JP6344660B2 - プリコーディング方法、送信装置 - Google Patents
プリコーディング方法、送信装置 Download PDFInfo
- Publication number
- JP6344660B2 JP6344660B2 JP2016128618A JP2016128618A JP6344660B2 JP 6344660 B2 JP6344660 B2 JP 6344660B2 JP 2016128618 A JP2016128618 A JP 2016128618A JP 2016128618 A JP2016128618 A JP 2016128618A JP 6344660 B2 JP6344660 B2 JP 6344660B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- precoding
- weighted
- symbol
- weighting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Radio Transmission System (AREA)
Description
ところで、無線通信における実伝搬環境のモデルとして、レイリーフェージング環境で代表されるNLOS(non−line of sight)環境、ライスフェージング環境で代表されるLOS(line of sight)環境が存在する。送信装置においてシングルの変調信号を送信し、受信装置において複数のアンテナで受信した信号に対して最大比合成を行い、最大比合成後の信号に対して復調、及び復号を行う場合、LOS環境、特に、散乱波の受信電力に対する直接派の受信電力の大きさを示すライスファクタが大きい環境では、良好な受信品質を得ることができる。しかし、例えば、空間多重MIMO伝送方式では、ライスファクタが大きくなると受信品質が劣化するという問題が発生する。(非特許文献3参照)
図29の(A)(B)は、レイリ−フェージング環境、及びライスファクタK=3、10、16dBのライスフェージング環境において、LDPC(low−density parity−check)符号化されたデータを2×2(2アンテナ送信、2アンテナ受信)空間多重MIMO伝送した場合のBER(Bit Error Rate)特性(縦軸:BER、横軸:SNR(signal−to−noise power ratio))のシミュレーション結果の一例を示している。図29の(A)は、反復検波を行わないMax−log−APP(非特許文献1、非特許文献2参照)(APP:a posterior probability)のBER特性、図29の(B)は、反復検波を行ったMax−log−APP(非特許文献1、非特許文献2参照)(反復回数5回)のBER特性を示している。図29(A)(B)からわかるように、反復検波を行う、または行わないに関係なく、空間多重MIMOシステムでは、ライスファクタが大きくなると受信品質が劣化することが確認できる。このことから、「空間多重MIMOシステムでは、伝搬環境が安定的になると受信品質が劣化する」という従来のシングルの変調信号を送信するシステムにはない、空間多重MIMOシステム固有の課題をもつことがわかる。
非特許文献8では、通信相手からのフィードバック情報からプリコーディングに用いるコードブック(プリコーディング行列)を選択する方法について述べられているが、上記のように、放送やマルチキャスト通信のように、通信相手からのフィードバック情報が得られない状況において、プリコーディングを行う方法については全く記載されていない。
(実施の形態1)
本実施の形態の送信方法、送信装置、受信方法、受信装置について詳しく説明する。
NtxNr空間多重MIMOシステムの構成を図1に示す。情報ベクトルzは、符号化およびインタリーブが施される。そして、インタリーブの出力として、符号化後ビットのベクトルu=(u1,…,uNt)が得られる。ただし、ui=(ui1,…,uiM)とする(M:シンボル当たりの送信ビット数)。送信ベクトルs=(s1,…,sNt)Tとすると送信アンテナ#iから送信信号si=map(ui)とあらわし、送信エネルギーを正規化するとE{|si|2}=Es/Ntとあらわされる(Es:チャネル当たりの総エネルギー)。そして、受信ベクトルをy=(y1,…,yNr)Tとすると、式(1)のようにあらわされる。
ここでは、NtxNr空間多重MIMOシステムにおけるMIMO信号の反復検波について述べる。
xmnの対数尤度比を式(6)のように定義する。
n ajで近似すると式(7)は式(8)のように近似することができる。なお、上の「〜」の記号は近似を意味する。
ようにあらわされる。
<システムモデル>
図28に、以降の説明につながるシステムの基本構成を示す。ここでは、2×2空間多重MIMOシステムとし、ストリームA,Bではそれぞれにouterエンコーダがあり、2つのouterエンコーダは同一のLDPC符号のエンコーダとする(ここではouterエンコーダとしてLDPC符号のエンコーダを用いる構成を例に挙げて説明するが、outerエンコーダが用いる誤り訂正符号はLDPC符号に限ったものではなく、ターボ符号、畳み込み符号、LDPC畳み込み符号等の他の誤り訂正符号を用いても同様に実施することができる。また、outerエンコーダは、送信アンテナごとに有する構成としているがこれに限ったものではなく、送信アンテナが複数であっても、outerエンコーダは一つであってもよく、また、送信アンテナ数より多くのouterエンコーダを有していてもよい。)。そして、ストリームA,Bではそれぞれにインタリーバ(πa,πb)がある。ここでは、変調方式を2h−QAMとする(1シンボルでhビットを送信することになる。)。
受信機では、上述のMIMO信号の反復検波(反復APP(またはMax−log APP)復号)を行うものとする。そして、LDPC符号の復号としては、例えば、sum−product復号を行うものとする。
図2はフレーム構成を示しており、インタリーブ後のシンボルの順番を記載している。このとき、以下の式のように(ia,ja),(ib,jb)をあらわすものとする。
<反復復号>
ここでは、受信機におけるLDPC符号の復号で用いるsum−product復号およびMIMO信号の反復検波のアルゴリズムについて詳しく述べる。
2元MxN行列H={Hmn}を復号対象とするLDPC符号の検査行列とする。集合[1,N]={1,2,・・・,N}の部分集合A(m),B(n)を次式のように定義する。
Step A・1(初期化):Hmn=1を満たす全ての組(m,n)に対して事前値対数比βmn=0とする。ループ変数(反復回数)lsum=1とし、ループ最大回数をlsum,maxと設定する。
Step A・2(行処理):m=1,2,・・・,Mの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比αmnを更新する。
Step A・3(列処理):n=1,2,・・・,Nの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比βmnを更新する。
以上が、1回のsum−product復号の動作である。その後、MIMO信号の反復検波が行われる。上述のsum−product復号の動作の説明で用いた変数m,n,αmn,βmn,λn,Lnにおいて、ストリームAにおける変数をma,na,αa mana,βa mana,λna,Lna、ストリームBにおける変数をmb,nb,αb mbnb,βb mbnb,λnb,Lnbであらわすものとする。
<MIMO信号の反復検波>
ここでは、MIMO信号の反復検波におけるλnの求め方について詳しく説明する。
反復APP復号のとき:
Step B・2(反復検波;反復回数k):反復回数kのときのλk,na,λk,nbは、式(11)(13)−(15)(16)(17)から式(31)−(34)のようにあらわされる。ただし、(X,Y)=(a,b)(b,a)となる。
反復APP復号のとき:
図3は、本実施の形態における送信装置300の構成の一例である。符号化部302Aは、情報(データ)301A、フレーム構成信号313を入力とし、フレーム構成信号313(符号化部302Aがデータの誤り訂正符号化に使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Aを出力する。
マッピング部306Aは、インタリーブ後のデータ305A、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Aを出力する。(フレーム構成信号
313に基づき、変調方式は、切り替えても良い。)
図24は、QPSK変調におけるベースバンド信号を構成する同相成分Iと直交成分QのIQ平面におけるマッピング方法の一例としている。例えば、図24(A)のように、入力データが「00」の場合、I=1.0、Q=1.0が出力され、以下同様に、入力データが「01」の場合、I=―1.0、Q=1.0が出力され、・・・、が出力される。図24(B)は、図24(A)とは異なるQPSK変調のIQ平面におけるマッピング方法の例であり、図24(B)が図24(A)と異なる点は、図24(A)における信号点が、原点を中心に回転させることで図24(B)の信号点を得ることができる。このようなコンスタレーションの回転方法については、非特許文献9、非特許文献10に示されており、また、非特許文献9、非特許文献10に示されているCyclic Q Delayを適用してもよい。図24とは別の例として、図25に16QAMのときのIQ平面における信号点配置を示しており、図24(A)に相当する例が図25(A)であり、図24(B)に相当する例が図25(B)となる。
マッピング部306Bは、インタリーブ後のデータ305B、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Bを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
重み付け合成情報生成部314は、フレーム構成信号313を入力とし、フレーム構成信号313に基づいた重み付け合成方法に関する情報315を出力する。なお、重み付け合成方法は、規則的に重み付け合成方法が切り替わりことが特徴となる。
乗算し、w11(t)s1(t)を生成し、w21(t)と乗算し、w21(t)s1(t)を生成する。同様に、ベースバンド信号307Bは、w12(t)と乗算し、w12(t)s2(t)を生成し、w22(t)と乗算し、w22(t)s2(t)を生成する。次に、z1(t)=w11(t)s1(t)+w12(t)s2(t)、z2(t)=w21(t)s1(t)+w22(t)s2(t)を得る。
なお。重み付け合成の方法の詳細については、後で詳しく説明する。
符号化部402は、情報(データ)401、フレーム構成信号313を入力とし、フレーム構成信号313に基づき、誤り訂正符号化を行い、符号化後のデータ402を出力する。
図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
シンボル番号4iのとき(iは0以上の整数とする):
シンボル番号4i+1のとき:
ところで、非特許文献4において、スロットごとにプリコーディングウェイトを切り替えることが述べられており、非特許文献4では、プリコーディングウェイトをランダムに切り替えることを特徴としている。一方で、本実施の形態では、ある周期を設け規則的にプリコーディングウェイトを切り替えることを特徴としており、また、4つのプリコーディングウェイトで構成される2行2列のプリコーディングウェイト行列において、4つのプリコーディングウェイトの各絶対値が等しく(1/sqrt(2))、この特徴をもつプリコーディングウェイト行列を規則的に切り替えることを特徴としている。
送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(36)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(36)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
をR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる。
したがって、図8の重み付け係数生成部819は、送信装置が通知した送信方法の情報に関する信号818(図7の710に相当)を入力とし、重み付け係数の情報に関する信号820を出力する。
<初期検波の場合>
INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号郡802X、ベースバンド信号801Y、チャネル推定信号郡802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
ノイズの分散で除算した値をEX(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図3のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
同様に、Soft−in/soft−outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
インタリーバ(813A)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリ
ーブのパターンは、図3のインタリーバ(304A)のインタリーブパターンと同様である。
そして、本実施の形態で重要な部分は、H(t)W(t)の演算を行うことである。なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。
また、非特許文献11に示されているように、H(t)W(t)に基づき、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよ
い。
ための信号処理部である。図8と異なる点は、soft−in/soft−outデコーダの数であり、soft−in/soft−outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
図13は、OFDM方式を用いたときの送信装置の構成を示している。図13において、図3と同様に動作するものについては、同一符号を付した。
理部1301Bは、重み付け後の信号309Bを入力とし、送信信号1302Bを出力する。
逆高速フーリエ変換部1406Aは、並び換え後の信号1405Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1407Aを出力する。
シリアルパラレル変換部1402Bは、重み付け後の信号1401B(図13の重み付け後の信号309Bに相当する)シリアルパラレル変換を行い、パラレル信号1403Bを出力する。
逆高速フーリエ変換部1406Bは、並び換え後の信号1405Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1407Bを出力する。
るというように規則的に配置するものとする。
ルの並び替え方法を示している。図15〜17では、シンボルを周波数軸方向に並べているが、図18ではシンボルを周波数、時間軸の両者を利用して配置している。
1901、シンボル群1902は、プリコーディング切り替え方法を用いたときの1周期分のシンボルである。
うものとする。
実施の形態1では、図6に示すようなプリコーディングウェイトを規則的に切り替える場合について説明したが、本実施の形態では、図6のプリコーディングウェイトとは異なる具体的なプリコーディングウェイトの設計方法について説明する。
シンボル番号4iのとき(iは0以上の整数とする):
シンボル番号4i+1のとき:
シンボル番号4iのとき:
シンボル番号4iのとき:
シンボル番号4iのとき:
シンボル番号4iのとき:
条件#1を満たす例として、
(例#1)
<1> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0ラジアン
とし、
<2> θ21(4i)=0ラジアン
<3> θ21(4i+1)=π/2ラジアン
<4> θ21(4i+2)=πラジアン
<5> θ21(4i+3)=3π/2ラジアン
と設定する方法が考えられる。(上記は例であり、(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))のセットには、0ラジアン、π/2ラジアン、πラジアン、3π/2ラジアンが一つずつ存在すればよい。)このとき、特に、<1>の条件があると、ベースバンド信号S1(t)に対し、信号処理(回転処理)を与える必要がないため、回路規模の削減を図ることができるという利点がある。別の例として、
(例#2)
<6> θ11(4i)=0ラジアン
<7> θ11(4i+1)=π/2ラジアン
<8> θ11(4i+2)=πラジアン
<9> θ11(4i+3)=3π/2ラジアン
とし、
<10> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 ラジアン
と設定する方法も考えられる。(上記は例であり、(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))のセットには、0ラジアン、π/2ラジアン、πラジアン、3π/2ラジアンが一つずつ存在すればよい。)このとき、特に、<6>の条件があると、ベースバンド信号S2(t)に対し、信号処理(回転処理)を与える必要がないため、回路規模の削減を図ることができるという利点がある。さらに別の例として、以下をあげる。
(例#3)
<11> θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0 ラジアン
とし、
<12> θ21(4i)=0ラジアン
<13> θ21(4i+1)=π/4ラジアン
<14> θ21(4i+2)=π/2ラジアン
<15> θ21(4i+3)=3π/4ラジアン
(上記は例であり、(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))のセットには、0ラジアン、π/4ラジアン、π/2ラジアン、3π/4ラジアンが一つずつ存在すればよい。)
(例#4)
<16> θ11(4i)=0ラジアン
<17> θ11(4i+1)=π/4ラジアン
<18> θ11(4i+2)=π/2ラジアン
<19> θ11(4i+3)=3π/4ラジアン
とし、
<20> θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0 ラジアン
(上記は例であり、(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))のセットには、0ラジアン、π/4ラジアン、π/2ラジアン、3π/4ラジアンが一つずつ存在すればよい。)
なお、4つの例をあげたが、条件#1を満たす方法はこれに限ったものではない。
ところで、シンボル番号4i、4i+1、4i+2、4i+3において、それぞれ、悪い受信品質となるqは2点存在する。したがって、2×4=8点の点が存在することになる。LOS環境において、特定の受信端末において受信品質が劣化することを防ぐためには、これら8点がすべて異なる解であるとよい。この場合、<条件#1>に加え、<条件#2>の条件が必要となる。
以上のようにすることで、LOS環境において、良好な受信品質を得ることができる。上記では、4スロット周期で、プリコーディングウェイトを変更する例で説明したが、以下では、Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。実施の形態1、および、上述の説明と同様に考えると、シンボル番後に対し、以下であ
らわされるような処理を行うことになる。
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
下のようにあらわすことができる。
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
以上のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、時間とともにプリコーディングウェイトを切り替えるとともに、切り替えを規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、伝送品質が向上するという効果を得ることができる。
よい。
実施の形態1、実施の形態2では、プリコーディングウェイトを規則的に切り替える方式において、プリコーディングウェイトの行列の各要素の振幅が等しい場合について説明したが、本実施の形態では、この条件を満たさない例について説明する。
実施の形態2と対比するために、Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。実施の形態1、および、実施の形態2と同様に考えると、シンボル番号に対し、以下であらわされるような処理を行うことになる。ただし、βは正の実数とし、β≠1とする。
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
シンボル番号Ni+1のとき:
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
シンボル番号Niのとき(iは0以上の整数とする):
・
・
シンボル番号Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号Ni+N−1のとき:
次に、θ11、θ12のみだけではなく、λ、δについての設計要件について説明する。λについ、ある値に設定すればよく、要件としては、δについての要件を与える必要がある。そこで、λを0ラジアンとした場合のδの設定方法について説明する。
ークワード等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。
実施の形態3では、プリコーディングウェイトを規則的に切り替える方式において、プリコーディングウェイトの行列の各要素の振幅を1とβ
の2種類の場合を例に説明した。
続いて、βの値をスロットで切り替える場合の例について説明する。
実施の形態3と対比するために、2×Nスロット周期で、プリコーディングウェイトを変更する場合について説明する。
実施の形態1、実施の形態2、実施の形態3と同様に考えると、シンボル番号に対し、以下であらわされるような処理を行うことになる。ただし、βは正の実数とし、β≠1とする。また、αは正の実数とし、α≠βとする。
シンボル番号2Niのとき(iは0以上の整数とする):
シンボル番号2Ni+1のとき:
・
・
シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+N+1のとき:
・
・
シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+2N−1のとき:
シンボル番号2Niのとき(iは0以上の整数とする):
シンボル番号2Ni+1のとき:
・
・
シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+N+1のとき:
・
・
シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+2N−1のとき:
