TWI618381B - 發送方法、發送裝置、接收方法、及接收裝置 - Google Patents

發送方法、發送裝置、接收方法、及接收裝置 Download PDF

Info

Publication number
TWI618381B
TWI618381B TW105113859A TW105113859A TWI618381B TW I618381 B TWI618381 B TW I618381B TW 105113859 A TW105113859 A TW 105113859A TW 105113859 A TW105113859 A TW 105113859A TW I618381 B TWI618381 B TW I618381B
Authority
TW
Taiwan
Prior art keywords
signal
precoding
modulation
symbol
aforementioned
Prior art date
Application number
TW105113859A
Other languages
English (en)
Other versions
TW201701629A (zh
Inventor
Yutaka Murakami
Tomohiro Kimura
Mikihiro Ouchi
Original Assignee
Panasonic Ip Corp America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ip Corp America filed Critical Panasonic Ip Corp America
Publication of TW201701629A publication Critical patent/TW201701629A/zh
Application granted granted Critical
Publication of TWI618381B publication Critical patent/TWI618381B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03942Spatial equalizers codebook-based design switching between different codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本發明為一種預編碼方法,係從複數個基頻訊號,生成在同一頻帶且在同一時刻發送之複數個經預編碼之訊號者;對於前述複數個基頻訊號,從N個矩陣F[i]中切換選擇1個矩陣而生成第1經預編碼之訊號z1及第2經預編碼之訊號z2,其中i=0、1、2、…、N;利用預定之錯誤更正區塊編碼方式來生成第1編碼區塊及第2編碼區塊,從前述第1編碼區塊及前述第2編碼區塊分別生成M符元(symbol)之基頻訊號,對於從前述第1編碼區塊所生成的基頻訊號與從前述第2編碼區塊所生成的基頻訊號之組合進行預編碼處理,藉此生成M時槽之經預編碼之訊號。

