる。
また、上記の説明では、記録部8508は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを記録するとしたが、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを記録してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、記録部8508は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを記録してもよい。
ここで、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部8503及び信号処理部8504で行われる。具体的には、ストリーム入出力部8503が、CPU等の制御部からの指示により、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部8504は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部8503は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部8504は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
上記の構成により、受信機8500は、記録メディアに記録可能なデータサイズや記録部8508がデータの記録または読み出しを行う速度に合わせて映像データや音声データのデータサイズまたはビットレートを変更して記録することができる。これにより、記録メディアに記録可能なデータサイズが復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データのデータサイズよりも小さい場合や、記録部がデータの記録または読み出しを行う速度が復調部8502で復調された多重化データのビットレートよりも低い場合でも記録部が番組を記録することが可能となるので、ユーザは番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
また、受信機8500は、復調部8502で復調された多重化データを外部機器に対して通信媒体8530を介して送信するストリーム出力IF(Interface:インターフェース)8509を備える。ストリーム出力IF8509の一例としては、Wi−Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等の無線通信規格に準拠した無線通信方法を用いて変調した多重化データを、無線媒体(通信媒体8530に相当)を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF8509は、イーサネットやUSB(Universal Serial Bus)、PLC(Power Line Communication)、HDMI(High−Definition Multimedia Interface)等の有線通信規格に準拠した通信方法を用いて変調された多重化データを当該ストリーム出力IF8509に接続された有線伝送路(通信媒体8530に相当)を介して外部機器に送信する有線通信装置であってもよい。
上記の構成により、ユーザは、受信機8500が上記各実施の形態で示した受信方法により受信した多重化データを外部機器で利用することができる。ここでいう多重化データの利用とは、ユーザが外部機器を用いて多重化データをリアルタイムで視聴することや、外部機器に備えられた記録部で多重化データを記録すること、外部機器からさらに別の外部機器に対して多重化データを送信すること等を含む。
なお、上記の説明では、受信機8500は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データをストリーム出力IF8509が出力するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して出力しても良い。例えば、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、ストリーム出力IF8509は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データから映像データや音声データを抽出して多重した新しい多重化データを出力しても良い。また、ストリーム出力IF8509は、復調部8502で復調された多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを出力しても良い。
ここで、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部8503で行われる。具体的には、ストリーム入出力部8503が、図示していないCPU(Central Processing Unit)等の制御部からの指示により、復調部8502で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、ストリーム出力IF8509の種類毎に予め決められていてもよい。
上記の構成により、受信機8500は外部機器が必要なデータのみを抽出して出力することができるので、多重化データの出力により消費される通信帯域を削減することができる。
また、上記の説明では、ストリーム出力IF8509は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを記録するとしたが、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを出力してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、ストリーム出力IF8509は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを出力してもよい。
ここで、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部8503及び信号処理部8504で行われる。具体的には、ストリーム入出力部8503が、制御部からの指示により、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部8504は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部8503は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部8504は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、ストリーム出力IF8509の種類毎に予め決められていてもよい。
上記の構成により、受信機8500は、外部機器との間の通信速度に合わせて映像データや音声データのビットレートを変更して出力することができる。これにより、外部機器との間の通信速度が、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データのビットレートよりも低い場合でもストリーム出力IFから外部機器新しい多重化データを出力することが可能となるので、ユーザは他の通信装置において新しい多重化データを利用することが可能になる。
また、受信機8500は、外部機器に対して信号処理部8504で復号された映像信号及び音声信号を外部の通信媒体に対して出力するAV(Audio and Visual)出力IF(Interface)8511を備える。AV出力IF8511の一例としては、Wi−Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Gigbee等の無線通信規格に準拠した無線通信方法を用いて変調した映像信号及び音声信号を、無線媒体を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF8509は、イーサネットやUSB、PLC、HDMI等の有線通信規格に準拠した通信方法を用いて変調された映像信号及び音声信号を当該ストリーム出力IF8509に接続された有線伝送路を介して外部機器に送信する有線通信装置であってもよい。また、ストリーム出力IF8509は、映像信号及び音声信号をアナログ信号のまま出力するケーブルを接続する端子であってもよい。
上記の構成により、ユーザは、信号処理部8504で復号された映像信号及び音声信号を外部機器で利用することができる。