シンボル番号2Niのとき(iは0以上の整数とする):
シンボル番号2Ni+1のとき:
・
・
シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+N+1のとき:
・
・
シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+2N−1のとき:
シンボル番号2Niのとき(iは0以上の整数とする):
シンボル番号2Ni+1のとき:
・
・
シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+N−1のとき:
シンボル番号2Ni+N+1のとき:
・
・
シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+2N−1のとき:
シンボル番号2Niのとき(iは0以上の整数とする):
・
・
シンボル番号2Ni+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+N−1のとき:
・
・
シンボル番号2Ni+N+k(k=0、1、・・・、N−1)のとき:
・
・
シンボル番号2Ni+2N−1のとき:
実施の形態1〜実施の形態4では、プリコーディングウェイトを規則的に切り替える方法について説明したが、本実施の形態では、その変形例について説明する。
・第1の周期2201、第2の周期2202、第3の周期2203、・・・はすべて、4スロットで構成されている。
・4スロットではスロットごとに異なるプリコーディングウェイト行列、つまり、W1、W2、W3、W4をそれぞれ1度用いる。
・第1の周期2201、第2の周期2202、第3の周期2203、・・・において、必ずしもW1、W2、W3、W4の順番を同一とする必要がない。
である。これを実現するために、プリコーディングウェイト行列生成部2200は重み付け方法に関する信号を入力とし、各周期における順番にしたがったプリコーディングウェイトに関する情報2210を出力する。そして、重み付け合成部600は、この信号と、s1(t)、s2(t)を入力とし、重み付け合成を行い、z1(t)、z2(t)を出力する。
なお、上述では、プリコーディングウェイトの切り替え周期を図6と比較するために4として説明したが、実施の形態1〜実施の形態4のように、周期4以外のときでも同様に実施することが可能である。
また、実施の形態1〜実施の形態4、および、上述のプリコーディング方法において、周期内では、δ、βの値をスロットごとに同一であるとして説明したが、スロットごとにδ、βの値を切り替えるようにしてもよい。
実施の形態1〜4において、プリコーディングウェイトを規則的に切り替える方法について述べたが、本実施の形態では、実施の形態1〜4で述べた内容を含め、再度、プリコーディングウェイトを規則的に切り替える方法について説明する。
リコーディングを適用した空間多重型の2x2MIMOシステムのプリコーディング行列の設計
方法について述べる。
信号x(p)=(x1(p),x2(p))Tは次式であらわされる。
とき、上式は、以下のようにあらわすことができる。
成分のチャネル行列Hd(p)において、送信アンテナ間隔と比較し、送受信機間の距離が十
分長い環境となる可能性が高いため、直接波成分のチャネル行列正則行列であるものとする。したがって、チャネル行列Hd(p)を以下のようにあらわすものとする。
した、通信相手からのフィードバックが存在しないプリコーディングを適用した空間多重型の2x2MIMOシステムのプリコーディング行列の設計方法について述べる。
。したがって、LOS環境での適切なフィードバックなしのプリコーディング行列の設計方
法(時間とともにプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列)について述べる。
適切なフィードバックなしのプリコーディング行列の設計方法について説明する。
とき、dmin 2がゼロという最小値をとる劣悪点であるとともに、s1(p)で送信するすべてのビット、または、s2(p)で送信するすべてのビットが消失するという劣悪な状態となるqが2つ存在する。
と呼ぶ)
式(153)を満たすとき、s1(p)により送信したビットすべてが消失しているためs1(p)により送信したビットすべての受信対数尤度比を求めることができず、式(154)を満たすとき、s2(p)により送信したビットすべてが消失しているためs2(p)により送信したビットすべての受信対数尤度比を求めることができない。
するという現象に陥る可能性がある。したがって、この問題を改善するためは、時間的にプリコーディング行列を切り替える必要がある。
(以降ではプリコーディングホッピング方法と呼ぶ)を考える。
時間周期Nスロットのために、式(148)に基づくN種類のプリコーディング行列F[i]を用意する(i=0,1,…,N-1)。このとき、プリコーディング行列F[i]を以下のようにあらわす。
そして、実施の形態1と同様に、時点(時刻)N×k+i(kは0以上の整数、i=0,1,…,N-1)の式(142)におけるプリコーディング後の信号x(p= N×k+i)を得るために用いられるプ
リコーディング行列がF[i]となる。これについては、以降でも同様である。
ピングのプリコーディング行列の設計条件が重要となる。
信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s1(p)で
送信したビットの対数尤度比を得ることができる。同様に、<条件#11>により、Γ個の端末すべてにおいて、時間周期内のNにおいて、s2の受信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s2(p)で送信したビットの対数尤度比を得ることができる。
ータ受信品質の劣化を改善することを考える。
直接波の位相の確率密度分布は[0 2π]の一様分布であると考えることができる。した
がって、式(151),(152)におけるqの位相の確率密度分布も[0 2π]の一様分布であると考えることができる。よって、qの位相のみが異なる同一のLOS環境において、Γ個の端末に対し、可能な限り公平なデータの受信品質を与えるための条件として、以下を与える。
<条件#12>
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、時間周期内のNにおいて、s1の受信劣悪点を位相に対し一様分布となるように配置し、かつ、s2の受信劣悪点を位相に対し一様分布となるように配置する。
(例#5)
時間周期N=8とし、<条件#10>から<条件#12>を満たすために、次式のような
時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える
。
)。
ものとする(変化してもよい)。)。
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、
点を位相に対し、一様分布となるように配置する。
そこで、<条件#10>, <条件#11>, <条件#13>に基づくプリコーディングホッピング方法におけるプリコーディング行列の例を説明する。式(157)のプリコーディング行列のα=1.0とする。
(例#6)
時間周期N=4とし、次式のような時間周期N=4のプリコーディングホッピング方法におけるプリコーディング行列を与える。
)と与えてもよい(λ、θ11[i]は時間的に変化しないものとする(変化してもよい)。
)。
式(148)に基づき、本検討で扱うプリコーディング行列を以下のようにあらわす。
なるqが2つ存在する。
式(171)においてs1(p)が存在しない:
式(174)のプリコーディング行列のα=1.0とする。そして、時間周期N=16とし、
<条件#12>, <条件#14>, <条件#15>を満たすために、次式のような時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える。
i=0,1,…,7のとき:
(図33において、横軸は実軸、縦軸は虚軸となる。)また、式(177)、式(178)および式(179)、式(180)のかわりに以下のようにプリコーディング行列を与えても良い。
i=0,1,…,7のとき:
次に、<条件#12>とは異なる、qの位相のみが異なる同一のLOS環境において、Γ個の端末に対し、可能な限り公平なデータの受信品質を与えるための条件として、以下を与える。
<条件#16>
時間周期Nスロットのプリコーディングホッピング方法を用いた場合、
点を位相に対し、一様分布となるように配置する。
そこで、<条件#14>, <条件#15>, <条件#16>に基づくプリコーディングホッピング方法におけるプリコーディング行列の例を説明する。式(174)のプリコーディング行列のα=1.0とする。
(例#8)
時間周期N=8とし、次式のような時間周期N=8のプリコーディングホッピング方法におけるプリコーディング行列を与える。
また、式(186)と異なるプリコーディング行列として、以下のように与えることが
できる(i=0,1,…,7)(λ、θ11[i]は時間的に変化しないものとする(変化してもよい
)。)。
次に、式(174)のプリコーディング行列において、α≠1とし、受信劣悪点同士の
複素平面における距離の点を考慮した(例#7), (例#8)と異なるプリコーディングホッピング方法について考える。
が、このとき、<条件#14>により、Γ個の端末すべてにおいて、時間周期内のNにお
いて、s1の受信劣悪点をとるスロットは1スロット以下となる。したがって、N-1スロット以上s1(p)で送信したビットの対数尤度比を得ることができる。同様に、<条件#15>
により、Γ個の端末すべてにおいて、時間周期内のNにおいて、s2の受信劣悪点をとるス
ロットは1スロット以下となる。したがって、N-1スロット以上s2(p)で送信したビットの
対数尤度比を得ることができる。
ット数が大きくなることがわかる。
ところで、実際のチャネルモデルでは、散乱波成分の影響をうけるため、時間周期Nが
固定の場合、受信劣悪点の複素平面上の最小距離は可能な限り大きい方が、データの受信品質が向上する可能性があると考えられる。したがって、(例#7), (例#8)において、α≠1とし、(例#7), (例#8)を改良したプリコーディングホッピング方法に
ついて考える。まず、理解が容易となる、(例#8)を改良したプリコーディング方法に
ついて述べる。
(例#9)
式(186)から、(例#7)を改良した時間周期N=8のプリコーディングホッピング
方法におけるプリコーディング行列を次式で与える。
ものとする(変化してもよい)。)。
(i)α<1.0のとき
α<1.0のとき、受信劣悪点の複素平面における最小距離は、受信劣悪点#1と#2の距離(d#1,#2)および、受信劣悪点#1と#3の距離(d#1,#3)に着目すると、min{d#1,#2, d#1,#3}とあらわされる。このとき、αとd#1,#2およびd#1,#3の関係を図36に示す。そし
て、min{d#1,#2, d#1,#3}を最も大きくするαは
α>1.0のとき、受信劣悪点の複素平面における最小距離は、受信劣悪点#4と#5の距離(d#4,#5)および、受信劣悪点#4と#6の距離(d#4,#6)に着目すると、min{d#4,#5, d#4,#6}とあらわされる。このとき、αとd#4,#5およびd#4,#6の関係を図37に示す。そし
て、min{d#4,#5, d#4,#6}を最も大きくするαは
(例#10)
(例#9)の検討から(例#7)を改良した時間周期N=16のプリコーディングホッピング方法におけるプリコーディング行列は次式で与えることができる(λ、θ11[i]は時間
的に変化しないものとする(変化してもよい)。)。
i=0,1,…,7のとき:
i=0,1,…,7のとき:
i=0,1,…,7のとき:
i=0,1,…,7のとき:
i=0,1,…,7のとき:
i=0,1,…,7のとき:
i=0,1,…,7のとき:
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の
異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
(実施の形態7)
本実施の形態では、実施の形態1〜6で説明した規則的にプリコーディング行列を切り替える送信方法で送信された変調信号を受信する受信装置の構成について説明する。
図40は、本実施の形態における送信装置の構成の一例を示しており、図3と同様に動作するものについては同一符号を付した。符号化器群(4002)は、送信ビット(4001)を入力とする。このとき、符号化器群(4002)は、実施の形態1で説明したように、誤り訂正符号の符号化部を複数個保持しており、フレーム構成信号313に基づき、例えば、1つの符号化、2つの符号化器、4つの符号化器のいずれかの数の符号化器が動作することになる。
例えば、表1において、「#1: 256QAM, #2: 1024QAM」は「ストリーム#1の変調方式は
256QAM、ストリーム#2の変調方式は1024QAM」ということを示している(他についても同様に表現している)。誤り訂正符号化方式としては、A、B、Cの3種類をサポートしているものとする。このとき、A、B、Cはいずれも異なる符号であってもよいし、A、B、Cは異なる符号化率であってもよいし、A、B、Cは異なるブロックサイズの符号化方法であってもよい。
・プリコーディング行列が異なる5種類を用意し、実現する。
・異なる5種類の周期、例えば、Dの周期を4、Eの周期を8、・・・、とすることで、実現する。
・異なるプリコーディング行列、異なる周期の両者を併用することで、実現する。
等が考えられる。
さらに、図41において、シンボル(4104)は、表1に示されている「送信情報」を伝送するためのシンボルである。シンボル(4105)は、チャネル推定用のリファレンス(パイロット)シンボルである。シンボル(4106、4107)は、変調信号z1(t)で送信するデータ伝送用のシンボルであり、このとき、変調信号z1(t)で送信するデータ伝送用のシンボルは、送信信号数が1なので、プリコーディングが行われていないことになる。
関する情報を含んでいることになる。そして、符号化部(4002)、マッピング部306A,B、重み付け合成部308A,B、は、フレーム構成信号を入力とし、表1に基づき設定した「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に基づく動作を行うことになる。また、設定した「送信信号数」「変調方式」「符号化器数」「誤り訂正符号化方法」に相当する「送信情報」についても受信装置に送信することになる。
また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
る。
送信装置の送信アンテナ、受信装置の受信アンテナ、共に、図面で記載されている1つのアンテナは、複数のアンテナにより構成されていても良い。
Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
(実施の形態8)
本実施の形態では、実施の形態1〜4、実施の形態6で説明したプリコーディングウェイトを規則的に切り替える方法の応用例について、ここでは説明する。
と308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号同相I、直交Q成分となる。そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、重み付け情報に関する情報315を入力とし、重み付け情報に関する情報315にしたがった重み付け方法を施し、図3の重み付け合成後の信号309A(z1(t))、309B(z2(t))を出力する。
替え方法を用いた場合、z1(t)、z2(t)は以下のようにあらわされる。
シンボル番号8iのとき(iは0以上の整数とする):
シンボル番号8i+1のとき:
シンボル番号8i+2のとき:
シンボル番号8i+3のとき:
シンボル番号8i+4のとき:
シンボル番号8i+5のとき:
シンボル番号8i+6のとき:
シンボル番号8i+7のとき:
ここで、シンボル番号と記載しているが、シンボル番号は時刻(時間)と考えてもよい。他の実施の形態で説明したとおり、例えば、式(225)において、時刻8i+7のz1(8i+7)とz2(8i+7)は、同一時刻の信号であり、かつ、z1(8i+7)とz2(8i+7)は同一(共通の)周波数を用いて送信装置が送信することになる。つまり、時刻Tの信号をs1(T)、s2(T)、z1(T)、z2(T)とすると、何らかのプリコーディング行列とs1(T)およびs2(T)から、z1(T)およびz2(T)を求め、z1(T)およびz2(T)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。また、OFDM等のマルチキャリア伝送方式を用いた場合、(サブ)キャリアL、時刻Tにおけるs1、s2、z1、z2に相当する信号をs1(T,L)、s2(T,L)、z1(T,L)、z2(T,L)とすると、何らかのプリコーディング行列とs1(T,L)およびs2(T,L)から、z1(T,L)およびz
2(T,L)を求め、z1(T,L)およびz2(T,L)は同一(共通の)周波数を用い
て(同一時刻(時間)に)送信装置が送信することになる。
本実施の形態では、上記で述べた式(190)のプリコーディング行列をもとにし、周期を大きくするプリコーディング切り替え方法について述べる。
例えば、M=2としたとき、α<1とすると、k=0のときのs1の受信劣悪点(○)、お
よび、s2の受信劣悪点(□)は、図42(a)のようにあらわされる。同様に、k=1のと
きのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、図42(b)のようにあらわされる。このように、式(190)のプリコーディング行列をもとにすると、受信劣悪点は図42(a)ようになり、この式(190)の右辺の行列の2行目の各要素にejXを乗算した行列をプリコーディング行列とすることで(式(226)参照)、受信劣悪点が図42(a)に対し、回転した受信劣悪点をもつようにする(図42(b)参照)。(ただし、図42(a)と図42(b)の受信劣悪点は重なっていない。このように、ejXを乗算しても、受信劣悪点は重ならないようにするとよい。また、式(190)の右辺の行列の2行目の各要素にejXを乗算するのではなく、式(190)の右辺の行列の1行目の各要素にejXを乗算した行列をプリコーディング行列としてもよい。)このとき、プリコーディング行列F[0]〜F[15]は次式であらわされる。
すると、M=2のとき、F[0]〜F[15]のプリコーディング行列が生成されたことになる
(F[0]〜F[15]のプリコーディング行列は、どのような順番にならべてもよい。また、F[0]〜F[15]の行列がそれぞれ異なる行列であるとよい。)。そして、例えば、シンボル番号16iのときF[0]を用いてプリコーディングを行い、シンボル番号16i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号16i+hのときF[h]を用い
てプリコーディングを行う(h=0、1、2、・・・、14、15)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
以上をまとめると、式(82)〜式(85)を参考にし、周期Nのプリコーディング行
列を次式であらわす。
)をベースとする周期N×Mのプリコーディング行列を次式であらわす。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、
・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(229)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
なお、式(229)および式(230)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが一つの特徴的な構成であり(δの条件については、他の実施の形態のときも同様である。)、良好なデータの受信品質が得られることになる。別の構成として、ユニタリ行列の場合もあるが、実施の形態10や実施の形態16において、詳しく述べるが、式(229)、式(230)において、Nを奇数とすると、良好なデータの受信品質を得ることができ
る可能性が高くなる。
(実施の形態9)
本実施の形態では、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
において、式(82)〜式(85)を参考にした、周期Nのために用意するプリコーディ
ング行列を次式であらわす。
実施の形態6で説明した際、受信劣悪点間の距離について述べたが、受信劣悪点間の距離を大きくするためには、周期Nは3以上の奇数であることが重要となる。以下では、こ
の点について説明する。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α<1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(a)
に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図43(
b)に示す。また、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、周期N=3のときの、s1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図4
4(a)に、周期N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を
図44(b)に示す。
線とで形成する位相(図43(a)参照。)を考えた場合、α>1、α<1いずれの場合についても、N=4のとき、s1に関する受信劣悪点における前述の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合が必ず発生する。(図43の4301、4302、および図44の4401、4402参照)このとき、複素平面において、受信劣悪点間の距離が小さくなる。一方で、N=3のとき、s1に関する受信劣悪点における前述
の位相とs2に関する受信劣悪点における前述の位相とが同一の値となる場合は発生しない。
受信劣悪点における前述の位相とが同一の値となる場合が必ず発生することを考慮すると、周期Nが奇数のときのほうが、周期Nが偶数のときと比較し、複素平面において、受信劣
悪点間の距離が大きくなる可能性が高い。ただし、周期Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であ
っても、データの受信品質を確保することができる場合が存在する可能性がある。
い。なお、式(232)に基づきF[0]〜F[N-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N-1]のプリコーディング行列は、周期Nに対しどのような順番にならべ
て使用してもよい。)。そして、例えば、シンボル番号NiのときF[0]を用いてプリコー
ディングを行い、シンボル番号Ni+1のときF[1]を用いてプリコーディングを行い、・