Description

發送方法、發送裝置、接收方法、及接收裝置 發明領域
本發明係特別關於一種利用多天線進行通訊之預編碼方法、預編碼裝置、發送方法、發送裝置、接收方法及接收裝置。
(相關申請案之提及)2010年10月18日申請之日本專利申請案2010-234061號及2010年12月9日申請之日本專利申請案2010-275164號所含之申請專利範圍、說明書、圖式及摘要之揭示內容全都引用於本申請案中。
發明背景
以往利用多天線之通訊方法包括例如稱為MIMO(Multiple-Input Multiple-Output:多輸入多輸出)之通訊方法。由MIMO所代表的多天線通訊係分別調變複數個序列之發送資料,並從不同天線同時發送各調變訊號,藉此提高資料之通訊速度。
第28圖係表示發送天線數2個、接收天線數2個、發送調變訊號(發送串流)數2個時之收發裝置之構成之一例。發送裝置係將已編碼之資料予以交錯,調變交錯後之資料, 進行頻率轉換等而生成發送訊號,發送訊號則從天線發送。此時,在同一時刻、同一頻率從發送天線發送各自不同的調變訊號之方式,係空間多工MIMO方式。
此時,於專利文獻1提案一種發送裝置,係就各發送天線具備不同交錯模式者。總言之,於第28圖之發送裝置,2個交錯(π a、π b)具備互異之交錯模式。然後,於接收裝置,如非專利文獻1、非專利文獻2所示,藉由反覆進行利用軟值之檢波方法(第28圖之MIMO偵測器)來提升接收品質。
然而,作為無線通訊之實際傳播環境之模型,存在有由瑞雷衰退環境所代表的NLOS(non-line of sight:非直視性)環境、由萊斯衰退環境所代表的LOS(line of sight:直視性)環境。於發送裝置發送單一調變訊號,於接收裝置,對於以複數個天線所接收的訊號進行最大比率合成,對於最大比率合成後之訊號進行解調及解碼時,於LOS環境下,尤其於表示直接波接收電力相對於散射波接收電力之大小之萊斯因子較大的環境下,可獲得良好的接收品質。然而,視依傳送方式(例如於空間多工MIMO傳送方式)不同,當萊斯因子變大時可能發生接收品質劣化的問題。(參考非專利文獻3)
第29(A)、(B)圖係表示於瑞雷衰退環境及萊斯因子K=3、10、16dB之萊斯衰退環境下,將受到LDPC(low-density parity-check:低密度奇偶校驗)編碼之資料進行2×2(2天線發送、2天線接收)空間多工MIMO傳送時之BER(Bit Error Rate:位元錯誤率)特性(縱軸:BER、橫軸:SNR(signal -to-noise power ratio:訊號雜訊功率比))之模擬結果之一例。第29(A)圖係表示不進行反覆檢波之Max-log-APP(參考非專利文獻1、非專利文獻2)(APP:a posterior probability(後驗機率))之BER特性,第29(B)圖係表示進行反覆檢波之Max-log-APP(參考非專利文獻1、非專利文獻2)(反覆次數5次)之BER特性。從第29(A)、(B)圖可知,無論進行或不進行反覆檢波,於空間多工MIMO系統均可確認當萊斯因子變大時,接收品質會劣化。由此可知以往發送單一調變訊號之系統所未有、空間多工MIMO系統與生俱來的課題,即「於空間多工MIMO系統,當傳播環境安定時,接收品質會劣化」。
播送或多播通訊係針對預料中的使用者之服務,使用者所持有的接收機與播送台之間之電波傳播環境大多為LOS環境。將具有前述課題之空間多工MIMO系統利用於播送或多播通訊時,在接收機,可能發生電波之接收電場強度雖高,但因接收品質劣化而無法接受服務的現象。總言之,為了於播送或多播通訊利用空間多工MIMO系統,於NLOS環境及LOS環境之任一情況下,均期望開發可獲得某種程度之接收品質之MIMO傳送方式。
於非專利文獻8,敘述關於從來自通訊對象之回授資訊,選擇用於預編碼之碼本(預編碼矩陣(亦稱為預編碼權重矩陣))之方法,但完全未記載有關如上述在諸如播送或多播通訊般,無法獲得來自通訊對象之回授資訊的狀況下進行預編碼之方法。
另,於非專利文獻4,敘述關於亦可適用於無回授資訊時之隨著時間切換預編碼矩陣之方法。於該文獻中,雖敘述關於利用么正矩陣作為用於預編碼之矩陣,以及隨機切換么正矩陣,但完全未記載有關對於上述所示LOS環境下之接收品質劣化之適用方法,單純僅記載隨機切換。當然完全未記述關於用以改善LOS環境之接收品質劣化之預編碼方法及預編碼矩陣之構成方法。
先行技術文獻 專利文獻
專利文獻1:國際公開第2005/050885號
非專利文獻
非專利文獻1:Achieving near-capacity on a multiple-antenna channel”,IEEE Transaction on communications,vol.51,no.3,pp.389-399,March 2003。
非專利文獻2:“Performance analysis and design optimization of LDPC-coded MIMO OFDM systems”,IEEE Trans.Signal Processing.,vol.52,no.2,pp.348-361,Feb.2004。
非專利文獻3:“BER performance evaluation in 2×2 MIMO spatial multiplexing systems under Rician fading channels”,IEICE Trans. Fundamentals,vol.E91-A,no.10,pp.2798-2807,Oct.2008。
非專利文獻4:“Turbo space-time codes with time varying linear transformations”,IEEE Trans. Wireless communications,vol.6,no.2,pp.486-493,Feb.2007。
非專利文獻5:“Likelihood function for QR-MLD suitable for soft-decision turbo decoding and its performance”,IEICE Trans. Commun.,vol.E88-B,no.1,pp.47-57,Jan.2004。
非專利文獻6:「向農極限指南:(Shannon限界道標:“Parallel concatenated (Turbo) coding”、“Turbo (iterative) decoding”周辺)」日本電子情報通信學會,信學技法IT98-51。
非專利文獻7:“Advanced signal processing for PLCs : Wavelet-OFDM”,Proc.of IEEE International symposium on ISPLC 2008,pp.187-192,2008。
非專利文獻8:D.J.Love及R.W.heath,Jr.,“Limited feedback unitary precoding for spatial multiplexing systems”,IEEE Trans.Inf.Theory,vol.51,no.8,pp.2967-1976,Aug.2005。
非專利文獻9:DVB Document A122,Framing structure,channel coding and modulation for a second generation digital terrestrial television broadcasting syste, m (DVB-T2),June 2008。
非專利文獻10:L. Vangelista、N. Benvenuto及S. Tomasin,“Key technologies for next-generation terrestrial digital television standard DVB-T2”,IEEE Commun. Magazine,vo.47,no.10,pp.146-153,Oct.2009。
非專利文獻11:T.Ohgane、T.Nishimura及Y.Ogawa,“Application of space division multiplexing and those performance in a MIMO channel”,IEICE Trans. Commun.,vo.88-B,no.5,pp.1843-1851,May.2005。
非專利文獻12:R.G.Gallager,“Low-density parity-check codes",IRE Trans. Inform. Theory,IT-8,pp.21-28,1962。
非專利文獻13:D.J.C.Mackay,“Good error-correcting codes based on very sparse matrices”,IEEE Trans. Inform. Theory,vol.45,no.2,pp.399-431,March 1999。
非專利文獻14:ETSIEN 302 307,“Second generation framing structure,channel coding and modulation systems for broadcasting,interactive services,news gathering and other broadband satellite applications”,v.1.1.2,June 2006。
非專利文獻15:Y.-L.Ueng及C.-C.Cheng,“a fast-convergence decoding method and memory-efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16e standards”,IEEE VTC-2007 Fall,pp.1255-1259。
發明概要
本發明之目的在於提供一種MIMO系統,係可解決LOS環境下之接收品質者。
為了解決該課題,本發明之一態樣之預編碼方法係從複數個基頻訊號,生成在同一頻帶且在同一時刻發送之複數個經預編碼之訊號,其特徵在於:從規定對於前述複數個基頻訊號施加之預編碼處理的N個矩陣F[i]中,切換選擇1個矩陣,其中i=0、1、2、…、N;對於從第1複數個位元所生成的第1基頻訊號s1及從第2複數個位元所生成的第2基頻訊號s2,施以與前述所選擇的F[i]相應之預編碼處理,而生成第1經預編碼之訊號z1及第2經預編碼之訊號z2時,利用預定之錯誤更正區塊編碼方式,來生成作為前述第1複數個位元之第1編碼區塊及作為前述第2複數個位元之第2編碼區塊,從前述第1編碼區塊及前述第2編碼區塊分別生成M符元之前述第1基頻訊號s1及前述第2基頻訊號s2,對於從前述第1編碼區塊所生成的基頻訊號s1與從前述第2編碼區塊所生成的基頻訊號s2之組合進行預編碼處理,藉此生成M時槽之經預編碼之訊號z1及z2;前述第1經預編碼之訊號z1及前述第2經預編碼之訊號z2係符合(z1、z2)T=F[i](s1、s2)T。
又,本發明之一態樣之預編碼裝置係從複數個基頻訊號,生成在同一頻帶且在同一時刻發送之複數個經預編碼之訊號,其特徵在於,該預編碼裝置具備:加權合成資訊生成部,係從規定對於前述複數個基頻訊號施加之預編碼處理的N個矩陣F[i]中,切換選擇1個矩陣者,其中i=0、1、2、…、N-1;加權合成部,係對於從第1複數個位元所生 成的第1基頻訊號s1及從第2複數個位元所生成的第2基頻訊號s2,施以與前述所選擇的F[i]相應之預編碼處理,生成第1經預編碼之訊號z1及第2經預編碼之訊號z2者;錯誤更正編碼部,係利用預定之錯誤更正區塊編碼方式,來生成作為前述第1複數個位元之第1編碼區塊及作為前述第2複數個位元之第2編碼區塊者;及映射部,係從前述第1編碼區塊及前述第2編碼區塊,分別生成M符元之基頻訊號者;前述第1經預編碼之訊號z1及前述第2經預編碼之訊號z2係符合(z1、z2)T=F[i](s1、s2)T;前述加權合成部係對於從前述第1編碼區塊所生成的基頻訊號與從前述第2編碼區塊所生成的基頻訊號之組合進行預編碼處理,藉此生成M時槽之經預編碼之訊號。
若依據上述本發明之各態樣,關於從複數個預編碼矩陣中,對於至少1個資料符元所用之預編碼矩陣而言,可針對該預編碼矩陣、及與該資料符元在頻率軸方向、時間軸方向之某一方向相鄰接之資料符元所用之預編碼矩陣,生成以所有預編碼矩陣均不同的方式切換預編碼矩陣,並執行預編碼而生成之調變訊號,因此可因應複數個預編碼矩陣之設計來改善LOS環境下之接收品質。
如此,若依據本發明,可提供一種改善LOS環境下之接收品質劣化之發送方法、接收方法、發送裝置及接收裝置,因此可於播送或多播通訊,對於預料中之使用者提供高品質的服務。
4i、4i+1、4i+2、4i+3、Ni、Ni+1、Ni+k、u、u+1‧‧‧符元號碼
4i、4i+1、4i+2、4i+3‧‧‧時刻、時槽
300、400‧‧‧發送裝置
301A、301B、401‧‧‧資訊(資料)
302A、302B、402‧‧‧編碼部
303A、303B、403‧‧‧編碼後之資料
304A、304B、813A、813B‧‧‧交錯器
305A、305B、5305‧‧‧交錯後之資料
306A、306B、5306_1、5306_2、6105_1、6105_2‧‧‧映射部
307A、307B、704_X、704_Y、801X、801Y、816X、 816Y、5307_1、5307_2、6106_1、6106_2、6107_1、6107_2、6603X、6603Y、6700、s1(t)、s2(t)‧‧‧基頻訊號
308A、308B、600‧‧‧加權合成部
309A、309B、1401A、1401B‧‧‧加權(合成)後之訊號
310A、310B、703_X、703_Y、1408A、1408B‧‧‧無線部
311A、311B、1302A、1302B、5208_1、5208_2、5908_1~5908_N、6203_1、6203_2‧‧‧發送訊號
312A、312B、701_X、701_Y、1410A、1410B、5209_1、 5209_2、5909_1~5909_N、5910_1~5910_M、6204_1、6204_2、7810、7840‧‧‧天線
313‧‧‧訊框構成訊號
314‧‧‧加權合成資訊生成部
315‧‧‧關於加權合成方法之資訊
404、903‧‧‧分配部
405A、405B‧‧‧資料
500_1、501_1、501_2、502_1、502_2、503_1、503_2、4100、4101_1、4101_2、4102_1、4102_2、4103_1、4103_2、4104、4105、4106、4107、6301、6302、6403、6404‧‧‧符元
504#1、504#2‧‧‧發送天線
505#1、505#2‧‧‧接收天線
700‧‧‧接收裝置
702_X、702_Y、5700、5911_1~5911_M、r1(t)、r2(t)‧‧‧接收訊號
704_X、704_Y‧‧‧訊號處理後之訊號
705_1、705_2、707_1、707_2‧‧‧通道變動推定部
706_1、706_2、708_1、708_2、6601X、6601Y、6602X、6602Y‧‧‧通道推定訊號
709‧‧‧控制資訊解碼部
710、818、6604‧‧‧關於發送裝置所通知的發送方法之資訊之訊號
711、5308、7904‧‧‧訊號處理部
712、712_1、712_2、5913、5915、5917‧‧‧接收資料
802X、802Y‧‧‧通道推定訊號群
803‧‧‧內部MIMO檢波部
804‧‧‧訊號
805A、805B‧‧‧對數概似算出部
806A、806B、808A、808B‧‧‧對數概似訊號
807A、807B、6641_1、6641_2‧‧‧解交錯器
809A、809B‧‧‧對數概似比算出部
810A、810B、6613_1、6613_2、6615_1、6615_2‧‧‧對數概似比訊號
811A、811B、901‧‧‧軟入/軟出解碼器
812A、812B、902‧‧‧解碼後之對數概似比
814A、814B‧‧‧交錯後之對數概似比
815‧‧‧記憶部
817X、817Y‧‧‧變形通道推定訊號群
818‧‧‧訊號
819‧‧‧加權係數生成部
820‧‧‧關於加權係數之資訊之訊號
1101‧‧‧接收訊號點
1301A、1301B、5207_1、5207_2、5600_X、5600_Y、6202_1、6202_2‧‧‧OFDM方式關連處理部
1402A、1402B‧‧‧序列並列轉換部
1403A、1403B‧‧‧並列訊號
1404A、1404B、2300、5402A、6200_1、6200_2‧‧‧重排部
1405A、1405B‧‧‧重排後之訊號
1406A、1406B‧‧‧反快速傅利葉轉換部
1407A、1407B‧‧‧反傅利葉轉換後之訊號
1409A、1409B、s1、s2、z1、z2、z1(t)、z2(t)‧‧‧調變訊號
1501、1502、1601、1602、1801、1802、1901、1902、2701、2702、2703、2704、2710、2720、6901、7301、7302‧‧‧符元群
2201‧‧‧第1週期
2202‧‧‧第2週期
2203‧‧‧第3週期
2200‧‧‧預編碼權重生成部
2210‧‧‧關於預編碼權重之資訊
2300A、2300B、x‧‧‧預編碼後之訊號
4001‧‧‧發送位元
4002‧‧‧編碼器群
4003A、4003B‧‧‧已分配位元
5002、7101‧‧‧時空區塊編碼部
5200_1~5200_M、5300‧‧‧資訊
5201_1~5201_M‧‧‧調變訊號生成部#1~調變訊號生成部#M
5202_1~5202_M、5400_1~5400_M‧‧‧調變訊號z1
5203_1~5203_M‧‧‧調變訊號z2
5205‧‧‧發送方法決定部
5206、5301、5403‧‧‧控制訊號
5302‧‧‧錯誤更正編碼部
5303‧‧‧錯誤更正編碼後之資料
5304、6103_1、6103_2‧‧‧交錯部
5309_1‧‧‧訊號處理後之訊號z1
5309_2‧‧‧訊號處理後之訊號z2
5500‧‧‧控制資訊符元
5501‧‧‧個別控制資訊符元
5502‧‧‧資料符元
5503‧‧‧前導符元
5701‧‧‧頻率轉換部
5702‧‧‧頻率轉換後之訊號
5703‧‧‧傅利葉轉換部
5704‧‧‧傅利葉轉換後之訊號
5900‧‧‧資訊源編碼部
5901‧‧‧影像編碼部
5902‧‧‧影像編碼後之資料
5904‧‧‧聲音編碼後之資料
5905‧‧‧資料編碼部
5906‧‧‧資料編碼後之資料
5907‧‧‧發送部
5912‧‧‧接收部
5914‧‧‧影像解碼部
5916‧‧‧聲音解碼部
5918‧‧‧資料解碼部
5919‧‧‧資訊源解碼部
6100_1‧‧‧基本串流(基本層)之資訊
6100_2‧‧‧延伸串流(延伸層)之資訊
6101_1‧‧‧基本串流(基本層)用之錯誤更正編碼部
6101_2‧‧‧延伸串流(延伸層)用之錯誤更正編碼部
6102_1‧‧‧編碼後之基本串流 (基本層)之資訊
6102_2‧‧‧編碼後之延伸串流(延伸層)之資訊
6104_1、6104_2‧‧‧交錯後之編碼後之資料
6108_1、6108_2‧‧‧預編碼部
6109_1、6109_2、6110_1、6110_2‧‧‧預編碼後之基頻訊號
6111‧‧‧關於發送方法之資訊訊號
6201_1、6201_2‧‧‧重排後之預編碼後之基頻訊號
6605‧‧‧訊號分類部
6606_1、6607_1、6609_1、6610_1‧‧‧基本串流用之通道推定訊號
6606_2、6607_2、6609_2、6610_2‧‧‧延伸串流用之通道推定訊號
6608_1、6611_1‧‧‧基本串流用之基頻訊號
6608_2、6611_2‧‧‧延伸串流用之基頻訊號
6612_1、6612_2‧‧‧檢波及對數概似比算出部
6616_1、6616_2‧‧‧解碼部
6617_1、6617_2‧‧‧接收資訊
7100‧‧‧映射後之基頻訊號
7102_1、7102_2‧‧‧時空區塊編碼後之基頻訊號
7800‧‧‧數位播送用系統
7801‧‧‧播送台
7811‧‧‧電視
7812‧‧‧DVD錄放影機
7813‧‧‧STB
7820‧‧‧電腦
7830‧‧‧行動電話
7841‧‧‧車用電視
7900‧‧‧接收機
7901‧‧‧調階器
7902‧‧‧解調部
7903‧‧‧串流輸出入部
7906‧‧‧聲音輸出部
7907‧‧‧影像顯示部
7908‧‧‧記錄部
7909‧‧‧串流輸出IF
7910‧‧‧操作輸入部
7911‧‧‧AV輸出IF
7930‧‧‧通訊媒體
7950、8707‧‧‧遙控器
8101‧‧‧視訊串流
8102、8105‧‧‧PES封包串
8103、8106、8113、8116‧‧‧TS封包
8104‧‧‧音訊串流
8111‧‧‧簡報圖形串流
8112、8115‧‧‧PES封包串
8116‧‧‧互動圖形
8117‧‧‧多工資料
8700‧‧‧影像聲音輸出裝置
8701‧‧‧顯示影像部分
8702‧‧‧資料播送用之資料之影像
8703‧‧‧網際網路上提供之超文件
8704‧‧‧接收裝置
8705‧‧‧IF
8706‧‧‧通訊裝置
z1(i)8801_1‧‧‧預編碼後之基頻訊號
z2(i)8801_2‧‧‧預編碼後之基頻訊號
r1(i)8803_1‧‧‧置換後之基頻訊號
r2(i)8803_2‧‧‧置換後之基頻訊號
A、B、C、D‧‧‧載波群
ATC‧‧‧到達時間時鐘
ATS‧‧‧到達時戳
b0、b1、b2、b3、b4、b5、b6、b7‧‧‧位元
DTS‧‧‧解碼時戳
F、F[i]‧‧‧預編碼矩陣
H‧‧‧二元M×N矩陣、檢查矩陣、通道矩陣
h11(t)、h12(t)、h21(t)、h22(t)‧‧‧通道變動、通道要素
I‧‧‧基頻訊號之同相成分
k‧‧‧反覆次數
L‧‧‧(子)載波
LLR、Ln‧‧‧對數概似比
lsum‧‧‧迴圈變數
N‧‧‧時間週期
n1~nNr‧‧‧i.i.d.複數高斯雜訊
P‧‧‧前導符元
PAT‧‧‧節目關連表
PCR‧‧‧節目時鐘參考
PMT‧‧‧節目對應表
PTS‧‧‧簡報時戳
Q‧‧‧基頻訊號之正交成分
s‧‧‧發送向量
s1‧‧‧第1基頻訊號
s1~sNt‧‧‧發送訊號
s1(t)、s2(t)‧‧‧串流
s2‧‧‧第2基頻訊號
SNR‧‧‧訊號雜訊功率比
SPN‧‧‧來源封包號碼
STC‧‧‧系統時間時鐘
T‧‧‧時刻
TS‧‧‧傳輸串流
u、u’‧‧‧向量
W1、W2、W3、W4‧‧‧預編碼權重(矩陣)
z‧‧‧資訊向量
z1‧‧‧第1經預編碼之訊號
z2‧‧‧第2經預編碼之訊號
πa、πb‧‧‧交錯器
αmn、βmn‧‧‧外部值對數比
βN‧‧‧臨限值
$1、$2‧‧‧時刻
Π‧‧‧交錯器
Π-1‧‧‧解交錯器
第1圖係空間多工MIMO傳送系統之收發裝置之構成例。
第2圖係訊框(frame)構成之一例。
第3圖係預編碼權重切換方法適用時之發送裝置之構成例。
第4圖係預編碼權重切換方法適用時之發送裝置之構成例。
第5圖係訊框構成例。
第6圖係預編碼權重切換方法例。
第7圖係接收裝置之構成例。
第8圖係接收裝置之訊號處理部之構成例。
第9圖係接收裝置之訊號處理部之構成例。
第10圖係解碼處理方法。
第11圖係接收狀態例。
第12(A)、(B)圖係BER特性例。
第13圖係預編碼權重切換方法適用時之發送裝置之構成例。
第14圖係預編碼權重切換方法適用時之發送裝置之構成例。
第15(A)、(B)圖係訊框構成例。
第16(A)、(B)圖係訊框構成例。
第17(A)、(B)圖係訊框構成例。
第18(A)、(B)圖係訊框構成例。
第19(A)、(B)圖係訊框構成例。
第20圖係接受品質惡劣點之位置。
第21圖係接受品質惡劣點之位置。
第22圖係訊框構成之一例。
第23圖係訊框構成之一例。
第24(A)、(B)圖係映射方法之一例。
第25(A)、(B)圖係映射方法之一例。
第26圖係加權合成部之構成例。
第27圖係符元之重排方法之一例。
第28圖係空間多工MIMO傳送系統之收發裝置之構成例。
第29(A)、(B)圖係BER特性例。
第30圖係空間多工型之2×2MIMO系統模型例。
第31(a)、(b)圖係接收惡劣點之位置。
第32圖係接收惡劣點之位置。
第33(a)、(b)圖係接收惡劣點之位置。
第34圖係接收惡劣點之位置。
第35(a)、(b)圖係接收惡劣點之位置。
第36圖係接收惡劣點之複數平面之最小距離之特性例。
第37圖係接收惡劣點之複數平面之最小距離之特性例。
第38(a)、(b)圖係接收惡劣點之位置。
第39(a)、(b)圖係接收惡劣點之位置。
第40圖係實施形態7之發送裝置之構成之一例。
第41圖係發送裝置所發送的調變訊號之訊框構成之一例。
第42(a)、(b)圖係接收惡劣點之位置。
第43(a)、(b)圖係接收惡劣點之位置。
第44(a)、(b)圖係接收惡劣點之位置。
第45(a)、(b)圖係接收惡劣點之位置。
第46(a)、(b)圖係接收惡劣點之位置。
第47(A)、(B)圖係時間-頻率軸之訊框構成之一例。
第48(A)、(B)圖係時間-頻率軸之訊框構成之一例。
第49圖係訊號處理方法。
第50圖係利用時空區塊碼時之調變訊號之構成。
第51圖係時間-頻率軸之訊框構成之詳細例。
第52圖係發送裝置之構成之一例。
第53圖係第52圖之調變訊號生成部#1~#M之構成之一例。
第54圖係表示第52圖之OFDM方式關連處理部(5207_1及5207_2)之構成之圖。
第55(A)、(B)圖係時間-頻率軸之訊框構成之詳細例。
第56圖係接收裝置之構成之一例。
第57圖係表示表示第56圖之OFDM方式關連處理部(5600_X及5600_Y)之構成之圖。
第58(A)、(B)圖係時間-頻率軸之訊框構成之詳細例。
第59圖係播送系統之一例。
第60(a)、(b)圖係接收惡劣點之位置。
第61圖係適用階層式傳送時之發送裝置之構成例。
第62圖係適用階層式傳送時之發送裝置之構成例。
第63圖係對於基本串流之預編碼之一例。
第64圖係對於延伸串流之預編碼之一例。
第65(A)、(B)圖係適用階層式傳送時之調變訊號之符元配置例。
第66圖係適用階層式傳送時之接收裝置之訊號處理部之構成例。
第67圖係適用階層式傳送時之發送裝置之構成例。
第68圖係適用階層式傳送時之發送裝置之構成例。
第69圖係適用基頻訊號之符元之構成例。
第70(A)、(B)圖係適用階層式傳送時之調變訊號之符元配置例。
第71圖係適用階層式傳送時之發送裝置之構成例。
第72圖係適用階層式傳送時之發送裝置之構成例。
第73圖係時空區塊編碼後之基頻訊號之符元之構成例。
第74(A)、(B)圖係適用階層式傳送時之調變訊號之符元配置例。
第75(A)、(B)圖係適用階層式傳送時之調變訊號之符元配置例。
第76圖係利用區塊碼時之1個編碼後之區塊所必需的符元數、時槽數之變化例。
第77圖係利用區塊碼時之2個編碼後之區塊所必需的符元數、時槽數之變化例。
第78圖係數位播送用系統之全體構成圖。
第79圖係接收機之構成例之方塊圖。
第80圖係表示多工資料之構成之圖。
第81圖係模式性地表示各串流如何於多工資料中受到多工之圖。
第82圖係表示視訊串流如何儲存於PES封包串之詳細圖。
第83圖係表示多工資料之TS封包及來源封包之構造之圖。
第84圖係表示PMT之資料構成之圖。
第85圖係表示多工資料資訊之內部構成之圖。
第86圖係表示串流屬性資訊之內部構成之圖。
第87圖係影像顯示、聲音輸出裝置之構成圖。
第88圖係表示基頻訊號置換部之構成圖。
用以實施發明之形態
以下參考圖式來詳細說明有關本發明之實施型態。
(實施形態1)
詳細說明有關本實施形態之發送方法、發送裝置、接收方法、接收裝置。
進行本發明前,先說明有關習知系統之空間多工MIMO傳送系統中之發送方法、解碼方法之概要。
於第1圖表示Nt×Nr空間多工MIMO系統之構成。資訊向量z被施以編碼及交錯。然後,獲得編碼後位元之向量u=(u1、...、uNt)。其中,ui=(u1、...、uiM)(M:每符元之發送位元數)。若設為發送向量s=(s1、...、sNt)T時,從發送天線#i表現為發送訊號si=map(ui),若將發送能量予以標準化,則表現為E{|si|2}=Es/Nt(Es:每通道之總能量)。然後,若將接收向量設為y=(y1、...、yNr)T時,則表現如式(1)。
[數1]y=(y 1,...,y Nr ) T =H NtNr s+n...式(1)
此時,HNtNr為通道矩陣,n=(n1、...、nNr)T為雜訊向量,ni為平均值0、偏差σ2之i.i.d.複數高斯雜訊。從接收機所導入的發送符元及接收符元的關係來看,關於接收向量之機率可如式(2)以多次元高斯分布來賦予。
在此,考慮由外部軟入/軟出解碼器及MIMO檢波所組成,如第1圖進行反覆解碼之接收機。第1圖之對數概似比之向量(L-value(左值))係表現如式(3)-(5)。
[數3]
[數4]L(u i )=(L(u i1),…,L(u iM ))...式(4)
<反覆檢波方法>
在此,敘述有關Nt×Nr空間多工MIMO系統之MIMO訊號之反覆檢波。
如式(6)定義umn之對數概似比。
依據貝氏定理,式(6)可表表現如式(7)。
[數7]
其中,Umn,±1={u|umn=±1}。然後,若以lnΣaj~max ln aj逼近,則式(7)可逼近如式(8)。再者,上面的記號「~」係意味逼近。
式(8)之P(u|umn)及ln P(u|umn)係表現如下。
然而,以式(2)所定義的數式之對數機率係表現如式(12)。
因此,從式(7)、(13)來看,於MAP或APP(a posteriori probability:事後機率),事後的L-value(左值)係表現如下。
以下稱為反覆APP解碼。又,從式(8)、(12)來看,於根據Max-Log逼近之對數概似比(Max-Log APP),事後之L-value(左值)係表現如下。
以下稱為反覆Max-Log APP解碼。然後,反覆解碼之系統所需的外部資訊可藉由從式(13)或(14)事先減算輸入而求出。
<系統模型>
於第28圖表示與以下說明相關連之系統之基本構成。在此,作為2×2空間多工MIMO系統,就串流A、B分別有外部編碼器,2個外部編碼器係採同一LDPC碼之編碼器(在此,作為外部編碼器係舉例說明利用LDPC碼之編碼器之構成,但外部編碼器所用之錯誤更正碼並不限於LDPC碼,利用渦輪碼、卷積碼、LDPC卷積碼等其他錯誤更正碼亦可同樣地實施。又,外部編碼器係採用就各發送天線而備有之構成,但不限於此,即便發送天線有複數個,外部編碼器為1個亦可,或亦可具有多於發送天線數之外部編碼器。)。然後,就串流A、B分別具有交錯器(πa、πb)。在此,調變方式採用2h-QAM(以1符元發送h位元)。
接收機係進行上述MIMO訊號之反覆檢波(反覆APP(或Max-Log APP)解碼)。然後,LDPC碼之解碼係進行例如和積(sum-product)解碼。
第2圖係表示訊框構成,記載有交錯後之符元順序。此時,如以下數式表現(ia,ja)、(ib,jb)。
此時,ia、ib:交錯後之符元順序,ja、jb:調變方式之位元位置(ia、ib=1、...、h),πa、πb:串流A、B之交錯器,:串流A、B之交錯前之資料順序。其中,於第2圖係表示ia=ib時之訊框構成。
<反覆解碼>
在此,詳細說明有關接收機之LDPC碼解碼所用之和積解碼及MIMO訊號之反覆檢波之運算法。
和積解碼
LDPC碼之檢查矩陣係以二元M×N矩陣H={Hmn}作為解碼對象。集合[1,N]={1、3、...、N}之部分集合A(m)、B(n)係定義如下式。
[數18]A(m)≡{nH mn =1}...式(18)
[數19]B(n)≡{mH mn =1}...式(19)
此時,A(m)係意味於檢查矩陣H之第m列中,作為1之 行索引之集合,B(n)係意味於檢查矩陣H之第n列中,作為1之列索引之集合。和積解碼之運算法如下。
步驟A‧1(初始化):對於符合Hmn=1之所有組(m,n),設定事先值對數比βmn=0。設定迴圈變數(反覆次數)lsum=1,迴圈最大次數設定為lsum,max
步驟A‧2(列處理):依m=1、2、...、M的順序,對於符合Hmn=1之所有組(m,n),利用以下更新式更新外部值對數比αmn
此時,f為Gallager(界洛格)函數。然後,於下文詳細說明有關λn之求法。
步驟A‧3(行處理):依n=1、2、...、N的順序,對於符合Hmn=1之所有組(m,n),利用以下更新式更新外部值對數 比βmn
步驟A‧4(對數概似比計算):針對n[1,N],如以下求出對數概似比Ln
步驟A‧5(反覆次數計數):若lsum<lsum,max,則遞增lsum,並回到步驟A‧2。當lsum=lsum,max時,該次之和積解碼結束。
以上為1次的和積解碼動作。其後,進行MIMO訊號之反覆檢波。就上述和積解碼動作之說明所利用的變數m、n、αmn、βmn、λn、Ln而言,以串流A之變數來表現ma、na、αa mana、βa mana、λna、Lna,以串流B之變數來表現mb、nb、αb mbnb、βb mbnb、λnb、Lnb
<MIMO訊號之反覆檢波>
在此,詳細說明有關MIMO訊號之反覆檢波之λn之求法。
從式(1)可知下式成立。
[數25]y(t)=(y 1(t),y2(t)) T =H 22(t)s(t)+n(t)...式(25)
從第2圖之訊框構成且從式(16)、(17)可知以下關係式成立。
此時,na、nb [1,N]。下文將MIMO訊號之反覆檢波之反覆次數k時之λna、Lna、λnb、Lnb分別表現為λk,na、Lk,na、λk,nb、Lk,nb
步驟B‧1(初始檢波;k=0):初始檢波時,如以下求出λ0,na、λ0,nb
反覆APP解碼時:
反覆Max-log APP解碼時:
其中,X=a、b。然後,MIMO訊號之反覆檢波之反覆次數設為lmimo=0,反覆次數之最大次數設為lmimo,max
步驟B‧2(反覆檢波;反覆次數k):反覆次數k時之λk,na、λk,nb係從式(11)、(13)-(15)、(16)、(17)來看,可表現如式(31)-(34)。其中,(X,Y)=(a,b)(b,a)。
反覆APP解碼時:
反覆Max-log APP解碼時: ...式(33)
步驟B‧3(反覆次數計數、碼字推定):若lmimo<lmimo,max,則遞增lmimo,並回到步驟B‧2。當lmimo=lmimo,max時,如以下匯總推定碼字。
其中,X=a、b。
第3圖係本實施形態之發送裝置300之構成之一例。編碼部302A係以資訊(資料)301A、訊框構成訊號313作為輸入,按照訊框構成訊號313(編碼部302A包含資料之錯誤更正編碼所使用的錯誤更正方式、編碼率、區塊長等資訊,採用訊框構成訊號313所指定的方式。又,錯誤更正方式亦可切換。)來進行例如卷積碼、LDPC碼、渦輪碼等之錯誤更正編碼,並輸出編碼後之資料303A。
交錯器304A係以編碼後之資料303A、訊框構成訊號313作為輸入,進行交錯、亦即進行順序重排,並輸出交錯後之資料305A。(根據訊框構成訊號313,交錯之方法亦可切換。)
映射部306A係將交錯後之資料305A、訊框構成訊號313作為輸入,施以QPSK(Quadrature Phase Shift Keying:正交相位鍵移)、16QAM(16 Quadrature Amplitude Modulation:16正交調幅)、64QAM(16 Quadrature Amplitude Modulation:64正交調幅)等之調變,並輸出基頻訊號307A。(根據訊框構成訊號313,調變方式亦可切換。)
第24圖係構成QPSK調變之基頻訊號之同相成分I與正交成分Q之IQ平面之映射方法之一例。例如第24(A)圖,輸入資料為「00」時,輸出I=1.0、Q=1.0,以下同樣輸入資料為「01」時,輸出I=-1.0、Q=1.0,以此類推。第24(B)圖係與第24(A)圖不同之QPSK調變之IQ平面之映射方法例;第24(B)圖與第24(A)圖之不同點在於,第24(A)圖之訊號點可藉由以原點為中心旋轉而獲得第24(B)圖之訊號點。關於該類星座之旋轉方法係表示於非專利文獻9、非專利文獻10,又,亦可適用非專利文獻9、非專利文獻10所示之循環Q延遲。作為有別於第24圖之其他例,於第25圖表示16QAM時之IQ平面之訊號點配置,相當於第24(A)圖之例為第25(A)圖,相當於第24(B)圖之例為第25(B)圖。
編碼部302B係以資訊(資料)301B、訊框構成訊號313作為輸入,按照訊框構成訊號313(包含所使用的錯誤更正方式、編碼率、區塊長等資訊,採用訊框構成訊號313所指定的方式。又,錯誤更正方式亦可切換。)來進行例如卷積碼、LDPC碼、渦輪碼等之錯誤更正編碼,並輸出編碼後之資料303B。
交錯器304B係以編碼後之資料303B、訊框構成訊號313作為輸入,進行交錯、亦即進行順序重排,並輸出交錯後之資料305B。(根據訊框構成訊號313,交錯之方法亦可切換。)
映射部306B係將交錯後之資料305B、訊框構成訊號313作為輸入,施以QPSK(Quadrature Phase Shift Keying:正交相位鍵移)、16QAM(16 Quadrature Amplitude Modulation:16正交調幅)、64QAM(16 Quadrature Amplitude Modulation:64正交調幅)等之調變,並輸出基頻訊號307B。(根據訊框構成訊號313,調變方式亦可切換。)
加權合成資訊生成部314係以訊框構成訊號313作為輸入,並輸出有關根據訊框構成訊號313之加權合成方法之資訊315。再者,加權合成方法之特徵在於規則地切換加權合成方法。
加權合成部308A係以基頻訊號307A、基頻訊號307B、關於加權合成方法之資訊315作為輸入,根據關於加權合成方法之資訊315來加權合成基頻訊號307A及基頻訊號307B,並輸出加權合成後之訊號309A。再者,關於加權合成方法的細節係於下文詳細說明。
無線部310A係以加權合成後之訊號309A作為輸入,施以正交調變、帶區限制、頻率轉換、放大等處理,並輸出發送訊號311A,發送訊號511A係從天線312A作為電波輸出。
加權合成部308B係以基頻訊號307A、基頻訊號307B、 關於加權合成方法之資訊315作為輸入,根據關於加權合成方法之資訊315來加權合成基頻訊號307A及基頻訊號307B,並輸出加權合成後之訊號309B。
於第26圖表示加權合成部之構成。基頻訊號307A係與w11(t)乘算而生成w11(t)s1(t),與w21(t)乘算而生成w21(t)s1(t)。同樣地,基頻訊號307B係與w12(t)乘算而生成w12(t)s2(t),與w22(t)乘算而生成w22(t)s2(t)。接著,獲得z1(t)=w11(t)s1(t)+w12(t)s2(t)、z2(t)=w21(t)s1(t)+w22(t)s2(t)。
再者,關於加權合成方法的細節係於下文詳細說明。
無線部310B係以加權合成後之訊號309B作為輸入,施以正交調變、帶區限制、頻率轉換、放大等處理,並輸出發送訊號311B,發送訊號511B係從天線312B作為電波輸出。
第4圖係表示與第3圖不同之發送裝置400之構成例。於第4圖,說明關於與第3圖不同的部分。
編碼部402係以資訊(資料)401、訊框構成訊號313作為輸入,根據訊框構成訊號313來進行錯誤更正編碼,並輸出編碼後之資料402。
分配部404係以編碼後之資料403作為輸入,進行分配而輸出資料405A及資料405B。再者,於第4圖雖記載編碼部為1個的情況,但並不限於此,關於編碼部設為m(m為1以上之整數),分配部將各編碼部所製作的編碼資料分成二系統之資料的情況,亦可同樣實施本發明。
第5圖係表示本實施形態之發送裝置之時間軸之訊框 構成之一例。符元500_1係用以對接收裝置通知發送方法之符元,傳送例如為了傳送資料符元所用之錯誤更正方式、其編碼率之資訊、為了傳送資料符元所用之調變方式之資訊等。
符元501_1係用以推定發送裝置所發送的調變訊號z1(t){其中,t為時間}之通道變動之符元。符元502_1係調變訊號z1(t)發送給(時間軸)之符元號碼u之資料符元,符元503_1係調變訊號z1(t)發送給(時間軸)之符元號碼u+1之資料符元。
符元501_2係用以推定發送裝置所發送的調變訊號z2(t){其中,t為時間}之通道變動之符元。符元502_2係調變訊號z2(t)發送給(時間軸)之符元號碼u之資料符元,符元503_2係調變訊號z2(t)發送給(時間軸)之符元號碼u+1之資料符元。
說明有關發送裝置所發送的調變訊號z1(t)與調變訊號z2(t)、及接收裝置之接收訊號r1(t)、r2(t)之關係。
於第5圖,504#1、504#2係表示發送裝置之發送天線,505#1、505#2係表示接收裝置之接收天線;發送裝置係從發送天線504#1發送調變訊號z1(t),從發送天線504#2發送調變訊號z2(t)。此時,調變訊號z1(t)及調變訊號z2(t)係佔有同一(共同)頻率(帶區)。發送裝置之各發送天線及接收裝置之各天線之通道變動分別設為h11(t)、h12(t)、h21(t)、h22(t),若接收裝置之接收天線505#1所接收的接收訊號設為r1(t),接收裝置之接收天線505#2所接收的接收訊號設為 r2(t),則以下關係式會成立。
第6圖係與本實施形態之加權方法(預編碼(Precoding)方法)相關聯之圖;加權合成部600係統合第3圖之加權合成部308A與308B兩者之加權合成部。如第6圖所示,串流s1(t)及串流s2(t)相當於第3圖之基頻訊號307A及307B,總言之,其為按照QPSK、16QAM、64QAM等調變方式之映射之基頻訊號同相1、正交Q成分。然後,如第6圖之訊框成分,串流s1(t)係將符元號碼u之訊號表現為s1(u),將符元號碼u+1之訊號表現為s1(u+1),以此類推。同樣地,串流s2(t)係將符元號碼u之訊號表現為s2(u),將符元號碼u+1之訊號表現為s2(u+1),以此類推。然後,加權合成部600係以第3圖之基頻訊號307A(s1(t))及307B(s2(t))、關於加權資訊之資訊315作為輸入,施以按照關於加權資訊之資訊315之加權方法,並輸出第3圖之加權合成後之訊號309A(z1(t))、309B(z2(t))。此時,z1(t)、z2(t)係表現如下。
符元號碼4i時(i為0以上之整數):
其中,j為虛數單位。
符元號碼4i+1時:
符元號碼4i+2時:
符元號碼4i+3時:
如此,第6圖之加權合成部係以4時槽為週期規則地切換預編碼權重。(其中,在此雖採用以4時槽為週期規則地切換預編碼權重之方式,但規則切換之時槽數不限於4時槽。)
然而,於非專利文獻4,敘述依各時槽切換預編碼權重,非專利文獻4之特徵在於隨機切換預編碼權重。另,本實施形態之特徵在於設定某週期,並規則地切換預編碼權重,又,在以4個預編碼權重所構成的2列2行之預編碼權重矩陣中,4個預編碼權重之各絕對值相等(1/sqrt(2)),並以規 則地切換具有該特徵之預編碼權重矩陣作為特徵。
於LOS環境,若利用特殊的預編碼矩陣,雖可能大幅改善接收品質,但該特殊的預編碼矩陣係依直接波之狀況而不同。然而,於LOS環境存在某規則,若按照該規則而規則地切換特殊的預編碼矩陣,則會大幅改善接收品質。另,隨機切換預編碼矩陣時,亦存在以下可能性:亦存在有先前所述特殊的預編碼矩陣以外之預編碼矩陣;或僅以不適合LOS環境之偏頗的預編碼矩陣來進行預編碼;因此於LOS環境未必可獲得良好的接收品質。因此,須實現適合LOS環境之預編碼切換方法,本發明係提案與其相關之預編碼方法。
第7圖係表示本實施形態之接收裝置700之構成之一例。無線部703_X係以天線701_X所接收的接收訊號702_X作為輸入,施以頻率轉換、正交解調等處理,並輸出基頻訊號704_X。
由發送裝置所發送的調變訊號z1之通道變動推定部705_1係以基頻訊號704_X作為輸入,擷取第5圖之通道推定用之參考符元501_1,推定相當於式(36)之h11之值,並輸出通道推定訊號706_1。
由發送裝置所發送的調變訊號z2之通道變動推定部705_2係以基頻訊號704_X作為輸入,擷取第5圖之通道推定用之參考符元501_2,推定相當於式(36)之h12之值,並輸出通道推定訊號706_2。
無線部703_Y係以天線701_Y所接收的接收訊號702_Y 作為輸入,施以頻率轉換、正交解調等處理,並輸出基頻訊號704_Y。
由發送裝置所發送的調變訊號z1之通道變動推定部707_1係以基頻訊號704_Y作為輸入,擷取第5圖之通道推定用之參考符元501_1,推定相當於式(36)之h21之值,並輸出通道推定訊號708_1。
由發送裝置所發送的調變訊號z2之通道變動推定部707_2係以基頻訊號704_Y作為輸入,擷取第5圖之通道推定用之參考符元501_2,推定相當於式(36)之h22之值,並輸出通道推定訊號708_2。
控制資訊解碼部709係以基頻訊號704_X及704_Y作為輸入,檢測用以通知第5圖之發送方法之符元500_1,並輸出關於發送裝置所通知的發送方法之資訊之訊號710。
訊號處理部711係以基頻訊號704_X、704Y、通道推定訊號706_1、706_2、708_1、708_2、及關於發送裝置所通知的發送方法之資訊之訊號710作為輸入,進行檢波、解碼,並輸出接收資料712_1及712_2。
接著,詳細說明有關第7圖之訊號處理部711之動作。第8圖係表示本實施形態之訊號處理部711之構成之一例。第8圖主要由內部MIMO檢波部及軟入/軟出解碼器、加權係數生成部所構成。關於該構成之反覆解碼方法,其細節已於非專利文獻2、非專利文獻3敘述,但非專利文獻2、非專利文獻3所記載的MIMO傳送方式為空間多工MIMO傳送方式,而本實施形態之傳送方式係隨著時間變更預編碼權重 之MIMO傳送方式,該點係與非專利文獻2、非專利文獻3之相異點。若式(36)之(通道)矩陣設為H(t),第6圖之預編碼權重矩陣設為W(t)(其中,預編碼權重矩陣係依t而變化),接收向量設為R(t)=(r1(t),r2(t))T,串流向量設為S(t)=(s1(t),s2(t))T,則以下關係式會成立。
[數41]R(t)=H(t)W(t)S(t)...式(41)
此時,接收裝置係藉由將H(t)W(t)視為通道矩陣,可對於接收向量R(t)適用非專利文獻2、非專利文獻3之解碼方法。
因此,第8圖之加權係數生成部819係以關於發送裝置所通知的發送方法之資訊之訊號818(相當於第7圖之710)作為輸入,輸出關於加權係數之資訊之訊號820。
內部MIMO檢波部803係以關於加權係數之資訊之訊號820作為輸入,利用該訊號進行式(41)之運算。然後,進行反覆檢波‧解碼,針對該動作來說明。
於第8圖之訊號處理部,為了進行反覆解碼(反覆檢波),須進行如第10圖之處理方法。首先,進行調變訊號(串流)s1之1碼字(或1訊框)及調變訊號(串流)s2之1碼字(或1訊框)之解碼。其結果,從軟入/軟出解碼器,獲得調變訊號(串流)s1之1碼字(或1訊框)及調變訊號(串流)s2之1碼字(或1訊框)之各位元之對數概似比(LLR:Log-Likelihood Ratio)。然後,利用該LLR再次進行檢波‧解碼。該操作進行複數 次(該操作稱為反覆解碼(反覆檢波))。下文係以1訊框之特定時間之符元之對數概似比(LLR)之做成方法為中心來說明。
於第8圖,記憶部815係以基頻訊號801X(相當於第7圖之基頻訊號704_X)、通道推定訊號群802X(相當於第7圖之通道推定訊號706_1、706_2)、基頻訊號801Y(相當於第7圖之基頻訊號704_Y)、通道推定訊號群802Y(相當於第7圖之通道推定訊號708_1、708_2)作為輸入,為了實現反覆解碼(反覆檢波)而執行(算出)式(41)之H(t)W(t),將所算出的矩陣記憶作變形通道訊號群。然後,記憶部815係於必要時,將上述訊號作為基頻訊號816X、變形通道推定訊號群817X、基頻訊號816Y、變形通道推定訊號群817Y而輸出。
關於其後之動作,分為初始檢波的情況與反覆解碼(反覆檢波)的情況來說明。
<初始檢波的情況>
內部MIMO檢波部803係以基頻訊號801X、通道推定訊號群802X、基頻訊號801Y、通道推定訊號群802Y作為輸入。在此,調變訊號(串流)s1、調變訊號(串流)s2之調變方式係說明作16QAM。
內部MIMO檢波部803首先從通道推定訊號群802X、通道推定訊號群802Y執行H(t)W(t),求出與基頻訊號801X相對應之候補訊號點。於第11圖表示當時狀況。於第11圖,●(黑圓點)為IQ平面之候補訊號點,由於調變方式為16QAM,因此候補訊號存在有256個。(其中,於第11圖, 由於表示示意圖,因此未表示256個候補訊號點。)在此,若以調變訊號s1傳送之4位元設為b0、b1、b2、b3,以調變訊號s2傳送之4位元設為b4、b5、b6、b7,則於第11圖存在有與(b0、b1、b2、b3、b4、b5、b6、b7)相對應之候補訊號點。然後,求出接收訊號點1101(相當於基頻訊號801X)與各候補訊號點之歐氏距離平方。然後,以雜訊之偏差σ2來除算各個歐氏距離平方。因此,求出以雜訊之偏差除算與(b0、b1、b2、b3、b4、b5、b6、b7)相對應之候補訊號點與接收訊號點歐氏距離平方後之值,即求出Ex(b0、b1、b2、b3、b4、b5、b6、b7)。
同樣地,從通道推定訊號群802X、通道推定訊號群802Y執行H(t)W(t),求出與基頻訊號801Y相對應之候補訊號點,求出與接收訊號點(相當於基頻訊號801Y)之歐氏距離平方,以雜訊之偏差σ2來除算該歐氏距離平方。因此,求出以雜訊之偏差除算與(b0、b1、b2、b3、b4、b5、b6、b7)相對應之候補訊號點與接收訊號點歐氏距離平方後之值,即求出EY(b0、b1、b2、b3、b4、b5、b6、b7)。
然後,求出EX(b0、b1、b2、b3、b4、b5、b6、b7)+EY(b0、b1、b2、b3、b4、b5、b6、b7=E(b0、b1、b2、b3、b4、b5、b6、b7)。
內部MIMO檢波部803係將E(b0、b1、b2、b3、b4、b5、b6、b7)作為訊號804而輸出。
對數概似算出部805A係以訊號804作為輸入,算出位元b0、b1、b2及b3之對數概似(log likelihood),並輸出對數概 似訊號806A。其中,於對數概似算出中,算出“1”時之對數概似及“0”時之對數概似。其算出方法係如式(28)、式(29)、式(30)所示,關於細節則表示於非專利文獻2、非專利文獻3。
同樣地,對數概似算出部805B係以訊號804作為輸入,算出位元b4、b5、b6及b7之對數概似,並輸出對數概似訊號806B。
解交錯器(807A)係以對數概似訊號806A作為輸入,進行與交錯器(第3圖之交錯器(304A))相對應之解交錯,並輸出解交錯後之對數概似訊號808A。
同樣地,解交錯器(807B)係以對數概似訊號806B作為輸入,進行與交錯器(第3圖之交錯器(304B))相對應之解交錯,並輸出解交錯後之對數概似訊號808B。
對數概似比算出部809A係以解交錯後之對數概似訊號808A作為輸入,算出以第3圖之編碼器302A編碼後之位元之對數概似比(LLR:Log-Likelihood Ratio),輸出對數概似比訊號810A。
同樣地,對數概似比算出部809B係以解交錯後之對數概似訊號808B作為輸入,算出以第3圖之編碼器302B編碼後之位元之對數概似比(LLR:Log-Likelihood Ratio),輸出對數概似比訊號810B。
軟入/軟出解碼器811A係以對數概似比訊號810A作為輸入,進行解碼並輸出解碼後之對數概似比812A。
同樣地,軟入/軟出解碼器811B係以對數概似比訊號810B作為輸入,進行解碼並輸出解碼後之對數概似比 812B。
<反覆解碼(反覆檢波)的情況、反覆次數k>
交錯器(813A)係以第k-1次軟入/軟出解碼所獲得的解碼後之對數概似比812A作為輸入,進行交錯並輸出交錯後之對數概似比814A。此時,交錯(813A)之交錯模式係與第3圖之交錯器(304A)之交錯模式相同。
交錯器(813B)係以第k-1次軟入/軟出解碼所獲得的解碼後之對數概似比812B作為輸入,進行交錯並輸出交錯後之對數概似比814B。此時,交錯(813B)之交錯模式係與第3圖之交錯器(304B)之交錯模式相同。
內部MIMO檢波部803係以基頻訊號816X、變形通道推定訊號群817X、基頻訊號816Y、變形通道推定訊號群817Y、交錯後之對數概似比814A、交錯後之對數概似比814B作為輸入。在此,不利用基頻訊號801X、通道推定訊號群802X、基頻訊號801Y、通道推定訊號群802Y而利用基頻訊號816X、變形通道推定訊號群817X、基頻訊號816Y、變形通道推定訊號群817Y,此係由於反覆解碼會發生延遲時間。
內部MIMO檢波部803之反覆解碼時之動作與初始檢波時之動作之相異點在於,將交錯後之對數概似比814A、交錯後之對數概似比814B利用在訊號處理時。內部MIMO檢波部803首先與初始檢波時同樣地求出E(b0、b1、b2、b3、b4、b5、b6、b7)。此外還從交錯後之對數概似比814A、交錯後之對數概似比914B,求出相當於式(11)、式(32)之係 數。然後,利用該求出之係數來修正E(b0、b1、b2、b3、b4、b5、b6、b7)之值,該值設為E’(b0、b1、b2、b3、b4、b5、b6、b7)並作為訊號804而輸出。
對數概似算出部805A係以訊號804作為輸入,算出位元b0、b1、b2及b3之對數概似(log likelihood),並輸出對數概似訊號806A。其中,於對數概似算出中,算出“1”時之對數概似及“0”時之對數概似。其算出方法係如式(31)、式(32)、式(33)所示,並表示於非專利文獻2、非專利文獻3。
同樣地,對數概似算出部805B係以訊號804作為輸入,算出位元b4、b5、b6及b7之對數概似,並輸出對數概似訊號806B。解交錯以後的動作係與初始檢波相同。
再者,於第8圖雖表示有關進行反覆檢波時之訊號處理部之構成,但反覆檢波並非獲得良好接收品質時所必需的構成,在構成上亦可不具有僅對反覆檢波所必要的構成部分、交錯器813A、813B。此時,內部MIMO檢波部803不進行反覆性檢波。
然後,於本實施形態,重要部分係在於進行H(t)W(t)運算。再者,如非專利文獻5等所示,利用QR分解來進行初始檢波、反覆檢波亦可。
又,如非專利文獻11所示,根據H(t)W(t)進行MMSE(Minimum Mean Square Error:最小均方誤差)、ZF(Zero Forcing:零強制)之線性運算而進行初始檢波亦可。
第9圖係與第8圖不同之訊號處理部之構成,其為第4圖之發送裝置所發送的調變訊號用之訊號處理部。與第8圖之 相異點在於軟入/軟出解碼器之數目,軟入/軟出解碼器901係以對數概似比訊號810A、810B作為輸入,進行解碼並輸出解碼後之對數概似比902。分配部903係以解碼後之對數概似比902作為輸入而進行分配。關於其他部分則與第8圖為同樣動作。