さらに、受信機8500は、ユーザ操作の入力を受け付ける操作入力部8510を備える。受信機8500は、ユーザの操作に応じて操作入力部8510に入力される制御信号に基づいて、電源のON/OFFの切り替えや、受信するチャネルの切り替え、字幕表示の有無や表示する言語の切り替え、音声出力部8506から出力される音量の変更等の様々な動作の切り替えや、受信可能なチャネルの設定等の設定の変更を行う。
また、受信機8500は、当該受信機8500で受信中の信号の受信品質を示すアンテナレベルを表示する機能を備えていてもよい。ここで、アンテナレベルとは、例えば受信機8500が受信した信号のRSSI(Received Signal Strength Indication、Received Signal Strength Indicator、受信信号強度)、受信電界強度、C/N(Carrier−to−noise power ratio)、BER(Bit Error Rate:ビットエラー率)、パケットエラー率、フレームエラー率、チャネル状態情報(Channel State Information)等に基づいて算出される受信品質を示す指標であり、信号レベル、信号の優劣を示す信号である。この場合、復調部8502は受信した信号のRSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等を測定する受信品質測定部を備え、受信機8500はユーザの操作に応じてアンテナレベル(信号レベル、信号の優劣を示す信号)をユーザが識別可能な形式で映像表示部8507に表示する。アンテナレベル(信号レベル、信号の優劣を示す信号)の表示形式は、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じた数値を表示するものであっても良いし、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じて異なる画像を表示するようなものであっても良い。また、受信機8500は、上記各実施の形態で示した受信方法を用いて受信して分離された複数のストリームs1、s2、・・・毎に求めた複数のアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良いし、複数のストリームs1、s2、・・・から求めた1つのアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良い。また、番組を構成する映像データや音声データが階層伝送方式を用いて送信されている場合は、階層毎に信号のレベル(信号の優劣を示す信号)を示しても可能である。
上記の構成により、ユーザは上記各実施の形態で示した受信方法を用いて受信する場合のアンテナレベル(信号レベル、信号の優劣を示す信号)を数値的に、または、視覚的に把握することができる。
なお、上記の説明では受信機8500が、音声出力部8506、映像表示部8507、記録部8508、ストリーム出力IF8509、及びAV出力IF8511を備えている場合を例に挙げて説明したが、これらの構成の全てを備えている必要はない。受信機8500が上記の構成のうち少なくともいずれか一つを備えていれば、ユーザは復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データを利用することができるため、各受信機はその用途に合わせて上記の構成を任意に組み合わせて備えていれば良い。
(多重化データ)
次に、多重化データの構造の一例について詳細に説明する。放送に用いられるデータ構造としてはMPEG2−トランスポートストリーム(TS)が一般的であり、ここではMPEG2−TSを例に挙げて説明する。しかし、上記各実施の形態で示した送信方法及び受信方法で伝送される多重化データのデータ構造はMPEG2−TSに限られず、他のいかなるデータ構造であっても上記の各実施の形態で説明した効果を得られることは言うまでもない。
図86は、多重化データの構成の一例を示す図である。図86に示すように多重化データは、各サービスで現在提供されている番組(programmeまたはその一部であるevent)を構成する要素である、例えばビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラファイックスストリーム(IG)などのエレメンタリーストリームのうち、1つ以上を多重化することで得られる。多重化データで提供されている番組が映画の場合、ビデオストリームは映画の主映像および副映像を、オーディオストリームは映画の主音声部分と当該主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームとは映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像(例えば、映画のあらすじを示したテキストデータの映像など)のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。
多重化データに含まれる各ストリームは、各ストリームに割り当てられた識別子であるPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
図87は、多重化データがどのように多重化されているかの一例を模式的に示す図である。まず、複数のビデオフレームからなるビデオストリーム8701、複数のオーディオフレームからなるオーディオストリーム8704を、それぞれPESパケット列8702および8705に変換し、TSパケット8703および8706に変換する。同じくプレゼンテーショングラフィックスストリーム8711およびインタラクティブグラフィックス8714のデータをそれぞれPESパケット列8712および8715に変換し、さらにTSパケット8713および8716に変換する。多重化データ8717はこれらのTSパケット(8703、8706、8713、8716)を1本のストリームに多重化することで構成される。
図88は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図88における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図88の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time−Stamp)やピクチャの復号時刻であるDTS(Decoding Time−Stamp)が格納される。
図89は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD−ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図89下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
また、多重化データに含まれるTSパケットには、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリームなどの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報(フレームレート、アスペクト比など)を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
図90はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためのストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
図91は、その多重化データファイル情報の構成を示す図である。多重化データ情報ファイルは、図91に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
多重化データ情報は図91に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
図92は、多重化データファイル情報に含まれるストリーム属性情報の構成を示す図である。ストリーム属性情報は図92に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