・・、シンボル番号N×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N-2、N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーデ
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の
異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性
が高くなる。このとき、<条件#17><条件#18>は以下のような条件に置き換えることができる。(周期はNとして考える。)
(実施の形態10)
本実施の形態では、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について、実施の形態9とは異なる例を述べる。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(234)に対し、以下の条件が、良好なデータの受信品質を得るためには重要とな
る。
そして、以下の条件を付加することを考える。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図45(a)(b)
に示す。図45(a)(b)からわかるように、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保てている。そして、α<1のときにも同様な状態となる。また、実施の形態9と同様に考えると、Nが奇数のときのほうが、Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、Nが小さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、デー
タの受信品質を確保することができる場合が存在する可能性がある。
能性が高い。なお、式(234)、(235)に基づきF[0]〜F[2N-1]のプリコーディン
グ行列が生成されたことになる(F[0]〜F[2N-1]のプリコーディング行列は、周期2Nに対
しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2NiのときF[0]を用いてプリコーディングを行い、シンボル番号2Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2N×i+hのときF[h]を用いてプリコー
ディングを行う(h=0、1、2、・・・、2N-2、2N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを式(233)とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
このとき、<条件#21>かつ<条件#22>かつ<条件#26>かつ<条件#27>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
(実施の形態11)
本実施の形態では、非ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
とする。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(236)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
そして、以下の条件を付加することを考える。
例として、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#31>または<条件#32>を与える。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1とし、δ=(3π)/4ラジアンとしたとき、N=4のときのs1の受信劣悪点とs2の受信劣悪点の複素平面
上での配置を図46(a)(b)に示す。このようにすることで、プルコーディング行列を切り替える周期を大きくすることができ、かつ、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保つことができるため、良好な受信品質を得ることができる。ここでは、α>1、δ=(3π)/4ラジアン、N=4のときを例に説明したがこれに限ったものではなく、π/2ラジアン
≦|δ|<πラジアン、かつ、α>0、かつ、α≠1であれば同様の効果を得ることができる。
このとき、<条件#28>かつ<条件#29>かつ<条件#33>かつ<条件#34>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
(実施の形態12)
本実施の形態では、非ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列を次式であらわす。
(iによらず固定値)、i=0,1,2,・・・,N-2,N-1とする。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(239)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
例として、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#37>または<条件#38>を与える。
このとき、π/2ラジアン≦|δ|<πラジアン、かつ、α>0、かつ、α≠1であれば、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。なお、<条件#37>、<条件#38>は必ず必要となる条件ではない。
ィング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、本実施の形態は、シングルキャリア伝送方式のときを例に説明しているため時間軸(または、周波数軸)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べる場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期Nのプリコーディン
グホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダム
に用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
大きな自然数とする)のプリコーディング行列切り替え方法において、本実施の形態におけるN個の異なるプリコーディング行列が含まれていると良好な受信品質を与える可能性
が高くなる。このとき、<条件#35><条件#36>は以下のような条件に置き換えることができる。(周期はNとして考える。)
(実施の形態13)
本実施の形態では、実施の形態8の別の例について説明する。
そして、式(240)および式(241)をベースとする周期2×N×Mのプリコーディ
ング行列を次式であらわす。
てもよい。
すると、F[0]〜F[2×N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[2×N×M-1]のプリコーディング行列は、周期2×N×Mどのような順番にならべて使用し
てもよい。)。そして、例えば、シンボル番号2×N×M×iのときF[0]を用いてプリコー
ディングを行い、シンボル番号2×N×M×i+1のときF[1]を用いてプリコーディングを
行い、・・・、シンボル番号2×N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、2×N×M-2、2×N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(242)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(243)を式(245)〜式(24
7)のいずれかとしてもよい。
なお、受信劣悪点について着目すると、式(242)から式(247)において、
また、式(242)から式(247)のXk, Ykに着目すると、
ただし、sは整数である。
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件42>を満たすとよい。
受信品質を得ることができる可能性が高くなる。
(実施の形態14)
本実施の形態では、規則的にプリコーディング行列を切り替える方式において、プリコーディング行列として、ユニタリ行列を用いる場合と非ユニタリ行列を用いる場合の使い分けの例について説明する。
規則的にプリコーディング行列を切り替える方法を用いてデータを伝送する場合、図3の
図13の送信装置は、フレーム構成信号313により、マッピング部306A、306Bは、変調方式を切り替えることになる。このとき、変調方式の変調多値数(変調多値数:IQ平面における変調方式の信号点の数)とプリコーディング行列の関係について説明する。
式がQPSK, 16QAM, 64QAMの場合は、受信装置において、ML演算(ML演算に基づく(Max-log)APP)を用い、256QAM, 1024QAMの場合は、MMSE, ZFのような線形演算を用いた検波を
用いることになる。(場合によっては、256QAMの場合、ML演算を用いても良い。)
このような受信装置を想定した場合、多重信号分離後のSNR(signal-to-noise power ratio)を考えた場合、受信装置でMMSE, ZFのような線形演算を用いている場合は、プリコーディング行列としてユニタリ行列が適しており、ML演算を用いている場合は、プリコーディング行列としてユニタリ行列・非ユニタリ行列のいずれをもちいてもよい。上述のいずれかの実施の形態の説明を考慮すると、プリコーディング後の2つの信号を2つのアンテナから送信し、2つの変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式を用いているものとする場合、変調方式の変調多値数が64値以下(または、256値以下)のとき、規則的にプリコーディング行列を切り替える方式を用いたと
きのプリコーディング行列として非ユニタリ行列を用い、64値より大きい(または256値
より大きい)場合、ユニタリ行列を用いると、通信システムがサポートしている全ての変調方式において、どの変調方式の場合においても、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。
タリ行列を用いたほうがよい場合がある可能性がある。このようなことを考慮すると、変調方式の変調多値数が64値以下(または、256値以下)の複数の変調方式をサポートして
いる場合、サポートしている複数の64値以下の変調方式のいずれかの変調方式で規則的にプリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在することが重要となる。
号をN個のアンテナから送信し、N個の変調信号(プリコーディング前の変調方式に基づく信号)がいずれも同一の変調方式を用いているものとする場合、変調方式の変調多値数にβNという閾値を設け、変調方式の変調多値数がβN以下の複数の変調方式をサポートしている場合、サポートしているβN以下の複数の変調方式のいずれかの変調方式で規則的に
プリコーディング行列を切り替える方式を用いたときのプリコーディング行列として非ユニタリ行列を用いる場合が存在し、変調方式の変調多値数がβNより大きい変調方式の場
合、ユニタリ行列を用いると、通信システムがサポートしている全ての変調方式において、どの変調方式の場合においても、受信装置の回路規模を小さくしながら良好なデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。(変調方
式の変調多値数がβN以下のとき、規則的にプリコーディング行列を切り替える方式を用
いたときのプリコーディング行列として非ユニタリ行列を常に用いてもよい。)
上述では、同時に送信するN個の変調信号の変調方式が、同一の変調方式を用いている
場合で説明したが、以下では、同時に送信するN個の変調信号において、2種類以上の変
調方式が存在する場合について説明する。
コーディング前の変調方式に基づく信号)がいずれも同一の変調方式、または、異なる変調方式が存在する場合のとき、第iの変調信号の変調方式の変調多値数を2aiとする(i=1、2、・・・、N-1、N)。
(実施の形態15)
本実施の形態では、OFDMのようなマルチキャリア伝送方式を用いた、規則的にプリコーディング行列を切り替える方式のシステム例について説明する。
図48は、本実施の形態におけるOFDMのようなマルチキャリア伝送方式を用いた、規則的
にプリコーディング行列を切り替える方式のシステムにおいて、放送局(基地局)が送信する送信信号の、時間−周波数軸におけるフレーム構成の一例を示しており、図47とは異なる時間の時間$Xから時間$X+T’までのフレーム構成を示している。図48は、図47と同様に、OFDMを用いたときに使用される(サブ)キャリアは、(サブ)キャリアa〜(サブ)キャリアa+Naで構成されたキャリア群#A、(サブ)キャリアb〜(サブ)キャリアb+Nbで構成されたキャリア群#B、(サブ)キャリアc〜(サブ)キャリアc+Ncで構成されたキャリア群#C、(サブ)キャリアd〜(サブ)キャリアd+Ndで構成されたキャリア群#D、・・・で分割するものとする。そして、図48が図47と異なる点は、図47で用いられている通信方式と図48で用いられている通信方式が異なるキャリア群が存在することである。図48では、(A)(B)では、キャリア群#Aは、時空間ブロック符号を用いて送信するものとし、キャリア群#Bは規則的にプリコーディング行列を切り替えるMIMO伝送方式を用いるものとし、キャリア群#Cは規則的にプリコーディング行列を切り替えるMIMO伝送方式を用いるものとし、キャリア群#Dはストリームs1のみ送信するものとする。
図49は、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いたときの信号処理方法を示しており、図6と同様の番号を付している。ある変調方式にしたがったベースバンド信号である、重み付け合成部600は、ストリームs1(t)(307A)およびストリームs2(t)(307B)、および、重み付け方法に関する情報315を入力とし、重み付け後の変調信号z1(t)(309A)および重み付け後の変調信号z2(t)(309B)を出力する。ここで、重み付け方法に関する情報315が、空間多重MIMO伝送方式を示していた場合、図49の方式#1の信号処理が行われる。つまり、以下の処理が行われる。
図50は、時空間ブロック符号を用いたときの変調信号の構成を示している。図50の時空間ブロック符号化部(5002)は、ある変調信号に基づくベースバンド信号が入力とする。例えば、時空間ブロック符号化部(5002)は、シンボルs1、シンボルs2、・・・を入力とする。すると、図50のように、時空間ブロック符号化が行われ、z1(5003A)は、「シンボル#0としてs1」「シンボル#1として−s2*」「シンボル#2としてs3」「シンボル#3として−s4*」・・・となり、z2(5003B)は、「シンボル#0としてs2」「シンボル#1としてs1*」「シンボル#2としてs4」「シンボル#3としてs3*」・・・となる。このとき、z1におけるシンボル#X、z2におけるシンボル#Xは同一時間に同一周波数によりアンテナから送信されることになる。
図52は、本実施の形態における放送局(基地局)の送信装置の構成の一例を示している。送信方法決定部(5205)は、各キャリア群のキャリア数、変調方式、誤り訂正方式、誤り訂正符号の符号化率、送信方法等の決定を行い、制御信号(5205)として出力する。
変調信号生成部#1(5201_1)は、情報(5200_1)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、図47、図48のキャリア群#Aの変調信号z1(5202_1)および変調信号z2(5203_1)を出力する。
・
・
同様に、変調信号生成部#M(5201_M)は、情報(5200_M)および制御信号(5205)を入力とし、制御信号(5205)の通信方式の情報に基づき、あるキャリア群の変調信号z1(5202_M)および変調信号z2(5203_M)を出力する。
インタリーブ部(5304)は、誤り訂正符号化後のデータ(5303)、制御信号(5301)を入力とし、制御信号(5301)に含まれるインタリーブ方法の情報に従い、誤り訂正符号化後のデータ(5303)の並び換えを行い、インタリーブ後のデータ(5305)を出力する。
シンボルである。なお、キャリア群#A、キャリア群#B、キャリア群#C、キャリア群#Dにおいて、ストリームs2にデータシンボルが存在するように記載しているが、ストリームs1のみ送信する伝送方式を用いている場合は、ストリームs2にデータシンボルが存在しない場合もある。
図56において、OFDM方式関連処理部(5600_X)は、受信信号702_Xを入力とし、所定の処理を行い、信号処理後の信号704_Xを出力する。同様に、OFDM方式関連処理部(5600_Y)は、受信信号702_Yを入力とし、所定の処理を行い、信号処理後の信号704_Yを出力する。
波数変換を行い、周波数変換後の信号(5702)を出力する。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用いているとき、複数のキャリア群に分割し、キャリア群ごとに伝送方式を設定することで、キャリア群ごとに受信品質、かつ、伝送速度を設定することができるため、柔軟なシステムを構築できるという効果を得ることができる。このとき、他の実施の形態で述べたような、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、このとき、時空間符号として、図50の方式を説明したがこれに限ったものではなく、また、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、キャリア群ごとに「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」のいずれか伝送方式を選択できるようにすれば、同様の効果を得ることができる。
(実施の形態16)
本実施の形態では、実施の形態10と同様、ユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について、Nを奇数とする場合について述べる。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6から、式(253)に対し、以下の条件が、良好なデータの受信品質を得るためには重要となる。
そして、以下の条件を付加することを考える。
そして、θ11(0)―θ21(0)=0ラジアンとし、かつ、α>1としたとき、N=3のときのs1の受信劣悪点とs2の受信劣悪点の複素平面上での配置を図60(a)(b)
に示す。図60(a)(b)からわかるように、複素平面において、s1の受信劣悪点の最小距離は大きく保てており、また、同様に、s2の受信劣悪点の最小距離も大きく保てている。そして、α<1のときにも同様な状態となる。また、実施の形態10の図45と比較すると、実施の形態9と同様に考えると、Nが奇数のときのほうが、Nが偶数のときと比較し、複素平面において、受信劣悪点間の距離が大きくなる可能性が高い。ただし、Nが小
さい値、例えば、N≦16以下の場合、複素平面における受信劣悪点の最小距離は、受信劣
悪点の存在する個数が少ないため、ある程度の長さを確保することができる。したがって、N≦16の場合は、偶数であっても、データの受信品質を確保することができる場合が存
在する可能性がある。
能性が高い。なお、式(253)、(254)に基づきF[0]〜F[2N-1]のプリコーディン
グ行列が生成されたことになる(F[0]〜F[2N-1]のプリコーディング行列は、周期2Nに対
しどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号2NiのときF[0]を用いてプリコーディングを行い、シンボル番号2Ni+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号2N×i+hのときF[h]を用いてプリコー
ディングを行う(h=0、1、2、・・・、2N-2、2N-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)また、s1、s2の変調方式が、ともに16QAMのとき、αを式(233)とすると、IQ平面における16×16=256個の信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。
このとき、<条件#46>かつ<条件#47>かつ<条件#51>かつ<条件#52>を満たすことで、複素平面におけるs1同士の受信劣悪点の距離を大きく、かつ、s2同士の受信劣悪点の距離を大きくすることができるため、良好なデータの受信品質を得ることができる。
場合について説明したが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、時間周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
(実施の形態17)
本実施の形態では、実施の形態8に基づく具体的なプリコーディングウェイトを規則的に切り替える方法の例を説明する。
そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、重み付け情報に関する情報315を入力とし、重み付け情報に関する情報315にしたがった重み付け方法を施し、図3の重み付け合成後の信号309A(z1(t))、309B(z2(t))を出力する。
シンボル番号8iのとき(iは0以上の整数とする):
シンボル番号8i+1のとき:
シンボル番号8i+2のとき:
シンボル番号8i+3のとき:
シンボル番号8i+4のとき:
シンボル番号8i+5のとき:
シンボル番号8i+6のとき:
シンボル番号8i+7のとき:
ここで、シンボル番号と記載しているが、シンボル番号は時刻(時間)と考えてもよい。他の実施の形態で説明したとおり、例えば、式(262)において、時刻8i+7のz1(8i+7)とz2(8i+7)は、同一時刻の信号であり、かつ、z1(8i+7)とz2(8i+7)は同一(共通の)周波数を用いて送信装置が送信することになる。つまり、時刻Tの信号をs1(T)、s2(T)、z1(T)、z2(T)とすると、何らかのプリコーディング行列とs1(T)およびs2(T)から、z1(T)およびz2(T)を求め、z1(T)およびz2(T)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。また、OFDM等のマルチキャリア伝送方式を用いた場合、(サブ)キャリアL、時刻Tにおけるs1、s2、z1、z2に相当する信号をs1(T,L)、s2(T,L)、z1(T,L)、z2(T,L)とすると、何らかのプリコーディング行列とs1(T,L)およびs2(T,L)から、z1(T,L)およびz2(T,L)を求め、z1(T,L)およびz2(T,L)は同一(共通の)周波数を用いて(同一時刻(時間)に)送信装置が送信することになる。