於第12圖表示在與第29圖時同樣的條件下,傳送方法採用利用本實施形態之預編碼權重之發送方法時之BER特性。第12(A)圖係表示不進行反覆檢波之Max-log-APP(參考非專利文獻1、非專利文獻2)(APP:a posterior probability(後驗機率))之BER特性,第12(B)圖係表示進行反覆檢波之Max-log-APP(參考非專利文獻1、非專利文獻2)(反覆次數5次)之BER特性。若比較第12圖與第29圖,可知當採用本實施形態之發送方法時,萊斯因子大時之BER特性會比採用空間多工MIMO傳送時之BER特性大幅改善,可確認本實施形態之方式之有效性。
如以上,如本實施形態,MIMO傳送系統之發送裝置從複數個天線發送複數個調變訊號時,隨著時間切換預編碼權重,並且規則地進行切換,藉此可於直接波所支配的LOS環境下,獲得與以往採用空間多工MIMO傳送時相比,更提升傳送品質的效果。
於本實施形態,尤其關於接收裝置之構成係限定天線數而說明動作,但天線數增加時,亦可同樣地實施。總言之,接收裝置之天線數不會對本實施形態之動作、效果造成影響。又,於本實施形態特別以LDPC碼為例來說明,但 不限於此,又,關於解碼方法而言,軟入/軟出解碼器不限於以和積解碼為例,尚有其他軟入/軟出之解碼方法,例如BCJR運算法、SOVA運算法、Max-log-MAP運算法等。關於細節係表示於非專利文獻6。
又,於本實施形態雖以單載波為例來說明,但不限於此,進行多載波傳送時亦可同樣地實施。因此,關於例如向量擴散通訊方式、OFDM(Orthogonal Frequency-Division Multiplexing:正交分頻多工)方式、SC-FDMA(Single Carrier Frequency Division Multiple Access:單載波分頻多重存取)、SC-OFDM(Single Carrier Orthogonal Frequency-Division Multiplexing:單載波正交分頻多工)方式、於非專利文獻7等所示之小波OFDM方式等情況,亦可同樣地實施。又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元等)、控制資訊傳送用之符元等可於訊框任意配置。
以下說明採用OFDM方式時之例子,來作為多載波方式之一例。
第13圖係表示採用OFDM時之發送裝置之構成。於第13圖,關於與第3圖同樣動作者係附上同一符號。
OFDM方式關連處理部1301A係以加權後之訊號309A作為輸入,施以OFDM方式關連的處理,並輸出發送訊號1302A。同樣地,OFDM方式關連處理部1301B係以加權後之訊號309B作為輸入,施以OFDM方式關連的處理,並輸出發送訊號1302B。
第14圖係表示第13圖之OFDM方式關連處理部1301A、1301B後續之構成之一例,從第13圖之1301A關連到312A之部分為1401A至1410A,從第13圖之1301B關連到312B之部分為1401B至1410B。
序列並列轉換部1402A係將加權後之訊號1401A(相當於第13圖之加權後之訊號309A)進行序列並列轉換,並輸出並列訊號1403A。
重排部1404A係以並列訊號1403A作為輸入進行重排,並輸出重排後之訊號1405A。再者,關於重排係於下文詳細敘述。
反快速傅利葉轉換部1406A係以重排後之訊號1405A作為輸入,施以反快速傅利葉轉換,並輸出反傅利葉轉換後之訊號1407A。
無線部1408A係以反傅利葉轉換後之訊號1407A作為輸入,進行頻率轉換、放大等處理,並輸出調變訊號1409A,調變訊號1409A係從天線1410A作為電波輸出。
序列並列轉換部1402B係將加權後之訊號1401B(相當於第13圖之加權後之訊號309B)進行序列並列轉換,並輸出並列訊號1403B。
重排部1404B係以並列訊號1403B作為輸入進行重排,並輸出重排後之訊號1405B。再者,關於重排係於下文詳細敘述。
反快速傅利葉轉換部1406B係以重排後之訊號1405B作為輸入,施以反快速傅利葉轉換,並輸出反傅利葉轉換 後之訊號1407B。
無線部1408B係以反傅利葉轉換後之訊號1407B作為輸入,進行頻率轉換、放大等處理,並輸出調變訊號1409B,調變訊號1409B係從天線1410B作為電波輸出。
於第3圖之發送裝置,由於並非利用多載波之傳送裝置,因此如第6圖以4週期的方式切換預編碼,於時間軸方向配置預編碼後之符元。採用如第13圖所示之OFDM方式般之多載波傳送方式時,當然可考慮如第3圖,於時間軸方向配置預編碼後之符元,就各(子)載波進行配置之方式,但多載波傳送方式時,可考慮利用頻率軸方向、或頻率軸‧時間軸兩者而配置之方法。下文說明有關該點。
第15圖係表示橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例;頻率軸係由(子)載波0至(子)載波9所構成,調變訊號z1及z2係於同一時刻(時間)使用同一頻帶,第15(A)圖係表示調變訊號z1之符元之重排方法,第15(B)圖係表示調變訊號z2之符元之重排方法。序列並列轉換部1402A係對於作為輸入之加權後之訊號1401A之符元,依序派分號碼#1、#2、#3、#4、...。此時,如第15(a)圖,從載波0依序配置符元#1、#2、#3、#4、...,於時刻$1配置符元#1至#9,其後於時刻$2配置符元#10至#19,如上規則地配置。
同樣地,序列並列轉換部1402B係對於作為輸入之加權後之訊號1401B之符元,依序派分號碼#1、#2、#3、#4、...。此時,如第15(b)圖,從載波0依序配置符元#1、#2、#3、 #4、...,於時刻$1配置符元#1至#9,其後於時刻$2配置符元#10至#19,如上規則地配置。再者,調變訊號z1、z2為複數訊號。
然後,第15圖所示之符元群1501、符元群1502係採用第6圖所示之預編碼權重切換方法時之1週期份之符元,符元#0係利用第6圖之時槽4i之預編碼權重時之符元;符元#1係利用第6圖之時槽4i+1之預編碼權重時之符元;符元#2係利用第6圖之時槽4i+2之預編碼權重時之符元;符元#3係利用第6圖之時槽4i+3之預編碼權重時之符元。因此,於符元#x,x mod 4為0時,符元#x係利用第6圖之時槽4i之預編碼權重時之符元;x mod 4為1時,符元#x係利用第6圖之時槽4i+1之預編碼權重時之符元;x mod 4為2時,符元#x係利用第6圖之時槽4i+2之預編碼權重時之符元;x mod 4為3時,符元#x係利用第6圖之時槽4i+3之預編碼權重時之符元。
如此,採用OFDM方式等多載波傳送方式時,與單載波傳送時不同,具有可將符元排在頻率軸方向之特徵。然後,關於符元之排列方式並不限於如第15圖之排列方式。利用第16圖、第17圖來說明其他例。
第16圖係表示與第15圖不同之橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例;第16(A)圖係表示調變訊號z1之符元之重排方法,第16(B)圖係表示調變訊號z2之符元之重排方法。第16(A)、(B)圖與第15圖之不同點係調變訊號z1之符元之重排方法與調變訊號z2之符元之重排方法不同之點;於第16(B)圖,將符元#0 至#5配置於載波4至載波9,將符元#6至#9配置於載波0至載波3,其後以同樣規則,將符元#10至#19配置於各載波。此時,與第15圖相同,第16圖所示之符元群1601、符元群1602係採用第6圖所示之預編碼權重切換方法時之1週期份之符元。
第17圖係表示與第15圖不同之橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例;第17(A)圖係表示調變訊號z1之符元之重排方法,第17(B)圖係表示調變訊號z2之符元之重排方法。第17(A)、(B)圖與第15圖之不同點係相對於在第15圖,將符元按順序配置於載波,而於第17圖,不將符元按順序配置於載波之點。無須贅述,於第17圖亦可與第16圖相同,使得調變訊號z1之符元之重排方法與調變訊號z2之重排方法不同。
第18圖係表示與第15~17圖不同之橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例;第18(A)圖係表示調變訊號z1之符元之重排方法,第18(B)圖係表示調變訊號z2之符元之重排方法。於第15~17圖,將符元排列於頻率軸方向,而於第18圖,利用頻率、時間軸兩者來配置符元。
於第6圖,說明以4時槽切換預編碼權重的情況之例子,而在此以8時槽切換的情況為例來說明。第18圖所示之符元群1801、符元群1802係採用預編碼權重切換方法時之1週期份之符元(故為8符元),符元#0係利用時槽8i之預編碼權重時之符元;符元#1係利用時槽8i+1之預編碼權重時之 符元;符元#2係利用時槽8i+2之預編碼權重時之符元;符元#3係利用時槽8i+3之預編碼權重時之符元;符元#4係利用時槽8i+4之預編碼權重時之符元;符元#5係利用時槽8i+5之預編碼權重時之符元;符元#6係利用時槽8i+6之預編碼權重時之符元;符元#7係利用時槽8i+7之預編碼權重時之符元。因此,於符元#x,x mod 8為0時,符元#x係利用時槽8i之預編碼權重時之符元;x mod 8為1時,符元#x係利用時槽8i+1之預編碼權重時之符元;x mod 8為2時,符元#x係利用時槽8i+2之預編碼權重時之符元;x mod 8為3時,符元#x係利用時槽8i+3之預編碼權重時之符元;x mod 8為4時,符元#x係利用時槽8i+4之預編碼權重時之符元;x mod 8為5時,符元#x係利用時槽8i+5之預編碼權重時之符元;x mod 8為6時,符元#x係利用時槽8i+6之預編碼權重時之符元;x mod 8為7時,符元#x係利用時槽8i+7之預編碼權重時之符元。於第18圖之排列方式中,於時間軸方向利用4時槽,於頻率軸方向利用2時槽,合計利用4×2=8時槽來配置1週期份之符元,此時,若1週期份之符元數設為m×n(亦即,預編碼權重存在有m×n種),配置1週期份之符元所使用的頻率軸方向之時槽(載波數)設為n,使用於時間軸方向之時槽設為m,則m>n即可。此係與頻率軸方向之變動相比較,直接波之相位在時間軸方向之變動較為和緩。因此,由於為了減少固定性的直接波影響而進行本實施形態之預編碼權重變更,故於進行預編碼權重變更之週期內,欲減少直接波的變動。因此,m>n即可。又,若考慮以上觀點,比起 僅於頻率軸方向或僅於時間軸方向重排符元,如第18圖利用頻率軸與時間軸兩者來進行重排,直接波變成固定的可能性較高,在效果上易獲得本發明效果。其中,若排列於頻率軸方向,則頻率軸變動激烈,因此可能可獲得分集增益,故利用頻率軸與時間軸兩者來進行重排的方法,未必是最佳方法。
第19圖係表示與第18圖不同之橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例;第19(A)圖係表示調變訊號z1之符元之重排方法,第19(B)圖係表示調變訊號z2之符元之重排方法。第19圖係與第18圖相同,利用頻率、時間軸兩者來配置符元,而與第18圖之相異點在於,第18圖係以頻率方向優先,其後於時間軸方向配置符元,相對於此,第19圖係以時間軸方向優先,其後於頻率軸方向配置符元之點。於第19圖,符元群1901、符元群1902係採用預編碼切換方法時之1週期份之符元。
再者,於第18圖、第19圖,與第16圖相同,以調變訊號z1之符元之配置方法與調變訊號z2之符元配置方法不同的方式來配置,仍可同樣地實施,又,可獲得能得到高接收品質的效果。又,於第18圖、第19圖,未如第17圖按順序配置符元,仍可同樣地實施,又,可獲得能得到高接收品質的效果。
第27圖係表示與上述不同之橫軸頻率、縱軸時間之第14圖之重排部1404A、1404B之符元之重排方法之一例。其考慮利用如式(37)~式(40)之4時槽規則地切換預編碼矩陣 的情況。於第27圖,特徵點係於頻率軸方向依序配置符元,但朝時間軸方向前進時,令循環進行n(於第27圖之例為n=1)符元循環移位之點。於第27圖之頻率軸方向之符元群2710所示之4符元中,進行式(37)~式(40)之預編碼矩陣切換。
此時,於#0的符元係利用式(37)之預編碼矩陣之預編碼,於#1係利用式(38)之預編碼矩陣之預編碼,於#2係利用式(39)之預編碼矩陣之預編碼,於#3係利用式(40)之預編碼矩陣之預編碼。
關於頻率軸方向之符元群2720亦相同,於#4的符元係利用式(37)之預編碼矩陣之預編碼,於#5係利用式(38)之預編碼矩陣之預編碼,於#6係利用式(39)之預編碼矩陣之預編碼,於#7係利用式(40)之預編碼矩陣之預編碼。
於時間$1的符元,進行如上述之預編碼矩陣切換,於時間軸方向,由於進行循環移位,因此符元群2701、2702、2703、2704係如以下進行預編碼矩陣之切換。
關於時間軸方向之符元群2701亦相同,於#0的符元係利用式(37)之預編碼矩陣之預編碼,於#9係利用式(38)之預編碼矩陣之預編碼,於#18係利用式(39)之預編碼矩陣之預編碼,於#27係利用式(40)之預編碼矩陣之預編碼。
關於時間軸方向之符元群2702亦相同,於#28的符元係利用式(37)之預編碼矩陣之預編碼,於#1係利用式(38)之預編碼矩陣之預編碼,於#10係利用式(39)之預編碼矩陣之預編碼,於#19係利用式(40)之預編碼矩陣之預編碼。
關於時間軸方向之符元群2703亦相同,於#20的符元係 利用式(37)之預編碼矩陣之預編碼,於#29係利用式(38)之預編碼矩陣之預編碼,於#2係利用式(39)之預編碼矩陣之預編碼,於#11係利用式(40)之預編碼矩陣之預編碼。
關於時間軸方向之符元群2704亦相同,於#12的符元係利用式(37)之預編碼矩陣之預編碼,於#21係利用式(38)之預編碼矩陣之預編碼,於#30係利用式(39)之預編碼矩陣之預編碼,於#3係利用式(40)之預編碼矩陣之預編碼。
於第27圖之特徵係於例如著眼於#11的符元時,同一時刻之頻率軸方向兩旁之符元(#10及#12)均利用與#11不同之預編碼矩陣來進行預編碼,並且#11的符元之同一載波之時間軸方向兩旁之符元(#2及#20)均利用與#11不同之預編碼矩陣來進行預編碼。然後,此不限於#11的符元,於頻率軸方向及時間軸方向,兩旁存在有符元之所有符元均與#11的符元具有同樣特徵。藉此以有效切換預編碼矩陣,不易受到對於直接波之固定性狀況的影響,因此資料接收品質改善的可能性變高。
於第27圖設定n=1而說明,但不限於此,即便設定n=3仍可同樣地實施。又,於第27圖,於頻率軸排列符元,時間朝軸方向前進時,藉由具有令符元之配置順序進行循環移位之特徵來實現上述特徵,但亦有藉由隨機(規則)配置符元來實現上述特徵的方法。
(實施形態2)
於實施形態1,說明有關規則地切換如第6圖所示之預編碼權重的情況,而於本實施形態,說明與第6圖之預編碼 權重不同之具體的預編碼權重之設計方法。
於第6圖說明切換式(37)~式(40)之預編碼權重之方法。將其一般化時,預編碼權重可如下變更。(其中,預編碼權重之切換週期設為4,進行與式(37)~式(40)同樣的記載。)
符元號碼4i時(i為0以上之整數):
其中,j為虛數單位。
符元號碼4i+1時:
符元號碼4i+2時:
符元號碼4i+3時:[數45]
然後,從式(36)及式(41)來看,可將接收向量R(t)=(r1(t),r2(t))T表現如下。
符元號碼4i時:
符元號碼4i+1時:
符元號碼4i+2時:
符元號碼4i+3時: ...式(49)
此時,於通道要素h11(t)、h12(t)、h21(t)、h22(t),假定僅存在直接波成分,該直接波成分之振幅完全相等,又,不隨時間引起變動。如此一來,式(46)~式(49)可表現如下。
符元號碼4i時:
符元號碼4i+1時:
符元號碼4i+2時:
符元號碼4i+3時:
其中,於式(50)~式(53),A為正實數,q為複數。該A及q的值係因應發送裝置與接收裝置之位置關係而決定。然後,將式(50)~式(53)表現如下。
符元號碼4i時:
符元號碼4i+1時:
符元號碼4i+2時:
符元號碼4i+3時:
如此一來,當q表現如下時,於r1、r2不包含根據s1或 s2之某一方之訊號成分,因此無法獲得s1、s2之某一方之訊號。
符元號碼4i時:[數58]q=-A e j (θ 11(4i)-θ 21(4i)),-A e j (θ 11(4i)-θ 21(4i)-δ)...式(58)
符元號碼4i+1時:[數59]q=-A e j (θ 11(4i+1)-θ 21(4i+1)),-A e j (θ 11(4i+1)-θ 21(4i+1)-δ)...式(59)
符元號碼4i+2時:[數60]q=-A e j (θ 11(4i+2)-θ 21(4i+2)),-A e j (θ 11(4i+2)-θ 21(4i+2)-δ)...式(60)
符元號碼4i+3時:[數61]q=-A e j (θ 11(4i+3)-θ 21(4i+3)),-A e j (θ 11(4i+3)-θ 21(4i+3)-δ)...式(61)
此時,於符元號碼4i、4i+1、4i+2、4i+3,若q具有同一解,則直接波之通道要素不會有大變動,因此具有q值與上述同一解相等之通道要素之接收裝置,係於任一符元號碼均無法獲得良好的接收品質,因此即便導入錯誤更正碼,仍難以獲得錯誤更正能力。因此,若著眼於q的2個解之中不含δ的那個解,則為了讓q不具有同一解,從式(58) ~式(61)來看需要以下條件。
(x為0、1、2、3,y為0、1、2、3,x≠y。)
作為符合條件#1的例子如下:
(例#1)
當條件如下時:
<1>θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0弧度
可考慮設定如下之方法:
<2>θ21(4i)=0弧度
<3>θ21(4i+1)=π/2弧度
<4>θ21(4i+2)=π弧度
<5>θ21(4i+3)=3π/2弧度
(上述為例子,若於(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))之集合中,0弧度、π/2弧度、π弧度、3π/2弧度各存在有1個即可。)此時,尤其當有條件<1>時,無須對於基頻訊號s1(t)給予訊號處理(旋轉處理),因此具有可謀求刪減電路規模的優點。作為其他例如下:
(例#2)
當條件如下時:
<6>θ11(4i)=0弧度
<7>θ11(4i+1)=π/2弧度
<8>θ11(4i+2)=π弧度
<9>θ11(4i+3)=3π/2弧度
可考慮設定如下之方法:
<10>θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0弧度
(上述為例子,若於(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))之集合中,0弧度、π/2弧度、π弧度、3π/2弧度各存在有1個即可。)此時,尤其當有條件<6>時,無須對於基頻訊號s2(t)給予訊號處理(旋轉處理),因此具有可謀求刪減電路規模的優點。進而於以下舉出其他例。
(例#3)
當條件如下時:
<11>θ11(4i)=θ11(4i+1)=θ11(4i+2)=θ11(4i+3)=0弧度
可考慮設定如下之方法:
<12>θ21(4i)=0弧度
<13>θ21(4i+1)=π/4弧度
<14>θ21(4i+2)=π/2弧度
<15>θ21(4i+3)=3π/4弧度
(上述為例子,若於(θ21(4i),θ21(4i+1),θ21(4i+2),θ21(4i+3))之集合中,0弧度、π/4弧度、π/2弧度、3π/4弧度各存在有1個即可。)
(例#4)
當條件如下時:
<16>θ11(4i)=0弧度
<17>θ11(4i+1)=π/4弧度
<18>θ11(4i+2)=π/2弧度
<19>θ11(4i+3)=3π/4弧度
可考慮設定如下之方法:
<20>θ21(4i)=θ21(4i+1)=θ21(4i+2)=θ21(4i+3)=0弧度
(上述為例子,若於(θ11(4i),θ11(4i+1),θ11(4i+2),θ11(4i+3))之集合中,0弧度、π/4弧度、π/2弧度、3π/4弧度各存在有1個即可。)
再者,雖舉出4個例子,但符合條件#1之方法不限於此。
接著,不僅說明θ11、θ12,亦說明有關λ、δ之設計要件。關於λ,只要設定為某值即可,作為要件而言,須針對δ賦予要件。因此,說明有關λ設為0弧度時之δ之設定方法。
此時,對於δ,若π/2弧度|δ|π弧度,尤其於LOS環境下可獲得良好的接收品質。
然而,於符元號碼4i、4i+1、4i+2、4i+3,分別存在有2點接收品質不佳之q。因此,存在有2×4=8點。於LOS環境下,為了防止接收品質在特定的接收終端裝置劣化,只要該等8點全部為不同解即可。該情況下,除了<條件#1>以外,還需要<條件#2>的條件。
除此之外,該等8點之相位平均存在即可。(由於直接波之相位據判均勻分布的可能性甚高),因此以下說明有關 符合該要件之δ之設定方法。
(例#1)、(例#2)的情況下,藉由將δ設定為±3π/4弧度,可使得接收品質不佳的點在相位上平均存在。例如就(例#1)而言,若將δ設定為3π/4弧度,則如(A為正實數)之第20圖,於4時槽存在有1次接收品質不佳的點。(例#3)、(例#4)的情況下,藉由將δ設定為±π弧度,可使得接收品質不佳的點在相位上平均存在。例如就(例#3)而言,若將δ設定為π弧度,則如第21圖,於4時槽存在有1次接收品質不佳的點。(若通道矩陣H之要素q存在於第20圖、第21圖所示之點,則接收品質會劣化。)
藉由設定如上,可於LOS環境下獲得良好的接收品質。於上述,說明以4時槽為週期變更預編碼權重之例,而於以下說明有關以N時槽為週期來變更預編碼權重的情況。若同樣地思考實施形態1及上述說明,則對於符元號碼進行表現如下的處理。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:[數65]
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
故,r1、r2係表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:[數69]
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
此時,於通道要素h11(t)、h12(t)、h21(t)、h22(t),假定僅存在直接波成分,該直接波成分之振幅完全相等,又,不隨時間引起變動。如此一來,式(66)~式(69)可表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
其中,於式(70)~式(73),A為正實數,q為複數。該A及q的值係因應發送裝置與接收裝置之位置關係而決定。然後,將式(70)~式(73)表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
如此一來,當q表現如下時,於r1、r2不包含根據s1或s2之某一方之訊號成分,因此無法獲得s1、s2之某一方之訊號。
符元號碼Ni時(i為0以上之整數):[數80]q=-A e j (θ 11(Ni)-θ 21(Ni)),-A e j (θ 11(Ni)-θ 21(Ni)-δ)...式(78)
符元號碼Ni+1時: [數81]q=-A e j (θ 11(Ni+1)-θ 21(Ni+1)),-A e j (θ 11(Ni+1)-θ 21(Ni+1)-δ)...式(79)
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:[數82]q=-A e j (θ 11(Ni+k)-θ 21(Ni+k)),-A e j (θ 11(Ni+k)-θ 21(Ni+k)-δ)...式(80)
然後,符元號碼Ni+N-1時:[數83]q=-A e j (θ 11(Ni+N-1)-θ 21(Ni+N-1)),-A e j (θ 11(Ni+N-1)-θ 21(Ni+N-1)-δ)...式(81)
此時,於符元號碼Ni~Ni+N-1,若q具有同一解,則直接波之通道要素不會有大變動,因此具有q值與上述同一解相等之通道要素之接收裝置,係於任一符元號碼均無法獲得良好的接收品質,因此即便導入錯誤更正碼,仍難以獲得錯誤更正能力。因此,若著眼於q的2個解之中不含δ的那個解,則為了讓q不具有同一解,從式(78)~式(81)來看需要以下條件。
[數84]<條件#3> (x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
接著,不僅說明θ11、θ12,亦說明有關λ、δ之設計要件。關於λ,只要設定為某值即可,作為要件而言,須針對δ賦予要件。因此,說明有關λ設為0弧度時之δ之設定方法。
此時,與以4時槽為週期來變更預編碼權重之方法相同,對於δ,若π/2弧度|δ|π弧度,尤其於LOS環境下可獲得良好的接收品質。
於符元號碼Ni~Ni+N-1,分別存在有2點接收品質不佳之q。因此,存在有2N點。於LOS環境下,為了防止接收品質在特定的接收終端裝置劣化,只要該等2N點全部為不同解即可。該情況下,除了<條件#3>以外,還需要<條件#4>的條件。
除此之外,該等2N點之相位平均存在即可。(由於直接波之相位據判均勻分布的可能性甚高)
如以上,MIMO傳送系統之發送裝置從複數個天線發送複數個調變訊號時,隨著時間切換預編碼權重,並且規則地進行切換,藉此可於直接波所支配的LOS環境下,獲得 與以往採用空間多工MIMO傳送時相比,更提升傳送品質的效果。
於本實施形態,接收裝置之構成係如實施形態1所說明,尤其關於接收裝置之構成係限定天線數而說明動作,但天線數增加時,亦可同樣地實施。總言之,接收裝置之天線數不會對本實施形態之動作、效果造成影響。又,於本實施形態係與實施形態1相同,其錯誤更正碼不受限定。
又,於本實施形態,與實施形態1對比而說明有關時間軸之預編碼權重變更方法,但如實施形態1所說明,採用多載波傳送方式,對於頻率軸、頻率-時間軸配置符元,藉此進行預編碼權重變更方法,亦可同樣地實施。又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元等)、控制資訊傳送用之符元等可於訊框任意配置。
(實施形態3)
於實施形態1、實施形態2,說明有關在規則地切換預編碼權重之方式中,預編碼權重之矩陣之各要素之振幅相等的情況,但於本實施形態,說明有關不符合該條件之例子。
為了與實施形態2對比,說明有關以N時槽為週期來變更預編碼權重的情況。若與實施形態1及實施形態2同樣地思考,則對於符元號碼進行表現如下之處理。其中,β為正實數,β≠1。
符元號碼Ni時(i為0以上之整數):[數86]
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
故,r1、r2係表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
此時,於通道要素h11(t)、h12(t)、h21(t)、h22(t),假定僅存在直接波成分,該直接波成分之振幅完全相等,又,不隨時間引起變動。如此一來,式(86)~式(89)可表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
其中,於式(90)~式(93),A為實數,q為複數。然後, 將式(90)~式(93)表現如下。
符元號碼Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
如此一來,當q表現如下時,無法獲得s1、s2之某一方之訊號。
符元號碼Ni時(i為0以上之整數):
符元號碼Ni+1時:
將此如下予以一般化。
符元號碼Ni+k(k=0、1、...、N-1)時:
然後,符元號碼Ni+N-1時:
此時,於符元號碼Ni~Ni+N-1,若q具有同一解,則直接波之通道要素不會有大變動,因此於任一符元號碼均無法獲得良好的接收品質,故即便導入錯誤更正碼,仍難 以獲得錯誤更正能力。因此,若著眼於q的2個解之中不含δ的那個解,則為了讓q不具有同一解,從式(98)~式(101)來看需要以下條件。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
接著,不僅說明θ11、θ12,亦說明有關λ、δ之設計要件。關於λ,只要設定為某值即可,作為要件而言,須針對δ賦予要件。因此,說明有關λ設為0弧度時之δ之設定方法。
此時,與以4時槽為週期來變更預編碼權重之方法相同,對於δ,若π/2弧度|δ|π弧度,尤其於LOS環境下可獲得良好的接收品質。
於符元號碼Ni~Ni+N-1,分別存在有2點接收品質不佳之q。因此,存在有2N點。於LOS環境下,為了獲得良好特性,只要該等2N點全部為不同解即可。該情況下,除了<條件#5>以外,若考慮到β為正實數,β≠1,則還需要<條件#6>的條件。
如以上,MIMO傳送系統之發送裝置從複數個天線發送複數個調變訊號時,隨著時間切換預編碼權重,並且規則 地進行切換,藉此可於直接波所支配的LOS環境下,獲得與以往採用空間多工MIMO傳送時相比,更提升傳送品質的效果。
於本實施形態,接收裝置之構成係如實施形態1所說明,尤其關於接收裝置之構成係限定天線數而說明動作,但天線數增加時,亦可同樣地實施。總言之,接收裝置之天線數不會對本實施形態之動作、效果造成影響。又,於本實施形態係與實施形態1相同,其錯誤更正碼不受限定。
又,於本實施形態,與實施形態1對比而說明有關時間軸之預編碼權重變更方法,但如實施形態1所說明,採用多載波傳送方式,對於頻率軸、頻率-時間軸配置符元,藉此進行預編碼權重變更方法,亦可同樣地實施。又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元等)、控制資訊傳送用之符元等可於訊框任意配置。
(實施形態4)
於實施形態3,就規則地切換預編碼權重之方式,以預編碼權重之矩陣之各要素之振幅設為1與β兩種類之情況為例來說明。
再者,於此係忽視下式:
接下來,說明關於以時槽來切換β值時之例子。為了與實施形態3對比,說明有關以2×N時槽為週期來變更預編碼 權重的情況。
若與實施形態1、實施形態2及實施形態3同樣地思考,則對於符元號碼進行表現如下之處理。其中,β為正實數,β≠1。又,α為正實數,α≠β。
符元號碼2Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+1時:
將此如下予以一般化。
符元號碼2Ni+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+N-1時:[數112]
符元號碼2Ni+N時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+N+1時:
將此如下予以一般化。
符元號碼2Ni+N+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+2N-1時: ...式(109)
故,r1、r2係表現如下。
符元號碼2Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+1時:
將此如下予以一般化。
符元號碼2Ni+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+N-1時:
符元號碼2Ni+1時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+N+1時:
將此如下予以一般化。
符元號碼2Ni+N+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+2N-1時:
此時,於通道要素h11(t)、h12(t)、h21(t)、h22(t),假定僅存在直接波成分,該直接波成分之振幅完全相等,又,不隨時間引起變動。如此一來,式(110)~式(117)可表現如下。
符元號碼2Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+1時:
將此如下予以一般化。
符元號碼2Ni+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+N-1時:
符元號碼2Ni+N時(i為0以上之整數):[數129]
其中,j為虛數單位。
符元號碼2Ni+N+1時:
將此如下予以一般化。
符元號碼2Ni+N+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+2N-1時:
其中,於式(118)~式(125),A為實數,q為複數。然後,將式(118)~式(125)表現如下。
符元號碼2Ni時(i為0以上之整數):
其中,j為虛數單位。
符元號碼2Ni+1時:
將此如下予以一般化。
符元號碼2Ni+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+N-1時:
符元號碼2Ni+N時(i為0以上之整數):[數137]
其中,j為虛數單位。
符元號碼2Ni+N+1時:
將此如下予以一般化。
符元號碼2Ni+N+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+2N-1時:
如此一來,當q表現如下時,無法獲得s1、s2之某一方之訊號。
符元號碼2Ni時(i為0以上之整數):[數141]
符元號碼2Ni+1時:
將此如下予以一般化。
符元號碼2Ni+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+N-1時:
符元號碼2Ni+N時(i為0以上之整數):
符元號碼2Ni+N+1時:
將此如下予以一般化。
符元號碼2Ni+N+k(k=0、1、...、N-1)時:
然後,符元號碼2Ni+2N-1時:
此時,於符元號碼2Ni~2Ni+N-1,若q具有同一解,則直接波之通道要素不會有大變動,因此於任一符元號碼均無法獲得良好的接收品質,故即便導入錯誤更正碼,仍難以獲得錯誤更正能力。因此,若著眼於q的2個解之中不含δ的那個解,則為了讓q不具有同一解,從式(98)~式(100)及α≠β來看,需要<條件#7>或<條件#8>。
[數149]<條件#7> (x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)且 (x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
此時,<條件#8>係與實施形態1~實施形態3所述條件為同樣條件,<條件#7>係因α≠β,故q的2個解中不含δ之那個解會具有不同解。
接著,不僅說明θ11、θ12,亦說明有關λ、δ之設計要件。關於λ,只要設定為某值即可,作為要件而言,須針對δ賦予要件。因此,說明有關λ設為0弧度時之δ之設定方法。
此時,與以4時槽為週期來變更預編碼權重之方法相同,對於δ,若π/2弧度|δ|π弧度,尤其於LOS環境下可獲得良好的接收品質。
於符元號碼2Ni~2Ni+2N-1,分別存在有2點接收品質不佳之q。因此,存在有4N點。於LOS環境下,為了獲得良好特性,只要該等4N點全部為不同解即可。該情況下,若著眼於振幅,則對於<條件#7>或<條件#8>而言,由於α≠β,因此需要以下條件。
如以上,MIMO傳送系統之發送裝置從複數個天線發送複數個調變訊號時,隨著時間切換預編碼權重,並且規則地進行切換,藉此可於直接波所支配的LOS環境下,獲得與以往採用空間多工MIMO傳送時相比,更提升傳送品質的效果。
於本實施形態,接收裝置之構成係如實施形態1所說明,尤其關於接收裝置之構成係限定天線數而說明動作,但天線數增加時,亦可同樣地實施。總言之,接收裝置之天線數不會對本實施形態之動作、效果造成影響。又,於本實施形態係與實施形態1相同,其錯誤更正碼不受限定。
又,於本實施形態,與實施形態1對比而說明有關時間軸之預編碼權重變更方法,但如實施形態1所說明,採用多載波傳送方式,對於頻率軸、頻率-時間軸配置符元,藉此進行預編碼權重變更方法,亦可同樣地實施。又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元等)、控制資訊傳送用之符元等可於訊框任意配置。
(實施形態5)
於實施形態1~實施形態4,說明有關規則地切換預編碼權重之方法,於本實施形態,說明有關其變形例。
於實施形態1~實施形態4,說明有關如第6圖規則地切換預編碼權重之方法。於本實施形態,說明有關與第6圖不 同之規則地切換預編碼權重之方法。
與第6圖相同,以切換4個預編碼權重(矩陣)之方式,於第22圖表示關於與第6圖不同之切換方法之圖。於第22圖,將4個不同的預編碼權重(矩陣)表現為W1、W2、W3、W4。(例如W1設為式(37)之預編碼權重(矩陣),W2設為式(38)之預編碼權重(矩陣),W3設為式(39)之預編碼權重(矩陣),W4設為式(40)之預編碼權重(矩陣)。)然後,關於與第3圖及第6圖同樣地動作的部分則附上同一符號。於第22圖中固有的部分如下:
‧第1週期2201、第2週期2202、第3週期2203、...全都以4時槽構成。
‧於4時槽,分別使用1次依各時槽而不同的預編碼權重矩陣,亦即W1、W2、W3、W4。
‧於第1週期2201、第2週期2202、第3週期2203,未必須使得W1、W2、W3、W4之順序為同一順序。為了實現此,預編碼權重生成部2200係以關於加權方法之訊號作為輸入,輸出按照各週期之順序之關於預編碼權重之資訊2210作為輸出。然後,加權合成部600係以該訊號及s1(t)、s2(t)作為輸入而進行加權合成,並輸出z1(t)、z2(t)。
第23圖係對於預編碼方法,表示與第22圖之加權合成方法。於第23圖,與第22圖之相異點係藉由於加權合成部之後配置重排部,進行訊號重排,藉此實現與第22圖同樣的方法之點。
於第23圖,預編碼權重生成部2200係以關於加權之資 訊315作為輸入,依預編碼權重W1、W2、W3、W4。、W1、W2、W3、W4、...之順序來輸出預編碼權重之資訊2210。因此,加權合成部600係依預編碼權重W1、W2、W3、W4。、W1、W2、W3、W4、...之順序來利用預編碼權重,並輸出預編碼後之訊號2300A、2300B。
重排部2300係以預編碼後之訊號2300A、2300B作為輸入,針對預編碼後之訊號2300A、2300B進行重排,以成為第23圖之第1週期2201、第2週期2202、第3週期2203之順序,並輸出z1(t)、z2(t)。再者,上述係為了與第6圖比較,而將預編碼權重之切換週期設為4,但如實施形態1~實施形態4,週期4以外時,亦可同樣地實施。
又,於實施形態1~實施形態4、及上述預編碼方法中,說明於週期內,依各時軸而將δ、β值設為相同,但亦可依各時槽而切換δ、β值。
如以上,MIMO傳送系統之發送裝置從複數個天線發送複數個調變訊號時,隨著時間切換預編碼權重,並且規則地進行切換,藉此可於直接波所支配的LOS環境下,獲得與以往採用空間多工MIMO傳送時相比,更提升傳送品質的效果。
於本實施形態,接收裝置之構成係如實施形態1所說明,尤其關於接收裝置之構成係限定天線數而說明動作,但天線數增加時,亦可同樣地實施。總言之,接收裝置之天線數不會對本實施形態之動作、效果造成影響。又,於本實施形態係與實施形態1相同,其錯誤更正碼不受限定。
又,於本實施形態,與實施形態1對比而說明有關時間 軸之預編碼權重變更方法,但如實施形態1所說明,採用多載波傳送方式,對於頻率軸-時間軸配置符元,藉此進行預編碼權重變更方法,亦可同樣地實施。又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元等)、控制資訊傳送用之符元等可於訊框任意配置。
(實施形態6)
於實施形態1~4,敘述有關規則地切換預編碼權重之方法,於本實施形態,涵蓋實施形態1~4所述內容,在此說明有關規則地切換預編碼權重之方法。
在此,首先敘述有關空間多工型之2×2MIMO系統之預編碼矩陣之設計方法,其係考慮到LOS環境,適用不存在有來自通訊對象之回授之預編碼。
第30圖係表示適用不存在有來自通訊對象之回授之預編碼之空間多工型之2×2MIMO系統之預編碼矩陣之設計方法。資訊向量z被施以編碼及交錯。然後,作為交錯之輸出而獲得編碼後位元之向量u(p)=(u1(p),u2(p))(p為時槽時間)。其中,ui(p)=(ui1(p)...,uih(p))(h:每符元之發送位元數)。若將調變後(映射後)之訊號設為s(p)=(s1(p),s2(p))T,預編碼矩陣設為F(p),則預編碼後之訊號x(p)=(x1(p),x2(p))T係以下式表現。
[數152]x(p)=(x 1(p),x 2(p)) T =F(p)s(p)...式(142)
因此,若將接收向量設為y(p)=(y1(p),y2(p))T,則以下式 表現。
[數153]y(p)=(y 1(p),y 2(p)) T =H(p)F(p)s(p)+n(p)...式(143)
此時,H(p)為通道矩陣,n(p)=(n1(p),n2(p))T為雜訊向量,ni(p)為平均值0,偏差σ2之i.i.d.複數高斯雜訊。然後,萊斯因子設為K時,上述可表現如下。
此時,Hd(p)為直接波成分之通道矩陣,Hs(p)為散射波成分之通道矩陣。因此,如下表現通道矩陣H(p)。
於式(145),直接波的環境假定由通訊機彼此之位置關係而一對一地決定,直接波成分之Hd(p)不隨時間變動。又,於直接波成分之Hd(p)中,與發送天線間隔相比較,收發機間的距離為充分長的環境之可能性甚高,因此直接波成分之通道矩陣為正規矩陣。因此,如下表現通道矩陣Hd(p)。
在此,A為正實數,q為複數。以下敘述有關空間多工型之2×2MIMO系統之預編碼矩陣之設計方法,其係考慮到LOS環境,適用不存在有來自通訊對象之回授之預編碼。
從式(144)、(145)來看,難以在含有散射波的狀態下進行解析,因此難以在包含散射波的狀態下,求出無適當回授之預編碼矩陣。而且,於NLOS環境,資料之接收品質劣化比LOS環境少。因此,敘述有關在LOS環境下無適當回授之預編碼矩陣之設計方法(隨著時間切換預編碼矩陣之預編碼方法之預編碼矩陣)。
如上述,從式(144)、(145)來看,難以在包含散射波的狀態下進行解析,因此於僅包含直接波成分之通道矩陣中,求出適當的預編碼矩陣。因此,於式(144),考慮通道矩陣僅包含直接波成分的情況。因此,從式(146)來考慮下式。
在此,利用么正矩陣作為預編碼矩陣。因此,如下表 現預編碼矩陣。
此時,λ為固定值。因此,式(147)可表現如下。
從式(149)可知,接收機進行ZF(zero forcing:零強迫)或MMSE(minimum mean squared error:最小均方誤差)之線性運算時,無法藉由s1(p)、s2(p)來判斷已發送之位元。由此來看,進行如實施形態1所述之反覆APP(或反覆Max-Log APP)或APP(或Max-Log APP)(下文稱為ML(Maximum Likelihood:最大概似)運算),求出以s1(p)、s2(p)發送之各位元之對數概似,進行錯誤更正碼之解碼。因此,說明有關對於進行ML運算之接收機在LOS環境下,無適當回授之預編碼矩陣之設計方法。
思考式(149)之預編碼。對第1列之右邊及左邊乘算e-jΨ,同樣對第2列之右邊及左邊乘算e-jΨ。如此一來則表現如下式。
[數160]
將e-jΨy1(p)、e-jΨy2(p)、e-jΨq分別再定義為y1(p)、y2(p)、q,又,e-jΨn(p)=(e-jΨn1(p),e-jΨn2(p)),e-jΨn1(p)、e-jΨn2(p)為平均值0、偏差σ2之i.i.d.(independent identically distributed:獨立同分布)複數高斯雜訊。將e-jΨn(p)再定義為n(p)。如此一來,即便使得式(150)成為式(151),仍不會喪失一般性。
接著,為了讓式(151)容易理解而變形如式(152)。
此時,接收訊號點與接收候補訊號點之歐氏距離之最小值設為dmin 2時,dmin 2為零之取最小值之惡劣點,並且以s1(p)發送之所有位元、或以s2(p)發送之所有位元消失之惡劣狀態下之q存在有2個。
於式(152)中,不存在s1(p)時:
於式(152)中,不存在s2(p)時:
(下文將符合式(153)、(154)之q分別稱為「s1、s2之接收惡劣點」)
符合式(153)時,由於藉由s1(p)發送之位元全都消失,因此無法求出藉由s1(p)發送之位元全部的接收對數概似,符合式(154)時,由於藉由s2(p)發送之位元全都消失,因此無法求出藉由s2(p)發送之位元全部的接收對數概似。
在此,思考不切換預編碼矩陣時之播送‧多播通訊系統。此時,思考一系統模型,其係具有利用不切換預編碼矩陣之預編碼方式來發送調變訊號之基地台,存在有複數個(Γ個)接收由基地台發送之調變訊號之終端裝置。
基地台‧終端裝置間之直接波的狀況據判由時間所造成的變化甚小。如此一來,從式(153)、(154)來看,位於合乎式(155)或式(156)的條件之位置、位於萊斯因子大的LOS環境終端裝置,可能陷於資料之接收品質劣化的現象中。因此,為了改善該問題,需在時間上切換預編碼矩陣。
因此,考慮將時間週期設為N時槽,並規則地切換預編碼矩陣之方法(下文稱為預編碼跳躍方法)。
為了時間週期N時槽,準備根據式(148)之N種預編碼矩陣F[i](i=0、1、...、N-1)。此時,如下表現預編碼矩陣F[i]。
在此,α不隨時間變化,λ亦不隨時間變化(令其變化亦可)。
然後,與實施形態1相同,為了獲得時點(時刻)N×k+i(k為0以上之整數,i=0、1、...、N-1)之式(142)之預編碼後之訊號x(p=N×k+i)所利用的預編碼矩陣為F[i]。關於此,在下文亦同。
此時,根據式(153)、(154),如以下之預編碼跳躍之預編碼矩陣之設計條件甚為重要。
依據<條件#10>,於Γ個終端裝置全部,在時間週期內之N,取到s1之接收惡劣點之時槽為1時槽以下。因此,能夠在N-1時槽以上,獲得以s1(p)發送之位元之對數概似比。同樣地,依據<條件#11>,於Γ個終端裝置全部,在時間週期內之N,取到s2之接收惡劣點之時槽為1時槽以下。因此,能夠在N-1時槽以上,獲得以s2(p)發送之位元之對數概似比。
如此,藉由給予<條件#10>、<條件#11>之預編碼矩陣 之設計規範,以便於Γ個終端裝置全部,保證可獲得以s1(p)發送之位元之對數概似比之位元數、及可獲得以s2(p)發送之位元之對數概似比之位元數在一定數以上,藉此於Γ個終端裝置全部,改善在萊斯因子大的LOS環境下之資料接收品質劣化。
以下記載預編碼跳躍方法之預編碼矩陣之例。
直接波之相位之機率密度分布可視為[0 2π]之均勻分布。因此,式(151)、(152)之q之相位之機率密度分布亦可視為[0 2π]之均勻分布。故,於僅有q的相位不同之同一LOS環境下,作為用以對於Γ個終端裝置,儘可能給予公平的資料接收品質之條件,則給予以下條件。
<條件#12>
採用時間週期N時槽之預編碼跳躍方法時,於時間週期內之N,將s1之接收惡劣點配置成對於相位成為均勻分布,且將s2之接收惡劣點配置成對於相位成為均勻分布。
因此,說明根據<條件#10>至<條件#12>之預編碼跳躍方法之預編碼矩陣例。式(157)之預編碼矩陣設為α=1.0。
(例#5)
時間週期N=8,為了符合<條件#10>至<條件#12>,賦予如下式之時間週期N=8之預編碼跳躍方法之預編碼矩陣。
其中,j為虛數單位,i=0、1、...、7。賦予式(161)取代賦予式(160)亦可(λ、θ11[i]不隨時間變化(變化亦可))。
因此,s1、s2之接收惡劣點係如第31(a)、(b)圖。(於第31圖,橫軸為實軸,縱軸為虛軸。)又,賦予式(162)、式(163)取代賦予式(160)、式(161)亦可(i=0、1、...、7)(λ、θ11[i]不隨時間變化(變化亦可))。
接著,在與條件12不同之僅有q的相位不同之同一LOS環境下,作為用以對於Γ個終端裝置,儘可能給予公平的資料接收品質之條件,則給予以下條件。
<條件#13>
採用時間週期N時槽之預編碼跳躍方法時,附加如下條件:[數174] 又,於時間週期內之N,將s1之接收惡劣點配置成對於相位成為均勻分布,將s2之接收惡劣點配置成對於相位成為均勻分布。
因此,說明根據<條件#10>、<條件#11>、<條件#13>之預編碼跳躍方法之預編碼矩陣例。式(157)之預編碼矩陣設為α=1.0。
(例#6)
時間週期N=4,賦予如下式之時間週期N=4之預編碼跳躍方法之預編碼矩陣。
其中,j為虛數單位,i=0、1、2、3。賦予式(166)取代賦予式(165)亦可(λ、θ11[i]不隨時間變化(變化亦可))。
因此,s1、s2之接收惡劣點係如第32圖。(於第32圖,橫軸為實軸,縱軸為虛軸。)又,賦予式(165)、式(166)取代 賦予式(167)、式(168)亦可(i=0、1、2、3)(λ、θ11[i]不隨時間變化(變化亦可))。
接著,敘述有關利用非么正矩陣之預編碼跳躍方法。
根據式(148),如下表現本討論中處理的預編碼矩陣。
如此一來,相當於式(151)、(152)之數式係表現如下。
[數181]
此時,存在有2個接收訊號點與接收候補訊號點之歐氏距離之最小值dmin 2成為零之q。
於式(171)不存在s1(p):
於式(171)不存在s2(p):
於時間週期N之預編碼跳躍方法中,參考式(169),將N種預編碼矩陣F[i]表現如下。
在此,α及β不隨時間變化。此時,根據式(34)、(35),賦予如以下之預編碼跳躍之預編碼矩陣之設計條件。
(例#7)
式(174)之預編碼矩陣設為α=1.0。然後,時間週期N=16,為了符合<條件#12>、<條件#14>、<條件#15>,賦予如下式之時間週期N=16之預編碼跳躍方法之預編碼矩陣。
i=0、1、...、7時:
i=8、9、...、15時: [數188]
又,作為與式(177)、式(178)不同之預編碼矩陣,可如以下賦予。
i=0、1、...、7時:
i=8、9、...、15時:
因此,s1、s2之接收惡劣點係如第33(a)、(b)圖。(於第33圖,橫軸為實軸,縱軸為虛軸。)又,如以下賦予預編碼矩陣來取代賦予式(177)、式(178)及式(179)、式(180)亦可。
i=0、1、...、7時:
i=8、9、...、15時:
又,i=0、1、...、7時:
i=8、9、...、15時:
(又,於式(177)~(184),將7π/8改設為-7π/8亦可。)
接著,在與<條件#12>不同之僅有q的相位不同之同一LOS環境下,作為用以對於Γ個終端裝置,儘可能給予公平的資料接收品質之條件,則給予以下條件。
<條件#16>
採用時間週期N時槽之預編碼跳躍方法時,附加如下條件: ...式(185)又,於時間週期內之N,將s1之接收惡劣點配置成對於相位成為均勻分布,將s2之接收惡劣點配置成對於相位成為均勻分布。
因此,說明根據<條件#14>、<條件#15>、<條件#16>之預編碼跳躍方法之預編碼矩陣例。式(174)之預編碼矩陣設為α=1.0。
(例#8)
時間週期N=8,賦予如下式之時間週期N=8之預編碼跳躍方法之預編碼矩陣。
其中,i=0、1、...、7。
又,作為與式(186)不同之預編碼矩陣,可如以下賦予(i=0、1、...、7)(λ、θ11[i]不隨時間變化(變化亦可))。
因此,s1、s2之接收惡劣點係如第34圖。又,如以下賦予預編碼矩陣以取代賦予式(186)、式(187)亦可(i=0、1、...、7)(λ、θ11[i]不隨時間變化(變化亦可))。
或為,
(又,於式(186)~(189),將7π/8改設為-7π/8亦可。)接著,於式(174)之預編碼矩陣,思考關於α≠1,考慮到接收惡劣點彼此之複數平面之距離點、與(例#7)、(例#8)不同之預編碼跳躍方法。
在此,處理式(174)之時間週期N之預編碼跳躍方法,此時,依據<條件#14>,於Γ個終端裝置全部,在時間週期內之N,取到s1之接收惡劣點之時槽為1時槽以下。因此,能夠在N-1時槽以上,獲得以s1(p)發送之位元之對數概似比。同樣地,依據<條件#15>,於Γ個終端裝置全部,在時間週期內之N,取到s2之接收惡劣點之時槽為1時槽以下。因此,能夠在N-1時槽以上,獲得以s2(p)發送之位元之對數概似比。
因此,可知時間週期N大的值,可獲得對數概似比之時槽數變大。
然而,於實際的通道模型,由於受到散射波成分影響,時間週期N固定時,據判接收惡劣點之複數平面上之最小距離儘可能大者,資料之接收品質可能會提升。因此,於(例#7)、(例#8),思考關於α≠1,改良過(例#7)、(例#8)之預編碼跳躍方法。首先,敘述有關容易理解之改良過(例#8)之預編碼方法。
(例#9)
從式(186),以下式賦予改良過(例#8)之時間週期N=8之預編碼跳躍方法之預編碼矩陣。
其中,i=0、1、...、7。又,作為與式(190)不同之預編碼矩陣,可如以下賦予(i=0、1、...、7)(λ、θ11[i]不隨時間變化(變化亦可))。
或為, ...式(192)
或為,
或為,
或為,
或為,
或為, ...式(197)
因此,s1、s2之接收惡劣點係於α<1.0時表現如第35(a)圖,於α>1.0時表現如第35(b)圖。
(i)α<1.0時
α<1.0時,若著眼於接收惡劣點#1與#2之距離(d#1,#2)、及接收惡劣點#1與#3之距離(d#1,#3),則接收惡劣點之複數平面之最小距離係以min{d#1,#2,d#1,#3}來表現。此時,於第36圖表示α與d#1,#2及d#1,#3之關係。然後,使得min{d#1,#2,d#1,#3}為最大之α係如下式: 此時之min{d#1,#2,d#1,#3}係如下: 因此,於式(190)~式(197),以式(198)來賦予α之預編碼方法有效。其中,將α值設定為式(198),係用以獲得良好之資料接收品質之一種適當方法。然而,將α設定為取定與式 (198)相近值,亦同樣可能獲得良好的資料接收品質。因此,α之設定值不限於式(198)。
(ii)α>1.0時
α>1.0時,若著眼於接收惡劣點#4與#5之距離(d#4,#5)、及接收惡劣點#4與#6之距離(d#4,#6),則接收惡劣點之複數平面之最小距離係以min{d#4,#5,d#4,#6}來表現。此時,於第37圖表示α與d#4,#5及d#4,#6之關係。然後,使得min{d#4,#5,d#4,#6}為最大之α係如下式: 此時之min{d#4,#5,d#4,#6}係如下: 因此,於式(190)~式(197),以式(200)來賦予α之預編碼方法有效。其中,將α值設定為式(200),係用以獲得良好之資料接收品質之一種適當方法。然而,將α設定為取定與式(200)相近值,亦同樣可能獲得良好的資料接收品質。因此,α之設定值不限於式(200)。