図93は、放送局(基地局)から送信された、映像および音声のデータ、または、データ放送のためのデータを含む変調信号を受信する受信装置9304を含む映像音声出力装置9300の構成の一例を示している。なお、受信装置9304の構成は、図85の受信装置8500に相当する。映像音声出力装置9300には、例えば、OS(Operating System:オペレーティングシステム)が搭載されており、また、インターネットに接続するための通信装置9306(例えば、無線LAN(Local Area Network)やイーザーネットのための通信装置)が搭載されている。これにより、映像を表示する部分9301では、映像および音声のデータ、または、データ放送のためのデータにおける映像9302、および、インターネット上で提供されるハイパーテキスト(World Wide Web(ワールド ワイド ウェブ:WWW))9303を同時に表示することが可能となる。そして、リモコン(携帯電話やキーボードであってもよい)9307を操作することにより、データ放送のためのデータにおける映像9302、インターネット上で提供されるハイパーテキスト9303のいずれかを選択し、動作を変更することになる。例えば、インターネット上で提供されるハイパーテキスト9303が選択された場合、表示しているWWWのサイトを、リモコンを操作することにより、変更することになる。また、映像および音声のデータ、または、データ放送のためのデータにおける映像9302が選択されている場合、リモコン9307により、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を送信する。すると、IF9305は、リモコンで送信された情報を取得し、受信装置9304は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置9304は、選局したチャネルに相当する信号に含まれる伝送方法(これについては、実施の形態A1〜実施の形態A4で述べており、また、図5、図41に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン9307によって、チャネルを選局する例を説明したが、映像音声出力装置9300が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
また、インターネットを用い、映像音声出力装置9300を操作してもよい。例えば、他のインターネット接続している端末から、映像音声出力装置9300に対し、録画(記憶)の予約を行う。(したがって、映像音声出力装置9300は、図85のように、記録部8508を有していることになる。)そして、録画を開始する前に、チャネルを選局することになり、受信装置9304は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置9304は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、実施の形態A1〜実施の形態A4で述べており、また、図5、図41に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。
(その他補足)
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェース(例えば、USB)を介して接続できるような形態であることも考えられる。
また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
なお、本発明は上記実施の形態1〜5に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
また、上記では、2つの変調信号を2つのアンテナから送信する方法におけるプリコーディング切り替え方法について説明したが、これに限ったものではなく、4つのマッピング後の信号に対し、プリコーディングを行い、4つの変調信号を生成し、4つのアンテナから送信する方法、つまり、N個のマッピング後の信号に対し、プリコーディングを行い、N個の変調信号を生成し、N個のアンテナから送信する方法においても同様にプリコーディングウェイト(行列)を変更する、プリコーディング切り替え方法としても同様に実施することができる。
本明細書では、「プリコーディング」「プリコーディングウェイト」「プリコーディング行列」等の用語を用いているが、呼び方自身は、どのようなものでもよく(例えば、コードブック(codebook)と呼んでもよい。)、本発明では、その信号処理自身が重要となる。
また、本明細書において、受信装置で、ML演算、APP、Max-logAPP、ZF、MMSE等を用いて説明しているが、この結果、送信装置が送信したデータの各ビットの軟判定結果(対数尤度、対数尤度比)や硬判定結果(「0」または「1」)を得ることになるが、これらを総称して、検波、復調、検出、推定、分離と呼んでもよい。
2ストリームのベースバンド信号s(i)、s(i)(ある変調方式のマッピング後のベースバンド信号)(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす)に対し、規則的にプリコーディング行列を切り替えるプリコーディングを行い生成された、プリコーディング後のベースバンド信号z(i)、z(i)において、プリコーディング後のベースバンド信号z(i)の同相I成分をI(i)、直交成分をQ(i)とし、プリコーディング後のベースバンド信号z(i)の同相I成分をI(i)、直交成分をQ(i)とする。このとき、ベースバンド成分の入れ替えを行い、
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)
とし、入れ替え後のベースバンド信号r(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r(i)に相当する変調信号と入れ替え後のベースバンド信号r(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i)、直交成分をI(i)
としてもよい。また、上述では、2ストリームの信号に対しプリコーディングを行い、プリコーディング後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対しプリコーディングを行い、プリコーディング後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r(i)の同相成分をQ(i+v)、直交成分をI(i+w)
図96は、上記の記載を説明するための図である。図96に示すように、プリコーディング後のベースバンド信号z(i)、z(i)において、プリコーディング後のベースバンド信号z(i)の同相I成分をI(i)、直交成分をQ(i)とし、プリコーディング後のベースバンド信号z(i)の同相I成分をI(i)、直交成分をQ(i)とする。そして、入れ替え後のベースバンド信号r(i)の同相成分をIr(i)、直交成分をQr(i)、入れ替え後のベースバンド信号r(i)の同相成分をIr(i)、直交成分をQr(i)とすると、入れ替え後のベースバンド信号r(i)の同相成分Ir(i)、直交成分Qr(i)、入れ替え後のベースバンド信号r(i)の同相成分Ir(i)、直交成分をQr(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))のプリコーディング後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))のプリコーディング後のベースバンド信号の入れ替えであってもよい。
そして、入れ替え後のベースバンド信号r(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r(i)に相当する変調信号と入れ替え後のベースバンド信号r(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信することになる。
送信装置の送信アンテナ、受信装置の受信アンテナ、共に、図面で記載されている1つのアンテナは、複数のアンテナにより構成されていても良い。
本明細書において、「∀」は全称記号(universal quantifier)をあらわしており、「∃」は存在記号(existential quantifier)をあらわしている。
また、本明細書において、複素平面における、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。
複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ
が成り立ち、r は z の絶対値 (r = |z|) であり、θ が偏角 (argument)となる。そして、z = a + jbは、rejθとあらわされる。
本発明の説明において、ベースバンド信号、s1、s2、z1、z2は複素信号となるが、複素信号とは、同相信号をI、直交信号をQとしたとき、複素信号はI + jQ(jは虚数単位)とあらわされることになる。このとき、Iがゼロとなってもよいし、Qがゼロとなってもよい。
本明細書で説明した規則的にプリコーディング行列を切り替える方法を用いた放送システムの一例を図59に示す。図59において、映像符号化部5901は、映像を入力とし、映像符号化を行い、映像符号化後のデータ5902を出力する。音声符号化部5903は、音声を入力とし、音声符号化を行い、音声符号化後のデータ5904を出力する。データ符号化部5905は、データを入力とし、データの符号化(例えば、データ圧縮)を行い、データ符号化後のデータ5906を出力する。これらをまとめて、情報源符号化部5900とする。
送信部5907は、映像符号化後のデータ5902、音声符号化後のデータ5904、データ符号化後のデータ5906を入力とし、これらのデータのいずれか、または、これらのデータ全てを送信データとし、誤り訂正符号化、変調、プリコーディング等の処理(例えば、図3の送信装置における信号処理)を施し、送信信号5908_1から5908_Nを出力する。そして、送信信号5908_1から5908_Nはそれぞれアンテナ5909_1から5909_Nにより、電波として送信される。
受信部5912は、アンテナ5910_1から5910_Mで受信した受信信号5911_1から5911_Mを入力とし、周波数変換、プリコーディングのデコード、対数尤度比算出、誤り訂正復号等の処理(例えば、図7の受信装置における処理)を施し、受信データ5913、5915、5917を出力する。情報源復号部5919は、受信データ5913、5915、5917を入力とし、映像復号化部5914は、受信データ5913を入力とし、映像用の復号を行い、映像信号を出力し、映像は、テレビ、ディスプレーに表示される。また、音声復号化部5916は、受信データ5915を入力とし。音声用の復号を行い、音声信号を出力し、音声は、スピーカーから流れる。また、データ復号化部5918は、受信データ5917を入力とし、データ用の復号を行い、データの情報を出力する。
また、本発明の説明を行っている実施の形態において、以前にも説明したようにOFDM方式のようなマルチキャリア伝送方式において、送信装置が保有している符号化器の数は、いくつであってもよい。したがって、例えば、図4のように、送信装置が、符号化器を1つ具備し、出力を分配する方法を、OFDM方式のようなマルチキャリア伝送方式にも適用することも当然可能である。このとき、図4の無線部310A、310Bを図13のOFDM方式関連処理部1301A、1301Bに置き換えればよいことになる。このとき、OFDM方式関連処理部の説明は、実施の形態1のとおりである。
また、実施の形態A1から実施の形態A5、および、実施の形態1で述べたシンボルの配置方法では、本明細書で述べた「異なるプリコーディング行列を切り替える方法」とは異なる複数のプリコーディング行列を用いて規則的にプリコーディング行列を切り替えるプリコーディング方法としても、同様に実施することができる。また、他の実施の形態についても同様である。なお、以下では、異なる複数のプリコーディング行列について補足説明する。
規則的にプリコーディング行列を切り替えるプリコーディング方法のためにN個の用意するプリコーディングをF[0], F[1], F[2],・・・F[N-3],F[N-2],F[N-1]であらわすものとする。このとき、上記で述べた「異なる複数のプリコーディング行列」とは、以下の2つの条件(条件*1および条件*2)を満たすものであるものとする。
「(xは0からN-1の整数、yは0からN-1の整数であり、x≠yとする)そして、前述を満たす、すべてのx、すべてのyに対して、F[x]≠F[y]が成立するものとする」ということになる。
xは0からN-1の整数、yは0からN-1の整数であり、x≠yとしたときのすべてのx、すべてのyに対して、上式を満たす実数または複素数のkが存在しない。
なお、2×2の行列を例に補足を行う。2x2の行列R、Sを以下のようにあらわすものとする。
a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22、および、e=Eejγ11、f=Fejγ12、g=Gejγ21、h=Hejγ22であらわされるものとする。ただし、A、B、C、D、E、F、G、Hは0以上の実数とし、δ11、δ12、δ21、δ22、γ11、γ12、γ21、γ22の単位はラジアンであらわされるものとする。このとき、R≠Sであるとは、(1)a≠e、(2)b≠f、(3)c≠g、(4)d≠hとしたとき、(1)(2)(3)(4)のうち少なくとも一つが成立することになる。
また、プリコーディング行列として、行列Rにおいて、a、b、c、dのいずれか一つが「ゼロ」である行列を用いてもよい。つまり、(1)aがゼロであり、b、c、dはゼロでない、(2)bがゼロであり、a、c、dはゼロでない、(3)cがゼロであり、a、b、dはゼロでない、(4)dがゼロであり、a、b、cはゼロでない、であってもよいことになる。
そして、本発明の説明で示したシステム例では、2つの変調信号を2つのアンテナから送信し、それぞれを2つのアンテナで受信するMIMO方式の通信システムを開示したが、本発明は、当然にMISO(Multiple Input Single Output)方式の通信システムにも適用できる。MISO方式の場合、送信装置において、複数のプリコーディング行列を規則的に切り替えるプリコーディング方法を適用している点は、これまでの説明のとおりである。一方で、受信装置は、図7に示す構成のうち、アンテナ701_Y、無線部703_Y、変調信号z1のチャネル変動推定部707_1、変調信号z2のチャネル変動推定部707_2がない構成となるが、この場合であっても、本明細書の中で示した処理を実行することで、送信装置が送信したデータを推定することができる。なお、同一周波数帯、同一時間において、送信された複数の信号を1つのアンテナで受信して復号できることは周知のこと(1アンテナ受信において、ML演算等(Max-log APP等)の処理を施せばよい。)であり、本発明では、図7の信号処理部711において、送信側で用いた規則的に切り替えるプリコーディング方法を考慮した復調(検波)を行えばよいことになる。
なお、本明細書では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
本発明は、複数のアンテナからそれぞれ異なる変調信号を送信する無線システムに広く適用でき、例えばOFDM−MIMO通信システムに適用して好適である。また、複数の送信箇所を持つ有線通信システム(例えば、PLC(Power Line Communication)システム、光通信システム、DSL(Digital Subscriber Line:デジタル加入者線)システム)において、MIMO伝送を行う場合についても適用することができ、このとき、複数の送信箇所を用いて、本発明で説明したような複数の変調信号を送信することになる。また、変調信号は、複数の送信箇所から送信されてもよい。
302A,302B 符号化器
304A,304B インタリーバ
306A,306B マッピング部
314 重み付け合成情報生成部
308A,308B 重み付け合成部
310A,310B 無線部
312A,312B アンテナ
402 符号化器
404 分配部
504#1,504#2 送信アンテナ
505#1,505#2 受信アンテナ
600 重み付け合成部
703_X 無線部
701_X アンテナ
705_1 チャネル変動推定部
705_2 チャネル変動推定部
707_1 チャネル変動推定部
707_2 チャネル変動推定部
709 制御情報復号部
711 信号処理部
803 INNER MIMO検波部
805A,805B 対数尤度算出部
807A,807B デインタリーバ
809A,809B 対数尤度比算出部
811A,811B Soft−in/soft−outデコーダ
813A,813B インタリーバ
815 記憶部
819 重み付け係数生成部
901 Soft−in/soft−outデコーダ
903 分配器
1301A,1301B OFDM方式関連処理部
1402A,1402A シリアルパラレル変換部
1404A,1404B 並び換え部
1406A,1406B 逆高速フーリエ変換部
1408A,1408B 無線部
2200 プリコーディングウェイト行列生成部
2300 並び替え部
4002 符号化器群

Claims (4)

  1. 送信方法であって、
    第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含む第1のストリームと、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含む第2のストリームとを生成し、
    前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
    前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
    前記第1のストリームと前記第2のストリームを複数のアンテナを用いて送信し、
    前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信される、送信方法。
  2. 送信装置であって、
    第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含む第1のストリームと、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含む第2のストリームとを生成し、
    前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
    前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なる、重み付け合成部と、
    前記第1のストリームと前記第2のストリームを複数のアンテナを用いて送信する送信部と、
    を備え、
    前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信される、送信装置。
  3. 受信方法であって、
    複数のアンテナを用いて送信された第1のストリームと第2のストリームとを受信して得られた受信信号を取得し、
    前記第1のストリームは、第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含み、前記第2のストリームは、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含み、
    前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
    前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
    前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信されており、
    前記受信方法は、
    前記第1の信号生成方法と前記第2の信号生成方法に応じて、前記受信信号を復調することにより受信データを生成する、受信方法。
  4. 受信装置であって、
    複数のアンテナを用いて送信された第1のストリームと第2のストリームとを受信して得られた受信信号を取得する取得部を備え、
    前記第1のストリームは、第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含み、前記第2のストリームは、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含み、
    前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
    前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
    前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信されており、
    前記受信装置は、
    前記第1の信号生成方法と前記第2の信号生成方法に応じて、前記受信信号を復調することにより受信データを生成する復調部をさらに備える、受信装置。
JP2016128618A 2016-06-29 2016-06-29 プリコーディング方法、送信装置 Active JP6344660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128618A JP6344660B2 (ja) 2016-06-29 2016-06-29 プリコーディング方法、送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128618A JP6344660B2 (ja) 2016-06-29 2016-06-29 プリコーディング方法、送信装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015139819A Division JP5971573B2 (ja) 2015-07-13 2015-07-13 プリコーディング方法、送信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018091079A Division JP6544670B2 (ja) 2018-05-10 2018-05-10 プリコーディング方法、送信装置

Publications (2)

Publication Number Publication Date
JP2016213858A JP2016213858A (ja) 2016-12-15
JP6344660B2 true JP6344660B2 (ja) 2018-06-20

Family

ID=57550020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128618A Active JP6344660B2 (ja) 2016-06-29 2016-06-29 プリコーディング方法、送信装置

Country Status (1)

Country Link
JP (1) JP6344660B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846383B (zh) * 2003-07-02 2011-05-04 松下电器产业株式会社 通信装置及通信方法
WO2008088066A1 (ja) * 2007-01-19 2008-07-24 Panasonic Corporation マルチアンテナ送信装置、マルチアンテナ受信装置、マルチアンテナ送信方法、マルチアンテナ受信方法、端末装置及び基地局装置
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication
CN101606330A (zh) * 2007-02-06 2009-12-16 高通股份有限公司 用于使用显式和隐式循环延迟的mimo传输的装置和方法
CN103532606B (zh) * 2007-12-03 2017-04-12 艾利森电话股份有限公司 空间复用多天线发射机的预编码器

Also Published As

Publication number Publication date
JP2016213858A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6281779B2 (ja) 送信方法、送信装置、受信方法および受信装置
JP5578617B2 (ja) 送信方法、送信装置、受信方法および受信装置
JP6213854B2 (ja) プリコーディング方法、プリコーディング装置
JP6284054B2 (ja) プリコーディング方法、プリコーディング装置
JP2019149803A (ja) 送信方法、送信装置、受信方法および受信装置
WO2011158496A1 (ja) プリコーディング方法、送信装置
JP5578620B2 (ja) プリコーディング方法、送信装置
JP6344660B2 (ja) プリコーディング方法、送信装置
JP5971573B2 (ja) プリコーディング方法、送信装置
JP5781202B2 (ja) プリコーディング方法、送信装置
JP2019198079A (ja) プリコーディング方法、送信装置
JP2018148573A (ja) プリコーディング方法、送信装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180510

R150 Certificate of patent or registration of utility model

Ref document number: 6344660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 6344660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250