このとき、αの適切な値として、式(198)、または、式(200)がある。また、式(255)〜式(262)において、αの値をそれぞれに異なる値に設定してもよい。つまり、式(255)〜式(262)のうち2つの式を抽出したとき(式(X)と式(Y)とする)式(X)のαと式(Y)のαが異なる値であってもよい。
プリコーディング切り替え行列の周期を8Mとしたとき、異なるプリコーディング行列8M個を以下のようにあらわす。
例えば、M=2としたとき、α<1とすると、k=0のときのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、図42(a)のようにあらわされる。同様に、k=1のときのs1の受信劣悪点(○)、および、s2の受信劣悪点(□)は、追追図1(b)のようにあらわされる。このように、式(190)のプリコーディング行列をもとにすると、受信劣悪点は図42(a)ようになり、この式(190)の右辺の行列の2行目の各要素にejXを乗算した行列をプリコーディング行列とすることで(式(226)参照)、受信劣悪点が図42(a)に対し、回転した受信劣悪点をもつようにする(図42(b)参照)。(ただし、図42(a)と図42(b)の受信劣悪点は重なっていない。このように、ejXを乗算しても、受信劣悪点は重ならないようにするとよい。また、式(190)の右辺の行列の2行目の各要素にejXを乗算するのではなく、式(190)の右辺の行列の1行目の各要素にejXを乗算した行列をプリコーディング行列としてもよい。)このとき、プリコーディング行列F[0]〜F[15]は次式であらわされる。
すると、M=2のとき、F[0]〜F[15]のプリコーディング行列が生成されたことになる(F[0]〜F[15]のプリコーディング行列は、どのような順番にならべてもよい。また、F[0]〜F[15]の行列がそれぞれ異なる行列であるとよい。)。そして、例えば、シンボル番号16iのときF[0]を用いてプリコーディングを行い、シンボル番号16i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号16i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、14、15)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
以上をまとめると、式(82)〜式(85)を参考にし、周期Nのプリコーディング行列を次式であらわす。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(266)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
なお、式(265)および式(266)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが特徴的な構成であり(δの条件については、他の実施の形態のときも同様である。)、良好なデータの受信品質が得られることになるが、ユニタリ行列であってもよい。
本実施の形態では、実施の形態9に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
実施の形態8で述べたように周期Nの規則的にプリコーディング行列を切り替える方法において、式(82)〜式(85)を参考にした、周期Nのために用意するプリコーディング行列を次式であらわす。
また、s1の変調方式をQPSK変調とし、s2の変調方式を16QAMとしたとき、αを
周期Nのために用意する式(269)に基づくプリコーディング行列の例として、N=5としたとき、以下のような行列が考えられる。
αの設定値としては、上述で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期Nのプリコーディングホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
(実施の形態19)
本実施の形態では、実施の形態10に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
そして、s1の変調方式をQPSK変調とし、s2の変調方式を16QAMとしたとき、αを式(271)とすると、IQ平面における候補信号点間の最小距離をある特定のLOS環境において大きくできるという効果を得ることができる可能性がある。 なお、16QAMのI−Q平面における信号点配置は図60のとおりであり、QPSKのI−Q平面における信号点配置は図94のとおりである。そして、図60のgが、式(272)とすると、図94のhは、式(273)となる。
周期2Nのために用意する式(279)、式(280)に基づくプリコーディング行列の例として、N=15としたとき、以下のような行列が考えられる。
ただし、λは、式(279)、式(280)において、iにより、異なる値としてもよいし、同一の値であってもよい。つまり、式(279)、式(280)において、F[i=x]におけるλとF[i=y]におけるλ(x≠y)は同一の値であってもよいし、異なる値であってもよい。また、別の方法として、式(279)において、λを固定の値とし、式(280)において、λを固定の値とし、かつ、式(279)における固定したλの値と式(280)における固定したλの値を異なる値としてもよい。(別の手法として、式(279)における固定したλの値と式(280)における固定したλの値とする方法でもよい。)
αの設定値としては、上述で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
(実施の形態20)
本実施の形態では、実施の形態13に基づくユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について述べる。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
そして、式(311)および式(312)をベースとする周期2×N×Mのプリコーディング行列を次式であらわす。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(313)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(314)を式(316)〜式(318)のいずれかとしてもよい。
なお、受信劣悪点について着目すると、式(313)から式(318)において、
ただし、sは整数である。
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる。なお、実施の形態8では、<条件42>を満たすとよい。
なお、式(313)および式(318)において、0ラジアン≦δ<2πラジアンとしたとき、δ=πラジアンのときユニタリ行列となり、δ≠πラジアンのとき非ユニタリ行列となる。本方式では、π/2ラジアン≦|δ|<πラジアンの非ユニタリ行列のときが特徴的な構成であり、良好なデータの受信品質が得られることになるが、ユニタリ行列であってもよい。
αの設定値としては、実施の形態18で述べた設定値が一つの効果的な値となるがこれに限ったものではなく、例えば、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
なお、本実施の形態では、λを固定値としてあつかった場合のプリコーディング行列の一例としてλ=0ラジアンと設定した場合を例に挙げて説明しているが、変調方式のマッピングを考慮すると、λ=π/2ラジアン、λ=πラジアン、λ=(3π)/2ラジアンのいずれかに値に固定的に設定してもよい(例えば、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列において、λ=πラジアンとする。)。これによりλ=0ラジアンと設定した場合と同様に、回路規模の削減を図ることができる。
本実施の形態では、実施の形態の18で述べた規則的にプリコーディング行列を切り替えるプリコーディング方法の例を示す。
別の例として、周期Nのために用意する式(269)に基づくプリコーディング行列の例として、N=15としたとき、以下のような行列が考えられる。
別の例としては、実施の形態17で述べたように、行列F[i]のiの値ごとにαを設定してもよい。(つまり、F[i]におけるαは、iにおいて、常に一定値とする必要はない。)
本実施の形態では、時間周期Nのプリコーディングホッピング方法のためのN個の異なるプリコーディング行列の構成方法について説明した。このとき、N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N-2]、F[N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期Nのプリコーディングホッピング方法として説明しているが、N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の異なるプリコーディング行列を用いる必要はない。
本実施の形態では、実施の形態の19で述べた規則的にプリコーディング行列を切り替えるプリコーディング方法の例を示す。
本実施の形態では、時間周期2Nのプリコーディングホッピング方法のための2N個の異なるプリコーディング行列の構成方法について説明した。このとき、2N個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成した2N個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[2N-2]、F[2N-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期2Nのプリコーディングホッピング方法として説明しているが、2N個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つように2N個の異なるプリコーディング行列を用いる必要はない。
実施の形態9ではユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について説明したが、本実施の形態では、実施の形態9とは異なる行列を用いたプリコーディング行列を規則的に切り替える方法について説明する。
実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件71>または<条件72>を与える。
(実施の形態24)
実施の形態10ではユニタリ行列を用いたプリコーディング行列を規則的に切り替える方法について説明したが、本実施の形態では、実施の形態10とは異なる行列を用いたプリコーディング行列を規則的に切り替える方法について説明する。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
式(431)、式(432)とは異なる周期2Nのために用意するプリコーディング行列を次式であらわす。
これらとは別の周期2Nのために用意するプリコーディング行列を次式であらわす。
これらとは別の周期2Nのために用意するプリコーディング行列を次式であらわす。
このとき、実施の形態3の(数106)の条件5、および、(数107)の条件6と同様に考えると、以下の条件が、良好なデータの受信品質を得るためには重要となる。
次に、実施の形態6で説明したように、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#77>または<条件#78>を与える。
同様に、受信劣悪点を複素平面上において、位相に対し、一様分布となるように配置するために、<条件#79>または<条件#80>を与える。
同様に、Ψ11(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、Ψ11(i)およびΨ21(i)が上述で説明した条件を満たす方法がある。また、Ψ11(i)を固定値とするのではなく、Ψ21(i)を0ラジアンのように固定し(iによらず一定値とする。このとき、0ラジアン以外の値に設定してもよい)、Ψ11(i)およびΨ21(i)が上述で説明した条件を満たす方法がある。
本実施の形態では、実施の形態23のプリコーディング行列に対し、実施の形態17を適用し、プリコーディング行列の切り替えに関する周期を大きくする方法について説明する。
実施の形態23より、周期Nの規則的にプリコーディング行列を切り替える方法において、周期Nのために用意するプリコーディング行列は、次式であらわされる。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(440)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(443)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
実施の形態23より、上記とは別の周期Nの規則的にプリコーディング行列を切り替える方法のための、周期Nのために用意するプリコーディング行列は、次式であらわされる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(446)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
実施の形態23より、上記とは別の周期Nの規則的にプリコーディング行列を切り替える方法のための、周期Nのために用意するプリコーディング行列は、次式であらわされる。
すると、F[0]〜F[N×M-1]のプリコーディング行列が生成されたことになる(F[0]〜F[N×M-1]のプリコーディング行列は、周期N×Mどのような順番にならべて使用してもよい。)。そして、例えば、シンボル番号N×M×iのときF[0]を用いてプリコーディングを行い、シンボル番号N×M×i+1のときF[1]を用いてプリコーディングを行い、・・・、シンボル番号N×M×i+hのときF[h]を用いてプリコーディングを行う(h=0、1、2、・・・、N×M-2、N×M-1)ことになる。(ここでは、以前の実施の形態で述べたように、必ずしも規則的にプリコーディング行列を切り替えなくてもよい。)
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。なお、周期N×Mのプリコーディング行列を式(449)のようしたが、前述のように、周期N×Mのプリコーディング行列を次式のようにしてもよい。
本実施の形態では、時間周期N×Mのプリコーディングホッピング方法のためのN×M個の異なるプリコーディング行列の構成方法について説明した。このとき、N×M個の異なるプリコーディング行列として、F[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]を用意することになるが、シングルキャリア伝送方式のとき時間軸(または、マルチキャリアの場合周波数軸に並べることも可能)方向にF[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]の順に並べることになるが、必ずしもこれに限ったものではなく、本実施の形態で生成したN×M個の異なるプリコーディング行列F[0]、F[1]、F[2]、・・・、F[N×M-2]、F[N×M-1]をOFDM伝送方式等のマルチキャリア伝送方式に適用することもできる。この場合の適用方法については、実施の形態1と同様に、周波数軸、周波数―時間軸に対し、シンボルを配置することで、プリコーディングウェイトを変更することができる。なお、周期N×Mのプリコーディングホッピング方法として説明しているが、N×M個の異なるプリコーディング行列をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN×M個の異なるプリコーディング行列を用いる必要はない。
本実施の形態では、実施の形態24のプリコーディング行列に対し、実施の形態20を適用し、プリコーディング行列の切り替えに関する周期を大きくする方法について説明する。
周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(453)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(454)を次式のようにしてもよい。
上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(459)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(460)を次式のようにしてもよい。
上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(465)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(466)を次式のようにしてもよい。
上記とは、別の例を示す。周期2Nの規則的にプリコーディング行列を切り替える方法において、周期2Nのために用意するプリコーディング行列を次式であらわす。
このようにプリコーディング行列を生成すると、周期の大きいプリコーディング行列の切り替え方法を実現することができ、受信劣悪点の位置を簡単に変更することができることができ、これが、データの受信品質の向上につながる可能性がある。
なお、周期2×N×Mのプリコーディング行列の式(471)を次式のようにしてもよい。
また、周期2×N×Mのプリコーディング行列の式(472)を次式のようにしてもよい。
なお、上述の例において、受信劣悪点について着目すると、以下の条件が重要となる。
また、Xk, Ykに着目すると、
ただし、sは整数である。
ただし、uは整数である。
の2つの条件を満たすと良好なデータの受信品質を得ることができる可能性がある。なお、実施の形態25では、<条件87>を満たすとよい。
本実施の形態では、これまで説明してきた規則的にプリコーディング行列を切り替える送信方法をDVB(Digital Video Broadcasting)−T2(T:Terrestrial)規格を用いた通信システムに適用する方法について、詳しく説明する。
L1 Pre-Signalling data(6102)により、送信フレームで使用するガードインターバルの情報、PAPR(Peak to Average Power Ratio)の方法に関する情報、L1 Post-Signalling dataを伝送する際の変調方式、誤り訂正方式(FEC: Forward Error Correction)、誤り訂正方式の符号化率の情報、L1 Post-Signalling dataのサイズおよび情報サイズの情報、パイロットパターンの情報、セル(周波数領域)固有番号の情報、ノーマルモードおよび拡張モード(ノーマルモードと拡張モードでは、データ伝送に用いるサブキャリア数が異なる。)のいずれの方式を用いているかの情報等を伝送する。
Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は、データを伝送するための領域である。
図61のフレーム構成では、P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は時分割で送信されているように記載いるが、実際は、同一時刻に2種類以上の信号が存在している。その例を図62に示す。図62に示すように、同一時刻に、L1 Pre-Signalling data、L1 Post-Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
図63は、DVB−T2規格における(例えば、放送局)の送信装置に対し、これまでに説明してきた規則的にプリコーディング行列を切り替える送信方法を適用した送信装置の構成の一例を示している。PLP信号生成部6302は、PLP用の送信データ6301(複数PLP用のデータ)、制御信号6309を入力とし、制御信号6309に含まれる各PLPの誤り訂正符号化の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、PLPの(直交)ベースバンド信号6303を出力する。
P2シンボル信号生成部6305は、P2シンボル用送信データ6304、制御信号6309を入力とし、制御信号6309に含まれるP2シンボルの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、P2シンボルの(直交)ベースバンド信号6306を出力する。
制御信号生成部6308は、P1シンボル用の送信データ6307、P2シンボル用送信データ6304を入力とし、図61における各シンボル群(P1 Signalling data(6101)、L1 Pre-Signalling data(6102)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N))の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号6309として出力する。
フレーム構成部6310は、PLPのベースバンド信号6312、P2シンボルのベースバンド信号6306、制御信号6309を入力とし、制御信号に含まれるフレーム構成の情報に基づき、周波数、時間軸における並び替えを施し、フレーム構成にしたがった、ストリーム1の(直交)ベースバンド信号6311_1、ストリーム2の(直交)ベースバンド信号6311_2を出力する。
信号処理部6312は、ストリーム1のベースバンド信号6311_1、ストリーム2のベースバンド信号6311_2、制御信号6309を入力とし、制御信号6309に含まれる送信方法に基づいた信号処理後の変調信号1(6313_1)および信号処理後の変調信号2(6313_2)を出力する。ここで特徴的な点は、送信方法として、規則的にプリコーディング行列を切り替える送信方法が選択されたとき、信号処理部は、図6、図22、図23、図26と同様に、規則的にプリコーディング行列を切り替えるとともに、重み付け合成(プリコーディング)を行い、プリコーディング後の信号が、信号処理後の変調信号1(6313_1)および信号処理後の変調信号2(6313_2)となる。
パイロット挿入部6314_1は、信号処理後の変調信号1(6313_1)、制御信号6309を入力とし、制御信号6309に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号1(6313_1)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号6315_1を出力する。
パイロット挿入部6314_2は、信号処理後の変調信号2(6313_2)、制御信号6309を入力とし、制御信号6309に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号2(6313_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号6315_2を出力する。
IFFT(Inverse Fast Fourier Transform)部6316_1は、パイロットシンボル挿入後の変調信号6315_1、制御信号6309を入力とし、制御信号6309に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号6317_1を出力する。