(例#10)
從(例#9)之檢討,能夠以下式賦予改良過(例#7)之時間週期N=16之預編碼跳躍方法之預編碼矩陣(λ、θ11[i]不隨時間變化(變化亦可))。
i=0、1、...、7時:
i=8、9、...、15時:
或為,i=0、1、...、7時:
i=8、9、...、15時: ...式(205)
或為,i=0、1、...、7時:
i=8、9、...、15時:
或為,i=0、1、...、7時:
i=8、9、...、15時:
或為,i=0、1、...、7時:
i=8、9、...、15時:
或為,i=0、1、...、7時:
i=8、9、...、15時:
或為,i=0、1、...、7時:[數224]
i=8、9、...、15時:
或為,i=0、1、...、7時:
i=8、9、...、15時:
其中,α若為式(198)或式(200),則適合用以獲得良好的資料接收品質。此時,s1之接收惡劣點係於α<1.0時表現如第38(a)、(b)圖,於α>1.0時表現如第39(a)、(b)圖。
於本實施形態,說明有關時間週期N之預編碼跳躍方法用之N個不同預編碼矩陣之構成方法。此時,作為N個不同 預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但未必須限定於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
根據<條件#10>至<條件#16>而表示例#5至例#10,但為了加長預編碼矩陣之切換週期,例如從例#5至例#10選擇複數例,利用該選擇例所示之預編碼矩陣來實現長週期之預編碼矩陣切換方法亦可。例如利用以例#7所示之預編碼矩陣及例#10所示之預編碼矩陣,實現長週期之預編碼矩陣切換方法。此時,未必限於按照<條件#10>至<條件#16>。(於<條件#10>之式(158)、<條件#11>之式(159)、<條件#13>之式(164)、<條件#14>之式(175)、<條件#15>之式(176),設定「所有x,所有y」之處,條件「存在之x,存在之y」係在給予良好接收品質上甚為重要。)從別的角度來思考時,於週期N(N為大的自然數)之預編碼矩陣切換方法中,若包含例#5至例#10之某一預編碼矩陣,則給予良好接收品質之可能性變高。
(實施形態7)
於本實施形態,說明有關一接收調變訊號之接收裝置之構成,而前述調變訊號係以實施形態1~6所說明、規則地切換預編碼矩陣之發送方法所發送。
於實施形態1所說明的方法如下:利用規則地切換預編碼矩陣之發送方法發送調變訊號之發送裝置,係發送關於預編碼矩陣之資訊;接收裝置係根據該資訊,獲得用於發送訊框之規則的預編碼矩陣切換資訊,進行預編碼之解碼及檢波,獲得發送位元之對數概似比,其後進行錯誤更正解碼。
於本實施形態,說明有關與上述不同之接收裝置之構成、及預編碼矩陣之切換方法。
第40圖係本實施形態之發送裝置之構成之一例,關於與第3圖同樣動作者係附上同一符號。編碼器群(4002)係以發送位元(4001)作為輸入。此時,編碼器群(4002)係如實施形態1所說明,保持有複數個錯誤更正碼之編碼部,根據訊框構成訊號313,例如1個編碼、2個編碼器、4個編碼器之某一數目的編碼器會動作。
1個編碼器動作時,發送位元(4001)被進行編碼,獲得編碼後之發送位元,將該編碼後之發送位元分配給2系統,編碼器群(4002)輸出已分配位元(4003A)及已分配位元(4003B)。
2個編碼器動作時,將發送位元(4001)分割為2個(稱為分割位元A、B),第1編碼器係以分割位元A作為輸入而進 行編碼,將編碼後之位元作為已分配位元(4003A)輸出。第2編碼器係以分割位元B作為輸入而進行編碼,將編碼後之位元作為已分配位元(4003B)輸出。
4個編碼器動作時,將發送位元(4001)分割為4個(稱為分割位元A、B、C、D),第1編碼器係以分割位元A作為輸入而進行編碼,並輸出編碼後之位元A。第2編碼器係以分割位元B作為輸入而進行編碼,並輸出編碼後之位元B。第3編碼器係以分割位元C作為輸入而進行編碼,並輸出編碼後之位元C。第4編碼器係以分割位元D作為輸入而進行編碼,並輸出編碼後之位元D。然後,將編碼後之位元A、B、C、D分割為已分配位元(4003A)、已分配位元(4003B)。
作為一例,發送裝置係支援如以下表1(表1A及表1B)之發送方法。
如表1所示,發送訊號數(發送天線數)係支援1串流之訊號之發送與2串流之訊號之發送。又,調變方式係支援QPSK、16QAM、64QAM、64QAM、256QAM、1024QAM。尤其當發送訊號數為2時,串流#1與串流#2可各自設定調變方式,例如於表1,「#1:256QAM,#2:1024QAM」係表示「串流#1之調變方式為256QAM,串流#2之調變方式為1024QAM」(關於其他亦同樣地表現)。錯誤更正編碼方式係支援A、B、C三種。此時,A、B、C全都為不同碼,亦或A、B、C為不同編碼率,亦或A、B、C為不同區塊尺寸之編碼方法均可。
表1之發送資訊係對於已設定「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」之各模式,分派各發送資訊。因此,例如「發送訊號數:2」、「調變方式:#1:1024QAM、#2:1024QAM」、「編碼器數:4」、「錯誤更正編碼方法:C」時,將發送資訊設定為01001101。然後,發送裝置係於訊框中,傳送發送資訊及發送資料。然後,傳送發送資料時,尤其於「發送訊號數」為2時,按照表1來採用「預編碼矩陣切換方法」。於表1,作為「預編碼矩陣切換方法」係預先準備有D、E、F、G、H五種,按照表1來設定該五種之某一種。此時,不同五種之實現方法可考慮如下:
‧準備預編碼矩陣不同之五種而實現。
‧設定不同五種週期,例如D的週期設為4,E的週期設為8,以此類推而實現。
‧並用不同預編碼矩陣、不同週期兩者而實現。
第41圖係表示第40圖之發送裝置所發送的調變訊號之訊框構成之一例;發送裝置可進行如發送2個調變訊號z1(t)與z2(t)之模式、以及如發送1個調變訊號之模式兩者之設定。
於第41圖,符元(4100)係用以傳送表1所示之「發送資訊」之符元。符元(4101_1及4101_2)係通道推定用之參考(前導)符元。符元(4102_1、4103_1)係以調變訊號z1(t)所發送的資料傳送用符元,符元(4102_2、4103_2)係以調變訊號z2(t)所發送的資料傳送用符元;符元(4102_1)及符元(4102_2)係於同一時刻利用同一(共通)頻率而傳送;又,符元(4103_1)及符元(4103_2)係於同一時刻利用同一(共通)頻率而傳送。然後,符元(4102_1、4103_1)及符元(4102_2、4103_2)係採用實施形態1~4及實施形態6所說明、規則地切換預編碼矩陣之方法時之預編碼矩陣運算後之符元(因此,如實施形態1所說明,串流s1(t)、s2(t)之構成係如第6圖。)。
進而言之,於第41圖,符元(4104)係用以傳送表1所示之「發送資訊」之符元。符元(4105)係通道推定用之參考(前導)符元。符元(4106、4107)係以調變訊號z1(t)所發送的資料傳送用符元,此時,以調變訊號z1(t)所發送的資料傳送用符元係由於發送訊號數為1,因此不進行預編碼。
故,第40圖之發送裝置係生成並發送按照第41圖之訊框構成及表1之調變訊號。於第41圖,訊框構成訊號313包 含根據表1所設定關於「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」之資訊。然後,編碼部(4002)、映射部306A、B、加權合成部308A、B係將訊框構成訊號作為輸入,進行基於根據表1而設定之「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」之動作。又,關於相當於設定之「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」之「發送資訊」,亦發送至接收裝置。
接收裝置之構成係與實施形態1同樣能以第7圖來表示。與實施形態1之不同點在於,由於收發裝置預先共有表1之資訊,因此即便發送裝置未發送規則切換之預編碼矩陣之資訊,藉由發送裝置發送相當於「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」之「發送資訊」,接收裝置獲得該資訊,仍可從表1獲得規則切換之預編碼矩陣之資訊之點。因此,第7圖之接收裝置係藉由控制資訊解碼部709獲得第40圖之發送裝置所發送的「發送資訊」,可從相當於表1之資訊,獲得關於包含規則切換之預編碼矩陣之資訊、由發送裝置所通知的發送方法之資訊之訊號710。因此,訊號處理部711係於發送訊號數2時,可進行根據預編碼矩陣之切換模式之檢波,可獲得接收對數概似比。
再者,於上述係如表1,對於「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」設定「發送資訊」,並對於此設定預編碼矩陣切換方法,但未必須對於「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」 設定「發送資訊」亦可,例如表2,對於「發送訊號數」、「調變方式」設定「發送資訊」,對於此設定預編碼矩陣切換方法亦可。
在此,「發送資訊」及預編碼矩陣切換方法之設定方法不限於表1或表2,預編碼矩陣切換方法若預先決定為根據「發送訊號數」、「調變方式」、「編碼器數」、「錯誤更正編碼方法」等發送參數來切換(亦即若藉由發送參數之某一者,(或由複數個發送參數所構成之某一者)來切換),則發送裝置無須傳送關於預編碼矩陣切換方法之資訊,接收裝置可藉由辨別發送參數之資訊,來辨別發送裝置所用之預 編碼矩陣切換方法,因此可進行確實的解碼、檢波。再者,於表1、表2,發送調變訊號數為2時,採用規則切換預編碼矩陣之發送方法,但只要發送調變訊號數為2以上,即可適用規則切換預編碼矩陣之發送方法。
因此,收發裝置若共有與關於包含預編碼切換方法之資訊之發送參數相關的表,則發送裝置不發送關於預編碼切換方法之資訊而發送不含關於預編碼切換方法之資訊之控制資訊,接收裝置藉由獲得該控制資訊,即可推定預編碼矩陣切換方法。
如以上,於本實施形態,說明有關發送裝置不發送關於規則切換預編碼矩陣之方法之直接資訊,接收裝置推定關於發送裝置所用「規則切換預編碼矩陣之方法」之預編碼矩陣之資訊的方法。藉此,發送裝置由於不發送關於規則切換預編碼矩陣之方法之直接資訊,因此可獲得資料傳送效率更提升之效果。
再者,於本實施形態中,說明時間軸之預編碼權重變更時之實施形態,但如於實施形態1所說明,採用OFDM傳送等多載波傳送方式時,亦可同樣地實施本實施形態。
又,尤其在預編碼切換方法僅依發送訊號數而變更時,接收裝置可藉由獲得發送裝置所發送的發送訊號數之資訊,來得知預編碼切換方法。
於本說明書中,具備發送裝置者可考慮例如播送台、基地台、存取點、終端裝置、行動電話(mobile phone)等通訊‧播送機器,此時,具備接收裝置者可考慮例如電視、 收音機、終端裝置、個人電腦、行動電話、存取點、基地台等通訊機器。又,本發明之發送裝置、接收裝置係具有通訊功能之機器,該機器亦可考慮諸如可經由某種介面,連接於電視、收音機、個人電腦、行動電話等用以執行應用之裝置的形態。
又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元、後置、參考符元等)、控制資訊用符元等可於訊框任意配置。然後,在此雖稱為前導符元、控制資訊用符元,但採取任何標呼方式均可,功能本身才是重點。
前導符元若為例如於收發機中已利用PSK調變予以調變之已知符元(例如接收機取得同步,藉此接收機可得知發送機所發送的符元亦可)即可,接收機利用該符元,進行頻率同步、時間同步、(各調變訊號之)通道推定(CSI(Channel State Information:通道狀態資訊)之推定)、訊號檢測等。
又,控制資訊用符元係為了實現(應用等)資料以外之通訊,用以傳送須對通訊對象傳送之資訊(例如用於通訊之調變方式‧錯誤更正編碼方式、錯誤更正編碼方式之編碼率、高位層之設定資訊等)之符元。
再者,本發明不限定於上述實施形態1~5,可予以多方變更而實施。例如於上述實施形態,說明有關作為通訊裝置而進行的情況,但不限於此,作為軟體而進行該通訊方法亦可。
又,於上述說明有關從2個天線發送2個調變訊號之方 法之預編碼切換方法,但不限於此,亦可同樣地實施如下之預編碼切換方法:在對於4個映射後之訊號進行預編碼,生成4個調變訊號,從4個天線發送之方法,亦即作為對於N個映射後之訊號進行預編碼,生成N個調變訊號,從N個天線發送之方法中,同樣地變更預編碼權重(矩陣)。
於本說明書,採用「預編碼」、「預編碼權重」等用語,但稱呼方式本身可為任何稱呼方式,於本發明,其訊號處理本身才是重點。
藉由串流s1(t)、s2(t)來傳送不同資料,或傳送同一資料均可。
發送裝置之天線、接收裝置之天線均由圖式所記載的1個天線、或複數個天線來構成均可。
再者,例如預先於ROM(Read Only Memory:唯讀記憶體)儲存執行上述通訊方法之程式,藉由CPU(Central Processor Unit:中央處理單元)令該程式動作亦可。
又,於電腦可讀取之記憶媒體,儲存執行上述通訊方法之程式,將儲存於記憶媒體之程式記錄於電腦之RAM(Random Access Memory:隨機存取記憶體),按照該程式令電腦動作亦可。
然後,上述各實施形態等之各構成在典型上亦可作為積體電路之LSI(Large Scale Integration:大規模積體)而實現。該等係個別製成1晶片,或包含各實施形態之所有構成或一部分構成而製成1晶片均可。於此雖為LSI,但視積體程度差異,有時亦稱為IC(Integrated Circuit:積體電路)、 系統LSI、特大型LSI、超大型LSI。又,積體電路化的手法不限於LSI,以專用電路或通用處理器來實現亦可。亦可利用於LSI製造後可程式化之FPGA(Field Programmable Gate Array:現場可程式化閘極陣列),或可再構成LSI內部之電路胞(cell)之連接或設定之可重構處理器。
進而言之,若由於半導體技術進步或所衍生的其他技術,出現取代LSI之積體電路化技術時,當然亦可利用該技術來進行功能區塊之積體化。作為可能性可包括生化技術之適用等。
(實施形態8)
於本實施形態,在此說明有關實施形態1~4、實施形態6所說明規則切換預編碼權重之方法之應用例。
第6圖係與本實施形態之加權方法(預編碼(Precoding))相關連之圖;加權合成部600係統合第3圖之加權合成部308A與308B兩者之加權合成部。如第6圖所示,串流s1(t)及串流s2(t)相當於第3圖之基頻訊號307A及307B,總言之,其為按照QPSK、16QAM、64QAM等調變方式之映射之基頻訊號同相1、正交Q成分。然後,如第6圖之訊框成分,串流s1(t)係將符元號碼u之訊號表現為s1(u),將符元號碼u+1之訊號表現為s1(u+1),以此類推。同樣地,串流s2(t)係將符元號碼u之訊號表現為s2(u),將符元號碼u+1之訊號表現為s2(u+1),以此類推。然後,加權合成部600係以第3圖之基頻訊號307A(s1(t))及307B(s2(t))、關於加權資訊之資訊315作為輸入,施以按照關於加權資訊之資訊315之加權方 法,並輸出第3圖之加權合成後之訊號309A(z1(t))、309B(z2(t))。
此時,例如採用實施形態6之例8之週期N=8之預編碼矩陣切換方法時,z1(t)、z2(t)係表現如下。
符元號碼8i時(i為0以上之整數):
其中,j為虛數單位,k=0。
符元號碼8i+1時:
其中,k=1。
符元號碼8i+2時:
其中,k=2。
符元號碼8i+3時:[數231]
其中,k=3。
符元號碼8i+4時:
其中,k=4。
符元號碼8i+5時:
其中,k=5。
符元號碼8i+6時:
其中,k=6。
符元號碼8i+7時:[數235]
其中,k=7。
在此,雖記載作符元號碼,但符元號碼視為時刻(時間)亦可。如於其他實施形態所說明,例如於式(225),時刻8i+7之z1(8i+7)與z2(8i+7)為同一時刻之訊號,且z1(8i+7)與z2(8i+7)係利用同一(共通)頻率,由發送裝置發送。總言之,若將時刻T之訊號設為s1(T)、s2(T)、z1(T)、z2(T),從某些預編碼矩陣、s1(T)及s2(T)求出z1(T)及z2(T),z1(T)及z2(T)係於利用同一(共通)頻率,由發送裝置(於同一時刻(時間))發送。又,利用OFDM等多載波傳送方式時,相當於(子)載波L、時刻T之s1、s2、z1、z2之訊號設為s1(T,L)、s2(T,L)、z1(T,L)、z2(T,L),從某些預編碼矩陣、s1(T,L)及s2(T,L)求出z1(T,L)及z2(T,L),z1(T,L)及z2(T,L)係於利用同一(共通)頻率,由發送裝置(於同一時刻(時間))發送。
此時,作為α之適當值包括式(198)或式(200)。
於本實施形態,以上面所述之式(190)之預編碼矩陣為基礎,說明有關增大週期之預編碼切換方法。
預編碼切換矩陣之週期設為8M,如以下表現不同預編碼矩陣8M個。
此時,i=0、1、2、3、4、5、6、7,k=0、1、...、M-2、M-1。
例如M=2時,若α<1,則k=0之s1之接收惡劣點(○)及s2之接收惡劣點(□)係表現如第42(a)圖。同樣地,k=1之s1之接收惡劣點(○)及s2之接收惡劣點(□)係表現如第42(b)圖。如此,以式(190)之預編碼矩陣為基礎,接收惡劣點係如第42(a)圖,將對於該式(190)右邊矩陣之第2列之各要素乘算ejX後之矩陣,設為預編碼矩陣(參考式(226)),接收惡劣點係對於第42(a)圖,具有經旋轉之接收惡劣點(參考第42(b)圖)。(其中,第42(a)圖與第42(b)圖之接收惡劣點不重疊。如此,使得乘算ejX,接收惡劣點仍不重疊即可。又,不對於該式(190)右邊矩陣之第2列之各要素乘算ejX,將對於該式(190)右邊矩陣之第1列之各要素乘算ejX後之矩陣,設為預編碼矩陣亦可)此時,預編碼矩陣F[0]~F[15]係以下式表現。
其中,i=0、1、2、3、4、5、6、7,k=0、1。
如此一來,M=2時,生成F[0]~F[15]之預編碼矩陣(F[0]~F[15]之預編碼矩陣可採任何順序排列。又,F[0]~F[15]之矩陣為各不相同的矩陣即可。)。然後,例如符元號碼16i時,利用F[0]進行預編碼,符元號碼16i+1時,利用F[1]進行預編碼,...,符元號碼16i+h時,利用F[h]進行預編碼 (h=0、1、2、...、14、15)。(在此,如以前的實施形態所述,未必須規則地切換預編碼矩陣亦可。)
歸納以上,參考式(82)~式(85),以下式表現週期N之預編碼矩陣。
此時,由於週期為N,因此i=0、1、2、...、N-2、N-1。然後,以下式表現根據式(228)之週期N×M之預編碼矩陣。
此時,i=0、1、2、...、N-2、N-1,k=0、1、...、M-2、M-1。
如此一來,生成F[0]~F[N×M-1]之預編碼矩陣(F[0]~F[N×M-1]之預編碼矩陣可對週期N×M以任何順序排列而使用。)。然後,例如符元號碼N×M×i時,利用F[0]進行預編碼,符元號碼N×M×i+1時,利用F[1]進行預編碼,...,符元號碼N×M×i+h時,利用F[h]進行預編碼(h=0、1、2、...、N×M-2、N×M-1)。(在此,如以前的實施形態所述,未必須規則地切換預編碼矩陣亦可。)
若如此生成預編碼矩陣,則可實現週期大之預編碼矩陣之切換方法,可簡單變更接收惡劣點之位置,這可能帶 來資料接收品質之提升。再者,週期N×M之預編碼矩陣雖設為如式(229),但如前述,週期N×M之預編碼矩陣設為如下式亦可。
此時,i=0、1、2、...、N-2、N-1,k=0、1、...、M-2、M-1。
再者,於式(229)及式(230),0弧度δ2π弧度時,δ=π弧度時會成為么正矩陣,δ≠π弧度時會成為非么正矩陣。於本方式中,π/2弧度|δ|<π弧度之非么正矩陣時,成為一特徵性構成(關於δ的條件,其他實施形態時亦同),可獲得良好的資料接收品質。作為別的構成亦包括么正矩陣的情況,於實施形態10或實施形態16會詳細敘述,於式(229)、式(230)中,若N設為奇數,可獲得良好的資料接收品質之可能性變高。
(實施形態9)
於本實施形態,敘述有關規則地切換利用么正矩陣之預編碼矩陣之方法。
如實施形態8所述,於週期N規則地切換預編碼矩陣之方法中,以下式表現參考式(82)~式(85)、為了週期N而準備之預編碼矩陣。
[數241]
此時,i=0、1、2、...、N-2、N-1,k=0。(α>0)
於本實施形態,由於處理么正矩陣,因此能夠以下式表現式(231)之預編碼矩陣。
此時,i=0、1、2、...、N-2、N-1,k=0。(α>0)
此時,從實施形態3之(數106)之條件5及(數107)之條件6可知,以下條件對於獲得良好的資料接收品質甚為重要。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
於實施形態6說明時,敘述有關接收惡劣點間之距離,而為了增大接收惡劣點間之距離,重點在於週期N為3以上之基數。於以下說明有關該點。
如實施形態6所說明,為了於複數平面上,將接收惡劣點配置成對於相位呈均勻分布,賦予<條件#19>或<條件#20>。
總言之,於<條件#19>意味相位差為2π/N弧度。又,於<條件#20>意味相位差為-2π/N弧度。
然後,θ11(0)-θ21(0)=0弧度,且α<1時,於第43(a)圖表示週期N=3時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置,於第43(b)圖表示週期N=4時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置。又,θ11(0)-θ21(0)=0弧度,且α>1時,於第44(a)圖表示週期N=3時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置,於第44(b)圖表示週期N=4時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置。
此時,考慮到接收惡劣點與原點所形成的線段、與實軸上Real0之半直線所形成的相位(參考第43(a)圖)時,就α>1、α<1之任一情況而言,N=4時,勢必發生關於s1之接收惡劣點之前述相位與關於s2之接收惡劣點之前述相位成為同一值的情況(參考第43圖之4301、4302及第44圖之4401、4402)。此時,於複數平面,接收惡劣點間之距離變小。另,N=3時,不會發生關於s1之接收惡劣點之前述相位與關於s2之接收惡劣點之前述相位成為同一值的情況。
從以上來看,若考慮於週期N為偶數時,勢必發生關於s1之接收惡劣點之前述相位與關於s2之接收惡劣點之前述相位成為同一值的情況,則與週期N為偶數時比較,週期N為奇數時,於複數平面,接收惡劣點間之距離變大的可能性較高。其中,週期N為小值,例如N16以下時,複數平面之接收惡劣點之最小值係由於存在有接收惡劣點之個數甚少,故可確保某種程度的長度。因此,N16時,即便為偶數,仍可能存在可確保資料接收品質的情況。
因此,於根據式(232)規則地切換預編碼矩陣之方式中,若週期N設為奇數,則可令資料接收品質提升的可能性甚高。再者,根據式(232)生成F[0]~F[N-1]之預編碼矩陣(F[0]~F[N-1]之預編碼矩陣係對週期N以任何順序排列而使用均可。)。然後,例如符元號碼Ni時,利用F[0]進行預編碼,符元號碼Ni+1時,利用F[1]進行預編碼,...,符元號碼N×i+h時,利用F[h]進行預編碼(h=0、1、2、...、N-2、N-1)。(在此,如以前的實施形態所述,未必須規則地切換 預編碼矩陣亦可。)又,s1、s2之調變方式均在16QAM時,將α設定如下: 則可能能夠獲得於某特定之LOS環境下,可增大IQ平面之16×16=256個訊號點間之最小距離之效果。
於本實施形態,說明有關時間週期N之預編碼跳躍方法用之N個不同預編碼矩陣之構成方法。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但未必須限定於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,於週期H(H係大於上述規則地切換預編碼矩陣之方式之週期N之自然數)之預編碼矩陣切換方法中,若包含本實施形態之N個不同之預編碼矩陣,則給予良好接收品質之 可能性變高。此時,<條件#17>、<條件#18>可調換成如下條件(週期視為N)。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(實施形態10)
於本實施形態,針對規則地切換利用么正矩陣之預編碼矩陣之方法,敘述與實施形態9不同之例。
於週期2N規則地切換預編碼矩陣之方法中,以下式表現為了週期2N而準備之預編碼矩陣。
α>0,設為(不受i影響)固定值。
[數251] i=N、N+1、N+2、...、2N-2、2N-1時: α>0,設為(不受i影響)固定值。(式(234)之α與式(235)之α為同一值。)
此時,從實施形態3之(數106)之條件5及(數107)之條件6可知,對於式(234)而言,以下條件對於獲得良好的資料接收品質甚為重要。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
然後,考慮附加以下條件。
接著,如實施形態6所說明,為了於複數平面上,將接收惡劣點配置成對於相位呈均勻分布,賦予<條件#24>或<條件#25>。
總言之,於<條件#24>意味相位差為2π/N弧度。又,於<條件#25>意味相位差為-2π/N弧度。
然後,θ11(0)-θ21(0)=0弧度,且α>1時,於第45(a)、(b)圖表示N=4時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置。從第45(a)、(b)圖可知,於複數平面,s1之接收惡劣點之最小距離保持甚大,又,同樣地,,s2之接收惡劣點之最小距離亦保持甚大。然後,於α<1時亦為同樣狀態。又,若與實施形態9同樣地思考,則與週期N為偶數時比較,週期N為奇數時,於複數平面,接收惡劣點間之距離變大的可能性較高。其中,週期N為小值,例如N16以下時,複數平面之接收惡劣點之最小距離係由於存在有接 收惡劣點之個數甚少,故可確保某種程度的長度。因此,N16時,即便為偶數,仍可能存在可確保資料接收品質的情況。
因此,於根據式(234)、(235)規則地切換預編碼矩陣之方式中,若週期N設為奇數,則可令資料接收品質提升的可能性甚高。再者,根據式(234)、(235)生成F[0]~F[2N-1]之預編碼矩陣(F[0]~F[2N-1]之預編碼矩陣係對週期2N以任何順序排列而使用均可。)。然後,例如符元號碼2Ni時,利用F[0]進行預編碼,符元號碼2Ni+1時,利用F[1]進行預編碼,...,符元號碼2N×i+h時,利用F[h]進行預編碼(h=0、1、2、...、2N-2、2N-1)。(在此,如以前的實施形態所述,未必須規則地切換預編碼矩陣亦可。)又,s1、s2之調變方式均在16QAM時,將α設定如式(233),則可能能夠獲得於某特定之LOS環境下,可增大IQ平面之16×16=256個訊號點間之最小距離之效果。
又,作為與<條件#23>不同的條件而思考以下條件。
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
此時,藉由符合<條件#21>、且符合<條件#22>、且符合<條件#26>、且符合<條件#27>,可增大複數平面之s1彼此之接收惡劣點之距離,且可增大複數平面之s2彼此之接收惡劣點之距離,因此可獲得良好的資料接收品質。
於本實施形態,說明有關時間週期2N之預編碼跳躍方法用之2N個不同預編碼矩陣之構成方法。此時,作為2N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1],本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1]之順序的情況,但未必須限定於此,本實施形態所生成的2N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期2N之預編碼跳躍方法,但隨機利用2N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用2N個不同預編碼矩陣。
又,於週期H(H係大於上述規則地切換預編碼矩陣之方式之週期2N之自然數)之預編碼矩陣切換方法中,若包含本實施形態之2N個不同之預編碼矩陣,則給予良好接收品質之可能性變高。
(實施形態11)
於本實施形態,敘述有關規則地切換利用非么正矩陣之預編碼矩陣之方法。
於週期2N規則地切換預編碼矩陣之方法中,以下式表現為了週期2N而準備之預編碼矩陣。
α>0,設為(不受i影響)固定值。又,δ≠π弧度。
α>0,設為(不受i影響)固定值。(式(236)之α與式(237)之α為同一值。)
此時,從實施形態3之(數106)之條件5及(數107)之條件6可知,對於式(236)而言,以下條件對於獲得良好的資料接收品質甚為重要。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
然後,考慮附加以下條件。
再者,賦予下式之預編碼矩陣來取代式(237)亦可。
α>0,設為(不受i影響)固定值。(式(236)之α與式(238)之α為同一值。)
作為例子,如實施形態6所說明,為了於複數平面上,將接收惡劣點配置成對於相位呈均勻分布,賦予<條件#31>或<條件#32>。
總言之,於<條件#31>意味相位差為2π/N弧度。又,於<條件#32>意味相位差為-2π/N弧度。
然後,於第46(a)、(b)圖表示θ11(0)-θ21(0)=0弧度,且α>1時,δ=(3π)/4弧度時,N=4時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置。藉由如此,可增大切換預編碼矩陣之週期,且於複數平面,s1之接收惡劣點之最小距離保持甚大,又,同樣地,s2之接收惡劣點之最小距離亦保持甚大,因此可獲得良好的接收品質。在此,以α>1、δ=(3π)/4弧度、N=4時為例來說明,但不限於此,若為π/2弧度δπ弧度且α>0且α≠1,均可獲得同樣效果。
又,作為與<條件#30>不同的條件而思考以下條件。
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
此時,藉由符合<條件#28>、且符合<條件#29>、且符合<條件#33>、且符合<條件#34>,可增大複數平面之s1彼此之接收惡劣點之距離,且可增大複數平面之s2彼此之接收惡劣點之距離,因此可獲得良好的資料接收品質。
於本實施形態,說明有關時間週期2N之預編碼跳躍方法用之2N個不同預編碼矩陣之構成方法。此時,作為2N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1],本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1]之順序的情況,但未必須限定於此,本實施形態所生成的2N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期2N之預編碼跳躍方法,但隨機利用2N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用2N個不同預編碼矩陣。
又,於週期H(H係大於上述規則地切換預編碼矩陣之方 式之週期2N之自然數)之預編碼矩陣切換方法中,若包含本實施形態之2N個不同之預編碼矩陣,則給予良好接收品質之可能性變高。
(實施形態12)
於本實施形態,敘述有關規則地切換利用非么正矩陣之預編碼矩陣之方法。
於週期N規則地切換預編碼矩陣之方法中,以下式表現為了週期N而準備之預編碼矩陣。
α>0,設為(不受i影響)固定值。又,δ≠π弧度(不受i影響,固定值),i=0、1、2、...、N-2、N-1。
此時,從實施形態3之(數106)之條件5及(數107)之條件6可知,對於式(239)而言,以下條件對於獲得良好的資料接收品質甚為重要。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
[數271]<條件#36> (x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
作為例子,如實施形態6所說明,為了於複數平面上,將接收惡劣點配置成對於相位呈均勻分布,賦予<條件#37>或<條件#38>。
總言之,於<條件#37>意味相位差為2π/N弧度。又,於<條件#38>意味相位差為-2π/N弧度。
此時,若為π/2弧度|δ|π弧度且α>0且α≠1,則可增大複數平面之s1彼此之接收惡劣點之最小距離,且可增大複數平面之s2彼此之接收惡劣點之最小距離,因此可獲得良好的接收品質。再者,<條件#13>、<條件#18>並非必要條件。
於本實施形態,說明有關時間週期N之預編碼跳躍方法用之N個不同預編碼矩陣之構成方法。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1], 本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但未必須限定於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,於週期H(H係大於上述規則地切換預編碼矩陣之方式之週期N之自然數)之預編碼矩陣切換方法中,若包含本實施形態之N個不同之預編碼矩陣,則給予良好接收品質之可能性變高。此時,<條件#35>、<條件#36>可調換成如下條件(週期視為N)。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1, x≠y。)
(實施形態13)
於本實施形態,說明有關實施形態8之其他例。
於週期2N規則地切換預編碼矩陣之方法中,以下式表現為了週期2N而準備之預編碼矩陣。
α>0,設為(不受i影響)固定值。又,δ≠π弧度。
α>0,設為(不受i影響)固定值。(式(240)之α與式(241)之α為同一值。)
然後,以下式表現以式(240)及式(241)為基礎之週期2×N×M之預編碼矩陣。
此時,k=0、1、...、M-2、M-1。
此時,k=0、1、...、M-2、M-1。又,Xk=Yk或Xk≠Yk均可。
如此一來,生成F[0]~F[2×N×M-1]之預編碼矩陣(F[0]~F[2×N×M-1]之預編碼矩陣可對週期N×M以任何順序排列而使用。)。然後,例如符元號碼2×N×M×i時,利用F[0]進行預編碼,符元號碼2×N×M×i+1時,利用F[1]進行預編碼,...,符元號碼2×N×M×i+h時,利用F[h]進行預編碼(h=0、1、2、...、2×N×M-2、2×N×M-1)。(在此,如以前的實施形態所述,未必須規則地切換預編碼矩陣亦可。)
若如此生成預編碼矩陣,則可實現週期大之預編碼矩陣之切換方法,可簡單變更接收惡劣點之位置,這可能帶來資料接收品質之提升。
再者,週期2×N×M之預編碼矩陣之式(242)設為如下式亦可。
此時,k=0、1、...、M-2、M-1。
又,週期2×N×M之預編碼矩陣之式(243)設為式(245)~式(247)之某一者亦可。
此時,k=0、1、...、M-2、M-1。
此時,k=0、1、...、M-2、M-1。
此時,k=0、1、...、M-2、M-1。
再者,當著眼於接收惡劣點時,若從式(242)至式(247)符合以下所有數式:[數284] (x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
則可獲得良好的資料接收品質。再者,於實施形態8,符合<條件#39>及<條件#40>即可。
又,當著眼於式(242)至式(247)之Xk、Yk時,若符合以下兩個條件: (a為0、1、2、...、M-2、M-1,b為0、1、2、...、M-2、M-1,a≠b。)其中,s為整數。
(a為0、1、2、...、M-2、M-1,b為0、1、2、...、M-2、M-1,a≠b。)其中,u為整數。則可獲得良好的資料接收品質。再者,於實施形態8,符合<條件#42>即可。
再者,於式(242)及式(247),0弧度δ2π弧度時,δ=π弧度時會成為么正矩陣,δ≠π弧度時會成為非么正矩陣。於本方式中,π/2弧度|δ|<π弧度之非么正矩陣時,成為一特徵性構成,可獲得良好的資料接收品質。作為別的構成亦包括么正矩陣的情況,於實施形態10或實施形態16會詳細敘述,於式(242)至式(247)中,若N設為奇數,可獲得良好的資料接收品質之可能性變高。
(實施形態14)
於本實施形態,就規則地切換預編碼矩陣之方式,說明有關作為預編碼矩陣,利用么正矩陣的情況與利用非么正矩陣的情況之區分使用例。
說明例如利用2列2行之預編碼矩陣(各要素係以複數個數所構成)時,亦即說明有關對於根據某調變方式之2個調變訊號(s1(t)及s2(t)),施以預編碼,從2個天線發送預編碼後之2個訊號的情況。採用規則地切換預編碼矩陣之方法來傳送資料時,第3圖及第13圖之發送裝置係藉由訊框構成 訊號313,由映射部306A、306B切換調變方式。此時,調變方式之調變多值數(調變多值數:IQ平面之調變方式之訊號點之數目)與預編碼矩陣之關係。
規則地切換預編碼矩陣之方法之優點在於如實施形態6所說明,於LOS環境下,可獲得良好的資料接收品質之點,尤其在接收裝置施以ML運算或根據ML運算之APP(或Max-Log APP)時,其效果甚大。然而,ML運算係伴隨著調變方式之調變多值數,而對電路規模(運算規模)帶來甚大影響。例如從2個天線發送預編碼後之2個訊號,2個調變訊號(根據預編碼前之調變方式之訊號)均採用同一調變方式時,調變方式為QPSK的情況下,IQ平面之候補訊號點(第11圖之接收訊號點1101)之數目為4×4=16個,16QAM的情況下為16×16=256個,64QAM的情況下為64×64=4096個,256QAM的情況下為256×256=65536個,1024QAM的情況下為1024×1024=1048576個,為了將接收裝置之運算規模壓低在某程度之電路規模,調變方式為QPSK、16QAM、64QAM時,於接收裝置,採用利用ML運算(根據ML運算之(Max-Log)APP)之檢波,256QAM、1024QAM時,採用利用如MMSE、ZF之線性運算之檢波。(視情況,256QAM時亦可採用ML運算。)
設想該類接收裝置時,若考慮到多工訊號分離後之SNR(signal-to-noise power ratio:訊號雜訊功率比)的情況,於接收裝置採用如MMSE、ZF之線性運算時,么正矩陣適合作為預編碼矩陣,採用ML運算時,採用么正矩陣‧非么 正矩陣之任一者作為預編碼矩陣均可。若考慮上述任一實施形態之說明,從2個天線發送預編碼後之2個訊號,2個調變訊號(根據預編碼前之調變方式之訊號)均採用同一調變方式的情況下,若調變方式之調變多值數為64值以下(或256值以下)時,利用非么正矩陣,作為採用規則地切換預編碼矩陣之方式時之預編碼矩陣,大於64值(或大於256值)時,利用么正矩陣,則於任一調變方式的情況下,獲得可縮小接收裝置之電路規模,同時可得到良好的資料接收品質的效果之可能性變高。
又,於調變方式之調變多值數為64值以下(或256值以下)的情況下,亦可能有採用么正矩陣較佳的情況。若考慮該情況,則於支援調變方式之調變多值數為64值以下(或256值以下)之複數種調變方式的情況下,重點在於作為採用以所支援的複數種64值以下之調變方式之某一調變方式,來規則地切換預編碼矩陣之方式時之預編碼矩陣,存在有採用非么正矩陣的情況。
於上述,作為一例而說明有關從2個天線發送預編碼後之2個訊號的情況,但不限於此,從N個天線發送預編碼後之N個訊號,N個調變訊號(根據預編碼前之調變方式之訊號)均採用同一調變方式的情況下,於調變方式之調變多值數設定臨限值βN,調變方式之調變多值數支援βN以下之複數種調變方式時,作為採用以所支援的βN以下之複數種調變方式之某一調變方式,來規則地切換預編碼矩陣之方式時之預編碼矩陣,存在有採用非么正矩陣的情況;調變方式 之調變多值數大於βN之調變方式時,若採用么正矩陣,於通訊系統所支援的所有調變方式中,在任一調變方式的情況下,獲得可縮小接收裝置之電路規模,同時可得到良好的資料接收品質的效果之可能性變高。(調變方式之調變多值數為βN以下時,作為採用規則地切換預編碼矩陣之方式時之預編碼矩陣,亦可始終採用非么正矩陣。)
於上述,以同時發送之N個調變訊號之調變方式採用同一調變方式的情況來說明,而以下說明有關於同時發送之N個調變訊號,存在有兩種以上之調變方式的情況。
作為例子而說明有關從2個天線,發送預編碼後之2個訊號的情況。2個調變訊號(根據預編碼前之調變方式之訊號)均為同一調變方式、或為不同調變方式時,採用調變多值數為2a1值之調變方式與調變多值數為2a2值之調變方式。此時,於接收裝置,採用ML運算(根據ML運算之(Max-Log)APP)時,IQ平面之候補訊號點(第11圖之接收訊號點1101)之數目存在有2a1+2a2=2a1+a2之候補訊號點。此時,如上所述,為了可縮小接收裝置之電路規模,同時可得到良好的資料接收品質,對於2a1+a2設定2β之臨限值,2a1+a2 2β時,作為採用規則地切換預編碼矩陣之方式時之預編碼矩陣,係採用非么正矩陣,2a1+a2>2β時,採用么正矩陣即可。
又,於2a1+a2 2β時,亦可能有採用么正矩陣較佳的情況。若考慮該類情況,作為採用以支援2a1+a2 2β之複數種調變方式之組合之某一調變方式之組合,規則地切換預編碼 矩陣時之預編碼矩陣,存在有採用非么正矩陣的情況甚為重要。
於上述,作為一例而說明關於從2個天線,發送預編碼後之2個訊號的情況,但不限於此。例如N個調變訊號(根據預編碼前之調變方式之訊號)均為同一調變方式,或存在有不同調變方式時,將第i調變訊號之調變方式之調變多值數設為2a1(i=1、2、...、N-1、N)。
此時,於接收裝置,採用ML運算(根據ML運算之(Max-Log)APP)時,IQ平面之候補訊號點(第11圖之接收訊號點1101)之數目存在有2a1×2a2×...×2ai×...×2aN=2a1+a2+...+ai+...+aN之候補訊號點。此時,如上所述,為了可縮小接收裝置之電路規模,同時可得到良好的資料接收品質,對於2a1+a2+...+ai+...+aN設定2β之臨限值。
其中,支援符合<條件#44>之複數種調變方式之組合的情況,作為採用所支援的<條件#44>之複數種調變方式之組合之某一調變方式之組合,規則地切換預編碼矩陣時之預編碼矩陣,存在有採用非么正矩陣的情況; [數290]<條件#45>2 a1+a2+…+ai+…+aN =2 Y >2 β ...式(249)
其中,支援符合<條件#45>之所有調變方式之組合的情況,若採用么正矩陣,則於通訊系統所支援的所有調變方式中,無論於任何調變方式之組合,獲得可縮小接收裝置之電路規模,同時可得到良好的資料接收品質的效果之可能性變高。(支援符合<條件#44之複數種調變方式之所有組合中,作為採用規則地切換預編碼矩陣之方式時之預編碼矩陣,亦可利用非么正矩陣。)
(實施形態15)
於本實施形態,說明有關採用如OFDM之多載波傳送方式、規則地切換預編碼矩陣之方式之方式之系統例。
第47圖係表示於本實施形態之採用如OFDM之多載波傳送方式、規則地切換預編碼矩陣之方式之方式之系統中,播送台(基地台)所發送的發送訊號之時間-頻率軸之訊框構成之一例。(時間$1至時間$T之訊框構成。)第47(A)圖係於實施形態1等所說明的串流s1之時間-頻率軸之訊框構成;第47(B)圖係於實施形態1等所說明的串流s2之時間-頻率軸之訊框構成。串流s1與串流s2之同一時間、同一(子)載波之符元係利用複數個天線,於同一時間、同一頻率發 送。
於第47(A)、(B)圖,採用OFDM時所使用的(子)載波係以下述載波群分割:(子)載波a~(子)載波a+Na所構成的載波群#A;(子)載波b~(子)載波a+Nb所構成的載波群#B;(子)載波c~(子)載波c+Nc所構成的載波群#C;(子)載波d~(子)載波d+Nd所構成的載波群#D;以此類推。然後,於各子載波群,支援複數種發送方法。在此,藉由支援複數種發送方法,可有效活用各發送方法所具有的優點。例如於第47(A)、(B)圖,載波群#A係採用空間多工MIMO傳送方式,獲採用預編碼矩陣固定之MIMO傳送方式;載波群#B係採用規則地切換預編碼矩陣之MIMO傳送方式;載波群#C係僅發送串流s1;載波群#D係利用時空區塊碼來發送。
第48圖係表示於本實施形態之採用如OFDM之多載波傳送方式、規則地切換預編碼矩陣之方式之方式之系統中,播送台(基地台)所發送的發送訊號之時間-頻率軸之訊框構成之一例,其表示不同於第47圖、從時間$X至時間$X+T’之訊框構成。第48圖係與第47圖相同,採用OFDM時所使用的(子)載波係以下述載波群分割:(子)載波a~(子)載波a+Na所構成的載波群#A;(子)載波b~(子)載波a+Nb所構成的載波群#B;(子)載波c~(子)載波c+Nc所構成的載波群#C;(子)載波d~(子)載波d+Nd所構成的載波群#D;以此類推。然後,第48圖與第47圖之相異點在於,存在有第47圖所用之通訊方式與第48圖所用之通訊方式不同之載波群。於第48圖,於(A)、(B),載波群#A係利用時空區塊碼 來發送;載波群#B係採用規則地切換預編碼矩陣之MIMO傳送方式;載波群#C係採用規則地切換預編碼矩陣之MIMO傳送方式;載波群#D係僅發送串流s1。
接著,說明有關所支援的發送方法。
第49圖係表示採用空間多工MIMO傳送方式、或預編碼矩陣固定之MIMO傳送方式時之訊號處理方法,並附上與第6圖相同的號碼。
按照某調變方式之基頻訊號之加權合成部600係以串流s1(t)(307A)及串流s2(t)(307B)、及關於加權方法之資訊315作為輸入,並輸出加權後之調變訊號z1(t)(309A)及加權後之調變訊號z2(t)(309B)。在此,關於加權方法之資訊315表示空間多工MIMO傳送方式時,進行第49圖之方式#1之訊號處理。總言之,進行以下處理。
其中,支援發送1個調變訊號之方式時,從發送電力的觀點來看,式(250)有時亦表現如式(251)。
[數292]
然後,關於權重方法之資訊315表示預編碼矩陣為固定之MIMO傳送方式時,進行例如第49圖之方式#2之訊號處理。總言之,進行以下處理。
在此,θ11、θ12、λ、δ為固定值。
第50圖係表示利用時空區塊碼時之調變訊號之構成。第50圖之時空區塊編碼部(5002)係以根據某調變訊號之基頻訊號作為輸入。例如時空區塊編碼部(5002)係以符元s1、s2、...作為輸入。如此一來,如第50圖所示進行時空區塊編碼,z1(5003A)係「s1作為符元#0」、「-s2*作為符元#1」、「s3作為符元#2」、「-s4*作為符元#3」,以此類推;z2(5003B)係「s2作為符元#0」、「s1*作為符元#1」、「s4作為符元#2」、「s3*作為符元#3」,以此類推。此時,z1之符元#X、z2之符元#4係於同一時間,藉由同一頻率而從天線發送。
於第47圖、第48圖,僅記載傳送資料之符元,但實際上須傳送傳送方式、調變方式、錯誤更正方式等資訊。例 如第51圖,若僅以1個調變訊號z1,定期傳送該等訊號,則可對通訊對象傳送該等資訊。又,須傳送傳送路之變動,亦即接收裝置用以推定通道變動之符元(例如前導符元、參考符元、後置、在接收時已知之(PSK:Phase Shift Keying(相位鍵移))符元)。於第47圖、第48圖,省略該等符元而記述,但實際上,用以推定通道變動之符元包含於時間-頻率軸之訊框構成。因此,各載波群並非僅由用以傳送資料之符元來構成。(關於該點,於實施形態1亦同。)
第52圖係表示本實施形態之播送台(基地台)之發送裝置之構成之一例。發送方法決定部(5205)進行各載波群之載波數、調變方式、錯誤更正方式、錯誤更正碼之編碼率、發送方法等之決定,並作為控制訊號(5206)輸出。
調變訊號生成部#1(5201_1)係以資訊(5200_1)及控制訊號(5206)作為輸入,根據控制訊號(5206)之通訊方式之資訊,輸出第47圖、第48圖之載波群#A之調變訊號z1(5202_1)及調變訊號z2(5203_1)。
同樣地,調變訊號生成部#2(5201_2)係以資訊(5200_2)及控制訊號(5206)作為輸入,根據控制訊號(5206)之通訊方式之資訊,輸出第47圖、第48圖之載波群#B之調變訊號z1(5202_2)及調變訊號z2(5203_2)。
同樣地,調變訊號生成部#3(5201_3)係以資訊(5200_3)及控制訊號(5206)作為輸入,根據控制訊號(5206)之通訊方式之資訊,輸出第47圖、第48圖之載波群#C之調變訊號z1(5202_3)及調變訊號z2(5203_3)。
同樣地,調變訊號生成部#4(5201_4)係以資訊(5200_4)及控制訊號(5206)作為輸入,根據控制訊號(5206)之通訊方式之資訊,輸出第47圖、第48圖之載波群#D之調變訊號z1(5202_4)及調變訊號z2(5203_4)。
以下雖未圖示,但從調變訊號生成部#5到調變訊號生成部#M係同上。
然後,同樣地,調變訊號生成部#M(5201_M)係以資訊(5200_M)及控制訊號(5206)作為輸入,根據控制訊號(5206)之通訊方式之資訊,輸出某載波群之調變訊號z1(5202_M)及調變訊號z2(5203_N)。
OFDM方式關連處理部(5207_1)係以載波群#A之調變訊號z1(5202_1)、載波群#B之調變訊號z1(5202_2)、載波群#C之調變訊號z1(5202_3)、載波群#D之調變訊號z1(5202_4)、...、某載波群之調變訊號z1(5202_M)、及控制訊號(5206)作為輸入,進行重排並施以反傅利葉轉換、頻率轉換、放大等處理,輸出發送訊號(5208_1);發送訊號(5208_1)係從天線(5209_1)作為電波輸出。
同樣地,OFDM方式關連處理部(5207_2)係以載波群#A之調變訊號z1(5203_1)、載波群#B之調變訊號z2(5203_2)、載波群#C之調變訊號z2(5203_3)、載波群#D之調變訊號z2(5203_4)、...、某載波群之調變訊號z2(5203_M)、及控制訊號(5206)作為輸入,進行重排並施以反傅利葉轉換、頻率轉換、放大等處理,輸出發送訊號(5208_2);發送訊號(5208_2)係從天線(5209_2)作為電波輸出。
第53圖係表示第52圖之調變訊號生成部#1~#M之構成之一例。錯誤更正編碼部(5302)係以資訊(5300)及控制訊號(5301)作為輸入,按照控制訊號(5301)設定錯誤更正編碼方式、錯誤更正編碼之編碼率,進行錯誤更正編碼,並輸出錯誤更正編碼後之資料(5303)。(依據錯誤更正編碼方式、錯誤更正編碼之編碼率設定,例如利用LDPC碼、渦輪碼、卷積碼等時,依編碼率,有時會進行穿刺以實現編碼率。)
交錯部(5304)係以錯誤更正編碼後之資料(5303)、控制訊號(5301)作為輸入,按照控制訊號(5301)所含之交錯方法資訊,進行錯誤更正編碼後之資料(5303)之重排,並輸出交錯後之資料(5305)。
映射部(5306_1)係將交錯後之資料(5305)及控制訊號(5301)作為輸入,按照控制訊號(5301)所含之調變方式資訊,進行映射處理,並輸出基頻訊號(5307_1)。
同樣地,映射部(5306_2)係將交錯後之資料(5305)及控制訊號(5301)作為輸入,按照控制訊號(5301)所含之調變方式資訊,進行映射處理,並輸出基頻訊號(5307_2)。
訊號處理部(5308)係以基頻訊號(5307_1)、基頻訊號(5307_2)及控制訊號(5301)作為輸入,根據控制訊號(5301)所含之傳送方法(在此,例如空間多工MIMO傳送方式、利用固定的預編碼矩陣之MIMO方式、規則地切換預編碼矩陣之MIMO方式、時空區塊編碼、僅由串流s1發送之傳送方式)資訊,進行訊號處理,並輸出訊號處理後之訊號z1(5309_1) 及訊號處理後之訊號z2(5309_2)。再者,選擇僅發送串流s1之傳送方式時,訊號處理部(5308)亦可能不輸出訊號處理後之訊號z2(5309_2)。又,於第53圖係表示錯誤更正編碼部為1個時之構成,但不限於此,例如第3圖所示,具備複數個編碼器亦可。
第54圖係表示OFDM方式關連處理部(5207_1及5207_2)之構成之一例,與第14圖同樣地動作之構成則附上同一符號。重排部(5402A)係以載波群#A之調變訊號z1(5400_1)、載波群#B之調變訊號z1(5400_2)、載波群#C之調變訊號z1(5400_3)、載波群#D之調變訊號z1(5400_4)、...、某載波群之調變訊號z1(5400_M)及控制訊號(5403)作為輸入,進行重排並輸出重排後之訊號1405A及1405B。再者,於第47圖、第48圖、第51圖,說明由集合之子載波構成載波群之分派之例,但不限於此,由依時間而離散之子載波構成載波群亦可。又,於第47圖、第48圖、第51圖,以載波群之載波數不依時間而變更之例來說明,但不限於此。關於該點會另於下文說明。
第55圖係表示如第47圖、第48圖、第51圖,依各載波群設定傳送方式之方式之時間-頻率軸之訊框構成之詳細例。於第55圖,以5500表示控制資訊符元,以5501表示個別控制資訊符元,以5502表示資料符元,以5503表示前導符元。又,第55(A)圖係表示串流s1之時間-頻率軸之訊框構成,第55(B)圖係表示串流s2之時間-頻率軸之訊框構成。
控制資訊符元係用以傳送載波群共通之控制資訊之符 元,以收發機用以進行頻率、時間同步之符元、關於(子)載波之分派之資訊等所構成。然後,控制資訊符元係於時刻$1,僅從串流s1發送之符元。
個別控制資訊符元係用以傳送載波群個別之控制資訊之符元,由錯誤更正編碼之編碼率‧錯誤更正碼之區塊尺寸等資訊、前導符元之插入方法之資訊、前導符元之發送功率等資訊所構成。個別控制資訊符元係於時刻$1,僅從串流s1發送之符元。
資料符元係用以傳送資料(資訊)之符元,如利用第47圖~第50圖所說明,其為例如空間多工MIMO傳送方式、利用固定的預編碼矩陣之MIMO方式、規則地切換預編碼矩陣之MIMO方式、時空區塊編碼、僅由串流s1發送之傳送方式之某一傳送方式之符元。再者,雖記載於載波群#A、載波群#B、載波群#C、載波群#D,在串流s2存在有資料符元,但採用僅由串流s1發送之傳送方式時,亦有於串流s2不存在資料符元的情況。