IFFT部6316_2は、パイロットシンボル挿入後の変調信号6315_2、制御信号6309を入力とし、制御信号6309に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号6317_2を出力する。
PAPR削減部6318_1は、IFFT後の信号6317_1、制御信号6309を入力とし、制御信号6309に含まれるPAPR削減に関する情報に基づき、IFFT後の信号6317_1にPAPR削減のための処理を施し、PAPR削減後の信号6319_1を出力する。
PAPR削減部6318_2は、IFFT後の信号6317_2、制御信号6309を入力とし、制御信号6309に含まれるPAPR削減に関する情報に基づき、IFFT後の信号6317_2にPAPR削減のための処理を施し、PAPR削減後の信号6319_2を出力する。
ガードインターバル挿入部6320_1は、PAPR削減後の信号6319_1、制御信号6309を入力とし、制御信号6309に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号6319_1にガードインターバルを挿入し、ガードインターバル挿入後の信号6321_1を出力する。
ガードインターバル挿入部6320_2は、PAPR削減後の信号6319_2、制御信号6309を入力とし、制御信号6309に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号6319_2にガードインターバルを挿入し、ガードインターバル挿入後の信号6321_2を出力する。
P1シンボル挿入部6322は、ガードインターバル挿入後の信号6321_1、ガードインターバル挿入後の信号6321_2、P1シンボル用の送信データ6307を入力とし、P1シンボル用の送信データ6307からP1シンボルの信号を生成し、ガードインターバル挿入後の信号6321_1に対し、P1シンボルを付加し、P1シンボル用処理後の信号6323_1、および、ガードインターバル挿入後の信号6321_2に対し、P1シンボルを付加し、P1シンボル用処理後の信号6323_2を出力する。なお、P1シンボルの信号は、P1シンボル用処理後の信号6323_1、P1シンボル用処理後の信号6323_2両者に付加されていてもよく、また、いずれもか一方に付加されていてもよい。一方に付加されている場合、付加されている信号の付加されている区間では、付加されていない信号には、ベースバンド信号としてゼロの信号が存在することになる。
無線処理部6324_1は、P1シンボル用処理後の信号6323_1を入力とし、周波数変換、増幅等の処理が施され、送信信号6325_1を出力する。そして、送信信号6325_1は、アンテナ6326_1から電波として出力される。
無線処理部6324_2は、P1シンボル用処理後の信号6323_2を入力とし、周波数変換、増幅等の処理が施され、送信信号6325_2を出力する。そして、送信信号6325_2は、アンテナ6326_2から電波として出力される。
次に、DVB−T2システムに対し、規則的にプリコーディング行列を切り替える方法を適用したときの放送局(基地局)の送信信号のフレーム構成、制御情報(P1シンボルおよびP2シンボルにより送信する情報)の伝送方法について、詳しく説明する。
図64は、P1シンボル、P2シンボル、Common PLPを送信後、複数のPLPを送信する場合の周波数−時間軸におけるフレーム構成の一例を示している。図64において、ストリームs1は、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いており、同様にストリームs2も、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いている。したがって、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図64に示すように、区間1は、ストリームs1、ストリームs2を用いてPLP#1のシンボル群6401を伝送しており、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。
区間2は、ストリームs1を用いてPLP#2のシンボル群6402を伝送しており、一つの変調信号を送信することでデータを伝送するものとする。
区間3は、ストリームs1、ストリームs2を用いてPLP#3のシンボル群6403を伝送しており、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。
区間4は、ストリームs1、ストリームs2を用いてPLP#4のシンボル群6404を伝送しており、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
放送局が、図64のように各PLPを送信した場合、図64の送信信号を受信する受信装置では、各PLPの送信方法を知る必要がある。したがって、前述で述べたように、P2シンボルであるL1 Post-Signalling data(図61の6103)を用いて、各PLPの送信方法の情報を伝送する必要がある。以下では、このときのP1シンボルの構成方法、および、P2シンボルの構成方法の一例について説明する。
表3にP1シンボルを用いて送信する制御情報の具体例を示す。
また、3ビットのS1情報として、“001”を設定した場合、送信する変調信号が、「DVB−T2規格の時空間ブロック符号を用いた送信」に準拠していることになる。
DVB−T2規格では、“010”〜“111”は将来のために「Reserve」となっている。ここで、DVB−T2との互換性があるように本発明を適用するために、3ビットのS1情報として、例えば“010”と設定した場合(“000”“001”以外であればよい。)、送信する変調信号がDVB−T2以外の規格に準拠しているを示すことにし、端末の受信装置は、この情報が“010”であることがわかると、放送局が送信した変調信号がDVB−T2以外の規格に準拠していることを知ることができる。
次に、放送局が送信した変調信号がDVB−T2以外の規格に準拠している場合のP2シンボルの構成方法の例を説明する。最初の例では、DVB−T2規格におけるP2シンボルを利用した方法について説明する。
表4に、P2シンボルのうち、L1 Post-Signalling dataにより送信する、制御情報の第1の例を示す。
SIMO: Single-Input Multiple-Output(一つの変調信号送信、複数のアンテナで受信)
MISO: Multiple-Input Single-Output(複数の変調信号を複数アンテナで送信、一つのアンテナで受信)
MIMO: Multiple-Input Multiple-Output(複数の変調信号を複数アンテナで送信、複数のアンテナで受信)
表4に示した2ビットの情報である「PLP_MODE」は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための制御情報であり、PLP_MODEの情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報、PLP#2のためのPLP_MODEの情報、PLP#3のためのPLP_MODEの情報、PLP#4のためのPLP_MODEの情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“00”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“01”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」することにより、データが伝送される。“10”と設定した場合、そのPLPは、「規則的にプリコーディング行列を切り替えるプリコーディング方法」を用いて、データが伝送される。“11”と設定した場合、そのPLPは、「プリコーディング行列が固定的なMIMO方式、または、空間多重MIMO伝送方式」を用いて、データが伝送される。
なお、「PLP_MODE」として、“01”〜“11”と設定された場合、放送局が具体的にどのような処理を施したか(例えば、規則的にプリコーディング行列を切り替える方法における具体的な切り替え方法、使用した時空間具ロック符号化方法、プリコーディング行列として使用した行列の構成)を端末に伝送する必要がある。このときの制御情報の構成を含めた、表4とは異なる制御情報の構成方法について以下では説明する。
表5は、P2シンボルのうち、L1 Post-Signalling dataにより送信する、制御情報の表4とは異なる第2の例である。
「PLP_MODE」が「1」、「MIMO_MODE」が「0」と設定された場合、「MIMO_PATTERN#1」の情報は有効な情報となり、「MIMO_PATTERN#1」として、“00”と設定した場合、時空間ブロック符号を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列#1を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列#2を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。(ただし、プリコーディング行列#1とプリコーディング行列#2はことなる行列である。)“11”と設定した場合、空間多重MIMO伝送方式を用いて、データが伝送される。(当然であるが、図49の方式1のプリコーディング行列が選択された、とも解釈することができる。)
「PLP_MODE」が「1」、「MIMO_MODE」が「1」と設定された場合、「MIMO_PATTERN#2」の情報は有効な情報となり、「MIMO_PATTERN#2」として、“00”と設定した場合、プリコーディング行列切り替え方法#1の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列切り替え方法#2の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列切り替え方法#3の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“11”と設定した場合、プリコーディング行列切り替え方法#4の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。ここで、プリコーディング行列切り替え方法#1〜#4はそれぞれ異なる方法となるが、このとき、異なる方法とは、例えば、#Aと#Bが異なる方法とすると、
・#Aに用いる複数のプリコーディング行列と#Bに用いる複数のプリコーディング行列の中に、同一のプリコーディング行列を含むが、周期が異なる、
・#Aには含まれるいるが#Bには含まれていないプリコーディング行列が存在する、
・#Aで使用する複数のプリコーディング行列を、#Bの方法では使用するプリコーディングに含まない
という方法がある。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用い、かつ、DVB−T2規格に対し、互換性を保ちながら、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。
そして、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」を放送局が選択可能としている例で説明したが、これらすべての送信方法が選択可能な送信方法でなくてもよく、例えば、
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
のように、規則的にプリコーディング行列を切り替えるMIMO方式を含むことで、LOS環境で、高速なデータ伝送を行うことができ、かつ、受信装置の受信データ品質を確保することができるという効果を得ることができる。
このとき、上記で述べたようにP1シンボルにおけるS1を設定する必要があるとともに、P2シンボルとして、表4とは異なる制御情報の設定方法(各PLPの伝送方式の設定方法)として、例えば、表6が考えられる。
表5についても同様で、例えば、MIMO伝送方式として、規則的にプリコーディング行列を切り替えるプリコーディング方法しかサポートしていない場合は、「MIMO_MODE」の制御情報は必要ないことになる。また、「MIMO_PATTER#1」において、例えば、プリコーディング行列が固定的なMIMO方式をサポートしていない場合、「MIMO_PATTER#1」の制御情報を必要としない場合もあり、また、プリコーディング行列が固定的なMIMO方式に用いるプリコーディング行列が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列を設定可能とする場合は、2ビット以上の制御情報としてもよい。
「MIMO_PATTERN#2」について同様に考えることができ、規則的にプリコーディング行列を切り替えるプリコーディング方法としてプリコーディング行列の切り替え方法が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列の切り替え方法を設定可能とする場合は、2ビット以上の制御情報としてもよい。
また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、同様に、制御情報を送信すればよい。このとき、2アンテナを用いて変調信号を送信する場合に加え、4アンテナを用いて変調信号を送信する場合を実施するために、各制御情報を構成するビット数を増やす必要がある場合が発生する。このとき、P1シンボルで制御情報を送信する、P2シンボルで制御情報を送信する、という点は、上記で説明した場合と同様である。
放送局が送信するPLPのシンボル群のフレーム構成について、図64のように時分割で送信する方法を説明したが、以下では、その変形例について説明する。
図66は、図64とは異なる、P1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図66において、「#1」と記載されているシンボルは、図64におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図64におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図64におけるPLP#3のシンボル群のうちの1シンボルを示しており、「#4」と記載されているシンボルは、図64におけるPLP#4のシンボル群のうちの1シンボルを示している。そして、図64と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、一つの変調信号を送信することでデータを伝送するものとする。PLP#3は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#4は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図66において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図66が図64と異なる点は、前述のように、図64では、複数のPLPを時分割に配置する例を示したが、図66では、図64と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在しており、時刻3では、PLP#3のシンボルとPLP#4のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図66では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図66に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。
図67は、図64とは異なるP1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図67における特徴的な部分は、T2フレームにおいて、PLPの伝送方式として、複数アンテナ送信を基本とした場合、「ストリームs1のみ送信する伝送方式」を選択できないという点である。
したがって、図67において、PLP#1のシンボル群6701は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」により、データが伝送されるものとする。PLP#2のシンボル群6702は、「規則的にプリコーディング行列を切り替えるプリコーディング方式」により、データが伝送されるものとする。PLP#3のシンボル群6703は、「時空間ブロック符号」により、データが伝送されるものとする。そして、PLP#3のシンボル群6703以降のT2フレーム内でのPLPシンボル群は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」のいずれかの送信方法により、データが伝送されることになる。
図68は、図66とは異なる、P1シンボル、P2シンボル、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図68において、「#1」と記載されているシンボルは、図67におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図67におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図67におけるPLP#3のシンボル群のうちの1シンボルを示している。そして、図67と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#3は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図68において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図68が図67と異なる点は、前述のように、図67では、複数のPLPを時分割に配置する例を示したが、図68では、図67と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図68では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図68に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。一方で、時刻3のように、ある時刻において、一つのPLPのシンボルのみを割り当ててもよい。つまり、PLPのシンボルを時間―周波数におけるフレーム方法において、どのように割り当ててもよい。
このように、T2フレーム内において、「ストリームs1のみ送信する伝送方式」を用いたPLPが存在しないため、端末が受信する受信信号のダイナミックレンジを抑えることができるため、良好な受信品質を得る可能性を高くすることができという効果を得ることができる。
なお、図68で説明するにあたって、送信方法として、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」をいずれかを選択する例で説明したが、これらの送信方法をすべて選択可能であるとする必要がなく、例えば、
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
としてもよい。
上述では、T2フレーム内に複数のPLPが存在する場合について説明したが、以降では、T2フレーム内に一つのPLPのみ存在する場合について説明する。
図69は、T2フレーム内に一つのみPLPが存在する場合の、時間―周波数軸におけるストリームs1およびs2のフレーム構成の一例を示している。図69において、「制御シンボル」と記載しているが、これは、上述で説明したP1シンボル、および、P2シンボル等のシンボルを意味している。そして、図69では、区間1を用いて第1のT2フレームを送信しており、同様に、区間2を用いて第2のT2フレームを送信しており、区間3を用いて第3のT2フレームを送信しており、区間4を用いて第4のT2フレームを送信している。
また、図69において、第1のT2フレームでは、PLP#1−1のシンボル群6801を送信しており、送信方法としては、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」を選択している。
第2のT2フレームでは、PLP#2−1のシンボル群6802を送信しており、送信方法としては、「一つの変調信号を送信する方法」を選択している。
第3のT2フレームでは、PLP#3−1のシンボル群6803を送信しており、送信方法としては、「規則的にプリコーディング行列を切り替えるプリコーディング方式」を選択している。
第4のT2フレームでは、PLP#4−1のシンボル群6804を送信しており、送信方法としては、「時空間ブロック符号」を選択している。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図69において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
このようにすることで、PLPごとに、データの伝送速度、端末のデータ受信品質を考慮して、送信方法を設定できるので、データの伝送速度の向上とデータの受信品質の確保の両立を図ることが可能となる。なお、P1シンボル、P2シンボル(場合によっては、Signalling PLP)の伝送方法等の制御情報の構成方法の例は、上記の表3から表6のように構成すれば、同様に実施することができる。異なる点は、図64等のフレーム構成では、一つのT2フレームに、複数のPLPを有しているため、複数のPLPに対する伝送方法等の制御情報を必要としていたが、図69のフレーム構成の場合、一つのT2フレームには、一つのPLPしか存在しないため、その一つのPLPに対する伝送方法等の制御情報のみ必要となるという点である。
上述では、P1シンボル、P2シンボル(場合によっては、Signalling PLP)を用いて、PLPの伝送方法に関する情報を伝送する方法について述べたが、以降では、特に、P2シンボルを用いずにPLPの伝送方法に関する情報を伝送する方法について説明する。
図70は、放送局がデータを伝送する相手である端末が、DVB−T2規格でない規格に対応している場合の、時間−周波数軸におけるフレーム構成である。図70において、図61と同様に動作するものについては、同一符号を付している。図70のフレームは、P1 Signalling data(6101)、第1 Signalling data(7001)、第2 Signalling data(7002)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されている(PLP:Physical Layer Pipe)。このように、P1 Signalling data(6101)、第1 Signalling data(7001)、第2 Signalling data(7002)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)で構成されているフレームが一つのフレームの単位となっている。
第2 Signalling data(7002)により、例えば、PLPの数の情報、使用する周波数領域に関する情報、各PLPの固有番号の情報、各PLPを伝送するのに使用する変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、各PLPの送信するブロック数の情報等を伝送する。
図70のフレーム構成では、第1 Signalling data(7001)、第2 Signalling data(7002)、L1 Post-Signalling data(6103)、Common PLP(6104)、PLP#1〜#N(6105_1〜6105_N)は時分割で送信されているように記載いるが、実際は、同一時刻に2種類以上の信号が存在している。その例を図71に示す。図71に示すように、同一時刻に、第1 Signalling data、第2 Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
図72は、DVB−T2とは異なる規格における(例えば、放送局)の送信装置に対し、これまでに説明してきた規則的にプリコーディング行列を切り替える送信方法を適用した送信装置の構成の一例を示している。図72において、図63と同様に動作するものについては、同一符号を付しており、その動作についての説明は、上述と同様となる。制御信号生成部6308は、第1、第2 Signalling data用の送信データ7201、P1シンボル用の送信データ6307を入力とし、図70における各シンボル群の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号6309として出力する。
制御シンボル信号生成部7202は、第1、第2 Signalling data用の送信データ7201、制御信号6309を入力とし、制御信号6309に含まれる第1、第2 Signalling dataの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、第1、第2 Signalling dataの(直交)ベースバンド信号7203を出力する。
次に、DVB−T2とは異なる規格のシステムに対し、規則的にプリコーディング行列を切り替える方法を適用したときの放送局(基地局)の送信信号のフレーム構成、制御情報(P1シンボルおよび、第1、第2 Signalling dataにより送信する情報)の伝送方法について、詳しく説明する。
図64は、P1シンボル、第1、第2 Signalling data、Common PLPを送信後、複数のPLPを送信する場合の周波数−時間軸におけるフレーム構成の一例を示している。図64において、ストリームs1は、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いており、同様にストリームs2も、周波数軸において、サブキャリア#1〜サブキャリア#Mを用いている。したがって、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図64に示すように、区間1は、ストリームs1、ストリームs2を用いてPLP#1のシンボル群6401を伝送しており、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。
区間2は、ストリームs1を用いてPLP#2のシンボル群6402を伝送しており、一つの変調信号を送信することでデータを伝送するものとする。
区間3は、ストリームs1、ストリームs2を用いてPLP#3のシンボル群6403を伝送しており、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。
区間4は、ストリームs1、ストリームs2を用いてPLP#4のシンボル群6404を伝送しており、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
放送局が、図64のように各PLPを送信した場合、図64の送信信号を受信する受信装置では、各PLPの送信方法を知る必要がある。したがって、前述で述べたように、第1、第2 Signalling dataを用いて、各PLPの送信方法の情報を伝送する必要がある。以下では、このときのP1シンボルの構成方法、および、第1、第2 Signalling dataの構成方法の一例について説明する。表3にP1シンボルを用いて送信する制御情報の具体例は表3のとおりである。
DVB−T2規格では、S1の制御情報(3ビットの情報)により、DVB−T2の規格を用いているかどうか、また、DVB−T2規格を用いている場合、用いている送信方法を受信装置が判断できるようになっている。3ビットのS1情報として、“000”を設定した場合、送信する変調信号が、「DVB−T2規格の一つの変調信号送信」に準拠していることになる。
また、3ビットのS1情報として、“001”を設定した場合、送信する変調信号が、「DVB−T2規格の時空間ブロック符号を用いた送信」に準拠していることになる。
DVB−T2規格では、“010”〜“111”は将来のために「Reserve」となっている。ここで、DVB−T2との互換性があるように本発明を適用するために、3ビットのS1情報として、例えば“010”と設定した場合(“000”“001”以外であればよい。)、送信する変調信号がDVB−T2以外の規格に準拠しているを示すことにし、端末の受信装置は、この情報が“010”であることがわかると、放送局が送信した変調信号がDVB−T2以外の規格に準拠していることを知ることができる。
次に、放送局が送信した変調信号がDVB−T2以外の規格に準拠している場合の第1、第2 Signalling dataの構成方法の例を説明する。第1、第2 Signalling dataの制御情報の第1の例は表4のとおりである。
表4に示した2ビットの情報である「PLP_MODE」は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための制御情報であり、PLP_MODEの情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報、PLP#2のためのPLP_MODEの情報、PLP#3のためのPLP_MODEの情報、PLP#4のためのPLP_MODEの情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“00”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“01”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」することにより、データが伝送される。“10”と設定した場合、そのPLPは、「規則的にプリコーディング行列を切り替えるプリコーディング方法」を用いて、データが伝送される。“11”と設定した場合、そのPLPは、「プリコーディング行列が固定的なMIMO方式、または、空間多重MIMO伝送方式」を用いて、データが伝送される。
なお、「PLP_MODE」として、“01”〜“11”と設定された場合、放送局が具体的にどのような処理を施したか(例えば、規則的にプリコーディング行列を切り替える方法における具体的な切り替え方法、使用した時空間具ロック符号化方法、プリコーディング行列として使用した行列の構成)を端末に伝送する必要がある。このときの制御情報の構成を含めた、表4とは異なる制御情報の構成方法について以下では説明する。
第1、第2 Signalling dataの制御情報の第2の例は表5のとおりである。
表5のように、1ビットの情報である「PLP_MODE」、1ビットの情報である「MIMO_MODE」、2ビットの情報である「MIMO_PATTERN#1」、2ビットの情報である「MIMO_PATTER#2」が存在し、これら4つの制御情報は、図64に示したように、各PLP(図64ではPLP#1から#4)の送信方法を端末に通知するための情報であり、したがって、これら4つの制御情報は、PLPごとに存在することになる。つまり、図64の場合、PLP#1のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#2のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#3のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報、PLP#4のためのPLP_MODEの情報/MIMO_MODEの情報/MIMO_PATTERN#1の情報/MIMO_PATTER#2の情報・・・が、放送局から送信されることになる。当然であるが、端末は、この情報を復調(また、誤り訂正復号も行う)することで、放送局がPLPに用いた伝送方式を認識することができる。
「PLP_MODE」として、“0”と設定した場合、そのPLPは、「一つの変調信号を送信」することにより、データが伝送される。“1”と設定した場合、そのPLPは、「時空間ブロック符号化を行った複数の変調信号を送信」、「規則的にプリコーディング行列を切り替えるプリコーディング方法」、「プリコーディング行列が固定的なMIMO方式」、「空間多重MIMO伝送方式」のいずれかの方式で、データが伝送される。
「PLP_MODE」が「1」と設定された場合、「MIMO_MODE」の情報は有効な情報となり、「MIMO_MODE」として、“0”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用しないで、データが伝送される。「MIMO_MODE」として、“1”と設定した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法を使用して、データが伝送される。
「PLP_MODE」が「1」、「MIMO_MODE」が「0」と設定された場合、「MIMO_PATTERN#1」の情報は有効な情報となり、「MIMO_PATTERN#1」として、“00”と設定した場合、時空間ブロック符号を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列#1を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列#2を固定的に用いて重み付け合成を行うプリコーディング方法を用いて、データが伝送される。(ただし、プリコーディング行列#1とプリコーディング行列#2はことなる行列である。)“11”と設定した場合、空間多重MIMO伝送方式を用いて、データが伝送される。(当然であるが、図49の方式1のプリコーディング行列が選択された、とも解釈することができる。)
「PLP_MODE」が「1」、「MIMO_MODE」が「1」と設定された場合、「MIMO_PATTERN#2」の情報は有効な情報となり、「MIMO_PATTERN#2」として、“00”と設定した場合、プリコーディング行列切り替え方法#1の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“01”と設定した場合、プリコーディング行列切り替え方法#2の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“10”と設定した場合、プリコーディング行列切り替え方法#3の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。“11”と設定した場合、プリコーディング行列切り替え方法#4の規則的にプリコーディング行列を切り替えるプリコーディング方法を用いて、データが伝送される。ここで、プリコーディング行列切り替え方法#1〜#4はそれぞれ異なる方法となるが、このとき、異なる方法とは、例えば、#Aと#Bが異なる方法とすると、
・#Aに用いる複数のプリコーディング行列と#Bに用いる複数のプリコーディング行列の中に、同一のプリコーディング行列を含むが、周期が異なる、
・#Aには含まれるいるが#Bには含まれていないプリコーディング行列が存在する、
・#Aで使用する複数のプリコーディング行列を、#Bの方法では使用するプリコーディングに含まない
という方法がある。
上述では、表4、表5の制御情報を、第1、第2 Signalling dataにより送信するものとして説明した。この場合、制御情報を伝送するために、特に、PLPを利用する必要がないという利点がある。
以上のように、OFDM方式のようなマルチキャリア伝送方式を用い、かつ、DVB−T2規格との識別が可能でありながら、DVB−T2とは異なる規格に対し、規則的にプリコーディング行列を切り替える方法を選択できるようにすることで、LOS環境に対し、高い受信品質を得ることができるとともに、高い伝送速度を得ることができる、という利点を得ることができる。なお、本実施の形態では、キャリア群が設定可能な伝送方式として、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」をあげたがこれに限ったものではなく、固定的なプリコーディング行列を用いるMIMO方式は、図49の方式#2に限ったものではなく、固定的なプリコーディング行列で構成されていればよい。
そして、「空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式」を放送局が選択可能としている例で説明したが、これらすべての送信方法が選択可能な送信方法でなくてもよく、例えば、
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化、ストリームs1のみ送信する伝送方式が選択可能な送信方法
・ 固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるMIMO方式が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、時空間ブロック符号化が選択可能な送信方法
・ 規則的にプリコーディング行列を切り替えるMIMO方式、ストリームs1のみ送信する伝送方式が選択可能な送信方法
のように、規則的にプリコーディング行列を切り替えるMIMO方式を含むことで、LOS環境で、高速なデータ伝送を行うことができ、かつ、受信装置の受信データ品質を確保することができるという効果を得ることができる。
このとき、上記で述べたようにP1シンボルにおけるS1を設定する必要があるとともに、第1、第2 Signalling dataとして、表4とは異なる制御情報の設定方法(各PLPの伝送方式の設定方法)として、例えば、表6が考えられる。
表6が表4とは異なる点は、「PLP_MODE」を“11”としたときはReserveとしている点である。このように、PLPの伝送方式として、選択可能な伝送方式が上記で示した例のような場合、選択可能な伝送方式の数によって、例えば、表4、表6のPLP_MODEを構成するビット数を大きく、または、小さくすればよい。
表5についても同様で、例えば、MIMO伝送方式として、規則的にプリコーディング行列を切り替えるプリコーディング方法しかサポートしていない場合は、「MIMO_MODE」の制御情報は必要ないことになる。また、「MIMO_PATTER#1」において、例えば、プリコーディング行列が固定的なMIMO方式をサポートしていない場合、「MIMO_PATTER#1」の制御情報を必要としない場合もあり、また、プリコーディング行列が固定的なMIMO方式に用いるプリコーディング行列が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列を設定可能とする場合は、2ビット以上の制御情報としてもよい。
「MIMO_PATTERN#2」について同様に考えることができ、規則的にプリコーディング行列を切り替えるプリコーディング方法としてプリコーディング行列の切り替え方法が複数必要としない場合、2ビットの制御情報ではなく、1ビットの制御情報としてもよいし、さらに、複数のプリコーディング行列の切り替え方法を設定可能とする場合は、2ビット以上の制御情報としてもよい。
また、本実施の形態では、送信装置のアンテナ数を2の場合で説明したがこれに限ったものではなく、2より大きい場合においても、同様に、制御情報を送信すればよい。このとき、2アンテナを用いて変調信号を送信する場合に加え、4アンテナを用いて変調信号を送信する場合を実施するために、各制御情報を構成するビット数を増やす必要がある場合が発生する。このとき、P1シンボルで制御情報を送信する、第1、第2 Signalling dataで制御情報を送信する、という点は、上記で説明した場合と同様である。
放送局が送信するPLPのシンボル群のフレーム構成について、図64のように時分割で送信する方法を説明したが、以下では、その変形例について説明する。
図66は、図64とは異なる、P1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。
図66において、「#1」と記載されているシンボルは、図64におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図64におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図64におけるPLP#3のシンボル群のうちの1シンボルを示しており、「#4」と記載されているシンボルは、図64におけるPLP#4のシンボル群のうちの1シンボルを示している。そして、図64と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、一つの変調信号を送信することでデータを伝送するものとする。PLP#3は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#4は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図66において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図66が図64と異なる点は、前述のように、図64では、複数のPLPを時分割に配置する例を示したが、図66では、図64と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在しており、時刻3では、PLP#3のシンボルとPLP#4のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図66では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図66に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。
図67は、図64とは異なるP1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。図67における特徴的な部分は、T2フレームにおいて、PLPの伝送方式として、複数アンテナ送信を基本とした場合、「ストリームs1のみ送信する伝送方式」を選択できないという点である。
したがって、図67において、PLP#1のシンボル群6701は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」により、データが伝送されるものとする。PLP#2のシンボル群6702は、「規則的にプリコーディング行列を切り替えるプリコーディング方式」により、データが伝送されるものとする。PLP#3のシンボル群6703は、「時空間ブロック符号」により、データが伝送されるものとする。そして、PLP#3のシンボル群6703以降の単位フレーム内でのPLPシンボル群は、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」のいずれかの送信方法により、データが伝送されることになる。
図68は、図66とは異なる、P1シンボル、第1、第2 Signalling data、Common PLPを送信後の、周波数−時間軸における、ストリームs1およびs2のシンボルの配置方法の一例を示している。
図68において、「#1」と記載されているシンボルは、図67におけるPLP#1のシンボル群のうちの1シンボルを示している。同様に、「#2」と記載されているシンボルは、図67におけるPLP#2のシンボル群のうちの1シンボルを示しており、「#3」と記載されているシンボルは、図67におけるPLP#3のシンボル群のうちの1シンボルを示している。そして、図67と同様、PLP#1は、図49に示した、空間多重MIMO伝送方式、または、プリコーディング行列が固定のMIMO伝送方式を用いてデータを伝送するものとする。そして、PLP#2は、規則的にプリコーディング行列を切り替えるプリコーディング方式を用いてデータを伝送するものとする。PLP#3は、図50に示した、時空間ブロック符号を用いてデータを伝送するものとする。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図68において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
図68が図67と異なる点は、前述のように、図67では、複数のPLPを時分割に配置する例を示したが、図68では、図67と異なり、時分割、および、周波数分割を併用して、複数のPLPを存在させている。つまり、例えば、時刻1では、PLP#1のシンボルとPLP#2のシンボルが存在している。このように、(1時刻、1サブキャリアで構成される)シンボルごとに、異なるインデックス(#X; X=1、2、・・・)のPLPのシンボルを割り当てることができる。
なお、図68では、簡略的に、時刻1では、「#1」「#2」しか存在していないが、これに限ったものではなく、「#1」「#2」のPLP以外のインデックスのPLPのシンボルが時刻1に存在してもよく、また、時刻1におけるサブキャリアとPLPのインデックスの関係は、図68に限ったものではなく、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。また、同様に、他の時刻においても、サブキャリアにどのインデックスのPLPのシンボルを割り当てても良い。一方で、時刻3のように、ある時刻において、一つのPLPのシンボルのみを割り当ててもよい。つまり、PLPのシンボルを時間―周波数におけるフレーム方法において、どのように割り当ててもよい。
このように、単位フレーム内において、「ストリームs1のみ送信する伝送方式」を用いたPLPが存在しないため、端末が受信する受信信号のダイナミックレンジを抑えることができるため、良好な受信品質を得る可能性を高くすることができという効果を得ることができる。
なお、図68で説明するにあたって、送信方法として、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」、「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」をいずれかを選択する例で説明したが、これらの送信方法をすべて選択可能であるとする必要がなく、例えば、
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「時空間ブロック符号」を選択可能
・「規則的にプリコーディング行列を切り替えるプリコーディング方式」、「固定的なプリコーディング行列を用いるMIMO方式」を選択可能
としてもよい。
上述では、単位フレーム内に複数のPLPが存在する場合について説明したが、以降では、単位フレーム内に一つのPLPのみ存在する場合について説明する。