前導符元係接收裝置為了通道推定,亦即用以推定相當於h11(t)、h12(t)、h21(t)、h22(t)之變動之符元。(在此,由於採用如OFDM方式之多載波傳送方式,因此其係用以就各子載波,推定相當於h11(t)、h12(t)、h21(t)、h22(t)之變動之符元。)因此,前導符元係採用例如PSK傳送方式,構成如在收發機為已知之模式。又,接收裝置亦可將前導符元用於推定頻率偏離、推定相位扭曲、時間同步。
第56圖係表示用以接收第52圖之發送裝置所發送的調 變訊號之接收裝置之構成之一例,關於與第7圖同樣動作者係附上同一符號。
於第56圖,OFDM方式關連處理部(5600_X)係以接收訊號702_X作為輸入,進行預定處理,並輸出訊號處理後之訊號704_X。同樣地,OFDM方式關連處理部(5600_Y)係以接收訊號702_Y作為輸入,進行預定處理,並輸出訊號處理後之訊號704_Y。
第56圖之控制資訊解碼部709係以訊號處理後之訊號704_X及訊號處理後之訊號704_Y作為輸入,擷取第55圖之控制資訊符元及個別控制資訊符元,獲得以該等符元所傳送的控制資訊,並輸出包含該資訊之控制訊號710。
調變訊號z1之通道變動推定部705_1係以訊號處理後之訊號704_X及控制訊號710作為輸入,進行該接收裝置所必要的載波群(所需載波群)之通道推定,並輸出通道推定訊號706_1。
同樣地,調變訊號z2之通道變動推定部705_2係以訊號處理後之訊號704_X及控制訊號710作為輸入,進行該接收裝置所必要的載波群(所需載波群)之通道推定,並輸出通道推定訊號706_2。
同樣地,調變訊號z1之通道變動推定部705_1係以訊號處理後之訊號704_Y及控制訊號710作為輸入,進行該接收裝置所必要的載波群(所需載波群)之通道推定,並輸出通道推定訊號708_1。
同樣地,調變訊號z2之通道變動推定部705_2係以訊號 處理後之訊號704_Y及控制訊號710作為輸入,進行該接收裝置所必要的載波群(所需載波群)之通道推定,並輸出通道推定訊號708_2。
然後,訊號處理部711係以訊號706_1、706_2、708_1、708_2、704_X、704_Y及控制訊號710作為輸入,根據控制訊號710所含、以所需載波群所傳送的資料符元之傳送方式‧調變方式‧錯誤更正編碼方式‧錯誤更正編碼之編碼率‧錯誤更正碼之區塊尺寸等資訊,進行解調、解碼處理,並輸出接收資料712。
第57圖係表示第56圖之OFDM方式關連處理部(5600_X、5600_Y)之構成,頻率轉換部(5701)係以接收訊號(5700)作為輸入而進行頻率轉換,並輸出頻率轉換後之訊號(5702)。
傅利葉轉換部(5703)係以頻率轉換後之訊號(5702)作為輸入而進行傅利葉轉換,並輸出傅利葉轉換後之訊號(5704)。
如以上,採用如OFDM方式之多載波傳送方式時,藉由分割為複數個載波群,就各載波群設定傳送方式,可就各載波群設定接收品質及傳送速度,因此能夠獲得可建構靈活系統的效果。此時,藉由如於其他實施形態所述,可選擇規則地切換預編碼矩陣之方法,可獲得對於LOS環境可獲得高接收品質,並且可獲得高傳送速度之優點。再者,於本實施形態,作為可設定載波群之傳送方式,舉出「空間多工MIMO傳送方式、利用固定的預編碼矩陣之MIMO方 式、規則地切換預編碼矩陣之MIMO方式、時空區塊編碼、僅由串流s1發送之傳送方式」,但不限於此,此時,作為時空碼而說明第50圖之方式,但不限於此,又,利用固定的預編碼矩陣之MIMO方式不限於第49圖之方式#2,若由固定的預編碼矩陣構成即可。又,於本實施形態,以發送裝置之天線數設為2的情況來說明,但不限於此,在大於2的情況下,若可選擇「空間多工MIMO傳送方式、利用固定的預編碼矩陣之MIMO方式、規則地切換預編碼矩陣之MIMO方式、時空區塊編碼、僅由串流s1發送之傳送方式」之某一傳送方式,仍可獲得同樣效果。
第58圖係表示與第47圖、第48圖、第51圖不同之載波群之分派方法。於第47圖、第48圖、第51圖、第55圖,以載波群之分派由集合之子載波所構成之例來說明,於第58圖,其特徵在於載波群之載波離散地配置。第58圖係表示與第47圖、第48圖、第51圖、第55圖不同之時間-頻率軸之訊框構成之一例,於第58圖,表示載波1至載波H、時間$1至時間$K之訊框構成,關於與第55相同者則附上同一符號。於第58圖之資料符元,記載作「A」之符元係載波群A之符元,記載作「B」之符元係載波群B之符元,記載作「C」之符元係載波群C之符元,記載作「D」之符元係載波群D之符元。如此,即便載波群離散地配置於(子)載波方向,仍可同樣地實施,又,於時間軸方向,無須始終使用同一載波。藉由進行如此配置,能夠獲得可獲得時間、頻率分集增益的效果。
於第47圖、第48圖、第51圖、第58圖,依各載波群,於同一時間配置個別控制資訊符元、固有控制資訊符元,但於不同時間配置亦可。又,載波群所使用的(子)載波數亦可隨時間而變更。
(實施形態16)
於本實施形態,與實施形態10同樣針對規則地切換利用么正矩陣之預編碼矩陣之方法,敘述有關N設為奇數的情況。
於週期2N規則地切換預編碼矩陣之方法中,以下式表現為了週期2N而準備之預編碼矩陣。
α>0,設為(不受i影響)固定值。
α>0,設為(不受i影響)固定值。(式(234)之α與式(235)之α為同一值。)
此時,從實施形態3之(數106)之條件5及(數107)之條件6可知,對於式(253)而言,以下條件對於獲得良好的資料接 收品質甚為重要。
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
(x為0、1、2、...、N-2、N-1,y為0、1、2、...、N-2、N-1,x≠y。)
然後,考慮附加以下條件。
接著,如實施形態6所說明,為了於複數平面上,將接收惡劣點配置成對於相位呈均勻分布,賦予<條件#49>或<條件#50>。
總言之,於<條件#49>意味相位差為2π/N弧度。又,於<條件#50>意味相位差為-2π/N弧度。
然後,θ11(0)-θ21(0)=0弧度,且α>1時,於第60(a)、(b)圖表示N=4時之s1之接收惡劣點及s2之接收惡劣點在複數平面上之配置。從第60(a)、(b)圖可知,於複數平面,s1之接收惡劣點之最小距離保持甚大,又,同樣地,s2之接收惡劣點之最小距離亦保持甚大。然後,於α<1時亦為同樣狀態。又,若與實施形態10之第45圖比較且與實施形態9同樣地思考,則與N為偶數時比較,N為奇數時,於複數平面,接收惡劣點間之距離變大的可能性較高。其中,N為小值,例如N16以下時,複數平面之接收惡劣點之最小距離係由於存在有接收惡劣點之個數甚少,故可確保某種程度的長度。因此,N16時,即便為偶數,仍可能存在可確保資料接收品質的情況。
因此,於根據式(253)、(254)規則地切換預編碼矩陣之方式中,若週期N設為奇數,則可令資料接收品質提升的可能性甚高。再者,根據式(253)、(254)生成F[0]~F[2N-1]之預編碼矩陣(F[0]~F[2N-1]之預編碼矩陣係對週期2N以任何順序排列而使用均可。)。然後,例如符元號碼2Ni時,利用F[0]進行預編碼,符元號碼2Ni+1時,利用F[1]進行預 編碼,...,符元號碼2N×i+h時,利用F[h]進行預編碼(h=0、1、2、...、2N-2、2N-1)。(在此,如以前的實施形態所述,未必須規則地切換預編碼矩陣亦可。)又,s1、s2之調變方式均在16QAM時,將α設定如式(233),則可能能夠獲得於某特定之LOS環境下,可增大IQ平面之16×16=256個訊號點間之最小距離之效果。
又,作為與<條件#48>不同的條件而思考以下條件。
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
(x為N、N+1、N+2、...、2N-2、2N-1,y為N、N+1、N+2、...、2N-2、2N-1,x≠y。)
此時,藉由符合<條件#46>、且符合<條件#47>、且符合<條件#48>、且符合<條件#49>,可增大複數平面之s1彼此之接收惡劣點之距離,且可增大s2彼此之接收惡劣點之距離,因此可獲得良好的資料接收品質。
於本實施形態,說明有關時間週期2N之預編碼跳躍方法用之2N個不同預編碼矩陣之構成方法。此時,作為2N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[2N-2]、 F[2N-1],本實施形態係為了以單載波傳送方式時為例來說明,因此說明有關於時間軸(或頻率軸)方向,排列為F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1]之順序的情況,但未必須限定於此,本實施形態所生成的2N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[2N-2]、F[2N-1],亦可適用於OFDM傳送方式等多載波傳送方式。關於該情況之傳送方法,與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期2N之預編碼跳躍方法,但隨機利用2N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用2N個不同預編碼矩陣。
又,於週期H(H係大於上述規則地切換預編碼矩陣之方式之週期2N之自然數)之預編碼矩陣切換方法中,若包含本實施形態之2N個不同之預編碼矩陣,則給予良好接收品質之可能性變高。
(實施形態A1)
於本實施形態,詳細說明關於在傳送資料時適用階層式傳送的情況下,利用實施形態1~16所說明規則地切換預編碼矩陣之方法時之發送方法。
第61圖及第62圖係表示本實施之例如播送台之發送裝置之構成之一例。基本串流(基本層)用之錯誤更正編碼部(6101_1)係以基本串流(基本層)之資訊(6100_1)作為輸入而進行錯誤更正編碼,並輸出編碼後之基本串流(基本層)之資訊(6102_1)。
延伸串流(延伸層)用之錯誤更正編碼部(6101_2)係以延伸串流(延伸層)之資訊(6100_2)作為輸入而進行錯誤更正編碼,並輸出編碼後之延伸串流(延伸層)之資訊(6102_2)。
交錯部(6103_1)係以編碼後之基本串流(基本層)之資訊(6102_1)作為輸入而施以交錯,並輸出交錯後之編碼後之資料(6104_1)。
同樣地,交錯部(6103_2)係以編碼後之基本串流(基本層)之資訊(6102_2)作為輸入而施以交錯,並輸出交錯後之編碼後之資料(6104_2)。
映射部(6105_1)係以交錯後之編碼後之資料(6104_1)及關於發送方法之資訊訊號(6111)作為輸入,施以預定之調變方式之調變,並輸出基頻訊號(6106_1)(相當於第3圖之s1(t)(307A))及基頻訊號(6106_2)(相當於第3圖之s2(t)(307B))。作為關於發送方法之資訊訊號(6111)為例如進行階層式傳送時之傳送方式(調變方式、傳送方式、利用規則地切換預編碼矩陣之傳送方法時,則為關於用在該發送方法之預編碼矩陣之資訊)、錯誤更正編碼之方法(碼種類、編碼率)等資訊。
同樣地,映射部(6105_2)係以交錯後之編碼後之資料(6104_2)及關於發送方法之資訊訊號(6111)作為輸入,根據由關於發送方法之資訊訊號(6111)所指定的發送方法來施以預定之調變方式之調變,並輸出基頻訊號(6107_1)(相當於第3圖之s1(t)(307A))及基頻訊號(6106_2)(相當於第3圖之 s2(t)(307B))。
預編碼部(6108_1)係將基頻訊號(6106_1)(相當於第3圖之s1(t)(307A))及基頻訊號(6106_2)(相當於第3圖之s2(t)(307B))、及關於發送方法之資訊訊號(6111)作為輸入,根據由關於發送方法之資訊訊號(6111)所指定的規則之預編碼矩陣切換方法進行預編碼,並輸出預編碼後之基頻訊號(6109_1)(相當於第3圖之z1(t)(309A))及預編碼後之基頻訊號(6109_2)(相當於第3圖之z2(t)(309B))。
同樣地,預編碼部(6108_2)係將基頻訊號(6107_1)(相當於第3圖之s1(t)(307A))及基頻訊號(6107_2)(相當於第3圖之s2(t)(307B))、及關於發送方法之資訊訊號(6111)作為輸入,根據由關於發送方法之資訊訊號(6111)所指定的規則之預編碼矩陣切換方法進行預編碼,並輸出預編碼後之基頻訊號(6110_1)(相當於第3圖之z1(t)(309A))及預編碼後之基頻訊號(6110_2)(相當於第3圖之z2(t)(309B))。
於第62圖,重排部(6200_1)係將預編碼後之基頻訊號(6109_1)及預編碼後之基頻訊號(6110_1)作為輸入而進行重排,並輸出重排後之預編碼後之基頻訊號(6201_1)。
同樣地,重排部(6200_2)係將預編碼後之基頻訊號(6109_2)及預編碼後之基頻訊號(6110_2)作為輸入而進行重排,並輸出重排後之預編碼後之基頻訊號(6201_2)。
OFDM方式關連處理部(6202_1)係將重排後之預編碼後之基頻訊號(6201_1)作為輸入而施行實施形態1所述之訊號處理,並輸出發送訊號(6203_1),發送訊號(6203_1)係從 天線(6204_1)輸出。
同樣地,OFDM方式關連處理部(6202_2)係將重排後之預編碼後之基頻訊號(6201_2)作為輸入而施行實施形態1所述之訊號處理,並輸出發送訊號(6203_2),發送訊號(6203_2)係從天線(6204_2)輸出。
第63圖係用以說明第61圖之預編碼部(6108_1)之動作之圖;關於構成及動作係與第3圖、第6圖、第22圖等所說明的構成、動作相同,其規則地切換預編碼矩陣。
第63圖係說明關於第61圖之預編碼部(6108_1),因此表示基本串流(基本層)用之加權合成動作。如第63圖所示,預編碼部6108_1執行加權合成時,亦即執行預編碼而生成預編碼後之基頻訊號時,藉由執行預編碼矩陣規則切換之預編碼來生成z1(t)及z2(t)。在此,於基本串流(基本層)用之預編碼,設為週期8而切換預編碼矩陣,並將加權合成用之預編碼矩陣表現為f[0]、f[1]、f[2]、f[3]、f[4]、f[5]、f[6]、f[7]。此時,將預編碼後之訊號z1(t)及z2(t)之各符元表現如6301及6302。於第63圖表示為「基#Xf[Y]」,此係表示基本串流(基本層)之第X個符元,對該第X個符元,利用F[Y](在此,Y為0~7之某一者)之預編碼矩陣來進行預編碼。
第64圖係用以說明第61圖之預編碼部(6108_2)之動作之圖;關於構成及動作係與第3圖、第6圖、第22圖等所說明的構成、動作相同,其規則地切換預編碼矩陣。
第64圖係說明關於第61圖之預編碼部(6108_2),因此表示延伸串流(延伸層)用之加權合成動作。如第64圖所示,預 編碼部6108_2執行加權合成時,亦即執行預編碼而生成預編碼後之基頻訊號時,藉由執行預編碼矩陣規則切換之預編碼來生成z1(t)及z2(t)。在此,於延伸串流(延伸層)用之預編碼,設為週期4而切換預編碼矩陣,並將加權合成用之預編碼矩陣表現為f[0]、f[1]、f[2]、f[3]。此時,將預編碼後之訊號z1(t)及z2(t)之各符元表現如6403及6404。於第64圖表示為「延#Xf[Y]」,此係表示延伸串流(延伸層)之第X個符元,對該第X個符元,利用f[Y](在此,Y為0~4之某一者)之預編碼矩陣來進行預編碼。
第65圖係表示關於第62圖之重排部(6200_1)及重排部(6200_2)之符元之重排方法之圖。重排部(6200_1)及重排部(6200_2)係將第63圖及第64圖所示之符元,如第65圖配置於頻率軸及時間軸上。此時,同一(子)載波、同一時刻之符元係從各天線,於同一頻率、同一時刻發送。再者,第65圖所示之頻率軸、時間軸之符元配置為一例,亦可根據實施形態1所示之配置方法來配置符元。
傳送基本串流(基本層)及延伸串流(延伸層)時,須使得基本串流(基本層)之資料接收品質高於延伸串流(延伸層)之資料接收品質。因此,如本實施形態,利用規則地切換預編碼矩陣之方式時,設定成傳送基本串流(基本層)時之調變方式與傳送延伸串流(延伸層)之調變方式不同。例如可考慮利用如表3模式#1~#5之某一模式。
伴隨於此,若設定成傳送基本串流(基本層)時所用之規則的預編碼矩陣之切換方法、與傳送延伸串流(延伸層)時所用之規則的預編碼矩陣之切換方法不同,則於接收裝置,資料之接收品質可能會提升,或發送裝置或接收裝置之構成可能會簡化。作為例子包括如第63圖及第64圖所示,利用藉由調變多值數(於IQ平面上之訊號點數)所進行的調變方式時,有的情況係以規則地切換預編碼矩陣之方法不同為宜。因此,使得傳送基本串流(基本層)時所用之規則的預編碼矩陣之切換方法之週期、與傳送延伸串流(延伸層)時所用之規則的預編碼矩陣之切換方法之週期不同的方法,係就提升接收裝置之資料之接收品質、或發送裝置或接收裝置之構成簡化方面而言為一有效手法,或者亦可使得傳送基本串流(基本層)時所用之規則的預編碼矩陣之切換方法之預編碼矩陣之構成方法、與傳送延伸串流(延伸層)時所用之規則的預編碼矩陣之切換方法之預編碼矩陣之構成方法不同。因此,對於表3之各串流(層)之調變方式之可能設定模式,如表4設定預編碼矩陣切換方法。(於表4,A、B、C、D表示各不相同之預編碼矩陣切換方法。)
因此,於第61圖及第62圖之播送台之發送裝置,隨著映射部(6105_1及6105_2)之調變方式之切換而切換預編碼部(6108_1及6108_2)之預編碼方法。再者,表4僅只為一例,調變方式不同而預編碼矩陣切換方法為同一方法的情況亦可。例如64QAM時之預編碼矩陣之切換方法與256QAM時之預編碼矩陣之切換方法為同一方法亦可。重點在於所支援的調變方式有複數種方式時,存在有兩種以上之預編碼矩陣切換方法之點。關於該點,不限於利用階層式傳送時,於未利用階層式傳送時,針對調變方式及預編碼矩陣之切換方法賦予如上述所述之關係,則資料之接收品質可能會提升,或發送裝置或接收裝置之構成可能會簡化。
作為系統而言,不僅只支援階層式傳送,亦可思考支援不利用階層式傳送之傳送之系統。該情況下,於第61圖及第62圖,在進行不利用階層式傳送之傳送時,令延伸串流(延伸層)之相關功能部之動作停止,僅傳送基本串流(基本層)。因此,該類情況下,關於對應於上述表4之設定可能模式及調變方式、預編碼矩陣切換方法之對應表係如表5。
於表5,模式#1~#5係利用階層式傳送時之模式,模式#6~#10係不利用階層式傳送時之模式。此時,預編碼切換方法係設定適於各模式之預編碼切換方法。
接著,說明關於支援階層式傳送時之接收裝置之動作。本實施形態之接收裝置之構成能夠以實施形態1所說明的第7圖來構成。此時,將第7圖之訊號處理部711之構成表示於第66圖。
於第66圖,6601X為通道推定訊號,相當於第7圖之通道推定訊號706_1。6602X為通道推定訊號,相當於第7圖之通道推定訊號706_2。6603X為基頻訊號,相當於第7圖之基頻訊號704_X。6604係關於發送裝置所通知的發送方法之資訊之訊號,相當於第7圖之關於發送裝置所通知的發送方法之資訊之訊號710。
6601Y為通道推定訊號,相當於第7圖之通道推定訊號 708_1。6602Y為通道推定訊號,相當於第7圖之通道推定訊號708_2。6603Y為基頻訊號,相當於第7圖之基頻訊號704_Y。
訊號分類部(6605)係將通道推定訊號(6601X、6602X、6601Y、6602Y)、基頻訊號(6603X、6603Y)、及關於發送裝置所通知的發送方法之資訊之訊號(6604)作為輸入,根據關於發送裝置所通知的發送方法之資訊之訊號(6604)而分類為關於基本串流(基本層)之訊號與關於延伸串流(延伸層)之資訊,並輸出基本串流用之通道推定訊號(6606_1、6607_1、6609_1、6610_1)、基本串流用之基頻訊號(6608_1、6611_1)、及延伸串流用之通道推定訊號(6606_2、6607_2、6609_2、6610_2)、延伸串流用之基頻訊號(6608_2、6611_2)。
檢波及對數概似比算出部(6612_1)係對於基本串流(基本層)之處理部,以基本串流用之通道推定訊號(6606_1、6607_1、6609_1、6610_1)、基本串流用之基頻訊號(6608_1、6611_1)、及關於發送裝置所通知的發送方法之資訊之訊號(6604)作為輸入,從關於發送裝置所通知的發送方法之資訊之訊號(6604),推定為了基本串流(基本層)所用之調變方式、預編碼矩陣切換方法,根據該等進行檢波、預編碼解碼,算出各位元對數概似比,並輸出對數概似比訊號(6613_1)。再者,於表5,關於不存在延伸串流(延伸層)之模式#6~#10的情況,檢波及對數概似比算出部(6612_1)亦進行檢波、預編碼,並輸出對數概似比訊號。
檢波及對數概似比算出部(6612_2)係對於延伸串流(延 伸層)之處理部,以延伸串流用之通道推定訊號(6606_2、6607_2、6609_2、6610_2)、延伸串流用之基頻訊號(6608_2、6611_2)、及關於發送裝置所通知的發送方法之資訊之訊號(6604)作為輸入,從關於發送裝置所通知的發送方法之資訊之訊號(6604),推定為了延伸串流(延伸層)所用之調變方式、預編碼矩陣切換方法,根據該等進行檢波、預編碼解碼,算出各位元對數概似比,並輸出對數概似比訊號(6613_2)。再者,於表5,關於不存在延伸串流(延伸層)之模式#6~#10的情況則停止動作。
再者,於利用第61圖、第62圖所說明的發送裝置僅進行階層式傳送方法之說明,但實際上須有別於階層傳送方法,另外向接收裝置傳送關於發送方法之資訊,例如進行階層式傳送時之傳送方法(調變方式、傳送方法、利用規則地切換預編碼矩陣之傳送方法時,則為關於用在該發送方法之預編碼矩陣之資訊)、錯誤更正編碼之方法(碼種類、編碼率)。又,於接收裝置,在訊框構成上係通道推定(傳播變動之推定)、頻率同步、頻率平移推定、訊號檢測用之前導符元、參考符元、前文另外存在於發送訊號。再者,此不僅針對實施形態A1,實施形態A2以後亦同理。
解交錯器(6641_1)係以對數概似訊號(6613_1)作為輸入而進行重排,並輸出解交錯後之對數概似比訊號(6615_1)。
同樣地,解交錯器(6641_2)係以對數概似訊號(6613_2)作為輸入而進行重排,並輸出解交錯後之對數概似比訊號 (6615_2)。
解碼部(6616_1)係以解交錯後之對數概似比訊號(6615_1)作為輸入而進行錯誤更正解碼,並輸出接收資訊(6617_1)。
同樣地,解碼部(6616_2)係以解交錯後之對數概似比訊號(6615_2)作為輸入而進行錯誤更正解碼,並輸出接收資訊(6617_2)。
如表5存在有發送模式時有以下方法:‧如實施形態1所示,發送裝置發送關於在預編碼矩陣切換方法所用之預編碼矩陣之資訊,檢波及對數概似比算出部(6612_1、6612_2)獲得該資訊而進行預編碼之解碼之方法;及‧如實施形態7所示,藉由在收發裝置預先共有表5之資訊,發送裝置發送模式之資訊,接收裝置根據表5來推定在預編碼矩陣切換方法所用之預編碼矩陣,進行預編碼解碼之方法。
如以上,利用階層式傳送時,藉由採用如上述之預編碼矩陣切換方法,可獲得資料接收品質提升之方法。
於本實施形態,就規則地切換預編碼矩陣之方法,說明週期設為4、8之例,但週期不限於此。因此,週期N之預編碼跳躍方法用係需要N個不同預編碼矩陣。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],本實施形態係說明有關於頻率軸方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但 未必須限定於此,藉由將本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],與實施形態1相同,可藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果。總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,於表5,作為不利用階層式傳送時之例,係說明有不利用階層式傳送方式、規則地切換預編碼矩陣之方法之模式的情況,但存在的模式不限於此,如實施形態15所說明,有別於本實施形態所述之階層式傳送方法,另外存在空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流之模式,發送裝置(播送台、基地台)可從該等模式選擇某一發送方法亦可。此時,於空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流之模式中,支援進行階層式傳送的情況與不進行階層式傳送的情況之任一情況亦可。又,存在利用其以外之發送方法之模式亦可。然後,將本實施形態適用於實施形態15,於實施形態15,在某一(子)載波群,適用採用本實施形態所說明的規則地切換預編碼矩陣之方法之階層式傳送方法亦可。
(實施形態A2)
於實施形態A1,敘述關於在規則地切換預編碼矩陣之方法實施階層式傳送之方法,而於本實施形態則敘述關於 與其不同之階層式傳送之實現方法。
第67圖及第68圖係表示利用本實施形態之發送裝置之構成,關於與第61圖、第62圖同樣動作之構成係附上同一符號。第67圖與第61圖之差異在於不具備預編碼部6108_1;於本實施形態,與實施形態A1之不同點係對於基本串流(基本層)不執行預編碼。
第67圖之映射部(6105_1)係以交錯後之編碼後之資料(6104_1)及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111),進行預定之調變方式之映射,並輸出基頻訊號(6700)。
第68圖之重排部(6200_1)係將基頻訊號(6700)、預編碼後之基頻訊號(6110_1)、及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111)進行重排,並輸出重排後之基頻訊號(6201_1)。
重排部(6200_2)係將基頻訊號(6700)、預編碼後之基頻訊號(6110_2)、及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111)進行重排,並輸出重排後之基頻訊號(6201_2)。
第69圖係表示第67圖之基頻訊號之符元構成之一例,6901為其符元群。於符元群(6901)記載作「基#X」,此係表示「基本串流(基本層)之第X個符元」。再者,延伸串流(延伸層)之符元構成係如第64圖所示。
第70圖係表示關於第68圖之重排部(6200_1)及重排部(6200_2)之符元之重排方法之圖。將第64圖及第69圖所示之 符元,如第70圖配置於頻率軸及時間軸上。於第70圖,「-」係意味不存在符元。此時,同一(子)載波、同一時刻之符元係從各天線,於同一頻率、同一時刻發送。再者,第70圖之頻率軸、時間軸之符元配置為一例,亦可根據實施形態1所示之配置方法來配置符元。
傳送基本串流(基本層)及延伸串流(延伸層)時,在各串流(層)之性質上,須使得基本串流(基本層)之資料接收品質高於延伸串流(延伸層)之資料接收品質。因此,如本實施形態,傳送基本串流時,藉由僅利用調變訊號z1發送(亦即不發送調變訊號z2)來確保資料之接收品質。相對於此,傳送延伸串流時,為了優先提升傳送速度,藉由利用規則地切換預編碼矩陣之方法來實現階層式傳送。例如可考慮利用如表6模式#1~#9之某一模式。
於表6,特徵點在於可設定基本串流(基本層)之調變方式與延伸串流(延伸層)之調變方式為同一方式之點。此係由 於即便為同一調變方式,基本串流(基本層)可確保之傳送品質、與延伸串流(延伸層)可確保之傳送品質因各個串流(層)利用不同傳送方法而不同。
本實施形態之接收裝置之構成係如第7圖及第66圖。與實施形態A1之不同點在於第66圖之檢波及對數概似比算出部(6612_1)不進行預編碼之解碼之點。
又,於延伸串流(延伸層)雖利用規則地切換預編碼矩陣之方法,但此時若於發送裝置,發送關於預編碼方法之資訊,則接收裝置藉由獲得該資訊而可得知所用之預編碼方法。作為別的方法,於收發裝置共有表6時,發送裝置發送模式之資訊,藉由獲得模式之資訊,可得知在延伸串流(延伸層)所用之預編碼方法。故,於第66圖之接收裝置,藉由在檢波及對數概似比算出部變更訊號處理方法,可獲得各位元之對數概似比。再者,可設定模式係利用表6說明,但不限於此,即便存在實施形態8所說明的發送方法之模式、或以後之實施形態所說明的發送方法之模式,仍可同樣地實施。
如以上,於利用階層式傳送時,藉由採用如上述之預編碼矩陣切換方法,可獲得接收裝置之資料接收品質提升的效果。
又,於本實施形態,規則地切換預編碼矩陣之方法之預編碼矩陣之切換週期不限於此。時間週期N之預編碼跳躍方法需要N個不同預編碼矩陣之構成方法。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],本實施形態係說明有關於頻率軸方向,排列為 F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但未必須限定於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],可與實施形態1同樣藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果,總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,於表6,說明關於本實施形態之階層式傳送方法之模式,但存在的模式不限於此,如實施形態15所說明,有別於本實施形態所述之階層式傳送方法,另外存在空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流之模式、規則地切換預編碼矩陣之方法之模式,發送裝置(播送台、基地台)可從該等模式選擇某一發送方法亦可。此時,於空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流、規則地切換預編碼矩陣之方法之模式中,支援進行階層式傳送的情況與不進行階層式傳送的情況之任一情況亦可。又,存在利用其以外之發送方法之模式亦可。然後,將本實施形態適用於實施形態15,於實施形態15,在某一(子)載波群,適用本實施形態所說明的階層式傳送方法亦可。
(實施形態A3)
於本實施形態,敘述關於與實施形態A1及實施形態A2不同之階層式傳送之實現。
第71圖及第72圖係表示利用本實施形態之階層式傳送時之發送裝置之構成,關於與第61圖、第62圖同樣動作之構成係附上同一符號。第71圖與第61圖之差異在於具備時空區塊編碼部7101之點;於本實施形態,與實施形態A2之不同點係對於基本串流(基本層)加上時空區塊碼之。
第71圖之時空區塊編碼部(視情況為頻率-空間區塊編碼部)(7101)係將映射後之基頻訊號(7100)及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111)進行時空區塊編碼,並輸出時空區塊編碼後之基頻訊號(7102_1)及時空區塊編碼後之基頻訊號(7102_2)(表現為z2(t))。
在此雖稱為時間區塊碼,但未必須於時間軸方向,依序排列經時空區塊編碼後之符元,亦可於頻率軸方向,依序排列經時空區塊編碼後之符元。又,以複數個時間軸方向之符元及複數個頻率軸之符元形成區塊,於該區塊適當配置(亦即,利用時間、頻率軸兩者來配置)之方法亦可。
第72圖之重排部(6200_1)係將時空區塊編碼後之基頻訊號(7102_1)、預編碼後之基頻訊號(6110_1)、及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111)進行重排,並輸出重排後之基頻訊號(6201_1)。
同樣地,重排部(6200_2)係將時空區塊編碼後之基頻訊號(7102_2)、預編碼後之基頻訊號(6110_2)、及關於發送方法之資訊訊號(6111)作為輸入,根據關於發送方法之資訊訊號(6111)進行重排,並輸出重排後之基頻訊號(6201_2)。
第73圖係表示第71圖之時空區塊編碼部(7101)所輸出的時空區塊編碼後之基頻訊號(7102_1、7102_2)之符元構成之一例。符元群(7301)相當於時空區塊編碼後之基頻訊號(7102_1)(表現為z1(t)),符元群(7302)相當於時空區塊編碼後之基頻訊號(7102_2)(表現為z2(t))。
第71圖之映射部(6105_1)所輸出的符元依序設為s1、s2、s3、s4、s5、s6、s7、s8、s9、s10、s11、s12、...。如此一來,第71圖之時空區塊編碼部(7101)係對於s1、s2進行時空區塊編碼,生成s1、s2及s1*、-s2*(*:共軛複數),並如第73圖輸出。同樣地,對於(s3、s4)、(s5、s6)、(s7、s8)、(s9、s10)、(s11、s12)、...之各集合進行時空區塊編碼,如第73圖配置符元。再者,不限於本實施形態所說明的時空區塊碼,利用其他時空區塊碼亦可同樣地實施。
第74圖係表示關於第72圖之重排部(6200_1)及重排部(6200_2)之重排方法之圖之一例。第74(A)圖為調變訊號z1在時間軸及頻率軸之符元之配置例。第74(B)圖為調變訊號z2在時間軸及頻率軸之符元之配置例。此時,同一(子)載波、同一時刻之符元係從各天線,於同一頻率、同一時刻發送。第74圖之特徵點在於,將經時空區塊編碼之符元,按順序配置於頻率軸上之點。
第75圖係表示關於第72圖之重排部(6200_1)及重排部(6200_2)之重排方法之圖之一例。第74(A)圖為調變訊號z1在時間軸及頻率軸之符元之配置例。第74(B)圖為調變訊號z2在時間軸及頻率軸之符元之配置例。此時,同一(子)載 波、同一時刻之符元係從各天線,於同一頻率、同一時刻發送。第75圖之特徵點在於,將經時空區塊編碼之符元,按順序配置於時間軸上之點。
如此,經時空區塊編碼之符元係排列於頻率軸上或時間軸上均可。
傳送基本串流(基本層)及延伸串流(延伸層)時,在各串流(層)之性質上,須使得基本串流(基本層)之資料接收品質高於延伸串流(延伸層)之資料接收品質。因此,如本實施形態,傳送基本串流時,藉由利用時空區塊碼獲得分集增益來確保資料之接收品質。相對於此,傳送延伸串流時,為了優先提升傳送速度,藉由利用規則地切換預編碼矩陣之方法來實現階層式傳送。例如可考慮利用如表7模式#1~#9之某一模式。
於表7,特徵點在於可設定基本串流(基本層)之調變方式與延伸串流(延伸層)之調變方式為同一方式之點。此係由 於即便為同一調變方式,基本串流(基本層)可確保之傳送品質、與延伸串流(延伸層)可確保之傳送品質因各個串流(層)利用不同傳送方法而不同。
再者,於表7之模式#1~#9雖表示階層式傳送之模式,但亦可同時支援非階層式傳送之模式。本實施形態的情況下,作為非階層式傳送之模式,亦可存在有時空區塊碼單獨之模式、規則地切換預編碼矩陣之單獨模式,於本實施形態之發送裝置、接收裝置,支援表7之階層式傳送之模式時,可容易設定時空區塊碼單獨之模式、規則地切換預編碼矩陣之單獨模式。
於延伸串流(延伸層)雖利用規則地切換預編碼矩陣之方法,但此時若於發送裝置,發送關於預編碼方法之資訊,則接收裝置藉由獲得該資訊而可得知所用之預編碼方法。作為別的方法,於收發裝置共有表7時,發送裝置發送模式之資訊,藉由獲得模式之資訊,可得知在延伸串流(延伸層)所用之預編碼方法。故,於第66圖之接收裝置,藉由在檢波及對數概似比算出部變更訊號處理方法,可獲得各位元之對數概似比。再者,可設定模式係利用表7說明,但不限於此,即便存在實施形態8所說明的發送方法之模式、或以後之實施形態所說明的發送方法之模式,仍可同樣地實施。
如以上,於利用階層式傳送時,藉由採用如上述之預編碼矩陣切換方法,可獲得接收裝置之資料接收品質提升的效果。
於本實施形態,規則地切換預編碼矩陣之方法之預編 碼矩陣之切換週期不限於此。時間週期N之預編碼跳躍方法需要N個不同預編碼矩陣之構成方法。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],本實施形態係說明有關於頻率軸方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的情況,但未必須限定於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],可與實施形態1同樣藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果,總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,於表7,說明關於本實施形態之階層式傳送方法之模式,但存在的模式不限於此,如實施形態15所說明,有別於本實施形態所述之階層式傳送方法,另外存在空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流之模式、規則地切換預編碼矩陣之方法之模式,發送裝置(播送台、基地台)可從該等模式選擇某一發送方法亦可。此時,於空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流、規則地切換預編碼矩陣之方法之模式中,支援進行階層式傳送的情況與不進行階層式傳送的情況之任一情況亦可。又,存在利用其以外之發送方法之模式亦可。然後,將本實施形態適用於實施形態15,於實施形態15,在某一(子)載波群,適用本實施形態所說明的階層 式傳送方法亦可。
(實施形態A4)
於本實施形態,詳細說明關於如非專利文獻12~非專利文獻15所示,利用QC(Quasi Cyclic:類迴圈)LDPC(Low-Density Parity-Check:低密度奇偶校驗)碼(非QC-LDPC碼之LDPC碼亦可)、LDPC碼與BCH碼(BoSe-Chaudhuri-Hochquenghem)之連接碼等區塊碼時之規則地切換預編碼矩陣之方法。在此,作為一例而舉例說明發送s1、s2兩個串流的情況。其中,利用區塊碼進行編碼時,當不需要控制資訊等時,構成編碼後之區塊之位元數係與構成區塊碼之位元數(其中,如以下所記載的控制資訊等亦可包含於此之中)一致。利用區塊碼進行編碼時,若需要控制資訊等(例如CRC(cyclic redundancy check:循環冗餘校驗)、傳送參數)時,構成編碼後之區塊之位元數有時為構成區塊碼之位元數與控制資訊等之位元數之和。
第76圖係表示利用區塊碼時之1個編碼後之區塊所必需的符元數、時槽數之變化例之圖。第76圖係表示例如第4圖之發送裝置所示,發送s1、s2兩個串流,且發送裝置具有1個編碼器時之「利用區塊碼時,1個編碼後之區塊所必需的符元數、時槽數之變化之圖」。(此時,傳送方式係利用單載波傳送、如OFDM之多載波傳送之任一者均可。)
如第76圖所示,構成區塊碼之1個編碼後之區塊之位元數設為6000位元。為了發送該6000位元,調變方式為QPSK時需要3000符元,16QAM時需要1500符元,64QAM時需要 1000符元。
然後,於第4圖之發送裝置,為了同時發送兩個串流,調變方式為QPSK時,前述3000符元係對s1分派1500符元,對s2分派1500符元,因此為了以s1發送1500符元,並以s2發送1500符元,需要1500時槽(在此命名為「時槽」)。
同理來思考,調變方式為16QAM時,為了發送構成1個編碼後之區塊之所有位元,需要750時槽,調變方式為64QAM時,為了發送構成1個編碼後之區塊之所有位元,需要500時槽。
接著,就規則地切換預編碼矩陣之方法,說明關於上述所定義的時槽與預編碼矩陣之關係。
在此,為了規則地切換預編碼矩陣之方法所準備的預編碼矩陣數設為5。總言之,為了第4圖之發送裝置之加權合成部而準備5個不同之預編碼矩陣。該等5個不同之預編碼矩陣設為F[0]、F[1]、F[2]、F[3]、F[4]。
調變方式為QPSK時,為了發送構成1個編碼後之區塊之位元數6000位元之上述所述之1500時槽,使用預編碼矩陣F[0]之時槽須為300時槽,使用預編碼矩陣F[1]之時槽須為300時槽,使用預編碼矩陣F[2]之時槽須為300時槽,使用預編碼矩陣F[3]之時槽須為300時槽,使用預編碼矩陣F[4]之時槽須為300時槽。此係由於若所使用的預編碼矩陣有不均,則在資料之接收品質上,使用較多數目之預編碼矩陣的影響大。
同樣地,調變方式為16QAM時,為了發送構成1個編碼 後之區塊之位元數6000位元之上述所述之750時槽,使用預編碼矩陣F[0]之時槽須為150時槽,使用預編碼矩陣F[1]之時槽須為150時槽,使用預編碼矩陣F[2]之時槽須為150時槽,使用預編碼矩陣F[3]之時槽須為150時槽,使用預編碼矩陣F[4]之時槽須為150時槽。
同樣地,調變方式為64QAM時,為了發送構成1個編碼後之區塊之位元數6000位元之上述所述之500時槽,使用預編碼矩陣F[0]之時槽須為100時槽,使用預編碼矩陣F[1]之時槽須為100時槽,使用預編碼矩陣F[2]之時槽須為100時槽,使用預編碼矩陣F[3]之時槽須為100時槽,使用預編碼矩陣F[4]之時槽須為100時槽。
如以上,於規則地切換預編碼矩陣之方法,不同之預編碼矩陣設為N個(N個不同之預編碼矩陣表現為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1])時,發送所有構成1個編碼後之區塊之位元時,使用預編碼矩陣F[0]之時槽數設為K0,使用預編碼矩陣F[1]之時槽數設為K1,使用預編碼矩陣F[i]之時槽數設為Ki(i=0、1、2、...、N-1),使用預編碼矩陣F[N-1]之時槽數設為KN-1時,如下即可:
<條件#53>
K0=K1=...=Ki=...=KN-1,亦即Ka=Kb(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
然後,通訊系統支援複數種調變方式,從所支援的調變方式選擇使用時,於所支援的調變方式,<條件#53>成立即可。
然而,支援複數種調變方式時,依各調變方式不同,1符元可發送之位元數一般會不同(視情況而言,亦可能為同一位元數),視情況而言,有時存在無法符合<條件#53>之調變方式。該情況下,符合以下條件來取代<條件#53>即可。
<條件#54>
Ka與Kb之差為0或1,亦即|Ka-Kb|為0或1
(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
第77圖係表示利用區塊碼時之2個編碼後之區塊所必需的符元數、時槽數之變化之圖。第77圖係表示例如第3圖之發送裝置及第13圖之發送裝置所示,發送s1、s2兩個串流,且發送裝置具有2個編碼器時之「利用區塊碼時,1個編碼後之區塊所必需的符元數、時槽數之變化之圖」。(此時,傳送方式係利用單載波傳送、如OFDM之多載波傳送之任一者均可。)
如第77圖所示,構成區塊碼之1個編碼後之區塊之位元數設為6000位元。為了發送該6000位元,調變方式為QPSK時需要3000符元,16QAM時需要1500符元,64QAM時需要1000符元。
然後,於第3圖之發送裝置及第13圖之發送裝置,由於同時發送兩個串流,或存在2個編碼器,因此於兩個串流傳送不同的碼區塊。因此,調變方式為QPSK時,藉由s1、s2,2個編碼區塊於同一區間內發送,因此例如藉由s1發送第1編碼後之區塊,藉由s2發送第2編碼後之區塊,因此為了發送第1、第2編碼後之區塊而需要3000時槽。
同理來思考,調變方式為16QAM時,為了發送構成2個編碼後之區塊之所有位元,需要1500時槽,調變方式為64QAM時,為了發送構成22區塊之所有位元,需要1000時槽。
接著,就規則地切換預編碼矩陣之方法,說明關於上述所定義的時槽與預編碼矩陣之關係。
在此,為了規則地切換預編碼矩陣之方法所準備的預編碼矩陣數設為5。總言之,為了第3圖之發送裝置及第13圖之發送裝置之加權合成部而準備5個不同之預編碼矩陣。該等5個不同之預編碼矩陣表現為F[0]、F[1]、F[2]、F[3]、F[4]。
調變方式為QPSK時,於為了發送構成2個編碼後之區塊之位元數6000×2位元之上述所述之3000時槽,使用預編碼矩陣F[0]之時槽須為600時槽,使用預編碼矩陣F[1]之時槽須為600時槽,使用預編碼矩陣F[2]之時槽須為600時槽,使用預編碼矩陣F[3]之時槽須為600時槽,使用預編碼矩陣F[4]之時槽須為600時槽。此係由於若所使用的預編碼矩陣有不均,則在資料之接收品質上,使用較多數目之預編碼矩陣的影響大。
又,為了發送第1編碼區塊,使用預編碼矩陣F[0]之時槽須為600次,使用預編碼矩陣F[1]之時槽須為600次,使用預編碼矩陣F[2]之時槽須為600次,使用預編碼矩陣F[3]之時槽須為600次,使用預編碼矩陣F[4]之時槽須為600次。又,為了發送第2編碼區塊,使用預編碼矩陣F[0]之時槽為 600次,使用預編碼矩陣F[1]之時槽為600次,使用預編碼矩陣F[2]之時槽為600次,使用預編碼矩陣F[3]之時槽為600次,使用預編碼矩陣F[4]之時槽為600次即可。
同樣地,調變方式為16QAM時,於為了發送構成2個編碼後之區塊之位元數6000×2位元之上述所述之1500時槽,使用預編碼矩陣F[0]之時槽須為300時槽,使用預編碼矩陣F[1]之時槽須為300時槽,使用預編碼矩陣F[2]之時槽須為300時槽,使用預編碼矩陣F[3]之時槽須為300時槽,使用預編碼矩陣F[4]之時槽須為300時槽。
又,為了發送第1編碼區塊,使用預編碼矩陣F[0]之時槽須為300次,使用預編碼矩陣F[1]之時槽須為300次,使用預編碼矩陣F[2]之時槽須為300次,使用預編碼矩陣F[3]之時槽須為300次,使用預編碼矩陣F[4]之時槽須為300次。又,為了發送第2編碼區塊,使用預編碼矩陣F[0]之時槽為300次,使用預編碼矩陣F[1]之時槽為300次,使用預編碼矩陣F[2]之時槽為300次,使用預編碼矩陣F[3]之時槽為300次,使用預編碼矩陣F[4]之時槽為300次即可。
同樣地,調變方式為64QAM時,於為了發送構成2個編碼後之區塊之位元數6000×2位元之上述所述之1000時槽,使用預編碼矩陣F[0]之時槽須為200時槽,使用預編碼矩陣F[1]之時槽須為200時槽,使用預編碼矩陣F[2]之時槽須為200時槽,使用預編碼矩陣F[3]之時槽須為200時槽,使用預編碼矩陣F[4]之時槽須為200時槽。
又,為了發送第1編碼區塊,使用預編碼矩陣F[0]之時 槽須為200次,使用預編碼矩陣F[1]之時槽須為200次,使用預編碼矩陣F[2]之時槽須為200次,使用預編碼矩陣F[3]之時槽須為200次,使用預編碼矩陣F[4]之時槽須為200次。又,為了發送第2編碼區塊,使用預編碼矩陣F[0]之時槽為200次,使用預編碼矩陣F[1]之時槽為200次,使用預編碼矩陣F[2]之時槽為200次,使用預編碼矩陣F[3]之時槽為200次,使用預編碼矩陣F[4]之時槽為200次即可。
如以上,於規則地切換預編碼矩陣之方法,不同之預編碼矩陣設為N個(N個不同之預編碼矩陣表現為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1])時,發送所有構成2個編碼後之區塊之位元時,使用預編碼矩陣F[0]之時槽數設為K0,使用預編碼矩陣F[1]之時槽數設為K1,使用預編碼矩陣F[i]之時槽數設為Ki(i=0、1、2、...、N-1),使用預編碼矩陣F[N-1]之時槽數設為KN-1時,如下即可:
<條件#55>
K0=K1=...=Ki=...=KN-1,亦即Ka=Kb(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
發送所有構成第1編碼後之區塊之位元時,使用預編碼矩陣F[0]之次數設為K0,1,使用預編碼矩陣F[1]之次數設為K1,1,使用預編碼矩陣F[i]之次數設為Ki,1(i=0、1、2、...、N-1),使用預編碼矩陣F[N-1]之次數設為KN-1,1時,則如下:
<條件#56>
K0,1=K1,1=...=Ki,1=...=KN-1,1,亦即Ka,1=Kb,1(for a、b,其中,a、b=0、1、2、...、N-1,a≠b) 發送所有構成第2編碼後之區塊之位元時,使用預編碼矩陣F[0]之次數設為K0,2,使用預編碼矩陣F[1]之次數設為K1,2,使用預編碼矩陣F[i]之次數設為Ki,2(i=0、1、2、...、N-1),使用預編碼矩陣F[N-1]之次數設為KN-1,2時,則如下即可:
<條件#57>
K0,2=K1,2=...=Ki,2=...=KN-1,2,亦即Ka,2=Kb,2(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
然後,通訊系統支援複數種調變方式,從所支援的調變方式選擇使用時,於所支援的調變方式,<條件#55>、<條件#56>、<條件#57>成立即可。
然而,支援複數種調變方式時,依各調變方式不同,1符元可發送之位元數一般會不同(視情況而言,亦可能為同一位元數),視情況而言,有時存在無法符合<條件#55>、<條件#56>、<條件#57>之調變方式。該情況下,符合以下條件來取代<條件#55>、<條件#56>、<條件#57>即可。
<條件#58>
Ka與Kb之差為0或1,亦即|Ka-Kb|為0或1
(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
<條件#59>
Ka,1與Kb,11之差為0或1,亦即|Ka,1-Kb,1|為0或1
(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
<條件#60>
Ka,2與Kb,2之差為0或1,亦即|Ka,2-Kb,2|為0或1
(for a、b,其中,a、b=0、1、2、...、N-1,a≠b)
如以上,藉由進行編碼後之區塊與預編碼矩陣之關係建立,於為了傳送編碼區塊而使用之預編碼矩陣,不均會消失,因此於接收裝置,可獲得資料接收品質提升的效果。
當然宜使此時所使用的預編碼矩陣間無不均,且於記憶於發送裝置之預編碼矩陣為N個時,宜使用N個預編碼矩陣全部來執行預編碼,屆時,宜均等使用N個預編碼矩陣各個來執行預編碼。在此,均等係意味如上述,使用各預編碼矩陣之次數中之最多次數與最少次數之差最高為1。
又,雖宜使用N個預編碼矩陣全部,但若各處之接收點之接收品質儘量為均等,則不使用針對所使用的預編碼矩陣而記憶之N個預編碼矩陣全部,將數個預編碼矩陣拉長間隔後再執行規則切換預編碼矩陣之預編碼亦可。其中,將預編碼矩陣拉長間隔時,為了確保各處之接收點之接收品質,須均等地將預編碼矩陣拉長間隔。均等地拉長間隔係指例如預編碼矩陣準備有F[0]、F[1]、F[2]、F[3]、F[4]、F[5]、F[6]、F[7]8個,使用之預編碼矩陣設為F[0]、F[2]、F[4]、F[6],亦或預編碼矩陣準備有F[0]、F[1]、F[2]、...、F[14]、F[15]16個,使用之預編碼矩陣設為F[0]、F[4]、F[8]、F[12]。又,預編碼矩陣準備有F[0]、F[1]、F[2]、...、F[14]、F[15]16個時,使用之預編碼矩陣設為F[0]、F[2]、F[4]、F[6]、F[8]、F[10]、F[12]、F[14],亦可謂均等地將預編碼矩陣拉長間隔。
於本實施形態,在規則地切換預編碼矩陣之方法中,週期N之預編碼跳躍方法需要N個不同預編碼矩陣之構成 方法。此時,作為N個不同預編碼矩陣而準備F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],但亦有於頻率軸方向,排列為F[0]、F[1]、F[2]、...、F[N-2]、F[N-1]之順序的方法,未必限於此,本實施形態所生成的N個不同預編碼矩陣F[0]、F[1]、F[2]、...、F[N-2]、F[N-1],可與實施形態1同樣藉由對於頻率軸、頻率-時間軸配置符元來變更預編碼權重。再者,雖說明時間週期N之預編碼跳躍方法,但隨機利用N個不同預編碼矩陣,亦可獲得同樣效果,總言之,未必須以具有規則週期的方式來利用N個不同預編碼矩陣。
又,如實施形態15所說明,有別於本實施形態所述之階層式傳送方法,另外存在空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流之模式、規則地切換預編碼矩陣之方法之模式,發送裝置(播送台、基地台)可從該等模式選擇某一發送方法亦可。此時,於空間多工MIMO傳送方式、預編碼矩陣固定之MIMO傳送方式、時空區塊編碼方式、僅發送1串流、規則地切換預編碼矩陣之方法之模式中,在選擇規則地切換預編碼矩陣之方法之方法之(子)載波群實施本實施形態即可。
(實施形態B1)
以下說明上述各實施形態所示之發送方法及接收方法之應用例及利用其之系統之構成例。
第78圖係表示包含執行上述實施形態所示之發送方法及接收方法之裝置之系統之構成例之圖。上述各實施形態所示之發送方法及接收方法係於數位播送用系統7800實 施,而前述數位播送用系統7800包含:第78圖所示之播送台7801、電視(television)7811、DVD錄放影機7812、STB(Set Top Box:機上盒)7813、電腦7820、車用電視7841及行動電話7830等各種接收機。具體而言,播送台7801係利用上述各實施形態所示之發送方法,將影像資料或聲音資料等已受到多工之多工資料發送至預定傳送帶區。
從播送台7801發送之訊號係由內建於各接收機、或與設置於外部之該當接收機之天線(例如天線7810、7840)接收。各接收機係利用上述各實施形態所示之接收方法,解調天線所接收的訊號,取得多工資料。藉此,數位播送用系統7800可獲得上述各實施形態所說明的本申請發明之效果。
在此,多工資料所含之影像資料係利用例如依循MPEG(Moving Picture Experts Group:動畫專家群組)2、MPEG4-AVC(Advanced Video Coding:進階視訊編碼)、VC-1等規格之動畫編碼方法而編碼。又,多工資料所含之聲音資料係以例如杜比AC(Audio Coding:音訊編碼)-3、Dolby Digital Plus、MLP(Meridian Lossless Packing:無失真壓縮)、DTS(Digital Theater Systems:數位劇院系統)、DTS-HD、線性PCM(Pluse Coding Modulation:脈衝編碼調變)等聲音編碼方法而編碼。
第79圖係表示實施上述實施形態所說明的接收方法之接收機7900之構成之一例。如第79圖所示,作為接收機7900之一構成之一例,可考慮以1個LSI(或晶片組)構成模型部分,以另一個LSI(或晶片組)構成語法部分之構成方法。第 79圖所示之接收機7900係相當於第78圖所示之電視(television)7811、DVD錄放影機7812、STB(Set Top Box:機上盒)7813、電腦7820、車用電視7841及行動電話7830等所具備的構成。接收機7900具備:調階器7901,係將天線7960所接收的高頻訊號轉換成基頻訊號者;解調部7902,係解調經頻率轉換之基頻訊號,取得多工資料者。上述各實施形態所示之接收方法係於解調部7902實施,藉此可獲得上述各實施形態所說明的本申請發明之效果。
又,接收機7900具有:串流輸出入部7903,係從解調部7902所獲得的多工資料,分離出影像資料與聲音資料者;訊號處理部7904,係利用對應於經分離之影像資料之動態圖像解碼方法,將影像資料解碼為影像訊號,利用對應於經分離之聲音資料之聲音解碼方法,將聲音資料解碼為聲音訊號者;揚聲器等聲音輸出部7906,係輸出經解碼之聲音訊號者;顯示器等影像顯示部7907,係顯示經解碼之影像訊號者。
例如使用者係利用遙控器(遠程遙控器)7950,對操作輸入部7910發送所選台的頻道(所選台的(電視)節目、所選台的聲音播送)之資訊。如此一來,接收機7900係於天線7960接收之接收訊號,進行將相當於所選台頻道之訊號予以解碼、錯誤更正解碼等處理,獲得接收資料。此時,接收機7900係藉由獲得包含相當於所選台頻道之訊號所含之傳送方法(上述實施形態所述之傳送方法、調變方式、錯誤更正方式等)(關於此係於實施形態A1~實施形態A4敘述,又, 如第5圖、第41圖所記載)之資訊之控制符元之資訊,可正確設定接收動作、解調方法、錯誤更正解碼等方法,可獲得包含於播送台(基地台)所發送的資料符元之資料。於上述,使用者係藉由遙控器7950來說明頻道選台之例,但利用接收機7900所搭載的選台鍵來將頻道選台,其動作亦與上述相同。
藉由上述構成,使用者可視聽接收機7900藉由上述各實施形態所示之接收方法所接收的節目。
又,本實施形態之接收機7900具備記錄部(驅動機)7908,係於磁性碟片、光碟片、非揮發性之半導體記憶體等記錄媒體,記錄加工由解調部7902所解調、進行錯誤更正之解碼而獲得之多工資料(視情況,對於由解調部7902解調所獲得資料,有時不進行錯誤更正解碼。又,接收機7900係於錯誤更正解碼後,有時被施以其他訊號處理。於下文,關於進行同樣表現的部分,此點亦同。)所含之資料,或相當於該資料之資料(例如藉由壓縮資料所獲得的資料)、或動畫、聲音所獲得的資料。在此,光碟片係指例如DVD(Digital Versatile Disc:數位多功能碟片)或BD(Blu-ray Disc:藍光碟片)等利用雷射光,進行資訊之記憶與讀出之記錄媒體。磁性碟片係例如FD(Floppy Disk:軟性碟片)(註冊商標)或硬碟(Hard Disk)等利用磁束來將磁體磁化,藉此記錄資訊之記錄媒體。非揮發性之半導體記憶體係例如快閃記憶體或強介電體記憶體(Ferroelectric Random Access Memory)等藉由半導體元件所構成的記錄媒體,可舉出例如 使用快閃記憶體之SD卡或Flash SSD(Solid State Drive:固態硬碟)等。再者,在此所舉出的記錄媒體種類僅為其一例,當然亦可利用上述記錄媒體以外之記錄媒體來進行記錄。
藉由上述構成,使用者可記錄並保存接收機7900藉由上述各實施形態所示之接收方法而接收之節目,於節目播送時間以後的任意時間,讀出並視聽所記錄的資料。
再者,於上述說明中,接收機7900係以記錄部7908,記錄由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,但擷取多工資料所含之資料中之一部分資料而記錄亦可。例如於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,包含影像資料或聲音資料以外之資料播送服務之內容等時,記錄部7908係僅記錄由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料及聲音資料中之某一方經多工之新的多工資料。然後,記錄部7908亦可記錄上面所述之多工資料所含之資料播送服務之內容。
進而言之,於電視、記錄裝置(例如DVD錄放影機、藍光錄放影機、HDD錄放影機、SD卡等)、行動電話,搭載有本發明所說明的接收機7900時,於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,包含用以修正令電視或記錄裝置動作而使用之軟體之缺陷(程式錯誤)之資料、用以修正防止資料或個人資訊或記錄資料外流之軟體之缺陷(程式錯誤)之資料的情況下,藉由安裝該等資料來修正電視或記錄裝置之軟體缺陷亦可。然後,於資料包含用 以修正接收機7900之軟體缺陷(程式錯誤)之資料時,亦可藉由該資料來修正接收機7900之缺陷。藉此,可令搭載接收機7900之電視、記錄裝置、行動電話更穩定地動作。
在此,從由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之複數種資料,擷取一部分資料並予以多工之處理,係於例如串流輸出入部7903進行。具體而言,串流輸出入部7903係依據來自未圖示之CPU等控制部之指示,將解調部7902所解調的多工資料,分離成影像資料、聲音資料、資料播送服務之內容等複數種資料,從分離後之資料,僅擷取指定資料並予以多工,生成新的多工資料。再者,關於從分離後之資料擷取何種資料,則由例如使用者來決定,或依記錄媒體之各種類而預先決定均可。
藉由上述構成,接收機7900可僅擷取視聽所記錄節目時所需之資料而記錄,因此可刪減記錄資料之資料尺寸。
又,於上述說明中,記錄部7908係記錄由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,但亦可將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料,轉換成採用與該影像資料被施以之動態圖像編碼方法不同之動態圖像編碼方法所編碼的影像資料,以使得資料尺寸或位元率低於該影像資料,並記錄轉換後之影像資料經多工之新的多工資料。此時,施行於原本之影像資料之動態圖像編碼方法與施行於轉換後之影像資料之動態圖像編碼方法,係依循互異規格,或依循相同規格,僅有編碼時所使用的參數不同均可。同樣地,記錄 部7908亦可將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之聲音資料,轉換成採用與該聲音資料被施以之聲音編碼方法不同之聲音編碼方法所編碼的聲音資料,以使得資料尺寸或位元率低於該聲音資料,並記錄轉換後之聲音資料經多工之新的多工資料。
在此,將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料或聲音資料,轉換為資料尺寸或位元率不同之影像資料或聲音資料之處理,係以串流輸出入部7903及訊號處理部7904進行。具體而言,串流輸出入部7903係依據來自CPU等控制部之指示,將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,分離成影像資料、聲音資料、資料播送服務之內容等複數種資料。訊號處理部7904係依據來自控制部之指示進行如下處理:將分離後之影像資料,轉換為採用與該影像資料被施以之動態圖像編碼方法不同之動態圖像編碼方法所編碼的影像資料之處理;及將分離後之聲音資料,轉換為採用與該聲音資料被施以之聲音編碼方法不同之聲音編碼方法所編碼的影像資料之處理。串流輸出入部7903係依據來自控制部之指示,將轉換後之影像資料與轉換後之聲音資料予以多工,生成新的多工資料。再者,訊號處理部7904係因應來自控制部之指示,僅對於影像資料及聲音資料中之某一方,進行轉換處理,或對於雙方進行轉換處理均可。又,轉換後之影像資料及聲音資料之資料尺寸或位元率係由使用者決定,或依記錄媒體之各種類而預先決定均可。
藉由上述構成,接收機7900可配合可記錄於記錄媒體之資料尺寸或記錄部7908進行資料之記錄或讀出之速度,變更影像資料或聲音資料之資料尺寸或位元率而記錄。藉此,即便在可記錄於記錄媒體之資料尺寸,小於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料之資料尺寸小時,或記錄部進行資料之記錄或讀出之速度,低於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料之位元率時,記錄部仍可記錄節目,因此使用者可於節目播送時間以後的任意時間,讀出並視聽所記錄的資料。
又,接收機7900具備串流輸出IF(Interface:介面)7909,係對於由解調部7902所解調的多工資料,經由通訊媒體7930而發送者。作為串流輸出IF7909之一例,可舉出經由無線媒體(相當於通訊媒體7930)而對外部機器,發送依循Wi-Fi(註冊商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等無線通訊規格之無線通訊方法而調變之多工資料之無線通訊裝置。又,串流輸出IF7909亦可為經由連接於該串流輸出IF7909之有線傳送路(相當於通訊媒體7930)而對外部機器,發送利用依循網際網路(註冊商標)或USB(Universal Serial Bus:通用序列匯流排)、PLC(Power Line Communication:電力線通訊)、HDMI(High-Definition Multimedia Interface:高解析多媒體介面)等有線通訊規格之通訊方法而調變之多工資料之無線通訊裝置。
藉由上述構成,使用者可於外部機器,利用接收機7900藉由上述各實施形態所示之接收方法接收之多工資料。在此所謂多工資料之利用包含:使用者利用外部機器即時視聽多工資料、或以外部機器所具備的記錄部來記錄多工資料、從外部機器進一步對於別的外部機器發送多工資料等。
再者,於上述說明,接收機7900係由串流輸出IF7909,輸出由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,但擷取多工資料所含資料中之一部分資料而輸出亦可。例如於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,包含包含影像資料或聲音資料以外之資料播送服務之內容等時,串流輸出IF7909係從解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,擷取所含之影像資料及聲音資料,輸出經多工之新的多工資料。又,串流輸出IF7909亦可輸出由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料及聲音資料中之僅某一方經多工之新的多工資料。
在此,從由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之複數種資料,擷取一部分資料並予以多工之處理,係於例如串流輸出入部7903進行。具體而言,串流輸出入部7903係依據來自未圖示之CPU(Central Processing Unit:中央處理單元)等控制部之指示,將解調部7902所解調的多工資料,分離成影像資料、聲音資料、資料播送服務之內容等複數種資料,從分離後之資料,僅擷取指定資料並予以多工,生成新的多工資料。再者,關 於從分離後之資料擷取何種資料,則由例如使用者來決定,或依串流輸出IF7909之各種類而預先決定均可。
藉由上述構成,接收機7900可僅擷取外部機器所需之資料而輸出,因此可刪減由於輸出多工資料所消耗的通訊帶區。
又,於上述說明中,串流輸出IF7909係記錄由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,但亦可將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料,轉換成採用與該影像資料被施以之動態圖像編碼方法不同之動態圖像編碼方法所編碼的影像資料,以使得資料尺寸或位元率低於該影像資料,並輸出轉換後之影像資料經多工之新的多工資料。此時,施行於原本之影像資料之動態圖像編碼方法與施行於轉換後之影像資料之動態圖像編碼方法,係依循互異規格,或依循相同規格,僅有編碼時所使用的參數不同均可。同樣地,串流輸出IF7909亦可將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之聲音資料,轉換成採用與該聲音資料被施以之聲音編碼方法不同之聲音編碼方法所編碼的聲音資料,以使得資料尺寸或位元率低於該聲音資料,並輸出轉換後之聲音資料經多工之新的多工資料。
在此,將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料所含之影像資料或聲音資料,轉換為資料尺寸或位元率不同之影像資料或聲音資料之處理,係以串流輸出入部7903及訊號處理部7904進行。具體而言,串流 輸出入部7903係依據來自控制部之指示,將由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料,分離成影像資料、聲音資料、資料播送服務之內容等複數種資料。訊號處理部7904係依據來自控制部之指示進行如下處理:將分離後之影像資料,轉換為採用與該影像資料被施以之動態圖像編碼方法不同之動態圖像編碼方法所編碼的影像資料之處理;及將分離後之聲音資料,轉換為採用與該聲音資料被施以之聲音編碼方法不同之聲音編碼方法所編碼的影像資料之處理。串流輸出入部7903係依據來自控制部之指示,將轉換後之影像資料與轉換後之聲音資料予以多工,生成新的多工資料。再者,訊號處理部7904係因應來自控制部之指示,僅對於影像資料及聲音資料中之某一方,進行轉換處理,或對於雙方進行轉換處理均可。又,轉換後之影像資料及聲音資料之資料尺寸或位元率係由使用者決定,或依串流輸出IF7909之各種類而預先決定均可。
藉由上述構成,接收機7911可配合與外部機器之間之通訊速度,變更影像資料或聲音資料之位元率而記錄。藉此,即便在與外部機器之間之通訊速度,低於由解調部7902解調、進行錯誤更正之解碼而獲得之多工資料之位元率時,仍可從串流輸出對外部機器輸出多工資料,因此使用者可於其他通訊裝置利用新的多工資料。
又,接收機7911具備AV(Audio and Visual:音訊視覺)輸出IF(Interface:介面)7911,係將對於外部機器由訊號處理部7904所解調的影像訊號及聲音訊號,對於外部之通訊 媒體輸出者。作為AV輸出IF7911之一例,可舉出經由無線媒體而對外部機器,發送依循Wi-Fi(註冊商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等無線通訊規格之無線通訊方法而調變之影像訊號及聲音訊號之無線通訊裝置。又,串流輸出IF7909亦可為經由連接於該串流輸出IF7909之有線傳送路而對外部機器,發送利用依循網際網路或USB、PLC、HDMI等有線通訊規格之通訊方法而調變之影像訊號及聲音訊號之無線通訊裝置。又,串流輸出IF7909亦可為連接將影像訊號及聲音訊號維持類比訊號原樣輸出之纜線之端子。
藉由上述構成,使用者可於外部機器,利用訊號處理部7904所解碼的影像訊號及聲音訊號。
進而言之,接收機7900具備操作輸入部7910,係受理使用者操作之輸入者。接收機7900係根據因應使用者之操作而輸入於操作輸入部7910之控制訊號,進行電源開啟/關閉之切換、或接收頻道之切換、字幕顯示有無或顯示語言之切換、從聲音輸出部7906輸出之音量之變更等各種動作之切換,或進行可接收頻道之設定等設定變更。
又,接收機7900亦可具備顯示表示該接收機7900在接收中之訊號的接收品質之天線位準之功能。在此,天線位準係表示接收品質之指標,其係表示訊號位準、訊號優劣之訊號;前述接收品質係根據例如接收機7900所接收的訊號之RSSI(Received Signal Strength Indication(接收訊號強 度指標)、Received Signal Strength Indicator(接收訊號強度指標器))、接收電場強度、C/N(Carrier-to-noise power ratio:載波對雜訊功率比)、BER(Bit Error Rate:位元錯誤率)、封包錯誤率、訊框錯誤率、通道狀態資訊(Channel State Information)等而算出之接收品質。該情況下,解調部7902具備接收品質測定部,係測定所接收的訊號之RSSI、接收電場強度、C/N、BER、封包錯誤率、訊框錯誤率、通道狀態資訊等者;接收機7900係因應使用者之操作,以使用者可識別之形式,於影像顯示部7907顯示天線位準(表示訊號位準、訊號良莠之訊號)。天線位準(表示訊號位準、訊號良莠之訊號)之顯示形式係顯示因應RSSI、接收電場強度、C/N、BER、封包錯誤率、訊框錯誤率、通道狀態資訊等之數值,或因應RSSI、接收電場強度、C/N、BER、封包錯誤率、訊框錯誤率、通道狀態資訊等而顯示不同圖像均可。又,接收機7900係顯示利用上述各實施形態所示之接收方法而接收並分離之複數個串流s1、s2、...逐一求出之複數個天線位準(表示訊號位準、訊號良莠之訊號),或顯示從複數個串流s1、s2、...求出之1個天線位準(表示訊號位準、訊號良莠之訊號)均可。又,利用階層式傳送方式發送構成節目之影像資料或聲音資料時,亦可依各階層來表示訊號位準(表示訊號良莠之訊號)。
藉由上述構成,使用者可就數值或視覺性地掌握利用上述各實施形態所示之接收方法接收時之天線位準(表示訊號位準、訊號良莠之訊號)。
再者,於上述說明,接收機7900係舉例說明具備聲音輸出部7906、影像顯示部7907、記錄部7908、串流輸出IF7909及AV輸出IF7911的情況,但未必須具備該等全部構成。若接收機7900具備上述構成中之至少某一者,則使用者即可利用以解調部7902解調,進行錯誤更正編碼而獲得之多工資料,因此各接收機配合其用途,任意組合上述構成而備有既可。
(多工資料)
接著,詳細說明有關多工資料之構造之一例。用於播送之資料構造一般為MPEG2-傳輸串流(TS),在此舉例說明MPEG2-TS。然而,以上述各實施形態所示之發送方法及接收方法傳送之多工資料不限於MPEG2-TS,其他任何構成當然均可獲得上述各實施形態所說明的效果。
第80圖係表示多工資料之構成之一例。如第80圖所示,多工資料係將構成各服務現在提供之節目(programme或其一部分即事件)之要素,例如視訊串流、音訊串流、簡報圖形串流(PG)、互動圖形串流(IG)等之基本串流中之1個以上,予以多工而獲得。由多工資料所提供的節目為電影時,分別而言,視訊串流表示電影之主影像及副影像,音訊串流表示電影之主聲音部及與該主聲音混音之副聲音,簡報串流表示電影字幕。在此,主影像係表示顯示於畫面之一般影像,副影像係表示於主影像中以小畫面顯示之影像(例如表示電影提要之文件資料之影像等)。又,簡報圖形串流係表示於畫面上,藉由配置GUI元件而製作之對話畫面。
多工資料所含之各串流係藉由分派給各串流之識別符即PID來識別。分別而言,例如對利用於電影影像之視訊串流分派0×1011,對音訊串流分派0×1100至1×111F,對簡報圖形串流分派0×1400至0×141F,對利用於電影副影像之視訊串流分派0×1B00至0×1B1F,對利用於主聲音及混音之副聲音之音訊串流分派0×1A00至0×1A1F。
第81圖係模式性地表示多工資料如何受到多工之一例之圖。首先,由複數個視訊訊框所組成的視訊串流8101、由複數個音訊訊框所組成的音訊串流8104,分別轉換為PES封包串8102及8105,並轉換為TS封包8103及8106。同樣地,簡報圖形串流8111及互動圖形8116之資料,分別轉換為PES封包串8112及9115,進而轉換為TS封包8113及8116。多工資料8117係藉由將該等(TS封包8103、8106、8113、8116)予以多工為1個串流而構成。
第82圖係進一步詳細表示視訊串流如何儲存於PES封包。第82圖之第1層係表示視訊串流之視訊串流之視訊訊框串。第2層係表示PES封包串。如第82圖之箭頭yy1、yy2、yy3、yy4所示,視訊串流之複數個視訊簡報單元,即I圖片、B圖片、P圖片係就各圖片而分割,並儲存於PES封包之承載區。各PES封包具有PES標頭,於PES標頭儲存有圖片之顯示時刻即PTS(Presentation Time-Stamp:簡報時戳)或圖片之解碼時刻即DTS(Decoding Time-Stamp:解碼時戳)。
第83圖係表示於多工資料最後寫入之TS封包之形式。TS封包係188位元組固定長之封包,由儲存識別串流之PID 等資訊之4位元組之TS標頭及資料之184位元組之TS承載區所構成;上述PES封包受到分割並儲存於TS承載區。BD-ROM的情況下,對TS封包賦予4位元組之TP_Extra_Header(TP額外標頭),構成192位元組之來源封包而寫入於多工資料。於TP額外標頭記載有ATS(Arrival_Time_Stamp:到達時戳)等資訊。ATS係表示該TS封包之解碼器對PID濾波器之傳輸開始時刻。於多工資料,如第83圖下層所示排有來源封包,從多工資料開頭遞增之號碼稱為SPN(來源封包號碼)。
又,於多工資料所含之TS封包除了視訊串流、音訊串流、簡報圖形串流等各串流以外,還包括PAT(Program Association Table:節目關連表)、PMT(Program Map Table:節目對應表)、PCR(Program Clock Reference:節目時鐘參考)等。PAT係表示多工資料中所利用的PMT之PID為何,PAT本身之PID登錄為0。PMT具有多工資料中所含之影像‧聲音‧字幕等各串流之PID、及對應於各PID之串流之屬性資訊(訊框率、縱橫比等),且具有關於多工資料之各種描述符。於描述符包括指示許可‧不許可多工資料之複製之複製控制資訊等。PCR係為了取得ATS之時間軸即ATC(Arrival Time Clock:到達時間時鐘)與PTS‧DTS之時間軸即STC(System Time Clock:系統時間時鐘)之同步,具有與其PCR封包傳輸至解碼器之ATS相對應之STC時間之資訊。
第84圖係詳細說明PMT之資料構造之圖。於PMT之開 頭,配置記有該PMT所含之資料長度等PMT標頭。於其後配置複數個關於多工資料之描述符。上述複製控制資訊等係記載作描述符。於描述符之後,配置複數個關於多工資料所含之各串流之串流資訊。串流資訊係由記載有為了識別串流之壓縮代碼等之串流類型、串流之PID、串流之屬性資訊(訊框率、縱橫比等)之串流描述符所構成。串流描述符僅以存在於多工資料之串流數而存在。
記錄於記錄媒體等時,上述多工資料係與多工資料資訊檔一同記錄。
第85圖係表示該多工資料資訊檔之構成之圖。多工資料資訊檔係如第85圖所示為多工資料之管理資訊,與多工資料1對1地對應,由多工資料資訊、串流屬性資訊及分錄圖所構成。
如第85圖所示,多工資料資訊係由系統率、再生開始時刻、再生結束時刻所構成。系統率係表示多工資料對後述之系統目標解碼器之PID濾波器之最大傳輸率。多工資料中所含之ATS之間隔設定為系統率以下。再生開始時刻為多工資料開頭之視訊訊框之PTS,設定再生結束時刻為多工資料尾端之視訊訊框之PTS,加上1訊框份之再生間隔。
第86圖係表示多工資料檔資訊所含之串流屬性資訊之構成之圖。如第86圖所示,串流屬性資訊係就各PID,登錄關於多工資料所含之各串流之屬性資訊。屬性資訊係依各視訊串流、音訊串流、簡報圖形串流、互動圖形串流而具有不同資訊。視訊串流屬性資訊具有該視訊串流以何種壓 縮代碼壓縮、構成視訊串流之各個圖片資料之解像度多高、縱橫比多少、訊框比多少等資訊。音訊串流屬性資訊具有該音訊串流以何種壓縮代碼壓縮、該音訊串流所含之通道數、對應何種語言、取樣頻率多少等資訊。該等資訊係利用於播放器再生前之解碼器之初始化等。
於本實施形態,利用上述多工資料中包含於PMT之串流類型。又,於記錄媒體記錄有多工資料時,利用多工資料資訊所含之視訊串流屬性資訊。具體而言,於上述各實施形態所示之動態圖像編碼方法或裝置,設置對於PMT所含之串流類型、或視訊串流屬性資訊,設定表示藉由上述各實施形態所示之動態圖像編碼方法或裝置所生成的影像資料之固有資訊之步驟或機構。藉由該構成,可識別藉由上述各實施形態所示之動態圖像編碼方法或裝置所生成的影像資料、與依循其他規格之影像資料。
第87圖係表示包含接收裝置8704之影像聲音輸出裝置8700之構成之一例;前述接收裝置8704係接收從播送台(基地台)發送之影像及聲音之資料、或包含資料播送用之資料之調變訊號。再者,接收裝置8704之構成相當於第79圖之接收裝置7900。於影像聲音輸出裝置8700搭載有例如OS(Operating System:作業系統),又,搭載有用以連接於網際網路之通訊裝置8706(例如無線LAN(Local Area Network:區域網路)或Ethernet用之通訊裝置)。藉此,於顯示影像部分8701,可同時顯示影像及聲音之資料、或資料播送用之資料之影像8702、及網際網路上提供之超文件 (World Wide Web(全球資訊網:WWW))8703。然後,藉由操作遙控器(行動電話或鍵盤亦可)8707,選擇資料播送用之資料之影像8702、網際網路上提供之超文件8703之某一者而變更動作。例如選擇網際網路上提供之超文件8703時,藉由操作遙控器,變更所顯示的WWW之網站。又,選擇影像及聲音之資料、或資料播送用之資料之影像8702時,藉由遙控器8707發送所選台的頻道(所選台的(電視)節目、所選台的聲音播送)之資訊。如此一來,IF8705取得由遙控器發送之資訊,接收裝置8704係將與所選台的頻道相當之訊號進行解調、錯誤更正編碼等處理,獲得接收資料。此時,接收裝置8704係藉由獲得包含與所選台頻道相當之訊號所含的傳送方法(關於此係於實施形態A1~實施形態A4敘述,又如第5圖、第41圖所記載)之資訊之控制符元之資訊,正確設定接收動作、解調方法、錯誤更正解碼等方法,可獲得由播送台(基地台)發送之資料符元所含之資料。於上述,說明使用者藉由遙控器8707,進行頻道選台之例,但利用影像聲音輸出裝置8700所搭載的選台鍵進行頻道選台,亦與上述為相同動作。
又,利用網際網路操作影像聲音輸出裝置8700亦可。例如從其他連接網際網路之終端裝置,對於影像聲音輸出裝置8700進行錄影(記憶)之預約。(因此,影像聲音輸出裝置8700係如第79圖具有記錄部7908。)然後,於錄影開始前進行頻道選台,接收裝置8704係將所選台的頻道相當之訊號進行解調、錯誤更正編碼等處理,獲得接收資料。此時, 接收裝置8704係藉由獲得包含與所選台頻道相當之訊號所含的傳送方法(上述實施形態所述之傳送方式、調變方式、錯誤更正方式等)(關於此係於實施形態A1~實施形態A4敘述,又如第5圖、第41圖所記載)之資訊之控制符元之資訊,正確設定接收動作、解調方法、錯誤更正解碼等方法,可獲得由播送台(基地台)發送之資料符元所含之資料。
(其他補充)
於本說明書,具備發送裝置者可考慮例如播送台、基地台、存取點、終端裝置、行動電話(mobile phone)等通訊.播送機器,此時,具備接收裝置者可考慮例如電視、收音機、終端裝置、個人電腦、行動電話、存取點、基地台等通訊機器。又,本發明之發送裝置、接收裝置係具有通訊功能之機器,該機器亦可考慮諸如可經由某種介面(例如USB),連接於電視、收音機、個人電腦、行動電話等用以執行應用之裝置的形態。
又,於本實施形態,資料符元以外之符元,例如前導符元(前置、單一字元、後置、參考符元等)、控制資訊用符元等可於訊框任意配置。然後,在此雖稱為前導符元、控制資訊用符元,等採取任何標呼方式均可,功能本身才是重點。
前導符元若為例如於收發機中已利用PSK調變予以調變之已知符元(例如接收機取得同步,藉此接收機可得知發送機所發送的符元亦可)即可,接收機利用該符元,進行頻率同步、時間同步、(各調變訊號之)通道推定(CSI(Channel State Information:通道狀態資訊)之推定)、訊號檢測等。
又,控制資訊用符元係為了實現(應用等)資料以外之通訊,用以傳送須對通訊對象傳送之資訊(例如用於通訊之調變方式.錯誤更正編碼方式、錯誤更正編碼方式之編碼率、高位層之設定資訊等)之符元。
再者,本發明不限定於上述所有實施形態,可予以多方變更而實施。例如於上述實施形態,說明有關作為通訊裝置而進行的情況,但不限於此,作為軟體而進行該通訊方法亦可。
又,於上述說明有關從2個天線發送2個調變訊號之方法之預編碼切換方法,但不限於此,亦可同樣地實施如下之預編碼切換方法:在對於4個映射後之訊號進行預編碼,生成4個調變訊號,從4個天線發送之方法,亦即作為對於N個映射後之訊號進行預編碼,生成N個調變訊號,從N個天線發送之方法中,同樣地變更預編碼權重(矩陣)。
於本說明書,採用「預編碼」、「預編碼矩陣」、「預編碼權重矩陣」等用語,但稱呼方式本身可為任何稱呼方式(亦可稱為例如碼本(codebook)),於本發明,其訊號處理本身才是重點。
又,於本說明書,於接收裝置,利用ML運算、APP、Max-LogAPP、ZF、MMSE等來說明,其結果獲得發送裝置所發送的資料之各位元之軟判斷結果(對數概似、對數概似比)或硬判斷結果(「0」或「1」),但該等總稱為檢波、解調、檢測、推定、分離亦可。
藉由串流s1(t)、s2(t)來傳送不同資料或同一資料均可。
在對於2串流之基頻訊號s1(i)、s2(i)(其中,i表現(時間或頻率(載波))順序),進行規則地切換預編碼矩陣之預編碼而生成之預編碼後之基頻訊號z1(i)、z2(i),將預編碼後之基頻訊號z1(i)之同相1成分設為I1(i),正交成分設為Q1(i),預編碼後之基頻訊號z2(i)之同相1成分設為l2(i),正交成分Q設為Q2(i)。此時,進行基頻成分之置換,且如同:‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為Q1(i),於同一時刻,利用同一頻率,從發送天線1發送相當於置換後之基頻訊號r1(i)之調變訊號,從發送天線2發送相當於置換後之基頻訊號r2(i)之調變訊號;亦可於同一時刻,利用同一頻率,從不同天線發送相當於置換後之基頻訊號r1(i)之調變訊號、置換後之基頻訊號r2(i)。又,如下設定亦可:‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為Q1(i); ‧置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為Q1(i); ‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為ll(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為I2(i)。又,上述說明有關對於2串流之訊號進行預編碼,置換預編碼後之訊號之同相成分與正交成分,但不限於此,亦可對於多於2串流之訊號進行預編碼,進行預編碼後之訊號之同相成分與正交成分之置換。
發送裝置之發送天線、接收裝置之接收天線均為圖式所記載的1個天線,亦可藉由複數個天線來構成。
於本說明書,「」表現全稱記號(universal quantifier),「」表現存在記號(existential quantifier)。
於本說明書,複數平面之例如偏角之相位單位設為「弧度(radian)」。
若利用複數平面,則作為藉由複數數目之極座標之顯示,可採極形式來顯示。於複數數目z=a+jb(a、b均為實數, j為虛數),令複數平面上的點(a,b)對應時,該點為極座標,若表現作[r,θ],則下式成立:a=r×cosθ
b=r×sinθ
r為z之絕對值(r=|z|),θ為偏角(argument)。然後,z=a+jb表現作re
於本發明之說明中,基頻訊號、調變訊號s1、調變訊號s2、調變訊號z1、調變訊號z2為複數訊號,複數訊號係指同相訊號設為1,正交訊號設為Q時,複數訊號表現作1+jQ(j為虛數單位)。此時,l為零或Q為零均可。
又,於本說明書所說明、分派不同預編碼矩陣給訊框(時間軸及/或頻率軸)之方法(例如實施形態1、實施形態17至實施形態20),利用與本說明書所述之不同預編碼矩陣不同之預編碼矩陣,亦可同樣地實施。同樣地,關於使規則地切換預編碼矩陣之方法與其他方法共存,亦或切換的情況,亦可作為與本發明書所述利用不同預編碼矩陣而規則地切換之方法不同之利用預編碼矩陣而規則地切換之方法來實施。
於第59圖表示本說明書所說明規則地切換預編碼矩陣之方法之播送系統之一例。於第59圖,影像編碼部5901係以影像作為輸入進行影像編碼,輸出影像編碼後之資料5902。以聲音作為輸入進行聲音編碼,輸出聲音編碼後之 資料5904。資料編碼部5905係以資料作為輸入進行資料編碼(例如資料壓縮),輸出資料編碼後之資料5906。匯總該等而設為資訊源編碼部5900。
發送部5907係以影像編碼後之資料5902、聲音編碼後之資料5904、資料編碼後之資料5906作為輸入,對該等資料之某一者,或將該等資料全部作為發送資料,施以錯誤更正編碼、調變、預編碼等處理(例如第3圖之發送裝置之訊號處理),輸出發送訊號5908_1~5908_N。然後,發送訊號5908_1~5908_N分別從天線5909_1~5909_N,作為電波發送。
接收部5912係以天線5910_1~5910_M所接收的接收訊號5911_1至5911_M作為輸入,施以頻率轉換、預編碼之解碼、對數概似比算出、錯誤更正解碼等處理(例如第7圖之接收裝置之處理),輸出接收資料5913、5915、5917。資訊源解碼部5919係以接收資料5913、5915、5917作為輸入,影像解碼部5914係以接收資料5913作為輸入,進行影像用之解碼,並輸出影像訊號,影像顯示於電視、顯示器。又,聲音解碼部5916係以接收資料5915作為輸入,進行聲音用之解碼,並輸出聲音訊號,聲音從揚聲器播放。又,資料解碼部5918係以接收資料5917作為輸入,進行資料用之解碼並輸出資料之資訊。
又,於進行本發明說明之實施形態,如先前所說明,如OFDM方式之多載波傳送方式中,發送裝置所保有的編碼器數為任意數。因此,例如第4圖,於諸如OFDM方式之 多載波傳送方式,當然亦可適用發送裝置具備1個編碼器而分配輸出的方法。此時,將第4圖之無線部310A、310B調換成第13圖之OFDM方式關連處理部1301A、1301B。此時,OFDM方式關連處理部之說明係如實施形態1。
又,於本說明書雖記述做「切換不同預編碼矩陣之方法」,但本說明書所具體記載之「切換不同預編碼矩陣之方法」為例子,於本說明書所記載的所有實施形態,作為「切換不同預編碼矩陣之方法」,與「利用不同的複數個預編碼矩陣,規則地切換預編碼矩陣之方法」調換而實施,亦可同樣地實施。
再者,例如預先於ROM(Read Only Memory:唯讀記憶體)儲存執行上述通訊方法之程式,藉由CPU(Central Processor Unit:中央處理單元)令該程式動作亦可。
又,於電腦可讀取之記憶媒體,儲存執行上述通訊方法之程式,將儲存於記憶媒體之程式記錄於電腦之RAM(Random Access Memory:隨機存取記憶體),按照該程式令電腦動作亦可。
然後,上述各實施形態等之各構成在典型上亦可作為積體電路之LSI(Large Scale Integration:大規模積體)而實現。該等係個別製成1晶片,或包含各實施形態之所有構成或一部分構成而製成1晶片均可。於此雖為LSI,但視積體程度差異,有時亦稱為IC(Integrated Circuit:積體電路)、系統LSI、特大型LSI、超大型LSI。又,積體電路化的手法不限於LSI,以專用電路或通用處理器來實現亦可。亦可利 用於LSI製造後可程式化之FPGA(Field Programmable Gate Array:現場可程式化閘極陣列),或可再構成LSI內部之電路胞(cell)之連接或設定之可重構處理器。
進而言之,若由於半導體技術進步或所衍生的其他技術,出現取代LSI之積體電路化技術時,當然亦可利用該技術來進行功能區塊之積體化。作為可能性可包括生化技術之適用等。
再者,本發明之1實施形態之預編碼方法係由發送裝置執行,而前述發送裝置從由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,生成第1發送訊號及第2發送訊號,將所生成的各個發送訊號,於相同頻帶且於相同時序,從各不相同之1以上之輸出口發送;其特徵在於:對於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號;前述第1發送訊號及第2發送訊號係從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號生成。
又,本發明之1實施形態之執行預編碼方法之訊號處理裝置係搭載於發送裝置,而前述發送裝置從由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,生成第1發送訊號及第2發送訊號,將所生成的各個發送訊號,於相同頻帶且於相同時序,從各不相同之1以上之輸出口發送;其特徵在於:對 於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號;前述第1發送訊號及第2發送訊號係從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號生成。
又,本發明之1實施形態之發送方法係由發送裝置執行,而前述發送裝置從由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,生成第1發送訊號及第2發送訊號,將所生成的各個發送訊號,於相同頻帶且於相同時序,從各不相同之1以上之輸出口發送;其特徵在於:對於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號;從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號,生成前述第1發送訊號及第2發送訊號;從1以上之第1輸出口,發送前述第1發送訊號,從與前述第1輸出口不同之1以上之第2輸出口,發送前述第2發送訊號;於預編碼根據前述延伸調變訊號之編碼區塊時,在用以因應調變方式而將前述編碼區塊作為前述第1發送訊號及前述第2發送訊號發送所必需的時槽數設為M,互異之前述複數個預編碼矩陣之個數設為N,用以識別前述複數個預編碼矩陣各者之索引設為F(F為1~N之某一者),分派索引F之預編碼矩陣之時槽數設為C[F](C[F]小於M)的情況下,就任意之a、b(a、b為1~N之某一者,其中 a≠b),以C[a]與C[b]之差分成為0或1之方式,將複數個預編碼矩陣之某一者,分派給用於前述編碼區塊之發送之M個時槽各個。
又,本發明之1實施形態之發送裝置係從由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,生成第1發送訊號及第2發送訊號,將所生成的各個發送訊號,於相同頻帶且於相同時序,從各不相同之1以上之輸出口發送;其特徵在於具備:加權合成部,係對於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號者;及發送部,係從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號,生成前述第1發送訊號及第2發送訊號,從1以上之第1輸出口,發送前述第1發送訊號,從與前述第1輸出口不同之1以上之第2輸出口,發送前述第2發送訊號者;前述加權合成部係於預編碼根據前述延伸調變訊號之編碼區塊時,在用以因應調變方式而將前述編碼區塊作為前述第1發送訊號及前述第2發送訊號發送所必需的時槽數設為M,互異之前述複數個預編碼矩陣之個數設為N,用以識別前述複數個預編碼矩陣各者之索引設為F(F為1~N之某一者),分派索引F之預編碼矩陣之時槽數設為C[F](C[F]小於M)的情況下,就任意之a、b(a、b為1~N之某一者,其中a≠b),以C[a]與C[b]之差分成為0或1之方式,將複數個預編碼矩陣之某一者,分派給用於前述編 碼區塊之發送之M個時槽各個。
又,本發明之1實施形態之接收方法係由接收裝置,接收於相同頻帶且於相同時序,發送裝置從各不相同之1以上之輸出口發送發送之第1發送訊號及第2發送訊號;其特徵在於:前述第1發送訊號及前述第2發送訊號係針對由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,對於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號,從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號生成;藉由因應用於前述基本調變訊號及前述延伸調變訊號之調變方式之解調方式,解調已接收的前述第1發送訊號及前述第2發送訊號各者,進行錯誤更正解碼而獲得資料;於該接收方法,其特徵在於:於根據前述延伸調變訊號之編碼區塊受到預編碼時,在用以因應調變方式而將前述編碼區塊作為前述第1發送訊號及前述第2發送訊號發送所必需的時槽數設為M,互異之前述複數個預編碼矩陣之個數設為N,用以識別前述複數個預編碼矩陣各者之索引設為F(F為1~N之某一者),分派索引F之預編碼矩陣之時槽數設為C[F](C[F]小於M)的情況下,就任意之a、b(a、b為1~N之某一者,其中a≠b),以C[a]與C[b]之差分成為0或1之方式,將複數個預編碼矩陣之某一者,分派給用於前述編碼區塊之發送之M個時槽各個。
又,本發明之1實施形態之接收裝置係接收於相同頻帶且於相同時序,發送裝置從各不相同之1以上之輸出口發送發送之第1發送訊號及第2發送訊號;其特徵在於:前述第1發送訊號及前述第2發送訊號係針對由基本串流所組成的基本調變訊號、及由資料與前述基本串流不同之延伸串流所組成的延伸調變訊號,對於前述延伸調變訊號,從複數個預編碼矩陣中,一面規則地切換一面選擇1個預編碼矩陣,利用所選擇的預編碼矩陣執行預編碼,生成預編碼後之延伸調變訊號,從根據前述基本調變訊號之訊號、及前述預編碼後之延伸調變訊號生成;藉由因應用於前述基本調變訊號及前述延伸調變訊號之調變方式之解調方式,解調已接收的前述第1發送訊號及前述第2發送訊號各者,進行錯誤更正解碼而獲得資料;於該接收裝置,其特徵在於:於根據前述延伸調變訊號之編碼區塊受到預編碼時,在用以因應調變方式而將前述編碼區塊作為前述第1發送訊號及前述第2發送訊號發送所必需的時槽數設為M,互異之前述複數個預編碼矩陣之個數設為N,用以識別前述複數個預編碼矩陣各者之索引設為F(F為1~N之某一者),分派索引F之預編碼矩陣之時槽數設為C[F](C[F]小於M)的情況下,就任意之a、b(a、b為1~N之某一者,其中a≠b),以C[a]與C[b]之差分成為0或1之方式,將複數個預編碼矩陣之某一者,分派給用於前述編碼區塊之發送之M個時槽各個。
(其他補充2)
在對於2串流之基頻訊號s1(i)、s2(i)(某調變方式之映射 後之基頻訊號)(其中,i表現(時間或頻率(載波))順序),進行規則地切換預編碼矩陣之預編碼而生成之預編碼後之基頻訊號z1(i)、z2(i),將預編碼後之基頻訊號z1(i)之同相1成分設為l1(i),正交成分設為Q1(i),預編碼後之基頻訊號z2(i)之同相1成分設為l2(i),正交成分Q設為Q2(i)。此時,進行基頻成分之置換,且如同:‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為Q1(i),於同一時刻,利用同一頻率,從發送天線1發送相當於置換後之基頻訊號r1(i)之調變訊號,從發送天線2發送相當於置換後之基頻訊號r2(i)之調變訊號;亦可於同一時刻,利用同一頻率,從不同天線發送相當於置換後之基頻訊號r1(i)之調變訊號、置換後之基頻訊號r2(i)。又,如下設定亦可:‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設 為I1(i),置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r1(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r2(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為Q2(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為I2(i),置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為l2(i),正交成分設為I1(i),置換後之基頻訊號r1(i)之同相成分設為Q2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設 為Q2(i),置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為l1(i),正交成分設為Q2(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為l2(i);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r1(i)之同相成分設為l2(i),正交成分設為Q1(i);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i),正交成分設為l1(i),置換後之基頻訊號r1(i)之同相成分設為Q1(i),正交成分設為I2(i)。又,上述說明有關對於2串流之訊號進行預編碼,置換預編碼後之訊號之同相成分與正交成分,但不限於此,亦可對於多於2串流之訊號進行預編碼,進行預編碼後之訊號之同相成分與正交成分之置換。
又,上述例係說明同一時刻(同一頻率((子)載波))之基頻訊號之置換,但不置換同一時刻之基頻訊號亦可。作為例子可記述如下。‧置換後之基頻訊號r1(i)之同相成分設為l1(i+v),正交成分設為Q2(i+w),置換後之基頻訊號r2(i)之同相成分設為l2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r1(i)之同相成分設為l1(i+v),正交成分設為l2(i+w),置換後之基頻訊號r2(i)之同相成分設為Q1(i+v),正交成分設為Q2(i+w); ‧置換後之基頻訊號r1(i)之同相成分設為l2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r2(i)之同相成分設為Q1(i+v),正交成分設為Q2(i+w);‧置換後之基頻訊號r1(i)之同相成分設為l1(i+v),正交成分設為l2(i+w),置換後之基頻訊號r2(i)之同相成分設為Q2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r1(i)之同相成分設為l2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r2(i)之同相成分設為Q2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r1(i)之同相成分設為l1(i+v),正交成分設為Q2(i+w),置換後之基頻訊號r2(i)之同相成分設為Q1(i+v),正交成分設為l2(i+w);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r2(i)之同相成分設為l2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r1(i)之同相成分設為Q2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r2(i)之同相成分設為Q1(i+v),正交成分設為l2(i+w);‧置換後之基頻訊號r2(i)之同相成分設為l1(i+v),正交成分設為l2(i+w),置換後之基頻訊號r1(i)之同相成分設為Q1(i+v),正交成分設為Q2(i+w);‧置換後之基頻訊號r2(i)之同相成分設為l2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r1(i)之同相成分設為Q1(i+v),正交成分設為Q2(i+w); ‧置換後之基頻訊號r2(i)之同相成分設為l1(i+v),正交成分設為l2(i+w),置換後之基頻訊號r1(i)之同相成分設為Q2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r2(i)之同相成分設為l2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r1(i)之同相成分設為Q2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r2(i)之同相成分設為l1(i+v),正交成分設為Q2(i+w),置換後之基頻訊號r1(i)之同相成分設為l2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r2(i)之同相成分設為l1(i+v),正交成分設為Q2(i+w),置換後之基頻訊號r1(i)之同相成分設為Q1(i+v),正交成分設為l2(i+w);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i+w),正交成分設為Q1(i+v),置換後之基頻訊號r1(i)之同相成分設為l2(i+w),正交成分設為Q1(i+v);‧置換後之基頻訊號r2(i)之同相成分設為Q2(i+w),正交成分設為l1(i+v),置換後之基頻訊號r1(i)之同相成分設為Q1(i+v),正交成分設為l2(i+w)。
第88圖係表示用以說明上述記載之基頻訊號置換部8801之圖。如圖式1所示,於預編碼後之基頻訊號z1(i)8801_1、z2(i)8801_2,將預編碼後之基頻訊號z1(i)8801_1之同相1成分設為l1(i),正交成分設為Q1(i),預編碼後之基頻訊號z2(i)8801_2之同相1成分設為l2(i),正交成分設為Q2(i)。然後,若將置換後之基頻訊號r1(i)8803_1 之同相成分設為lr1(i),正交成分設為Qr1(i),置換後之基頻訊號r2(i)8803_2之同相成分設為lr2(i),正交成分設為Qr2(i),則置換後之基頻訊號r1(i)8803_1之同相成分lr1(i)、正交成分Qr1(i)、置換後之基頻訊號r2(i)8803_2之同相成分lr2(i)、正交成分Qr2(i)係由上述所說明的某一者來表現。再者,該例雖說明同一時刻(同一頻率((子)載波))之預編碼後之基頻訊號之置換,但如上述為不同時刻(不同頻率((子)載波))之預編碼後之基頻訊號之置換亦可。
然後,如同於同一時刻,利用同一頻率,從發送天線1發送相當於置換後之置換後之基頻訊號r1(i)8803_01之調變訊號,從發送天線2發送相當於置換後之基頻訊號r2(i)8803_02之調變訊號,亦可於同一時刻,利用同一頻率,從不同天線發送相當於置換後之置換後之基頻訊號r1(i)8803_01之調變訊號、置換後之置換後之基頻訊號r2(i)8803_02亦可。
於實施形態A1至實施形態A4、及實施形態1所述之符元之配置方法,即便採用利用與本說明書所述「切換不同預編碼矩陣之方法」不同之複數個預編碼矩陣,來規則地切換預編碼矩陣之預編碼方法,亦可同樣地實施。又,關於其他實施形態亦同。再者,以下補充說明有關不同之複數個預編碼矩陣。
若為了規則地切換預編碼矩陣之預編碼方法而準備之N個預編碼矩陣,係以F[0]、F[1]、F[2]、...、F[N-3]、F[N-2]、F[N-1]來表現。此時,上面所述「不同之複數個預編碼矩 陣」係符合以下2個條件(條件*1及條件*2)。
若依據該條件*1,「(x為0至N-1之整數,y為0至N-1之整數,x≠y),然後,對於符合前述之所有x、所有y,F[x]≠F[y]成立」。
[數305]<條件*2>F[x]=k×F[y]
x為0至N-1之整數,y為0至N-1之整數,x≠y時,對於所有x、所有y,符合上式之實數或複數數目之k不存在。
再者,以2×2矩陣為例來進行補充。如以下表現2×2矩陣R、S。
以a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22及e=Eejγ11、f=Fejγ12、g=Gejγ21、h=Hejγ22來表現。其中,A、B、C、D、E、F、G、H為0以上之實數。δ11、δ12、δ21、δ22、γ11、γ2、γ21、γ22之單位係以弧度表現。此時,R≠S係指於(1)a≠e、 (2)b≠f、(3)c≠g、(4)d≠h時,(1)、(2)、(3)、(4)中之至少一者成立。
又,作為預編碼矩陣,亦可利用R矩陣中,a、b、c、d之某一者為「零」之矩陣。總言之,亦可為(1)a為零,b、c、d非零;(2)b為零,a、c、d非零;(3)c為零,a、b、d非零;(4)d為零,a、b、c非零。
然後,於本發明說明所示之系統例,揭示從2個天線發送2個調變訊號,以2個天線分別接收之MIMO方式之通訊系統,但本發明當然亦可適用於MISO(Multiple Input Single Output:多輸入單輸出)方式之通訊系統。MISO方式的情況下,於發送裝置適用規則地切換複數個預編碼矩陣之預編碼方法方面,係如截至目前為止之說明。另,接收裝置係採取第7圖所示構成中未有天線701_Y、無線部703_Y、調變訊號z1之通道變動推定部707_1、調變訊號z2之通道變動推定部707_2之構成,但該情況下,藉由執行本說明書中所示之處理,仍可推定發送裝置所發送的資料。再者,於同一頻帶、同一時間發送之複數個訊號,能夠以1個天線接收、解碼,此為習知事項(於1天線接收時,施行ML運算等(Max-Log APP等)處理即可。),於本發明,若於第7圖之訊號處理部711,進行考慮到發送側所用之規則切換之預編碼方法之解調(檢波)即可。
產業上之可利用性
本發明可廣泛適用於從複數個天線,發送各不相同之調變訊號之無線系統,適宜適用於例如OFDM-MIMO通訊 系統。又,在具有複數個發送處之有線通訊系統(例如PLC(Power Line Communication:電力線通訊)系統、光通訊系統、DSL(Digital Subscriber Line:數位用戶線)系統)中,進行MIMO傳送時亦可適用,此時係利用複數個發送處,來發送如本發明所說明的複數個調變訊號。又,調變訊號亦可從複數個發送處發送。
n1~nNr‧‧‧i.i.d.複數高斯雜訊
s1~sNt‧‧‧發送訊號
u、u’‧‧‧向量
z‧‧‧資訊向量
Π‧‧‧交錯器
Π-1‧‧‧解交錯器

Claims (8)

  1. 一種發送方法,其特徵在於含有:編碼處理,利用預定之錯誤更正編碼方式來生成編碼資料;生成處理,對包含從前述編碼資料的位元生成的複數個第1調變訊號s1之第1調變訊號列s1(j)、及包含從前述編碼資料的位元生成的複數個第2調變訊號s2之第2調變訊號列s2(j)(其中j為顯示前述第1調變訊號s1及前述第2調變訊號s2之號碼的索引,且為0以上之整數),按每個具有相同索引號碼之前述第1調變訊號s1及前述第2調變訊號s2之組,依照複數個相異的預編碼方式中之一個預編碼方式施予預編碼處理,來生成第1發送訊號列z1(j)及第2發送訊號列z2(j),用於前述預編碼處理的預編碼方式是從前述複數個預編碼方式中因應索引號碼的值而週期地切換;及發送處理,生成配置了前述第1發送訊號列z1(j)與第1前導訊號的第1OFDM訊框、及配置了前述第2發送訊號列z2(j)與第2前導訊號的第2OFDM訊框,將前述第1OFDM訊框及第2OFDM訊框使用複數個天線發送,且將具有相同索引號碼之前述第1發送訊號z1及前述第2發送訊號z2以同樣的頻率同時發送,在對1個之前述編碼資料的前述生成處理中,前述複數個預編碼方式分別被使用相同次數。
  2. 如請求項1之發送方法,其中前述複數個預編碼方式分別是以以下的N個矩陣F[i](其中,i為0以上N-1以下的整數,N為3以上的整數)的任一個來表示, 其中,λ為任意角度,α為正實數,且θ11(i)及θ21(i)滿足:
  3. 一種發送裝置,其特徵在於具有:編碼部,利用預定之錯誤更正編碼方式來生成編碼資料;生成部,對包含從前述編碼資料的位元生成的複數個第1調變訊號s1之第1調變訊號列s1(j)、及包含從前述編碼資料的位元生成的複數個第2調變訊號s2之第2調變訊號列s2(j)(其中j為顯示前述第1調變訊號s1及前述第2調變訊號s2之號碼的索引,且為0以上之整數),按每個具有相同索引號碼之前述第1調變訊號s1及前述第2調變訊號s2之組,依照複數個相異的預編碼方式中之一個預編碼方式施予預編碼處理,來生成第1發送訊號列 z1(j)及第2發送訊號列z2(j),用於前述預編碼處理的預編碼方式是從前述複數個預編碼方式中因應索引號碼的值而週期地切換;及發送部,生成配置了前述第1發送訊號列z1(j)與第1前導訊號的第1OFDM訊框、及配置了前述第2發送訊號列z2(j)與第2前導訊號的第2OFDM訊框,將前述第1OFDM訊框及第2OFDM訊框使用複數個天線發送,且將具有相同索引號碼之前述第1發送訊號z1及前述第2發送訊號z2以同樣的頻率同時發送,在對1個之前述編碼資料的前述生成部之處理中,前述複數個預編碼方式分別被使用相同次數。
  4. 如請求項3之發送裝置,其中前述複數個預編碼方式分別是以以下的N個矩陣F[i](其中,i為0以上N-1以下的整數,N為3以上的整數)的任一個來表示, 其中,λ為任意角度,α為正實數,且θ11(i)及θ21(i)滿足:
  5. 一種接收方法,其特徵在於:取得接收訊號,前述接收訊號是將用複數個天線發送的第1OFDM訊框及第2OFDM訊框接收而得,前述第1OFDM訊框配置有第1發送訊號列z1(j)與第1前導訊號,前述第2OFDM訊框配置有第2發送訊號列z2(j)與第2前導訊號(其中j為顯示前述第1發送訊號z1及前述第2發送訊號z2之號碼的索引,且為0以上之整數),具有相同索引號碼之第1發送訊號z1及第2發送訊號z2是以同樣的頻率同時發送,前述第1發送訊號列z1(j)及前述第2發送訊號列z2(j)是藉由對包含從編碼資料的位元生成的第1調變訊號s1之第1調變訊號列s1(j)、及包含從前述編碼資料的位元生成的第2調變訊號s2之第2調變訊號列s2(j)施予預定的生成處理而生成,前述編碼資料的位元是利用預定的錯誤更正編碼方式來生成,且對已取得之前述接收訊號施予因應前述生成處理的解調處理,來生成接收資料,前述生成處理中,是對前述第1調變訊號列s1(j)及前述第2調變訊號列s2(j)按每個具有相同索引號碼的前述第1調變訊號s1及前述第2調變訊號s2之組,依照複數個相異的預編碼方式中之一個預編碼方式施予預編碼處理,來生成前述第1發送訊號列z1(j)及前述第2發送訊號列z2(j),用於前述預編碼處理的預編碼方式是從前述複數個預編碼方式中因應索引號碼的值而週期地切換,在對1個之前述編碼資料的前述生成處理中,前述 複數個預編碼方式分別被使用相同次數,前述解調處理是使用因應前述複數個預編碼方式的解調方式來將前述接收訊號解調,該複數個預編碼方式是因應索引號碼而週期地切換。
  6. 如請求項5之接收方法,其中前述複數個預編碼方式分別是以以下的N個矩陣F[i](其中,i為0以上N-1以下的整數,N為3以上的整數)的任一個來表示, 其中,λ為任意角度,α為正實數,且θ11(i)及θ21(i)滿足:
  7. 一種接收裝置,其特徵在於:具有取得接收訊號的取得部,前述接收訊號是將用複數個天線發送的第1OFDM訊框及第2OFDM訊框接收而得,前述第1OFDM訊框配置有第1發送訊號列z1(j)與第1前導訊號,前述第2OFDM訊框配置有第2發送訊號列z2(j)與第2前導訊號(其中j為顯示前述第1發送訊號z1及前述第2發送訊號z2之號碼 的索引,且為0以上之整數),具有相同索引號碼之第1發送訊號z1及第2發送訊號z2是以同樣的頻率同時發送,前述第1發送訊號列z1(j)及前述第2發送訊號列z2(j)是藉由對包含從編碼資料的位元生成的第1調變訊號s1之第1調變訊號列s1(j)、及包含從前述編碼資料的位元生成的第2調變訊號s2之第2調變訊號列s2(j)施予預定的生成處理而生成,前述編碼資料的位元是利用預定的錯誤更正編碼方式來生成,且更具有解調部,該解調部是對已取得之前述接收訊號施予解調處理,來生成接收資料,前述生成處理中,是對前述第1調變訊號列s1(j)及前述第2調變訊號列s2(j)按每個具有相同索引號碼的前述第1調變訊號s1及前述第2調變訊號s2之組,依照複數個相異的預編碼方式中之一個預編碼方式施予預編碼處理,來生成前述第1發送訊號列z1(j)及前述第2發送訊號列z2(j),用於前述預編碼處理的預編碼方式是從前述複數個預編碼方式中因應索引號碼的值而週期地切換,在對1個之前述編碼資料的前述生成處理中,前述複數個預編碼方式分別被使用相同次數,前述解調處理是使用因應前述複數個預編碼方式的解調方式來將前述接收訊號解調,該複數個預編碼方式是因應索引號碼而週期地切換。
  8. 如請求項7之接收裝置,其中前述複數個預編碼方式分別是以以下的N個矩陣F[i](其中,i為0以上N-1以下的整 數,N為3以上的整數)的任一個來表示, 其中,λ為任意角度,α為正實數,且θ11(i)及θ21(i)滿足:
TW105113859A 2010-10-18 2011-10-18 發送方法、發送裝置、接收方法、及接收裝置 TWI618381B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234061 2010-10-18
JP2010275164A JP5578617B2 (ja) 2010-10-18 2010-12-09 送信方法、送信装置、受信方法および受信装置

Publications (2)

Publication Number Publication Date
TW201701629A TW201701629A (zh) 2017-01-01
TWI618381B true TWI618381B (zh) 2018-03-11

Family

ID=45974915

Family Applications (4)

Application Number Title Priority Date Filing Date
TW100137708A TWI540854B (zh) 2010-10-18 2011-10-18 A transmission method, a transmission method, a reception method, and a reception device
TW106146038A TWI643481B (zh) 2010-10-18 2011-10-18 發送方法、發送裝置、接收方法、及接收裝置
TW107135606A TWI687066B (zh) 2010-10-18 2011-10-18 發送方法、發送系統、接收方法、及接收裝置
TW105113859A TWI618381B (zh) 2010-10-18 2011-10-18 發送方法、發送裝置、接收方法、及接收裝置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW100137708A TWI540854B (zh) 2010-10-18 2011-10-18 A transmission method, a transmission method, a reception method, and a reception device
TW106146038A TWI643481B (zh) 2010-10-18 2011-10-18 發送方法、發送裝置、接收方法、及接收裝置
TW107135606A TWI687066B (zh) 2010-10-18 2011-10-18 發送方法、發送系統、接收方法、及接收裝置

Country Status (19)

Country Link
US (15) US8831134B2 (zh)
EP (3) EP4012937A3 (zh)
JP (1) JP5578617B2 (zh)
KR (2) KR101995761B1 (zh)
CN (3) CN103004120B (zh)
AR (1) AR083419A1 (zh)
AU (3) AU2011319338B2 (zh)
BR (1) BR112013003680B1 (zh)
CA (3) CA3017162C (zh)
EA (1) EA031617B1 (zh)
IL (3) IL223915A (zh)
MX (1) MX2013000955A (zh)
MY (1) MY161371A (zh)
PE (2) PE20131091A1 (zh)
PH (1) PH12016501580B1 (zh)
SG (2) SG187029A1 (zh)
TW (4) TWI540854B (zh)
WO (1) WO2012053185A1 (zh)
ZA (2) ZA201300697B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2013000511A1 (es) * 2010-10-18 2013-08-09 Panasonic Corp Metodo de de precodificacion para generar a partir de multiples señales de banda base, multiples señales precodificadas que deben transmitirse por el mismo ancho de banda de frecuencias al mismo tiempo; y aparato asociado
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
CN107104716B (zh) * 2011-04-19 2020-10-02 太阳专利托管公司 信号生成方法及装置、信号处理方法及装置
EP3035575B1 (en) 2011-04-19 2017-07-26 Sun Patent Trust Communication method and device
US8811545B2 (en) * 2011-11-08 2014-08-19 Mitsubishi Electric Research Laboratories, Inc. Method for reducing interference in OFDM wireless networks
EP2930871B1 (en) * 2012-12-07 2018-03-07 Sun Patent Trust Signal generation method, transmission device, reception method, and reception device
US9860021B2 (en) * 2013-04-15 2018-01-02 Lg Electronics Inc. Broadcast signal transmitting device, broadcast signal receiving method, broadcast signal transmitting method and broadcast signal receiving method
US9548836B2 (en) * 2013-11-26 2017-01-17 Broadcom Corporation Upstream burst noise detection
WO2015100546A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 一种数据传输方法及装置
KR102191290B1 (ko) * 2014-01-29 2020-12-15 삼성전자 주식회사 이동통신 시스템에서 통신 채널 추정 방법 및 장치
EP3089389A4 (en) * 2014-02-06 2017-08-09 Nippon Telegraph and Telephone Corporation Base station device, wireless communication system, and communication method
EP3244619B1 (en) * 2015-01-05 2019-09-04 LG Electronics Inc. -1- Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
JP2016149738A (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
WO2017076446A1 (en) * 2015-11-05 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Radio precoding
US10411944B2 (en) 2016-02-29 2019-09-10 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method, and reception device
EP3427454B1 (en) * 2016-03-24 2020-07-29 Huawei Technologies Co., Ltd. Method and node in a wireless communication network
JP6892195B2 (ja) * 2016-07-14 2021-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、送信装置、受信方法、および受信装置
BR112018074457A2 (pt) * 2016-07-15 2019-03-19 Panasonic Intellectual Property Corporation Of America aparelho de transmissão e método de transmissão
JP6696336B2 (ja) * 2016-07-20 2020-05-20 富士通株式会社 送信制御装置、無線通信システム及びキャリブレーション方法
KR101825301B1 (ko) * 2016-08-22 2018-02-02 한양대학교 산학협력단 신호 전송 장치 및 방법과, 신호 수신 장치
CN109964415B (zh) * 2016-11-04 2022-10-14 松下电器(美国)知识产权公司 发送装置、发送方法、接收装置以及接收方法
US11096246B2 (en) * 2016-11-11 2021-08-17 Nippon Telegraph And Telephone Corporation Radio communication system and radio communication method
JP7024216B2 (ja) * 2017-06-15 2022-02-24 富士通株式会社 送信制御装置、無線通信システム及び無線リソース割当方法
CN107911152B (zh) * 2017-10-27 2020-11-24 西安电子科技大学 适用于任意发送天线数量的空间编码调制系统和方法
KR101938334B1 (ko) * 2017-10-30 2019-04-11 서울과학기술대학교 산학협력단 스테레오스코픽 3차원 영상 송수신 장치 및 방법
US10726843B2 (en) * 2017-12-20 2020-07-28 Facebook, Inc. Methods and systems for responding to inquiries based on social graph information
CN112396819B (zh) * 2019-08-16 2022-06-03 北京小米移动软件有限公司 红外通信装置、系统、方法、终端设备及存储介质
CN110784864B (zh) * 2019-11-01 2022-03-18 中国电子科技集团公司第三十研究所 一种星地链路设备射频指纹识别及安全接入认证方法
US11863359B1 (en) * 2021-05-11 2024-01-02 Amazon Technologies, Inc. Subcarrier pre-equalization technology for frequency selective fading characteristics of wireless channels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091307A1 (en) * 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353338B1 (ko) * 1999-03-17 2002-09-18 소니 가부시끼 가이샤 확산 스펙트럼 통신 장치
US7139324B1 (en) * 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US6859503B2 (en) * 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7072413B2 (en) * 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
KR100866195B1 (ko) * 2001-11-10 2008-10-30 삼성전자주식회사 직교주파수분할다중 방식의 이동통신시스템에서 시공간-주파수 부호화/복호화 장치 및 방법
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
JP2003332940A (ja) * 2002-05-09 2003-11-21 Matsushita Electric Ind Co Ltd 移動体通信装置
DE10220892A1 (de) * 2002-05-10 2003-12-18 Fraunhofer Ges Forschung Sendevorrichtung und Empfangsvorrichtung
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8027704B2 (en) * 2003-08-21 2011-09-27 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
WO2005050885A1 (ja) 2003-11-21 2005-06-02 Matsushita Electric Industrial Co., Ltd. マルチアンテナ受信装置、マルチアンテナ受信方法、マルチアンテナ送信装置及びマルチアンテナ通信システム
US7212821B2 (en) * 2003-12-05 2007-05-01 Qualcomm Incorporated Methods and apparatus for performing handoffs in a multi-carrier wireless communications system
CN103516459B (zh) * 2004-03-15 2016-09-21 苹果公司 用于具有四根发射天线的ofdm系统的导频设计
US10277290B2 (en) * 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
KR100754795B1 (ko) 2004-06-18 2007-09-03 삼성전자주식회사 직교주파수분할다중 시스템에서 주파수 공간 블록 부호의부호화/복호화 장치 및 방법
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US7525988B2 (en) * 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7561632B1 (en) * 2005-04-28 2009-07-14 Qualcomm Incorporated Beamforming techniques for MIMO communication systems
KR101124932B1 (ko) 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
US7564917B2 (en) * 2005-11-01 2009-07-21 Intel Corporation Multicarrier receiver and method for generating common phase error estimates for use in systems that employ two or more transmit antennas with independent local oscillators
US7881258B2 (en) * 2006-03-22 2011-02-01 Sibeam, Inc. Mechanism for streaming media data over wideband wireless networks
US7991090B2 (en) * 2006-05-04 2011-08-02 Broadcom Corporation Method and system for reordered QRV-LST (layered space time) detection for efficient processing for multiple input multiple output (MIMO) communication systems
JP4946159B2 (ja) * 2006-05-09 2012-06-06 富士通株式会社 無線送信方法及び無線受信方法並びに無線送信装置及び無線受信装置
US7949064B2 (en) 2006-08-14 2011-05-24 Texas Instruments Incorporated Codebook and pre-coder selection for closed-loop mimo
EP2448145B1 (en) * 2006-08-17 2018-04-25 Intel Corporation Method and apparatus for providing efficient precoding feedback in a MIMO wireless communication system
KR100878768B1 (ko) * 2006-09-15 2009-01-14 삼성전자주식회사 Mimo ofdm 송수신 방법 및 장치
KR20080026010A (ko) 2006-09-19 2008-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 전송 방법 및이를 구현하는 송수신 장치
CN101523791B (zh) * 2006-10-04 2014-04-09 高通股份有限公司 无线通信系统中用于sdma的上行链路ack传输
JP5519286B2 (ja) * 2006-10-18 2014-06-11 韓國電子通信研究院 Ofdmセルラーシステムのためのtdmベースのセルサーチ方法
EP2084844A2 (en) * 2006-10-23 2009-08-05 LG Electronics Inc. Method for transmitting data using cyclic delay diversity
JP5089339B2 (ja) * 2006-11-02 2012-12-05 パナソニック株式会社 送信方法、送信装置及び受信方法
CN101536389B (zh) * 2006-11-22 2013-01-16 富士通株式会社 Mimo-ofdm通信系统和mimo-ofdm通信方法
US20080151831A1 (en) * 2006-12-22 2008-06-26 Farooq Khan Orthogonal repetition and hybrid ARQ scheme
US9065714B2 (en) * 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
CN101578779A (zh) 2007-01-19 2009-11-11 松下电器产业株式会社 多天线发送装置、多天线接收装置、多天线发送方法、多天线接收方法、终端装置以及基站装置
US8290079B2 (en) * 2007-04-19 2012-10-16 Interdigital Technology Corporation Method and apparatus for precoding validation in wireless communications
US8254492B2 (en) * 2007-04-26 2012-08-28 Samsung Electronics Co., Ltd. Transmit diversity in a wireless communication system
CN101682387B (zh) * 2007-06-19 2013-06-12 株式会社Ntt都科摩 发送装置以及发送方法
US8160177B2 (en) 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
KR20080114452A (ko) * 2007-06-26 2008-12-31 엘지전자 주식회사 다중 안테나 시스템에서 데이터 전송방법 및 코드북구성방법
US8184726B2 (en) * 2007-09-10 2012-05-22 Industrial Technology Research Institute Method and apparatus for multi-rate control in a multi-channel communication system
ES2398851T3 (es) * 2007-10-30 2013-03-22 Sony Corporation Aparato y método de procesamiento de datos
US20090116589A1 (en) * 2007-11-01 2009-05-07 Renesas Technology Corporation Performance-based link adaptation techniques
KR101328961B1 (ko) * 2008-03-14 2013-11-13 엘지전자 주식회사 개루프 공간 다중화 모드에서 신호 송수신 방법
KR20090101804A (ko) * 2008-03-24 2009-09-29 엘지전자 주식회사 랭크 적응형 4Tx 시스템을 위한 개루프 방식의 공간분할 다중화 방법
WO2009124065A1 (en) * 2008-03-31 2009-10-08 Sirius Satellite Radio Inc. Improving slow speed mute resistance via selective cofdm bin loading
KR101565607B1 (ko) 2008-04-18 2015-11-03 코닌클리케 필립스 엔.브이. 개선된 듀얼 반송파 변조 프리코딩
WO2009153810A2 (en) 2008-06-18 2009-12-23 Centre Of Excellence In Wireless Technology Precoding for multiple transmission streams in multiple antenna systems
KR101527009B1 (ko) * 2008-07-11 2015-06-18 엘지전자 주식회사 다중 셀 기반에서 멀티-셀 mimo 적용 방법
KR101027237B1 (ko) * 2008-07-30 2011-04-06 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
KR101056614B1 (ko) * 2008-07-30 2011-08-11 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
KR101440628B1 (ko) * 2008-08-11 2014-09-17 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
WO2010038474A1 (ja) * 2008-10-03 2010-04-08 パナソニック株式会社 無線送信装置、移動局装置及びプリコーディング方法
KR101435846B1 (ko) * 2008-10-30 2014-08-29 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 간섭 제어 방법
US8619904B2 (en) * 2008-10-31 2013-12-31 Telefonaktiebolaget L M Ericsson (Publ) Channel-assisted iterative precoder selection
WO2010062051A2 (ko) 2008-11-02 2010-06-03 엘지전자 주식회사 다중 입출력 시스템에서 공간 다중화 프리코딩 방법
KR101582685B1 (ko) * 2008-12-03 2016-01-06 엘지전자 주식회사 다중안테나를 이용한 데이터 전송장치 및 방법
EP2378685A4 (en) * 2009-01-08 2013-09-18 Sharp Kk TRANSMITTER, TRANSMISSION PROCEDURE, COMMUNICATION SYSTEM AND COMMUNICATION PROCESS
WO2010096329A2 (en) 2009-02-18 2010-08-26 Massachusetts Institute Of Technology Method and apparatus for synchronizing a wireless communication system
KR101753391B1 (ko) * 2009-03-30 2017-07-04 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
CN101867426A (zh) * 2009-04-15 2010-10-20 Lg电子株式会社 广播接收系统及广播信号处理方法
JP2011004161A (ja) 2009-06-18 2011-01-06 Sharp Corp 通信システム、通信装置および通信方法
WO2011021731A1 (en) * 2009-08-18 2011-02-24 Pantech Co., Ltd. Feedbacking channel information in wireless communication system
EP2293483B1 (en) * 2009-09-04 2016-07-27 STMicroelectronics Srl Method and device for soft-output detection in multiple antenna communication systems
AU2010290233B2 (en) * 2009-09-07 2014-08-28 Lg Electronics Inc. Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
JP5149257B2 (ja) * 2009-10-02 2013-02-20 シャープ株式会社 無線通信システム、通信装置および無線通信方法
EP2346224A1 (en) * 2010-01-13 2011-07-20 Panasonic Corporation Pilot Patterns for OFDM Systems with Four Transmit Antennas
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101814394B1 (ko) * 2010-01-17 2018-01-03 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
TWI581578B (zh) * 2010-02-26 2017-05-01 新力股份有限公司 編碼器及提供遞增冗餘之編碼方法
US8520572B2 (en) * 2010-05-05 2013-08-27 Motorola Mobility Llc Multiplexing control and data on multilayer uplink transmissions
WO2011142626A2 (ko) * 2010-05-13 2011-11-17 엘지전자 주식회사 Mimo 무선 통신 시스템에서 제어 정보 및 데이터의 다중화 전송 방법 및 장치
US8494033B2 (en) * 2010-06-15 2013-07-23 Telefonaktiebolaget L M Ericsson (Publ) Methods providing precoder feedback using multiple precoder indices and related communications devices and systems
WO2011158496A1 (ja) * 2010-06-17 2011-12-22 パナソニック株式会社 プリコーディング方法、送信装置
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US8687727B2 (en) * 2010-11-05 2014-04-01 Intel Corporation Coordinated multi-point transmission using interference feedback
JP5991572B2 (ja) * 2011-02-28 2016-09-14 サン パテント トラスト 送信方法および送信装置
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
CN107104716B (zh) * 2011-04-19 2020-10-02 太阳专利托管公司 信号生成方法及装置、信号处理方法及装置
EP3035575B1 (en) * 2011-04-19 2017-07-26 Sun Patent Trust Communication method and device
US9167451B2 (en) * 2013-01-02 2015-10-20 Lg Electronics Inc. Method and apparatus for measuring interference in wireless communication system
JP2017011689A (ja) * 2015-06-19 2017-01-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、受信方法、送信装置、及び受信装置
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091307A1 (en) * 2008-01-14 2009-07-23 Telefonaktiebolaget L M Ericsson (Publ) Open loop precoder cycling in mimo communications
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
CA3017162C (en) 2020-02-25
US9800306B2 (en) 2017-10-24
US9048985B2 (en) 2015-06-02
CA2803905A1 (en) 2012-04-26
MX2013000955A (es) 2013-03-22
US20180175914A1 (en) 2018-06-21
IL223915A (en) 2016-12-29
US10700746B2 (en) 2020-06-30
ZA201902449B (en) 2021-05-26
KR20180084156A (ko) 2018-07-24
WO2012053185A1 (ja) 2012-04-26
IL264213B (en) 2019-11-28
PE20180583A1 (es) 2018-04-05
US20160233934A1 (en) 2016-08-11
AR083419A1 (es) 2013-02-21
SG187029A1 (en) 2013-02-28
EA031617B1 (ru) 2019-01-31
US10270503B2 (en) 2019-04-23
US20230327926A1 (en) 2023-10-12
US20140341317A1 (en) 2014-11-20
CN105577326B (zh) 2020-08-11
US10560160B2 (en) 2020-02-11
CN105721111B (zh) 2019-11-19
TW201701629A (zh) 2017-01-01
KR20130112851A (ko) 2013-10-14
CA3017162A1 (en) 2012-04-26
CA2803905C (en) 2018-11-13
TW201223184A (en) 2012-06-01
IL264213A (en) 2019-02-28
AU2011319338B2 (en) 2016-08-04
EP4012937A3 (en) 2022-07-06
EP3522409A1 (en) 2019-08-07
AU2016253675B2 (en) 2018-11-08
CA3066278C (en) 2023-07-25
IL249556B (en) 2019-06-30
CN103004120B (zh) 2016-03-23
CN103004120A (zh) 2013-03-27
PH12016501580A1 (en) 2017-07-17
US20150188615A1 (en) 2015-07-02
US9467215B2 (en) 2016-10-11
EP2632067B1 (en) 2019-04-24
PE20131091A1 (es) 2013-10-16
US9935697B2 (en) 2018-04-03
US9344171B2 (en) 2016-05-17
US20160373169A1 (en) 2016-12-22
US10965354B2 (en) 2021-03-30
US9136929B2 (en) 2015-09-15
AU2011319338A1 (en) 2013-01-24
US20180006685A1 (en) 2018-01-04
TWI687066B (zh) 2020-03-01
KR101995761B1 (ko) 2019-07-03
US11729033B2 (en) 2023-08-15
TWI643481B (zh) 2018-12-01
CN105577326A (zh) 2016-05-11
MY161371A (en) 2017-04-14
KR101880943B1 (ko) 2018-08-24
AU2018253552A1 (en) 2018-11-22
US20210184731A1 (en) 2021-06-17
EP4012937A2 (en) 2022-06-15
US11456785B2 (en) 2022-09-27
US20130121441A1 (en) 2013-05-16
US8831134B2 (en) 2014-09-09
US20200280346A1 (en) 2020-09-03
EP3522409B1 (en) 2021-12-01
US20150326294A1 (en) 2015-11-12
US20230023516A1 (en) 2023-01-26
AU2016253675A1 (en) 2016-11-24
PH12016501580B1 (en) 2017-07-17
BR112013003680B1 (pt) 2021-12-21
BR112013003680A2 (pt) 2020-08-25
US20180323833A1 (en) 2018-11-08
JP2012109919A (ja) 2012-06-07
SG10201508441WA (en) 2015-11-27
TWI540854B (zh) 2016-07-01
EA201390045A1 (ru) 2013-06-28
IL249556A0 (en) 2017-02-28
CA3066278A1 (en) 2012-04-26
CN105721111A (zh) 2016-06-29
ZA201300697B (en) 2023-10-25
US20200153486A1 (en) 2020-05-14
AU2018253552B2 (en) 2020-06-25
EP2632067A4 (en) 2017-06-21
TW201818701A (zh) 2018-05-16
US20190215036A1 (en) 2019-07-11
US10050685B2 (en) 2018-08-14
TW201921853A (zh) 2019-06-01
JP5578617B2 (ja) 2014-08-27
EP2632067A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
TWI618381B (zh) 發送方法、發送裝置、接收方法、及接收裝置
JP6754980B2 (ja) 送信方法、送信装置、受信方法および受信装置
TWI634758B (zh) Signal generation method and signal generation device
TWI569600B (zh) A signal generating method and a signal generating device
TWI617149B (zh) 發送方法、發送裝置、接收方法及接收裝置
TWI511484B (zh) A transmission method, a transmission method, a reception method, and a reception device
TWI513218B (zh) A transmission method, a transmission method, a reception method, and a reception device
TWI578732B (zh) A transmission method, a transmission method, a reception method, and a reception device
TWI572158B (zh) A transmission method, a transmission method, a reception method, and a reception device
JP2012120140A (ja) 送信方法、送信装置、受信方法および受信装置