図69は、単位フレーム内に一つのみPLPが存在する場合の、時間―周波数軸におけるストリームs1およびs2のフレーム構成の一例を示している。
図69において、「制御シンボル」と記載しているが、これは、上述で説明したP1シンボル、および、第1、第2 Signalling data等のシンボルを意味している。そして、図69では、区間1を用いて第1の単位フレームを送信しており、同様に、区間2を用いて第2の単位フレームを送信しており、区間3を用いて第3の単位フレームを送信しており、区間4を用いて第4の単位フレームを送信している。
また、図69において、第1の単位フレームでは、PLP#1−1のシンボル群6801を送信しており、送信方法としては、「空間多重MIMO伝送方式、または、固定的なプリコーディング行列を用いるMIMO方式」を選択している。
第2の単位フレームでは、PLP#2−1のシンボル群6802を送信しており、送信方法としては、「一つの変調信号を送信する方法」を選択している。
第3の単位フレームでは、PLP#3−1のシンボル群6803を送信しており、送信方法としては、「規則的にプリコーディング行列を切り替えるプリコーディング方式」を選択している。
第4の単位フレームでは、PLP#4−1のシンボル群6804を送信しており、送信方法としては、「時空間ブロック符号」を選択している。なお、時空間ブロック符号におシンボルの配置は、時間方向に限ったものではなく、周波数軸方向に配置してもよいし、時間―周波数で形成したシンボル群に適宜配置してもよい。また、時空間ブロック符号は、図50で説明した方法に限ったものではない。
なお、図69において、s1、s2、両者で、同一サブキャリアの同一時刻にシンボルが存在している場合、同一周波数に2つのストリームのシンボルが存在していることになる。なお、他の実施の形態で説明したように、規則的にプリコーディング行列を切り替えるプリコーディングの方法を含むプリコーディングを行っている場合、s1、s2は、プリコーディング行列を用いて重み付け、および、合成が行われ、z1、z2が、それぞれ、アンテナから出力されることになる。
このようにすることで、PLPごとに、データの伝送速度、端末のデータ受信品質を考慮して、送信方法を設定できるので、データの伝送速度の向上とデータの受信品質の確保の両立を図ることが可能となる。なお、P1シンボル、第1、第2 Signalling dataの伝送方法等の制御情報の構成方法の例は、上記の表3から表6のように構成すれば、同様に実施することができる。異なる点は、図64等のフレーム構成では、一つの単位フレームに、複数のPLPを有しているため、複数のPLPに対する伝送方法等の制御情報を必要としていたが、図69のフレーム構成の場合、一つの単位フレームには、一つのPLPしか存在しないため、その一つのPLPに対する伝送方法等の制御情報のみ必要となるという点である。
(実施の形態A2)
本実施の形態では、実施の形態A1で説明した、DVB−T2規格を用いた通信システムに、規則的にプリコーディング行列を切り替える方法を適用した方法を用いた時の受信方法、および、受信装置の構成について詳しく説明する。
図73は、図63の放送局の送信装置が、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときの、端末の受信装置の構成の一例を示しており、図7、図56と同様に動作するものについては同一符号を付している。
図73において、P1シンボル検出、復号部7301は、放送局が送信した信号を受信し、信号処理後の信号704_X、704_Yを入力とし、P1シンボルを検出することで、信号検出、時間周波数同期を行うと同時に、P1シンボルに含まれる制御情報を(復調、および、誤り訂正復号を行うことで)得、P1シンボル制御情報7302を出力する。
OFDM方式関連処理部5600_X、および、5600_Yは、P1シンボル制御情報7302を入力としており、この情報に基づき、OFDM方式のための信号処理方法を変更する。(実施の形態A1に記載したように、放送局が送信する信号の伝送方法の情報が、P1シンボルに含まれているからである。)
P2シンボル(Signalling PLPを含む場合もある。)復調部7303は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、信号処理を行い、復調(誤り訂正復号を含む)を行い、P2シンボル制御情報7304を出力する。
制御情報生成部7305は、P1シンボル制御情報7302、および、P2シンボル制御情報7304を入力とし、(受信動作に関係する)制御情報をたばね、制御信号7306として出力する。そして、制御信号7306は、図73に示したように、各部に入力されることになる。
信号処理部711は、信号706_1、706_2、708_1、708_2、704_X、704_Y、および、制御信号7306を入力とし、制御信号7306に含まれている、各PLPを伝送するために用いた伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ712を出力する。
このとき、PLPを伝送するために、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかの伝送方式を用いている場合、(数41)の式(41)、(数153)の式(143)の関係式を用いて、信号処理部711は、復調処理を行えばよい。なお、チャネル行列(H)は、チャネル変動推定部(705_1、705_2、707_1、707_2)の出力結果から得ることができ、プリコーディング行列(FまたはW)は、用いた伝送方式により、その行列の構成は異なる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法を用いた場合、都度、用いているプリコーディング行列を切り替え、復調することになる。また、時空間ブロック符号を用いているときも、チャネル推定値、受信(ベースバンド)信号を用いて、復調を行うことになる。
図74は、図72の放送局の送信装置が、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したときの、端末の受信装置の構成の一例を示しており、図7、図56、図73と同様に動作するものについては同一符号を付している。
図74の受信装置と図73の受信装置の異なる点は、図73の受信装置は、DVB−T2規格とそれ以外の規格の信号を受信し、データを得ることができるに対し、図74の受信装置は、DVB−T2規格以外の信号のみ受信し、データを得ることができる点である。
図74において、P1シンボル検出、復号部7301は、放送局が送信した信号を受信し、信号処理後の信号704_X、704_Yを入力とし、P1シンボルを検出することで、信号検出、時間周波数同期を行うと同時に、P1シンボルに含まれる制御情報を(復調、および、誤り訂正復号を行うことで)得、P1シンボル制御情報7302を出力する。
OFDM方式関連処理部5600_X、および、5600_Yは、P1シンボル制御情報7302を入力としており、この情報に基づき、OFDM方式のための信号処理方法を変更する。(実施の形態A1に記載したように、放送局が送信する信号の伝送方法の情報が、P1シンボルに含まれているからである。)
第1、第2 Signalling data復調部7401は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、信号処理を行い、復調(誤り訂正復号を含む)を行い、第1、第2 Signalling data制御情報7402を出力する。
制御情報生成部7305は、P1シンボル制御情報7302、および、第1、第2 Signalling data制御情報7402を入力とし、(受信動作に関係する)制御情報をたばね、制御信号7306として出力する。そして、制御信号7306は、図73に示したように、各部に入力されることになる。
信号処理部711は、信号706_1、706_2、708_1、708_2、704_X、704_Y、および、制御信号7306を入力とし、制御信号7306に含まれている、各PLPを伝送するために用いた伝送方式・変調方式・誤り訂正符号化方式・誤り訂正符号化の符号化率・誤り訂正符号のブロックサイズ等の情報に基づき、復調、復号の処理を行い、受信データ712を出力する。
このとき、PLPを伝送するために、空間多重MIMO伝送方式、固定的なプリコーディング行列を用いるMIMO方式、規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかの伝送方式を用いている場合、(数41)の式(41)、(数153)の式(143)の関係式を用いて、信号処理部711は、復調処理を行えばよい。なお、チャネル行列(H)は、チャネル変動推定部(705_1、705_2、707_1、707_2)の出力結果から得ることができ、プリコーディング行列(FまたはW)は、用いた伝送方式により、その行列の構成は異なる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法を用いた場合、都度、用いているプリコーディング行列を切り替え、復調することになる。また、時空間ブロック符号を用いているときも、チャネル推定値、受信(ベースバンド)信号を用いて、復調を行うことになる。
図75は、DVB−T2規格に対応し、かつ、DVB−T2以外の規格に対応した、端末の受信装置の構成を示しており、図7、図56、図73と同様に動作するものについては同一符号を付している。
図75の受信装置と図73、図74の受信装置の異なる点は、図75の受信装置は、DVB−T2規格とそれ以外の規格の信号の両者に対し、復調が可能となるように、P2シンボル、または、第1、第2 Signalling data復調部7501を具備している点である。
第1、第2 Signalling data復調部7501は、信号処理後の信号704_X、704_Y、および、P1シンボル制御情報7302を入力とし、P1シンボル制御情報に基づき、受信した信号が、DVB−T2規格に対応した信号か、または、それ以外の規格に対応した信号なのか、を判断し(例えば、表3により判断が可能である。)、信号処理を行い、復調(誤り訂正復号を含む)を行い、受信信号が対応している規格が何であるかの情報を含んだ制御情報7502を出力する。それ以外の部分については、図73、図74と同様の動作となる。
以上のように、本実施の形態で示したような受信装置の構成とすることで、実施の形態A1で記載した放送局の送信装置が送信した信号を受信し、適切な信号処理を施すことで、受信品質の高いデータを得ることができる。特に、規則的にプリコーディング行列を切り替えるプリコーディング方法の信号を受信したときは、LOS環境において、データの伝送効率の向上とデータ受信品質の向上の両立を実現することができる。
なお、本実施の形態において、実施の形態A1で述べた放送局の送信方法に対応する受信装置の構成について説明したため、受信アンテナ数を2本のときの受信装置の構成について説明したが、受信装置のアンテナ数は2本に限ったものではなく、3本以上としても同様に実施することができ、このとき、ダイバーシチゲインが向上するため、データの受信品質を向上させることができる。また、放送局の送信装置の送信アンテナ数を3本以上とし、送信変調信号数を3以上としたときも、端末の受信装置の受信アンテナ数を増加させることで、同様に実施することができる。このとき、送信方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用していることが望ましい。
また、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
実施の形態A1で記載した、DVB−T2規格に、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用したシステムにおいて、L1 Pre-Signallingで、パイロットの挿入パターンを指定する制御情報が存在する。本実施の形態では、L1 pre-signallingでパイロット挿入パターンを変更するときの、規則的にプリコーディング行列を切り替えるプリコーディング方法の適用方法について説明する。
したがって、L1 Pre-Signalling dataにより、パイロットパターン(パイロット挿入方法)を示す制御情報を放送局は送信することになるが、このパイロットパターンを示す制御情報は、パイロット挿入方法を示すと同時に、表4または表5の制御情報により、放送局がPLPを伝送する伝送方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を選択した場合、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を示すようにしてもよい。したがって、放送局が送信した変調信号を受信する端末の受信装置は、L1 Pre-Signnaling dataにおけるパイロットパターンを示す制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を知ることができる。(このとき、表4または表5の制御情報により、放送局がPLPを伝送する伝送方法として、規則的にプリコーディング行列を切り替えるプリコーディング方法を選択していることが前提となる。)なお、ここでは、L1 Pre-Signalling dataを用いて説明しているが、P2シンボルが存在しない図70のフレーム構成の場合は、パイロットパターン、および、規則的にプリコーディング行列を切り替えるプリコーディング方法におけるプリコーディング行列の割り当て方法を示す制御情報は、第1、第2 Signalling dataに存在することになる。
以下では、さらなる別の例を説明する。例えば、表2のように、変調方式が指定されると同時に規則的にプリコーディング行列を切り替えるプリコーディング方法で使用するプリコーディング行列が決定される場合、上述の説明と同様に考えることができ、P2シンボルの、パイロットパターンの制御情報とPLPの伝送方法の制御情報と変調方式の制御情報のみを伝送することで、端末の受信装置は、これらの制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法を推定することができる。同様に、表1Bのように、変調方式および誤り訂正符号の方法が指定されると同時に規則的にプリコーディング行列を切り替えるプリコーディング方法で使用するプリコーディング行列が決定される場合、P2シンボルの、パイロットパターンの制御情報とPLPの伝送方法の制御情報と変調方式の制御情報、誤り訂正符号の方法のみを伝送することで、端末の受信装置は、これらの制御情報を得ることで、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法を推定することができる。
しかし、表1B、表2と異なり、変調方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替えるプリコーディング方法のいずれかを選択できる(例えば、周期が異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる、または、プリコーディング行列自身が異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる)、または、変調方式・誤り訂正方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替える方法のいずれかを選択できる、または、誤り訂正方式を決定しても、2種類以上の異なる規則的にプリコーディング行列を切り替えるプリコーディング方法から選択できる場合、表5のように、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列切り替え方法を伝送することになるが、これに加え、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法に関する情報を伝送してもよい。
そのときの、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の(周波数―時間軸における)割り当て方法に関する情報に関する制御情報の構成例を表7に示す。
以上のように、パイロット挿入方法に基づいた、規則的にプリコーディング行列を切り替えるプリコーディング方法のプリコーディング行列の割り当て方法を実現し、かつ、その割り当て方法の情報を的確に送信相手に伝送することで、送信相手である端末の受信装置は、データの伝送効率の向上と、データの受信品質の向上の両立を図ることができるという効果を得ることができる。
なお、本実施の形態において、放送局の送信信号数を2とした場合を説明したが、放送局の送信装置の送信アンテナ数を3本以上とし、送信変調信号数を3以上としたときも、同様に実施することができる。また、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
本実施の形態では、規則的にプリコーディング行列を切り替えるプリコーディング方法において、データの受信品質を向上させるためのレペティション(repetition)方法について述べる。
規則的にプリコーディング行列を切り替えるプリコーディング方法を適用した送信装置の構成は、図3、図4、図13、図40、図53に示したとおりであるが、本実施の形態では、規則的にプリコーディング行列を切り替えるプリコーディング方法に対し、レペティションを適用した場合の応用例について説明する。
図81は、レペティション適用時の規則的にプリコーディング行列を切り替えるプリコーディング方法の信号処理部の構成の一例を示している。図81は、図53で考えた場合、信号処理部5308に相当する。
図81のベースバンド信号8101_1は、図53のベースバンド信号5307_1に相当し、マッピング後のベースバンド信号であり、ストリームs1のベースバンド信号となる。同様に、図81のベースバンド信号8101_2は、図53のベースバンド信号5307_2に相当し、マッピング後のベースバンド信号であり、ストリームs2のベースバンド信号となる。
信号処理部(複製部)8102_1は、ベースバンド信号8101_1、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_1が、時間軸に対し、s11、s12、s13、s14、・・・の信号となっている場合、信号処理部(複製部)8102_1は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_1の出力、つまり、レベティション後のベースバンド信号8103_1は、時間軸に対し、s11、s11、s11、s11のようにs11を4個出力し、その後、s12、s12、s12、s12のようにs12を4個出力し、その後、s13、s13、s13、s13、s14、s14、s14、s14、・・・と出力する。
信号処理部(複製部)8102_2は、ベースバンド信号8101_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_2が、時間軸に対し、s21、s22、s23、s24、・・・の信号となっている場合、信号処理部(複製部)8102_2は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_2の出力、つまり、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個出力し、その後、s22、s22、s22、s22のようにs22を4個出力し、その後、s23、s23、s23、s23、s24、s24、s24、s24、・・・と出力する。
レベティション後のベースバンド信号8103_1、8103_2をそれぞれ、y1(i)、y2(i)、プリコーディング行列をF(i)とすると、以下の関係が成り立つ。
信号処理部(複製部)8102_1は、ベースバンド信号8101_1、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_1が、時間軸に対し、s11、s12、s13、s14、・・・の信号となっている場合、信号処理部(複製部)8102_1は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_1の出力、つまり、レベティション後のベースバンド信号8103_1は、時間軸に対し、s11、s11、s11、s11のようにs11を4個出力し、その後、s12、s12、s12、s12のようにs12を4個出力し、その後、s13、s13、s13、s13、s14、s14、s14、s14、・・・と出力する。
信号処理部(複製部)8102_2は、ベースバンド信号8101_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション回数の情報に基づき、ベースバンド信号の複製を行う。例えば、制御信号8104に含まれるレペティション回数の情報が、4回のレペティションと示されていた場合、ベースバンド信号8101_2が、時間軸に対し、s21、s22、s23、s24、・・・の信号となっている場合、信号処理部(複製部)8102_2は、各信号を4回複製し、出力する。したがって、信号処理部(複製部)8102_2の出力、つまり、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個出力し、その後、s22、s22、s22、s22のようにs22を4個出力し、その後、s23、s23、s23、s23、s24、s24、s24、s24、・・・と出力する。
並び替え部8201は、レベティション後のベースバンド信号8103_1、レベティション後のベースバンド信号8103_2、制御信号8104を入力とし、制御信号8104に含まれるレペティション方法の情報に基づき、データの並び換えを行い、並び替え後のベースバンド信号8202_1および8202_2を出力する。例えば、レベティション後のベースバンド信号8103_1が、時間軸に対し、s11、s11、s11、s11のようにs11を4個で構成されており、同様に、レベティション後のベースバンド信号8103_2は、時間軸に対し、s21、s21、s21、s21のようにs21を4個で構成されているものとする。図82では、s11を、式(475)のy1(i)、y2(i)の両者として出力し、同様に、s21を、式(475)のy1(i)、y2(i)の両者として出力する。したがって、s11と同様の並び替えを(s12、s13、・・・)に対しても施し、また、s21と同様の並び替えを(s22、s23、・・・)に対しても施す。したがって、並び替え後のベースバンド信号8202_1は、s11、s21、s11、s21、s12、s22、s12、s22、s13、s23、s13、s23、・・・となり、これが、式(475)のy1(i)に相当する。なお、s11、s21の順番(ここでは、s11、s21、s11、s21としている)はこれに限ったものではなく、どのような順番となってもよく、同様に、s12、s22についても、また、s13、s23についても順番は、どのような順番となってもよい。そして、並び替え後のベースバンド信号8202_2は、s21、s11、s21、s11、s22、s12、s22、s12、s23、s13、s23、s13、・・・となり、これが、式(475)のy2(i)に相当する。なお、s11、s21の順番(ここでは、s21、s11、s21、s11としている)はこれに限ったものではなく、どのような順番となってもよく、同様に、s12、s22についても、また、s13、s23についても順番は、どのような順番となってもよい。
並び替え後のベースバンド信号8202_1および8202_2をそれぞれ、前述のとおり、y1(i)、y2(i)、プリコーディング行列をF(i)とすると、式(475)の関係が成立する。
なお、本実施の形態において、規則的にプリコーディング行列を切り替えるプリコーディング方法の例には、実施の形態1から実施の形態16で示したとおりである。しかし、規則的にプリコーディング行列を切り替える方法については、実施の形態1から実施の形態16で示した方法に限ったものではなく、プリコーディング行列を複数用意しておき、用意しておいた複数のプリコーディング行列の中からスロットごとに、一つのプリコーディング行列を選択し、プリコーディングを行うとともに、スロットごとに規則的に使用するプリコーディング行列を切り替える方式であれば、本実施の形態は、同様に実施することができる。
本実施の形態では、実施の形態A1で説明した送信方法に対し、共通増幅を行うことで、変調信号を送信する方法について説明する。
図83の変調信号生成部#1から#M(5201_1から5201_M)は、入力信号(入力データ)から、図63、または、図72のP1シンボル用処理後の信号6323_1および6323_2を生成するためのものであり、変調信号z1(5202_1から5202_M)および変調信号z2(5203_1から5203_M)を出力する。
(実施の形態B1)
以下では、上記各実施の形態で示した送信方法及び受信方法の応用例とそれを用いたシステムの構成例を説明する。
また、本実施の形態の受信機8500は、復調部8502で復調し、誤り訂正の復号を行うことで得られた多重化データ(場合によっては、復調部8502で復調されて得られる信号に対して誤り訂正復号を行わないこともある。また、受信機8500は、誤り訂正復号後に他の信号処理が施されることもある。以降について、同様の表現を行っている部分についても、この点は同様である。)に含まれるデータ、または、そのデータに相当するデータ(例えば、データを圧縮することによって得られたデータ)や、動画、音声を加工して得られたデータを、磁気ディスク、光ディスク、不揮発性の半導体メモリ等の記録メディアに記録する記録部(ドライブ)8508を備える。ここで光ディスクとは、例えばDVD(Digital Versatile Disc)やBD(Blu−ray Disc)等の、レーザ光を用いて情報の記憶と読み出しがなされる記録メディアである。磁気ディスクとは、例えばFD(Floppy Disk)(登録商標)やハードディスク(Hard Disk)等の、磁束を用いて磁性体を磁化することにより情報を記憶する記録メディアである。不揮発性の半導体メモリとは、例えばフラッシュメモリや強誘電体メモリ(Ferroelectric Random Access Memory)等の、半導体素子により構成された記録メディアであり、フラッシュメモリを用いたSDカードやFlash SSD(Solid State Drive)などが挙げられる。なお、ここで挙げた記録メディアの種類はあくまでその一例であり、上記の記録メディア以外の記録メディアを用いて記録を行っても良いことは言うまでもない。
さらに、受信機8500は、ユーザ操作の入力を受け付ける操作入力部8510を備える。受信機8500は、ユーザの操作に応じて操作入力部8510に入力される制御信号に基づいて、電源のON/OFFの切り替えや、受信するチャネルの切り替え、字幕表示の有無や表示する言語の切り替え、音声出力部8506から出力される音量の変更等の様々な動作の切り替えや、受信可能なチャネルの設定等の設定の変更を行う。
(多重化データ)
次に、多重化データの構造の一例について詳細に説明する。放送に用いられるデータ構造としてはMPEG2−トランスポートストリーム(TS)が一般的であり、ここではMPEG2−TSを例に挙げて説明する。しかし、上記各実施の形態で示した送信方法及び受信方法で伝送される多重化データのデータ構造はMPEG2−TSに限られず、他のいかなるデータ構造であっても上記の各実施の形態で説明した効果を得られることは言うまでもない。
図91は、その多重化データファイル情報の構成を示す図である。多重化データ情報ファイルは、図91に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェース(例えば、USB)を介して接続できるような形態であることも考えられる。
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i)、直交成分をQ2(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI2(i)、直交成分をQ1(i)
とし、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i)、直交成分をI2(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i)、直交成分をQ2(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i)、直交成分をQ2(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i)、直交成分をI2(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i)、直交成分をQ2(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i)、直交成分をI2(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i)、直交成分をI2(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i)、直交成分をI2(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i)、直交成分をQ2(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i)、直交成分をQ2(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i)、直交成分をI2(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i)、直交成分をQ2(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i)、直交成分をQ2(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i)、直交成分をI2(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI2(i)、直交成分をQ1(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i)、直交成分をI1(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i)、直交成分をI2(i)
としてもよい。また、上述では、2ストリームの信号に対しプリコーディングを行い、プリコーディング後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対しプリコーディングを行い、プリコーディング後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i+v)、直交成分をQ2(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をI2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i+v)、直交成分をI2(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i+v)、直交成分をQ2(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i+v)、直交成分をQ2(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i+v)、直交成分をI2(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI1(i+v)、直交成分をQ2(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i+v)、直交成分をI2(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をI2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ1(i+v)、直交成分をI2(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i+v)、直交成分をI2(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i+v)、直交成分をQ2(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i+v)、直交成分をQ2(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i+v)、直交成分をI2(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i+v)、直交成分をQ2(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をI2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI1(i+v)、直交成分をQ2(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i+v)、直交成分をI2(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をI2(i+w)、直交成分をQ1(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ2(i+w)、直交成分をI1(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ1(i+v)、直交成分をI2(i+w)
図96は、上記の記載を説明するための図である。図96に示すように、プリコーディング後のベースバンド信号z1(i)、z2(i)において、プリコーディング後のベースバンド信号z1(i)の同相I成分をI1(i)、直交成分をQ1(i)とし、プリコーディング後のベースバンド信号z2(i)の同相I成分をI2(i)、直交成分をQ2(i)とする。そして、入れ替え後のベースバンド信号r1(i)の同相成分をIr1(i)、直交成分をQr1(i)、入れ替え後のベースバンド信号r2(i)の同相成分をIr2(i)、直交成分をQr2(i)とすると、入れ替え後のベースバンド信号r1(i)の同相成分Ir1(i)、直交成分Qr1(i)、入れ替え後のベースバンド信号r2(i)の同相成分Ir2(i)、直交成分をQr2(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))のプリコーディング後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))のプリコーディング後のベースバンド信号の入れ替えであってもよい。
そして、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信することになる。
複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ
規則的にプリコーディング行列を切り替えるプリコーディング方法のためにN個の用意するプリコーディングをF[0], F[1], F[2],・・・F[N-3],F[N-2],F[N-1]であらわすものとする。このとき、上記で述べた「異なる複数のプリコーディング行列」とは、以下の2つの条件(条件*1および条件*2)を満たすものであるものとする。
304A,304B インタリーバ
306A,306B マッピング部
314 重み付け合成情報生成部
308A,308B 重み付け合成部
310A,310B 無線部
312A,312B アンテナ
402 符号化器
404 分配部
504#1,504#2 送信アンテナ
505#1,505#2 受信アンテナ
600 重み付け合成部
703_X 無線部
701_X アンテナ
705_1 チャネル変動推定部
705_2 チャネル変動推定部
707_1 チャネル変動推定部
707_2 チャネル変動推定部
709 制御情報復号部
711 信号処理部
803 INNER MIMO検波部
805A,805B 対数尤度算出部
807A,807B デインタリーバ
809A,809B 対数尤度比算出部
811A,811B Soft−in/soft−outデコーダ
813A,813B インタリーバ
815 記憶部
819 重み付け係数生成部
901 Soft−in/soft−outデコーダ
903 分配器
1301A,1301B OFDM方式関連処理部
1402A,1402A シリアルパラレル変換部
1404A,1404B 並び換え部
1406A,1406B 逆高速フーリエ変換部
1408A,1408B 無線部
2200 プリコーディングウェイト行列生成部
2300 並び替え部
4002 符号化器群
Claims (4)
- 送信方法であって、
第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含む第1のストリームと、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含む第2のストリームとを生成し、
前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
前記第1のストリームと前記第2のストリームを複数のアンテナを用いて送信し、
前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信される、送信方法。 - 送信装置であって、
第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含む第1のストリームと、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含む第2のストリームとを生成し、
前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なる、重み付け合成部と、
前記第1のストリームと前記第2のストリームを複数のアンテナを用いて送信する送信部と、
を備え、
前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信される、送信装置。 - 受信方法であって、
複数のアンテナを用いて送信された第1のストリームと第2のストリームとを受信して得られた受信信号を取得し、
前記第1のストリームは、第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含み、前記第2のストリームは、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含み、
前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信されており、
前記受信方法は、
前記第1の信号生成方法と前記第2の信号生成方法とに応じて、前記受信信号を復調することにより受信データを生成する、受信方法。 - 受信装置であって、
複数のアンテナを用いて送信された第1のストリームと第2のストリームとを受信して得られた受信信号を取得する取得部を備え、
前記第1のストリームは、第1の信号生成方法を用いて生成された第1の重みづけ合成後の信号と第2の信号生成方法を用いて生成された第2の重みづけ合成後の信号とを含み、前記第2のストリームは、前記第1の信号生成方法を用いて生成された第3の重みづけ合成後の信号と前記第2の信号生成方法を用いて生成された第4の重みづけ合成後の信号とを含み、
前記第1の信号生成方法は、第1の2つの変調信号に対して第1の重みづけ合成方法を用いて重みづけ合成した信号である前記第1の重みづけ合成後の信号を生成し、前記第1の2つの変調信号に対して第3の重みづけ合成方法を用いて重みづけ合成した信号である前記第3の重みづけ合成後の信号を生成する方法であり、
前記第2の信号生成方法は、第2の2つの変調信号に対して第2の重みづけ合成方法を用いて重みづけ合成した信号である前記第2の重みづけ合成後の信号を生成し、前記第2の2つの変調信号に対して第4の重みづけ合成方法を用いて重みづけ合成した信号である前記第4の重みづけ合成後の信号を生成する方法であり、前記第2の重みづけ合成方法は前記第1の重みづけ合成方法とは異なり、前記第4の重みづけ合成方法は前記第3の重みづけ合成方法とは異なり、
前記第1の重みづけ合成後の信号と前記第3の重みづけ合成後の信号とは互いに異なる周波数で送信され、前記第4の重みづけ合成後の信号と前記第1の重みづけ合成後の信号とは同一の周波数で同時に送信されており、
前記受信装置は、
前記第1の信号生成方法と前記第2の信号生成方法に応じて、前記受信信号を復調することにより受信データを生成する復調部をさらに備える、受信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016128618A JP6344660B2 (ja) | 2016-06-29 | 2016-06-29 | プリコーディング方法、送信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016128618A JP6344660B2 (ja) | 2016-06-29 | 2016-06-29 | プリコーディング方法、送信装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015139819A Division JP5971573B2 (ja) | 2015-07-13 | 2015-07-13 | プリコーディング方法、送信装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018091079A Division JP6544670B2 (ja) | 2018-05-10 | 2018-05-10 | プリコーディング方法、送信装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016213858A JP2016213858A (ja) | 2016-12-15 |
JP6344660B2 true JP6344660B2 (ja) | 2018-06-20 |
Family
ID=57550020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016128618A Active JP6344660B2 (ja) | 2016-06-29 | 2016-06-29 | プリコーディング方法、送信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6344660B2 (ja) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1846383B (zh) * | 2003-07-02 | 2011-05-04 | 松下电器产业株式会社 | 通信装置及通信方法 |
WO2008088066A1 (ja) * | 2007-01-19 | 2008-07-24 | Panasonic Corporation | マルチアンテナ送信装置、マルチアンテナ受信装置、マルチアンテナ送信方法、マルチアンテナ受信方法、端末装置及び基地局装置 |
US8780771B2 (en) * | 2007-02-06 | 2014-07-15 | Qualcomm Incorporated | Cyclic delay diversity and precoding for wireless communication |
CN101606330A (zh) * | 2007-02-06 | 2009-12-16 | 高通股份有限公司 | 用于使用显式和隐式循环延迟的mimo传输的装置和方法 |
CN103532606B (zh) * | 2007-12-03 | 2017-04-12 | 艾利森电话股份有限公司 | 空间复用多天线发射机的预编码器 |
-
2016
- 2016-06-29 JP JP2016128618A patent/JP6344660B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016213858A (ja) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6281779B2 (ja) | 送信方法、送信装置、受信方法および受信装置 | |
JP5578617B2 (ja) | 送信方法、送信装置、受信方法および受信装置 | |
JP6213854B2 (ja) | プリコーディング方法、プリコーディング装置 | |
JP6284054B2 (ja) | プリコーディング方法、プリコーディング装置 | |
JP2019149803A (ja) | 送信方法、送信装置、受信方法および受信装置 | |
WO2011158496A1 (ja) | プリコーディング方法、送信装置 | |
JP5578620B2 (ja) | プリコーディング方法、送信装置 | |
JP6344660B2 (ja) | プリコーディング方法、送信装置 | |
JP5971573B2 (ja) | プリコーディング方法、送信装置 | |
JP5781202B2 (ja) | プリコーディング方法、送信装置 | |
JP2019198079A (ja) | プリコーディング方法、送信装置 | |
JP2018148573A (ja) | プリコーディング方法、送信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170808 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180510 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6344660 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6344660 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |