KR101944655B1 - 조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법 - Google Patents

조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법 Download PDF

Info

Publication number
KR101944655B1
KR101944655B1 KR1020177029894A KR20177029894A KR101944655B1 KR 101944655 B1 KR101944655 B1 KR 101944655B1 KR 1020177029894 A KR1020177029894 A KR 1020177029894A KR 20177029894 A KR20177029894 A KR 20177029894A KR 101944655 B1 KR101944655 B1 KR 101944655B1
Authority
KR
South Korea
Prior art keywords
light
dimension
optical system
optical member
fly
Prior art date
Application number
KR1020177029894A
Other languages
English (en)
Other versions
KR20170119732A (ko
Inventor
히데키 고마츠다
요시오 가와베
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20170119732A publication Critical patent/KR20170119732A/ko
Application granted granted Critical
Publication of KR101944655B1 publication Critical patent/KR101944655B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems

Abstract

예컨대 조명 필드의 중복 오차에 기인하는 광량 손실을 작게 억제하고, 광 효율이 높은 필요로 하는 조명 조건으로 피조사면을 조명할 수 있는 광학 장치. 광원으로부터의 광에 의해 제1 방향의 길이보다 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하는 광학 장치는, 광원과 제1 영역 사이의 광로 중에 배치되고, 광원으로부터의 광을 집광하여, 제3 방향의 길이보다 제3 방향과 교차하는 제4 방향의 길이가 긴 제2 영역을 정해진 면에 형성하는 콜렉터 광학 부재와, 제2 영역을 포함하는 정해진 면 내에 설치되고, 콜렉터 광학 부재의 광을 제1 영역에 유도하는 복수의 제1 광학 요소를 갖는 제1 플라이 아이 광학 부재를 구비한다.

Description

조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법{ILLUMINATION OPTICAL SYSTEM, OPTICAL APPARATUS, EXPOSURE METHOD AND DEVICE MANUFACTURING METHOD}
본 발명은, 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법에 관한 것이다. 더 상세하게는, 본 발명은, 반도체 소자, 촬상 소자, 액정 표시 소자, 박막 자기 헤드 등의 디바이스를 리소그래피 공정에서 제조하는 데 사용되는 노광 장치의 조명 광학계에 관한 것이다.
종래, 반도체 소자 등의 제조에 사용되는 노광 장치에서는, 마스크(레티클) 위에 형성된 회로 패턴을, 투영 광학계를 통해 감광성 기판(예컨대 웨이퍼) 위에 투영 전사한다. 감광성 기판에는 레지스트가 도포되어 있고, 투영 광학계를 통한 투영 노광에 의해 레지스트가 감광하여, 마스크 패턴에 대응한 레지스트 패턴이 얻어진다. 노광 장치의 해상력은, 노광광의 파장과 투영 광학계의 개구수에 의존한다. 따라서, 노광 장치의 해상력을 향상시키기 위해서는, 노광광의 파장을 짧게 하고, 투영 광학계의 개구수를 크게 해야 한다.
일반적으로, 투영 광학계의 개구수를 정해진 값 이상으로 크게 하는 것은 광학 설계의 관점에서 어렵기 때문에, 노광광의 단파장화가 필요하게 된다. 그래서, 반도체 패터닝의 차세대 노광 방법(노광 장치)으로서, 5 ㎚∼20 ㎚ 정도의 파장을 갖는 EUV(Extreme UltraViolet: 극자외선)광을 이용하는 EUVL(Extreme UltraViolet Lithography: 극자외 리소그래피)의 방법이 주목받고 있다. 노광광으로서 EUV광을 이용하는 경우, 사용 가능한 광 투과성의 광학 재료가 존재하지 않게 된다. 이 때문에, EUV 노광 장치에서는, 반사형의 옵티컬 인터그레이터, 반사형의 마스크, 및 반사형의 투영 광학계를 이용하게 된다.
EUV 노광 장치에 한하지 않고, 일반 노광 장치에서, 조명 광학계의 동공에 형성되는 광 강도 분포(이하, 「동공 강도 분포」라고도 함)를 균일하게 하는 것이 바람직하다. 본 출원인은, 반사형의 옵티컬 인터그레이터에서의 제1 플라이 아이 광학 부재 중 복수의 제1 미러 요소와, 제2 플라이 아이 광학 부재 중 복수의 제2 미러 요소의 대응 관계를 연구하는 것에 의해, 대략 균일한 동공 강도 분포를 조명 동공에 형성하는 기술을 제안하고 있다(특허문헌 1을 참조).
특허문헌 1: 미국 특허 출원 공개 제2007/0273859호 명세서
특허문헌 1에 개시된 조명 광학계에서는, 제1 플라이 아이 광학 부재 중 복수의 제1 미러 요소로 파면 분할된 각 광속이, 제2 플라이 아이 광학 부재 중 대응하는 제2 미러 요소를 통해, 피조사면인 마스크의 패턴면에 제1 미러 요소의 상(像)으로서의 조명 영역을 중첩적으로 형성한다. 그러나, 후술하는 바와 같이, 제1 플라이 아이 광학 부재와 제2 플라이 아이 광학 부재의 상대적인 배치 등에 기인하여 디스토션이 발생하여, 피조사면에 형성되는 제1 미러 요소의 상은 제1 미러 요소와 상사(相似)한 형상으로는 되지 않는다. 그 결과, 복수의 제1 미러 요소에 의해 파면 분할된 복수의 광속이 피조사면에 형성하는 각 조명 필드는, 원하는 외형 형상의 중첩 조명 영역으로부터 벗어나 형성되어, 소위 조명 필드의 중복 오차에 기인하는 광량 손실이 발생한다.
본 발명은, 전술한 과제를 감안하여 이루어진 것으로, 광량 손실을 작게 억제하여, 광 효율이 높은 필요로 하는 조명 조건으로 피조사면을 조명하는 것을 목적으로 한다.
제1 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하는 광학 장치에 있어서,
상기 광원과 상기 제1 영역 사이의 광로 중에 배치되고, 상기 광원으로부터의 광을 집광하여, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 제2 영역을 정해진 면에 형성하는 콜렉터 광학 부재와,
상기 제2 영역을 포함하는 정해진 면 내에 설치되고, 상기 콜렉터 광학 부재의 광을 상기 제1 영역에 유도하는 복수의 제1 광학 요소를 갖는 제1 플라이 아이 광학 부재
를 구비하는 것을 특징으로 하는 광학 장치를 제공한다.
제2 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하기 위해 이용되는 광학 장치에 있어서,
상기 광원과 상기 제1 영역 사이의 광로 중에 설치되고, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 외형 형상을 갖는 제1 광학 요소를, 정해진 면에 복수 배열하며, 배열된 상기 제1 광학 요소의 집합체의 상기 제3 방향과 상기 제4 방향의 길이가 서로 상이한 제1 플라이 아이 광학 부재와,
상기 제1 플라이 아이 광학 부재와 상기 제1 영역 사이의 광로 중에 설치되고, 상기 제1 광학 요소에 광학적으로 대응하도록 설치된 복수의 제2 광학 요소를 갖는 제2 플라이 아이 광학 부재
를 구비하는 것을 특징으로 하는 광학 장치를 제공한다.
제3 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하기 위해 이용되는 광학 장치에 있어서,
제2 영역을 포함하는 정해진 면 내에 설치되고, 복수의 제1 광학 요소를 갖는 제1 플라이 아이 광학 부재를 구비하며,
상기 복수의 제1 광학 요소 중 하나 이상의 광학 요소가, 상기 제2 영역과 직교하는 면 중에서, 제3 방향을 따른 면의 곡률과, 상기 제3 방향과 교차하는 제4 방향을 따른 면의 곡률이 서로 상이한 광학면을 갖는 것을 특징으로 하는 광학 장치를 제공한다.
제4 형태에서는, 상기 제1 영역에 형성된 정해진 패턴을 조명하기 위한 제1 형태, 제2 형태, 또는 제3 형태의 광학 장치를 구비하고,
상기 정해진 패턴을 감광성 기판에 노광하는 것을 특징으로 하는 노광 장치를 제공한다.
제5 형태에서는, 제4 형태의 노광 장치를 이용하여, 상기 정해진 패턴을 상기 감광성 기판에 노광하는 노광 공정과,
상기 정해진 패턴이 전사된 상기 감광성 기판을 현상하고, 상기 정해진 패턴에 대응하는 형상의 마스크층을 상기 감광성 기판의 표면에 형성하는 현상 공정과,
상기 마스크층을 통해 상기 감광성 기판의 표면을 가공하는 가공 공정
을 포함하는 것을 특징으로 하는 디바이스 제조 방법을 제공한다.
제6 형태에서는, 정해진 면 내에 설치되는 플라이 아이 광학 부재에 광을 공급하는 광원 장치에 있어서,
광을 발생하는 발광부와,
상기 발광부에서 발생한 광을 집광하여, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 제2 영역을 상기 정해진 면 내에 형성하는 콜렉터 광학 부재를 구비하는 것을 특징으로 하는 광원 장치를 제공한다.
제7 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하는 조명 방법에 있어서,
정해진 면 위의 제2 영역에 상기 광원으로부터의 광을 집광하여 유도하는 것과;
상기 정해진 면 위에서 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 외형 형상을 갖는 복수의 광속으로 파면 분할하는 것과;
이 파면 분할된 복수의 광속을 상기 제1 영역에 유도하는 것;
을 포함하고,
상기 제2 영역은, 상기 제3 방향의 길이보다 상기 제4 방향의 길이가 긴 형상을 가지며,
상기 정해진 면 위에서의 상기 복수의 광속은, 상기 제3 방향과 상기 제4 방향을 따라 복수 배열되는 것을 특징으로 하는 조명 방법을 제공한다.
제8 형태에서는, 제7 형태의 조명 방법을 이용하여 정해진 패턴 위의 상기 제1 영역을 조명하는 것과;
상기 정해진 패턴을 감광성 기판에 노광하는 것;
을 포함하는 것을 특징으로 하는 노광 방법을 제공한다.
제9 형태에서는, 제8 형태의 노광 방법을 이용하여, 상기 정해진 패턴을 상기 감광성 기판에 노광하는 것과;
상기 정해진 패턴이 전사된 상기 감광성 기판을 현상하고, 상기 정해진 패턴에 대응하는 형상의 마스크층을 상기 감광성 기판의 표면에 형성하는 것과;
상기 마스크층을 통해 상기 감광성 기판의 표면을 가공하는 것;
을 포함하는 것을 특징으로 하는 디바이스 제조 방법을 제공한다.
제10 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하기 위해 이용되는 광학 장치의 제조 방법에 있어서,
상기 광원으로부터의 광을 집광하여, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 제2 영역을 정해진 면에 형성하는 콜렉터 광학 부재를 얻는 것과;
상기 제2 영역을 포함하는 정해진 면 내에, 복수의 제1 광학 요소를 갖는 제1 플라이 아이 광학 부재를 설치하는 것
을 포함하는 것을 특징으로 하는 광학 장치의 제조 방법을 제공한다.
제11 형태에서는, 광원으로부터의 광에 의해 제1 방향의 길이보다 상기 제1 방향과 교차하는 제2 방향의 길이가 긴 제1 영역을 조명하기 위해 이용되는 광학 장치의 제조 방법에 있어서,
제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 외형 형상을 갖는 복수의 제1 광학 요소를 준비하는 것과;
상기 복수의 제1 광학 요소를 상기 제3 방향과 상기 제4 방향으로 배열하는 상기 제1 광학 요소의 집합체가, 상기 제3 방향의 길이와 상기 제4 방향의 길이에서 서로 상이한 제1 플라이 아이 광학 부재를 얻는 것;
을 포함하는 광학 장치의 제조 방법을 제공한다.
본 발명의 일 양태에 의하면, 광량 손실의 발생을 작게 억제하여, 광 효율이 높은 필요로 하는 조명 조건으로 피조사면을 조명할 수 있다. 그 결과, 높은 작업 처리량을 달성할 수 있다.
도 1은 본 발명의 실시형태에 따른 노광 장치의 구성을 개략적으로 도시하는 도면이다.
도 2는 본 실시형태에서의 1회의 주사 노광을 개략적으로 설명하는 도면이다.
도 3은 옵티컬 인터그레이터중 제1 플라이 아이 광학 부재의 구성을 개략적으로 도시하는 도면이다.
도 4는 옵티컬 인터그레이터중 제2 플라이 아이 광학 부재의 구성을 개략적으로 도시하는 도면이다.
도 5는 본 실시형태에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 제1 도면이다.
도 6은 본 실시형태에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 제2 도면이다.
도 7은 변형예에 따른 노광 장치의 구성을 개략적으로 도시하는 도면이다.
도 8은 변형예에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 제1 도면이다.
도 9는 변형예에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 제2 도면이다.
도 10은 제1 미러 요소와 제2 미러 요소가 광학적으로 대응하는 모습을 도시하는 도면이다.
도 11은 도 7의 변형예에서 제2 미러 요소 위에 일 방향으로 가늘고 긴 광원상이 형성되는 모습을 도시하는 도면이다.
도 12는 제2 변형예에서 제1 미러 요소의 반사면을 토로이달면형으로 하는 것에 의해 제2 미러 요소 위에 형성되는 광원상의 예를 모식적으로 도시하는 도면이다.
도 13은 제2 변형예에서 제1 미러 요소의 반사면을 토로이달면형으로 하는 것에 의해 제2 미러 요소 위에 형성되는 광원상의 다른 예를 모식적으로 도시하는 도면이다.
도 14는 도 1의 실시형태의 구성에 제2 변형예의 방법을 적용하여 얻어지는 효과를 도시하는 도면이다.
도 15는 마이크로디바이스로서의 반도체 디바이스를 얻을 때의 방법의 일례에 대해서, 그 흐름도를 도시하는 도면이다.
이하, 실시형태를, 첨부 도면에 기초하여 설명한다. 도 1은, 본 발명의 실시형태에 따른 노광 장치의 구성을 개략적으로 도시하는 도면이다. 도 1에서는, 감광성 기판인 웨이퍼(W) 표면(노광면)의 법선 방향을 따라 Z축을, 웨이퍼(W)의 표면에서 도 1의 종이면에 평행한 방향으로 Y축을, 웨이퍼(W)의 표면에서 도 1의 종이면에 수직인 방향으로 X축을 각각 설정하고 있다. 도 1을 참조하면, 본 실시형태의 노광 장치에서는 DPP(Discharge Produced Plasma) 타입의 광원 유닛(LU)과, 콜렉터 광학 부재(1)를 구비하는 광원 장치로부터 노광광(조명광)이 공급된다.
DPP 타입의 광원 유닛(LU)에서는, 타겟 물질로 이루어지는 전극, 또는 전극간에 타겟 물질이 존재하는 상태에서 전극간에 전압을 인가하면, 어떤 전압을 초과한 시점에서 전극간에 방전이 생겨, 타겟 재료를 플라즈마화한다. 이 방전에 의해 전극간에 대전류가 흐르고, 이 전류에 의해 생기는 자장에 의해 플라즈마 자신이 미소 공간내에 압축되어, 플라즈마 온도를 상승시킨다. 이 고온 플라즈마로부터 EUV광이 방출된다. 이와 같이, 방전에 의해 플라즈마에 에너지를 공급하고(여기하고), EUV광을 방출시키는 광원을 일반적으로 DPP 광원으로 부른다.
광원 유닛(LU)으로부터 방사된 EUV광은, 콜렉터 광학 부재(1)를 통해, 콜리메이터 광학 부재(2)에 입사한다. 콜렉터 광학 부재(1)는, 광원 유닛(LU)으로부터의 광의 입사순으로, 중앙에 관통 구멍이 형성된 오목면 반사경(1a)과, 마찬가지로 중앙에 관통 구멍이 형성된 볼록면 반사경(1b)을 구비하고 있다. 제1 반사경으로서의 오목면 반사경(1a)은, 광원 유닛(LU)을 향해 오목면형상의 반사면을 가지며, 제2 반사경으로서의 볼록면 반사경(1b)은 오목면 반사경(1a)을 향해 볼록면형상의 반사면을 갖는다.
광원 유닛(LU)의 발광점 P1로부터 발한 발산광은, 볼록면 반사경(1b)의 관통 구멍을 통해, 오목면 반사경(1a)에 입사한다. 오목면 반사경(1a)의 반사면으로 반사된 광은, 볼록면 반사경(1b)의 반사면으로 반사된 후, 오목면 반사경(1a)의 관통 구멍을 통해, 점 P2에 집광한다. 즉, 콜렉터 광학 부재(1)는, 광원 유닛(LU)으로부터의 광을 반사하고 집광하여, 점 P2의 위치에 광원의 1차 상을 형성한다. 점 P2에서 일단 집광한 EUV광은, 점 P2의 근방에 배치된 핀홀 부재(도시 생략)를 통과한 후, 오목면 반사경의 형태를 갖는 콜리메이터 광학 부재(2)를 경유하여 대략 평행 광속이 되고, 정해진 면 위의 제2 영역에 정형(整形)된다. 제2 영역에 정형된 EUV광은, 정해진 면 위에 설치되는 플라이 아이 광학 부재(31)의 입사면으로부터 입사하고, 한 쌍의 플라이 아이 광학 부재(31 및 32)를 포함하는 옵티컬 인터그레이터(3)에 유도된다. 플라이 아이 광학 부재(31 및 32)의 구성 및 작용에 대해서는 후술한다.
옵티컬 인터그레이터(3)의 사출면의 근방, 즉 제2 플라이 아이 광학 부재(32)의 반사면의 근방 위치(조명 동공의 위치)에는, 정해진 형상을 갖는 실질적인 면광원(동공 강도 분포)이 형성된다. 이 실질적인 면광원으로부터의 광은, 평면형상의 반사면을 갖는 편향 부재(4) 및 오목면 반사경의 형태를 갖는 콘덴서 광학계(5)를 경유한 후, 조명 광학계(IL)(1∼5)로부터 사출된다. 상기한 실질적인 면광원이 형성되는 조명 광학계(IL)의 조명 동공의 위치는, 후술하는 투영 광학계(PL)의 입사 동공의 위치, 또는 투영 광학계(PL)의 입사 동공과 광학적으로 공역인 위치이다.
조명 광학계(IL)로부터 사출된 광은, 반사형의 마스크(레티클)(M)에 대략 평행하게 근접하여 배치된 시야 조리개(도시 생략)의 원호형의 개구부(광 투과부)를 통해, 마스크(M)의 패턴면 위에 원호형의 중첩 조명 영역(제1 영역)을 형성한다. 마스크(M)에는, 전사해야 하는 패턴으로서, 예컨대 디바이스용의 회로 패턴이 형성되어 있다. 조명 광학계(IL)는, 광원 유닛(LU)으로부터의 광에 의해 조명 동공에 실질적인 면광원으로 이루어지는 동공 강도 분포를 형성하고, 이 동공 강도 분포로부터의 광에 의해 마스크(M) 위의 패턴을 쾰러 조명한다.
마스크(M)는, 그 패턴면이 XY 평면을 따라 연장되도록, Y 방향을 따라 이동 가능한 마스크 스테이지(MS)에 의해 유지되어 있다. 마스크 스테이지(MS)의 이동은, 주지의 구성을 갖는 레이저 간섭계(도시 생략)에 의해 계측된다. 조명된 마스크(M)의 패턴으로부터의 광은, 반사형의 투영 광학계(PL)를 통해, 감광성 기판인 웨이퍼(W) 위에 마스크 패턴의 상을 형성한다. 즉, 웨이퍼(W) 위에는, 후술하는 바와 같이, 예컨대 Y축에 관해서 대칭인 원호형의 정지 노광 영역(실효 노광 영역)이 형성된다.
투영 광학계(PL)는, 일례로서, 마스크(M) 패턴의 중간상(中間像)을 형성하는 제1 반사 결상 광학계와, 마스크 패턴의 중간상의 상[마스크(M) 패턴의 2차 상]을 웨이퍼(W) 위에 형성하는 제2 반사 결상 광학계에 의해 구성되어 있다. 제1 반사 결상 광학계는 4개의 반사경(MR1∼MR4)에 의해 구성되고, 제2 반사 결상 광학계는 2개의 반사경(MR5 및 MR6)에 의해 구성되어 있다. 또한 투영 광학계(PL)는 웨이퍼측(상(像)측)에 텔리센트릭인 광학계이다.
웨이퍼(W)는, 그 노광면이 XY 평면을 따라 연장되도록, X 방향 및 Y 방향을 따라 2차원적으로 이동 가능한 웨이퍼 스테이지(WS)에 의해 유지되어 있다. 웨이퍼 스테이지(WS)의 이동은, 주지의 구성을 갖는 레이저 간섭계(도시 생략)에 의해 계측된다. 이렇게 하여, 마스크 스테이지(MS) 및 웨이퍼 스테이지(WS)를 Y 방향을 따라 이동시키면서, 즉 투영 광학계(PL)에 대하여 마스크(M) 및 웨이퍼(W)를 Y 방향을 따라 상대 이동시키면서 주사 노광(스캔 노광)을 행하는 것에 의해, 웨이퍼(W)의 하나의 직사각형상의 샷(shot) 영역에 마스크(M)의 패턴이 전사된다.
이 때, 투영 광학계(PL)의 투영 배율(전사 배율)이, 예컨대 1/4인 경우, 웨이퍼 스테이지(WS)의 이동 속도를 마스크 스테이지(MS)의 이동 속도의 1/4로 설정하여 동기 주사를 행한다. 또한, 웨이퍼 스테이지(WS)를 X 방향 및 Y 방향을 따라 2차원적으로 스텝 이동시키면서 주사 노광을 반복하는 것에 의해, 웨이퍼(W)의 각 샷 영역에 마스크(M)의 패턴이 축차 전사된다. 또한, 전술한 설명에서는, 마스크를 Y 방향으로 이동시키고 있지만, Y 방향에 대하여 비스듬한 방향으로 마스크를 이동(비스듬한 주행)시켜도 좋다.
도 2는, 본 실시형태에서의 1회의 주사 노광을 개략적으로 설명하는 도면이다. 도 2를 참조하면, 본 실시형태의 노광 장치에서는, 투영 광학계(PL)의 원호형의 유효 결상 영역 및 유효 조명 영역에 대응하도록, Y축에 관해서 대칭인 원호형의 정지 노광 영역(ER)이 웨이퍼(W)의 표면 위에 형성되고, 마찬가지로 Y축에 관해서 대칭인 원호형의 제1 영역이 마스크(M)의 패턴면 위에 형성된다. 환언하면, Y 방향은 제1 영역 및 정지 노광 영역(ER)의 원호형의 외형 형상의 중심을 통과하는 원호형의 변의 법선 방향에 대응하고, X 방향은 Y 방향에 수직인 방향에 대응하고 있다. 원호형의 노광 영역(ER)은, 1회의 주사 노광(스캔 노광)에 의해 웨이퍼(W)의 직사각형상인 하나의 샷 영역(SR)에 마스크(M)의 패턴을 전사할 때에, 도면 중 실선으로 도시하는 주사 시작 위치로부터 도면 중 파선으로 도시하는 주사 종료 위치까지 이동한다.
옵티컬 인터그레이터(3)에서, 제1 플라이 아이 광학 부재(31)는, 도 3에 도시하는 바와 같이, 복수의 제1 미러 요소(제1 광학 요소)(31a)를 구비하고 있다. 복수의 제1 미러 요소(31a)는, 오목면 반사경의 형태를 가지며, 조명 광학계(IL)의 피조사면인 마스크(M)의 패턴면과 광학적으로 공역인 위치에서의 정해진 면에, 병렬 배치되어 있다. 제2 플라이 아이 광학 부재(32)는, 도 4에 도시하는 바와 같이, 복수의 제2 미러 요소(제2 광학 요소)(32a)를 구비하고 있다. 복수의 제2 미러 요소(32a)는, 오목면 반사경의 형태를 가지며, 복수의 제1 미러 요소(31a)와 광학적으로 일대일 대응하도록 병렬 배치되어 있다.
도 3에서는, 제1 플라이 아이 광학 부재(31)의 입사면에서, X 방향에 대응하는 방향으로 x1 방향을 설정하고, 그 입사면에서 x1 방향과 직교하는 방향으로 y1 방향을 설정하고 있다. 또한 제1 플라이 아이 광학 부재(31)의 입사면이란, 정해진 면 내에서 복수의 제1 미러 요소(31a)의 반사면이 차지하는 영역이다. 마찬가지로, 도 4에서는, 제2 플라이 아이 광학 부재계(32)의 입사면에서 X 방향에 대응하는 방향으로 x2 방향을 설정하고, 그 입사면에서 x2 방향과 직교하는 방향으로 y2 방향을 설정하고 있다. 또한, 제2 플라이 아이 광학 부재(32)의 입사면이란, 정해진 면 내에서 복수의 제2 미러 요소(32a)의 반사면이 차지하는 영역이다. 즉, 도 3 및 도 4에서의 y1, y2 방향은, 마스크(M) 및 웨이퍼(W)의 주사 방향(Y 방향)에 대응하고 있다. 도 3 및 도 4에서는, 도면의 명료화를 위해, 한 쌍의 플라이 아이 광학 부재(31, 32)를 구성하는 다수의 미러 요소(31a, 32a) 중 일부만을 나타내고 있다.
제1 플라이 아이 광학 부재(31)는, 도 3에 도시하는 바와 같이, 원호형의 외형 형상을 갖는 제1 미러 요소(31a)를 종횡으로 배치하는 것에 의해 구성되어 있다. 즉, 제1 미러 요소(31a)는, 원호형의 변이 서로 인접하도록 y1 방향으로 나란히 배치되고, 원호형의 양단이 서로 인접하도록 x1 방향으로 나란히 배치되어 있다. 제1 미러 요소(31a)가 원호형의 외형 형상을 갖는 것은, 전술한 바와 같이, 투영 광학계(PL)의 원호형의 유효 결상 영역 및 유효 조명 영역에 대응하여, 마스크(M) 위에 원호형의 외형 형상을 갖는 제1 영역을 형성하고, 더 나아가서는 웨이퍼(W) 위에 원호형의 정지 노광 영역(ER)을 형성하기 때문이다.
원호형의 외형 형상을 갖는 제1 영역을 조명하는 경우, 제1 영역에 대응한 외형 형상을 갖는 광학 요소란, 원호형의 외형 형상을 갖는 광학 요소로 할 수 있다. 예컨대 하나 이상의 광학 요소의 외형 형상은, 제1 영역의 외형 형상과 상사한 형상, 제1 영역의 외형 형상과 자세, 곡률, X 방향 및 Y 방향의 아스펙트비 등이 상이한 형상을 갖는다. 또한 제1 영역 및 광학 요소는, 원호형의 외형 형상을 갖는 경우에 한정되지 않는다. 직사각형상의 외형 형상을 갖는 제1 영역을 조명하는 경우, 제1 영역에 대응한 외형 형상을 갖는 광학 요소란, 직사각형상의 외형 형상을 갖는 광학 요소로 할 수 있다. 이 때, 광학 요소의 외형 형상은, 제1 영역의 외형 형상과 상사한 형상, 제1 영역의 외형 형상과 자세, 곡률, X 방향 및 Y 방향의 아스펙트비 등이 상이한 형상을 갖는다. 또한, 제1 영역의 외형 형상과 광학 요소의 외형 형상이 상이하여도 좋다. 예컨대 광학 요소의 외형 형상은 직사각형상이며, 광학 요소로 반사된 조명광은, 광학 요소와 제1 영역 사이에 설치된 광학계에 의해, 원호형의 외형 형상을 갖는 제1 영역을 형성하도록, 광학 요소를 구성하여도 좋다. 그 외, 여러 가지 형상의 제1 영역을 조명하는 것이나 그것에 대응한 외형 형상을 갖는 광학 요소를 이용할 수 있다.
한편, 제2 플라이 아이 광학 부재(32)는, 도 4에 도시하는 바와 같이, 예컨대 정사각형상에 가까운 직사각형상의 외형 형상을 갖는 제2 미러 요소(32a)를 종횡으로 배치하는 것에 의해 구성되어 있다. 즉, 제2 미러 요소(32a)는, 직사각형상의 변이 서로 인접하도록 x2 방향 및 y2 방향으로 나란히 배치되어 있다. 제2 미러 요소(32a)가 정사각형상에 가까운 직사각형상의 외형 형상을 갖는 것은, 각 제2 미러 요소(32a)의 표면 또는 그 근방에 대략 원형상의 소광원이 형성되기 때문이다. 또한, 제2 미러 요소(32a)의 외형은, 정사각형상 또는 직사각형상에 한정되지 않고, 사각형 이외의 다각형상(삼각형∼팔각형 등)이어도 좋다. 또한, 광량 손실을 최소한으로 하기 위해, 빈틈없이 깔 수 있는(간극 없이 광학 요소를 배치하는 것이 가능한) 형상이 바람직하다.
제1 플라이 아이 광학 부재(31) 각각의 제1 요소 미러(31a)의 집합체의 포락선이 타원형상으로 되어 있는 것은, 후술하는 바와 같이, 옵티컬 인터그레이터(3)에 입사하는 광속[즉 제1 플라이 아이 광학 부재(31)에 입사하는 광속]의 단면 형상이 타원형상이며, 조명 효율을 높이기 위해서이다. 또한, 제2 플라이 아이 광학 부재(32) 각각의 제2 요소 미러(32a)의 집합체의 포락선이 원형상에 가까운 형상으로 되어 있는 것은, 옵티컬 인터그레이터(3)의 사출면[즉 제2 플라이 아이 광학 부재(32)의 사출면] 근방의 조명 동공에 형성되는 동공 강도 분포(실질적인 면광원)의 외형 형상이 대략 원형상이기 때문이다.
또한, 제1 요소 미러(31a)의 집합체의 포락선은, 타원형상에 한하지 않고, y1 방향의 길이보다 x1 방향의 길이가 긴 형상의 것이면 좋다. 예컨대 직사각형상, 다각형상, 장원(長圓) 등, 여러 가지 형상의 포락선을 그릴 수 있도록 제1 요소 미러(31a)를 배치하면 좋다. 또한 제2 요소 미러(32a)의 집합체의 포락선도, 원형상에 가까운 형상에 한하지 않고, 예컨대 진원(眞圓), 타원, 장원, 직사각형상, 다각형상 등, 여러 가지 형상의 포락선을 그릴 수 있도록, 제2 요소 미러(32a)를 배치하면 좋다.
본 실시형태에서, 옵티컬 인터그레이터(3)에 입사한 광속은, 제1 플라이 아이 광학 부재(31)중 복수의 제1 미러 요소(31a)에 의해 파면 분할된다. 각 제1 미러 요소(31a)에 의해 반사된 광속은, 제2 플라이 아이 광학 부재(32)중 대응하는 제2 미러 요소(32a)에 입사한다. 각 제2 미러 요소(32a)에 의해 반사된 광속은, 도광 광학계로서의 편향 부재(4) 및 콘덴서 광학계(5)를 통해, 마스크(M) 위의 원호형의 제1 영역을 중첩적으로 조명한다.
이하, 본 실시형태의 특징적인 구성 및 작용의 설명에 앞서, 종래 기술에서의 문제점을 설명한다. 도 1을 참조하면, 광원 유닛(LU)으로부터 광이, 제1 플라이 아이 광학 부재(31)와 제2 플라이 아이 광학 부재(32) 사이에서 되돌아 온 후, 마스크(M)에 유도된다. 제1 플라이 아이 광학 부재(31)에 입사하는 광이 제2 플라이 아이 광학 부재(32)에 의해 차단되지 않고, 제2 플라이 아이 광학 부재(32)로부터 사출되는 광이 제1 플라이 아이 광학 부재(31)에 의해 차단되지 않도록 구성하기 위해서는, 제1 플라이 아이 광학 부재(31)와 제2 플라이 아이 광학 부재(32)를 정면으로 마주 대하게 하여 광을 수직 입사시킬 수 없어, 도 1의 종이면을 따라 어느 정도 옆으로 어긋난 상태로 배치하여 광을 경사 입사시켜야 한다.
이 경우, 제2 플라이 아이 광학 부재(32)를 구성하는 제2 미러 요소(32a)는, 제1 플라이 아이 광학 부재(31)를 구성하는 제1 미러 요소(31a)를 비스듬한 방향[제2 플라이 아이 광학 부재(32)의 입사면의 법선 방향에 대하여 기운 방향]으로 보고 있게 된다. 다른 표현을 하면, 제2 미러 요소(32a)에서 봤을 때, 제1 미러 요소(31a)는 일그러져 보인다. 이 때문에, 복수의 제2 미러 요소(32a)는, 각각 대응하는 제1 미러 요소(31a)를 피조사면인 마스크(M)의 패턴면에 투영하지만, 이 비스듬한 방향으로부터 제1 미러 요소(31a)를 예상하는 효과에 의해, 마스크(M)에 투영된 제1 미러 요소(31a)의 상은 제1 미러 요소(31a)와 정확히 상사한 형상으로는 되지 않는다.
환언하면, 제1 플라이 아이 광학 부재(31)와 제2 플라이 아이 광학 부재(32)의 상대적인 배치 등에 기인하여, 디스토션이 발생한다. 그 결과, 복수의 제1 미러 요소(31a)에 의해 파면 분할된 복수의 광속이 마스크(M)의 패턴면에 형성하는 원호형의 각 조명 필드는, 원하는 원호형의 제1 영역으로부터 벗어나 형성되어, 소위 조명 필드의 중복 오차에 기인하는 광량 손실이 발생한다.
다음에, 본 발명의 양태의 특징적인 구성에 대해서 설명한다. 옵티컬 인터그레이터(3)는, 광속을 복수의 광속으로 파면 분할하고, 이들 복수의 광속을 피조사면[예컨대 마스크(M)의 패턴면, 더 나아가서는 웨이퍼(W)의 노광면] 위에서 중첩하는 것에 의해 제1 영역에서의 조도 분포를 균일화하는 광학 소자이다. 이 때문, 옵티컬 인터그레이터(3)는, 균일화를 위해 필요한 필요로 하는 수의 광학 요소[예컨대 미러 요소(31a, 32a)]를 구비할 수 있다. 또한, 균일화는 종방향(예컨대 y1 방향, y2 방향)과 횡방향(예컨대 x1 방향, x2 방향)으로 비교적 독립되어 있기 때문에, 횡방향으로도 종방향으로도 정해진 수 이상의 열수(列數)의 광학 요소로 하여도 좋다.
여기서, 제1 플라이 아이 광학 부재(31)에서의 미러 요소(31a)의 x1 방향의 열수를 n으로 한다. 또한, 제1 플라이 아이 광학 부재(31) 각각의 제1 요소 미러(31a)의 집합체의 포락선이 원형상으로서, 그 직경이 Df인 것으로 한다. 이 경우, 미러 요소(31a)의 x1 방향의 치수는, Df/n이 된다. x1 방향의 열수 n은, 균일화를 위해서는 많으면 많을수록 좋고, 5 이상으로 할 수 있다.
제1 플라이 아이 광학 부재(31)와 제2 플라이 아이 광학 부재(32)와의 간격을 Ff로 하고, 제2 플라이 아이 광학 부재(32) 각각의 제2 요소 미러(32a)의 집합체의 포락선이 원형상으로서 그 직경이 Dp인 것으로 한다. 제2 플라이 아이 광학 부재(32)와 마스크(M) 사이에 개재하는 도광 광학계의 초점 거리, 즉 콘덴서 광학계(5)의 초점 거리를 Fc로 한다. 또한 제2 플라이 아이 광학 부재(32)와 마스크(M) 사이에 파워를 갖는 광학계가 개재하지 않는 구성의 경우, 제2 플라이 아이 광학 부재(32)로부터 마스크(M)까지의 거리를 Fc로 할 수 있다.
마스크(M) 위에 형성해야 하는 원호형의 제1 영역의 X 방향을 따른 치수를 Wi로 하고, 마스크(M)에 입사하는 광속에 요구되는 개구수를 NAi라고 하면, 다음의 식 (1) 및 (2)에 나타내는 관계가 성립한다. 또한 광학 요소의 제조 오차 등을 가미해야 하지만, 여기서는 설명을 간단히 하기 위해 광학 요소의 제조 오차 등의 영향을 무시한다.
Wi≒(Df/n)×(Fc/Ff) (1)
NAi≒Dp/(2×Fc) (2)
식 (1)은, 제1 플라이 아이 광학 부재(31)의 각 미러 요소(31a)와 마스크(M)의 패턴면이 광학적으로 공역으로서, 그 결상 배율이 Fc/Ff인 것에 대응하고 있다. 식 (2)는, 제2 플라이 아이 광학 부재(32)의 각 미러 요소(32a)가 구경 조리개의 기능을 해내고 있는 것에 대응하고 있다. 그런데, 「직경의 합에 대하여 간격을 크게 설정한다」라는 것은, 다음의 식 (3)에서 우변 I의 값을 작게 설정하는 것이 분명하다.
(Df+Dp)/Ff=I (3)
이하, 식 (3)의 우변 I의 값이 식 (1) 및 (2)에 의해 받는 제약에 대해서 고찰한다. 원호형의 제1 영역의 X 방향을 따른 치수 Wi 및 마스크(M)에의 입사 광속의 개구수 NAi는, 노광 장치의 사양에 의해 정해진다. 조명 광학계(IL)를 설계하는 입장에서는, Wi 및 NAi는 상수이다. 그래서, 식 (1), (2)를, 다음의 식 (4), (5)에 나타내는 바와 같이 변형한다. 또한 식 (4), (5)를 식 (3)에 대입하면, 다음의 식 (6)에 나타내는 관계를 얻을 수 있다.
Df≒Wi×n×(Ff/Fc) (4)
Dp≒NAi×(2×Fc) (5)
I≒Wi×n/Fc+2×NAi×(Fc/Ff) (6)
식 (6)을 참조하면, 좌변의 I의 값을 작게 하기 위해서는 어떻게 하면 좋을지가 명확하다. 우선, 제1 플라이 아이 광학 부재(31)에서의 미러 요소(31a)의 x1 방향의 열수 n을 작게 하면 좋다. 그러나, 전술한 바와 같이, 열수 n은, 광학 설계의 입장에서 충분한 균일화를 위해 오히려 크게 하고자 하는 변수이며, 작게 할 수는 없다. Wi 및 NAi는, 전술한 바와 같이 상수로서 취급하고 있다. 식 (6)의 우변에서 남는 변수는, 한 쌍의 플라이 아이 광학 부재(31와 32)와의 간격 Ff, 및 콘덴서 광학계(5)의 초점 거리 Fc뿐이다.
이 경우, I의 값을 작게 하기 위해서는, 콘덴서 광학계(5)의 초점 거리 Fc를 크게 설정하고, 초점 거리 Fc보다 큰 증대율에 따라 간격 Ff를 크게 설정할 수밖에 없다. 그러나, 식 (4)를 참조하면 분명한 바와 같이, 초점 거리 Fc보다 큰 증대율에 따라 간격 Ff를 크게 설정하면, 제1 플라이 아이 광학 부재(31)의 직경(Df)이 커진다. 또한, 식 (5)를 참조하면 분명한 바와 같이, 초점 거리 Fc를 크게 설정하면, 제2 플라이 아이 광학 부재(32)의 직경 Dp가 커진다.
그 결과, 옵티컬 인터그레이터(3)가 대형화되고, 더 나아가서는 조명 광학계(IL)가 대형화되어 버린다. 더 최근에는, EUV 노광 장치에서의 해상력의 향상을 위해, 마스크(M)에의 입사 광속의 개구수 NAi를 더 크게 설정하는 것이 검토되고 있다. 식 (6)을 참조하면 분명한 바와 같이, 개구수 NAi가 더 커지면, 좌변의 I의 값도 커져, 한층 더 옵티컬 인터그레이터(3)의 대형화를 초래하게 된다.
본 실시형태에서는, 도 3에 도시하는 바와 같이, 제1 플라이 아이 광학 부재(31) 각각의 제1 요소 미러(31a)의 집합체의 포락선을, x1 방향으로 긴 직경 Dfx를 가지며 y1 방향으로 짧은 직경 Dfy를 갖는 타원형상으로 설정되어 있다. 이 경우, 전술한 식 (1), (3) 및 (4)는, 다음의 식 (1A), (3A) 및 (4A)에 나타내는 바와 같이 재기록된다.
Wi≒(Dfx/n)×(Fc/Ff) (1A)
(Dfy+Dp)/Ff=I (3A)
Dfx≒Wi×n×(Ff/Fc) (4A)
따라서, 긴 직경 Dfx가 짧은 직경 Dfy의 m배(m>1)인 것으로서 Dfx=m×Dfy로 나타내면, 전술한 식 (6)은 다음의 식 (6A)에 나타내는 바와 같이 재기록된다. 식 (6)과 식 (6A)를 비교하면, 식 (6A)의 우변의 제1항의 값이 식 (6)의 우변의 제1 항의 값의 1/m(1/m<1)배로 되어 있고, 그 분만큼 I의 값이 작아지는 것을 알 수 있다.
I≒(Wi×n/Fc)/m+2×NAi×(Fc/Ff) (6A)
종래, 제1 플라이 아이 광학 부재(31) 각각의 제1 요소 미러(31a)의 집합체의 포락선이 원형상에 가까운 형상으로 되어 있던 것은, 광원으로부터 공급되는 발산광의 확산각이 방향에 상관없이 일정하고 원형상인 단면을 가지며, 더 나아가서는 제1 플라이 아이 광학 부재(31)에 입사하는 광속이 원형상의 단면을 갖기 때문이다. 본 실시형태에서는, 제1 플라이 아이 광학 부재(31) 각각의 제1 요소 미러(31a)의 집합체의 포락선을 x1 방향으로 가늘고 긴 형상으로 설정하는 것에 의해, 플라이 아이 광학 부재(31 및 32)의 대형화를 초래하지 않고 식 (6A)의 좌변 I의 값을 작게 할 수 있다. 이 때, 제1 요소 미러(31a)의 집합체의 포락선은, x1 방향으로 가늘고 긴 타원형상으로 해도 된다.
또한, 제1 플라이 아이 광학 부재(31)에, x1 방향으로 가늘고 긴 단면 형상을 갖는 광속을 입사시키면, 제1 플라이 아이 광학 부재(31)에서의 조명 효율을 높게 유지할 수 있다. 이 때에는, 광원 유닛(LU)의 발광점 P1로부터 발한 원형상의 단면을 갖는 광속(광의 확산각이 방향에 의하지 않고 일정한 광속)을, x1 방향으로 가늘고 긴 형상의 단면을 갖는 광속으로 변환하여 제1 플라이 아이 광학 부재(31)에 입사시키도록, 콜렉터 광학 부재(1)를 구성하면 좋다. 이 때, 콜렉터 광학 부재(1)로부터 제1 플라이 아이 광학 부재(31)에 입사하는 광속의 단면은, x1 방향으로 가늘고 긴 타원형상으로 할 수 있다.
이렇게 하여, 본 실시형태의 조명 광학계(IL)에서는, 옵티컬 인터그레이터(3)의 대형화를 초래하지 않고 디스토션의 발생을 억제하고, 더 나아가서는 조명 필드의 중복 오차에 기인하는 광량 손실의 발생을 작게 억제하며 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명할 수 있다. 그 결과, 본 실시형태의 노광 장치에서는, 광량 손실을 작게 억제하고 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명하는 조명 광학계(IL)를 이용하여, 양호한 조명 조건하에서 양호한 노광을 행할 수 있다.
즉, 본 실시형태에서는, 옵티컬 인터그레이터(3)의 대형화를 초래하지 않고, 디스토션의 발생을 억제하며, 더 나아가서는 조명 필드의 중복 오차에 기인하는 광량 손실의 발생을 작게 억제할 수 있다. 그 결과, 본 실시형태의 노광 장치에서는, 광량 손실을 작게 억제하는 옵티컬 인터그레이터(3)를 구비하고 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명하는 조명 광학계(IL)를 이용하여, 양호한 조명 조건하에서 양호한 노광을 행할 수 있다.
도 5 및 도 6은, 본 실시형태에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 도면이다. 도 5 및 도 6에서는, 제1 플라이 아이 광학 부재(31)의 입사면(제2 영역)에서의 x1 방향 및 y1 방향에 대응하는 방향으로 x3 방향 및 y3 방향을 설정하고, x3 방향 및 y3 방향에 수직인 방향으로 z3 방향을 설정하고 있다. 즉, 도 5 및 도 6에서의 y3 방향은 주사 방향인 Y 방향에 대응하고, x3 방향은 주사 방향과 직교하는 X 방향에 대응하고 있다. 도 5는 x3z3 평면을 따른 광선을 도시하고, 도 6은 y3z3 평면을 따른 광선을 도시하고 있다.
다음의 표 (1)에, 본 실시형태에 따른 콜렉터 광학 부재의 제원의 값을 든다. 표 (1)은, ORA(Optical Research Associates)사의 광학 설계 소프트인 「Code V」의 서식에 따라 기술되어 있다. 표 (1)에서, RDY는 면의 곡률 반경(비구면의 경우에는 정점 곡률 반경; 단위: ㎜)을, THI는 이 면부터 다음 면까지의 거리, 즉 면 간격(단위: ㎜)을, RMD는 이 면이 반사면인지 굴절면인지를 나타내고 있다. REFL은, 반사면을 의미한다. INFINITY는 무한대를 의미하고, RDY가 INFINITY이면, 그 면이 평면인 것을 의미하고 있다.
OBJ는 발광점 P1을, STO는 가상적인 구경 조리개의 면을, IMG는 집광점 P2를 나타내고 있다. 면번호 1은 가상면을, 면번호 2는 제1 반사경으로서의 오목면 반사경(1a)의 반사면을, 면번호 4는 제2 반사경으로서의 볼록면 반사경(1b)의 반사면을 나타내고 있다. SPS ZRN은, 각 반사경(1a, 1b)의 반사면이 멱급수로 나타내는 비구면인 것을 의미하고 있다. 표 (1)의 표기 중 비구면의 표현을 제외하는 부분은, 후술한 표 (2)에서도 마찬가지이다.
[표 1]
Figure 112017102186909-pat00001
Figure 112017102186909-pat00002
본 실시형태에서, 발광점 P1로부터 발하는 발산광은, 그 확산각이 방향에 상관없이 일정하고 원형상의 단면을 갖는다. 이 원형상의 단면을 갖는 발산광은, 오목면 반사경(1a)의 비구면 형상의 반사면 및 볼록면 반사경(1b)의 비구면 형상의 반사면을 경유하여, x3 방향으로 긴 직경을 가지며 y3 방향으로 짧은 직경을 갖는 타원형상의 단면을 갖는 광속으로 변환되고, 점 P2에 집광한다. 그 결과, 집광점 P2를 경유하여 제1 플라이 아이 광학 부재(31)에 입사하는 광속은, x1 방향으로 긴 직경을 가지며 y1 방향으로 짧은 직경을 갖는 타원형상의 단면을 갖는다. 본 실시형태에서는, 제1 플라이 아이 광학 부재(31)에의 입사 광속의 단면이 긴 직경과 짧은 직경의 비는 2:1이다.
또한, 전술한 실시형태에서는, DPP 타입의 광원 유닛(LU)을 이용하고 있다. 그러나, 이것에 한정되지 않고, 예컨대 도 7에 도시하는 바와 같이, LPP(Laser Produced Plasma) 타입의 광원 유닛(LU')을 이용하는 변형예도 가능하다. LPP 타입의 광원 유닛(LU')에서는, 레이저광을 타겟 위에 집광하여, 타겟을 플라즈마화하고 EUV광을 얻는다.
도 7의 변형예는, 도 1의 실시형태와 유사한 구성을 갖는다. 그러나, 도 7의 변형예는, DPP 타입의 광원 유닛(LU) 대신에 LPP 타입의 광원 유닛(LU')을 이용하고, LPP 타입의 광원 유닛(LU')에 따른 구성의 콜렉터 광학 부재(11)를 이용하고 있는 점이, 도 1의 실시형태와 상위하고 있다. 이하, 도 1의 실시형태와의 상위점에 착안하여, 도 7의 변형예의 구성 및 작용을 설명한다.
본 실시형태에 따른 광원 장치는, 광원 유닛(LU')과 콜렉터 광학 부재(11)를 구비하고 있다. 광원 유닛(LU')은, 레이저 광원(21), 집광 렌즈(22), 노즐(23) 및 덕트(24)를 구비하고 있다. 광원 유닛(LU')에서는, 예컨대 크세논(Xe)으로 이루어지는 고압 가스가 노즐(23)로부터 공급되고, 노즐(23)로부터 분사된 가스가 기체 타겟(25)을 형성한다. 그리고, 레이저 광원(21)으로부터 발한 광(비EUV광)이, 집광 렌즈(22)를 통해, 기체 타겟(25) 위에 집광한다.
기체 타겟(25)은, 집광된 레이저광에 의해 에너지를 얻어 플라즈마화하고, EUV광을 발한다. 즉, 기체 타겟(25)의 위치가 발광점 P1이 된다. 광원 유닛(LU')의 발광점 P1로부터 발한 EUV광은, 타원 오목면 반사경에 유사한 형태를 갖는 콜렉터 광학 부재(11)에 의해 집광된 후, 콜리메이터 광학 부재(2)를 통해, 제1 플라이 아이 광학 부재(31)에 유도된다. 발광을 끝낸 가스는, 덕트(24)를 통해 흡인되어 외부에 유도된다.
도 8 및 도 9는, 도 7에 도시한 변형예에 따른 콜렉터 광학 부재의 구성을 개략적으로 도시하는 도면이다. 도 8 및 도 9에서는, 제1 플라이 아이 광학 부재(31)의 입사면(수광면)에서의 x1 방향 및 y1 방향에 대응하는 방향으로 x4 방향 및 y4 방향을 설정하고, x4 방향 및 y4 방향에 수직인 방향으로 z4 방향을 설정하고 있다. 즉, 도 8 및 도 9에서의 y4 방향은 주사 방향인 Y 방향에 대응하고, x3 방향은 주사 방향과 직교하는 X 방향에 대응하고 있다. 도 8은 x4z4 평면을 따른 광선을 도시하고, 도 9는 y4z4 평면을 따른 광선을 도시하고 있다.
다음 표 (2)에, 변형예에 따른 콜렉터 광학 부재의 제원의 값을 든다. 표 (2)에서, 「x4 방향의 데이터」의 란은 도 8의 x4z4 평면을 따른 광선에 관한 데이터를, 「y4 방향의 데이터」의 란은 도 9의 y4z4 평면을 따른 광선에 관한 데이터를 각각 나타내고 있다. OBJ는 발광점 P1을, 면번호 1은 가상면을, STO는 콜렉터 광학 부재(11)를 구성하는 오목면 반사경의 반사면을, IMG는 집광점 P2x, P2y를 나타내고 있다. ASP는 멱급수로 나타내는 비구면인 것을 의미하고 있다.
[표 2]
Figure 112017102186909-pat00003
도 7의 변형예에서는, 도 8에 도시하는 바와 같이, 콜렉터 광학 부재(11)를 구성하는 오목면 반사경의 반사면과, 발광점 P1을 통과하여 x4z4 평면에 평행한 면과의 교선이, 발광점 P1에 한쪽 초점을 가지며 점 P2x에 다른쪽 초점을 갖는 타원의 일부에 대응하고 있다. 또한, 도 9에 도시하는 바와 같이, 콜렉터 광학 부재(11)의 반사면과, 발광점 P1을 통과하여 y4z4 평면에 평행한 면과의 교선이, 발광점 P1에 한쪽의 초점을 가지며 점 P2y에 다른쪽 초점을 갖는 타원의 일부에 대응하고 있다.
변형예에서도, 발광점 P1로부터 공급되는 발산광은, 그 확산각이 방향에 상관없이 일정하고 원형상의 단면을 갖는다. 이 원형상의 단면을 갖는 발산광 중, x4z4 평면을 따른 광선은 콜렉터 광학 부재(11)의 비구면 형상의 반사면을 경유하여 점 P2x에 집광하고, y4z4 평면을 따른 광선은 콜렉터 광학 부재(11)의 비구면 형상의 반사면을 경유하여 점 P2x보다 콜렉터 광학 부재(11)로부터 떨어진 점 P2y에 집광한다. 이렇게 하여, 발광점 P1로부터의 원형상의 단면을 갖는 발산광은, 콜렉터 광학 부재(11)의 비구면 형상의 반사면을 경유하여, x4 방향으로 긴 직경을 가지며 y4 방향으로 짧은 직경을 갖는 타원형상의 단면을 갖는 광속으로 변환된다.
그 결과, 제1 플라이 아이 광학 부재(31)에 입사하는 광속은, x1 방향으로 긴 직경을 가지며 y1 방향으로 짧은 직경을 갖는 타원형상의 단면을 갖는다. 변형예에서는, 제1 플라이 아이 광학 부재(31)에의 입사 광속의 단면의 긴 직경과 짧은 직경의 비는 1.1:1이다. 콜렉터 광학 부재(11)는, 광원 유닛(LU')으로부터의 광을 반사하고 집광하여, 광원의 1차 상을 형성한다. 이 변형예에서는, x4z4 평면을 따른 광선의 집광점 P2x와 y4z4 평면을 따른 광선의 집광점 P2y가 일치하지 않는다. 이 때문에, 제2 플라이 아이 광학 부재(32)의 미러 요소(32a) 위에서 광속을 충분히 좁히는 것이 어려워진다. 단, 광원의 사이즈가 충분히 작고, 미러 요소(32a) 위로부터 광속이 비어져 나오지 않으면 특별히 문제는 없다.
변형예에 따른 콜렉터 광학 부재(11)에서는, 예컨대 옵티컬 인터그레이터(3)의 제1 플라이 아이 광학 부재(31)에 입사하는 입사 광속 중, y4z4면 내를 전파하는 광선은, 광원 유닛(LU')의 발광점(즉 광원) P1과 마스크(M) 사이의 집광 위치 P2y에서 집광하고, x4z4면 내를 전파하는 광선은, 광원 유닛(LU')의 발광점 P1과 집광 위치 P2y 사이의 집광 위치 P2x에서 집광한다.
다른 표현을 하면, 광원 유닛(LU')의 발광점 P1과 마스크(M) 사이의 집광 위치 P2y에 집광하는 광은, 광원 유닛(LU')으로부터의 광 중, 콜렉터 광학 부재(11)를 구성하는 오목면 반사경의 집광면의 y4z4 단면을 전파한다. 동시에, 광원 유닛(LU')의 발광점 P1과 집광 위치 P2y 사이의 집광 위치 P2x에서 집광하는 광은 집광면의 x4z4 단면을 전파한다. 콜렉터 광학 부재(11)에서는, 집광면의 곡률이, y4 방향을 포함하는 y4z4 단면과 x4 방향을 포함하는 x4z4 단면(y4z4 단면과 직교하는 단면)에서 상이하다. 예컨대 집광면에서의 y4z4 단면의 곡률 반경보다 x4z4 단면의 곡률 반경이 커져 있다.
즉, 도 7의 변형예에서는, 콜렉터 광학 부재(11)의 x4z4 단면의 집광면에서 집광된 광이, 콜렉터 광학 부재(11)와 마스크(M) 위의 중첩 조명 영역(제1 영역) 사이의 광학계(2∼5)에 의해 중첩 조명 영역에 투영되는 방향이, X 방향이다. 또한 콜렉터 광학 부재(11)의 y4z4 단면의 집광면에서 집광된 광이, 광학계(2∼5)에 의해 중첩 조명 영역에 투영되는 방향이, Y 방향이다.
또한, 전술한 설명에서는, 제1 플라이 아이 광학 부재(31)의 복수의 제1 미러 요소(31a)와, 제2 플라이 아이 광학 부재(32)의 복수의 제2 미러 요소(32a)가 광학적으로 대응하고 있다. 여기서, 「광학적으로 대응한다」란, 예컨대 도 10에 도시하는 바와 같이, 복수의 제1 미러 요소(31a) 중 하나의 미러 요소(31a)로 반사된 광이, 복수의 제2 미러 요소(32a) 중 어느 하나의 미러 요소(32a)로 반사되는 것이다. 구체적으로, 도 10에서는, 제1 미러 요소(31a1, 31a2, 31a3, 31a4, 및 31a5)로 반사된 광이, 제2 미러 요소(32a1, 32a2, 32a3, 32a4, 및 32a5)에 각각 입사하고 있다.
즉, 제1 미러 요소(31a1)와 제2 미러 요소(32a1)가 광학적으로 대응하고 있다. 마찬가지로, 제1 미러 요소(31a2∼31a5)와, 제2 미러 요소(32a2∼32a5)가 각각 광학적으로 대응하고 있다. 단, 복수의 제1 미러 요소(31a)와 복수의 제2 미러 요소(32a)는 일대일 대응하고 있을 필요는 없고, 어떤 제1 미러 요소로 반사된 광과 다른 제1 미러 요소로 반사된 광이, 동일한 제2 미러 요소로 반사되어도 좋다. 또는 제1 미러 요소로 반사된 광을 반사하지 않는 제2 미러 요소가 있어도 좋다. 조명 조건을 바꿀 때에, 복수의 제1 미러 요소와 복수의 제2 미러 요소와의 광학적인 대응 관계를 바꿔도 좋다.
또한, 제1 플라이 아이 광학 부재(31)에 입사하는 광속의 단면에서의 강도 분포가 타원형상이어도, 제2 플라이 아이 광학 부재(32)에 입사하는 광속의 단면(동공면)에서의 강도 분포를 원형상으로 할 수 있다. 또한 동공면에서의 강도 분포는 원형상에 한정되지 않고, 2극이나 4극, 고리형상, 사각형상, 타원형상 등으로 하여도 좋다. 이러한 경우라도, 웨이퍼(W)에 형성되는 패턴의 해상력을, 직교하는 2방향(예컨대 X 방향과 Y 방향)에서 같게 할 수 있다. 이 때, 복수의 제1 미러 요소와 복수의 제2 미러 요소의 광학적인 대응 관계가 조정되어 있어도 좋다.
그런데, 도 7의 변형예에서는, 콜렉터 광학 부재(11)의 집광면의 곡률이 y4 방향을 포함하는 y4z4 단면과 x4 방향을 포함하는 x4z4 단면에서 상이하기 때문에, x4z4 평면을 따른 광의 집광점 P2x와 y4z4 평면을 따른 광의 집광점 P2y가 광축 방향으로 일치하지 않는다. 그 결과, 제2 플라이 아이 광학 부재(32)의 제2 미러 요소(32a)의 반사면에는, 도 11에 도시하는 바와 같이, 디포커싱한 광원상(광원의 2차 상)(41)이 형성된다.
광원상(41)의 외형 형상은, 제1 플라이 아이 광학 부재(31)에 의해 파면 분할된 광속의 단면 형상의 영향[즉 콜렉터 광학 부재(11)의 집광면의 곡률의 이방성의 영향]에 의해, 비점 수차가 생기기 때문에, 일 방향에 대하여 다른쪽이 길어진다. 광원상(41)[즉 제2 미러 요소(32a)에 입사하는 광속]이 제2 미러 요소(32a)의 반사면으로부터 비어져 나오지 않으면, 특별히 문제는 없다. 그러나, 광원상(41)이 너무 커 제2 미러 요소(32a)의 반사면으로부터 비어져 나오면, 광량 손실이 발생할 뿐만 아니라, 마스크(M) 위의 중첩 조명 영역에서의 조명 필드의 중복 오차의 발생 원인으로 되어 버린다.
일반적으로, 마스크(M) 위의 중첩 조명 영역에서의 조도 분포의 균일화를 위해, 제1 플라이 아이 광학 부재(31)에서의 파면 분할수가 증대하는 경향, 즉 제1 미러 요소(31a) 및 제2 미러 요소(32a)의 반사면이 소형화되는 경향이 있다. 제2 미러 요소(32a)를 소형화하면, 광원상(41)이 제2 미러 요소(32a)의 반사면으로부터 비어져 나와, 광량 손실 및 중첩 조명 영역의 붕괴가 발생할 가능성이 높아진다.
제2 변형예에서는, 제1 미러 요소(31a)의 반사면을 토로이달면형상으로 하는 것에 의해, 도 12에 모식적으로 도시하는 바와 같이, 제2 미러 요소(32a) 위에 형성되는 광원상(42)의 사이즈를 작게 억제하고, 더 나아가서는 광량 손실 및 중첩 조명 영역의 붕괴의 발생을 방지한다. 구체적으로, 제2 변형예에서는, 제1 미러 요소(31a)의 반사면을, x1 방향을 따른 면의 곡률과 y1 방향을 따른 면의 곡률이 서로 상이한 토로이달면형상으로 형성한다.
환언하면, 제1 미러 요소(31a)의 반사면이 구면 형상인 경우에 얻어지는 일 방향으로 가늘고 긴 광원상(41)이, 전체적으로 그다지 디포커싱하지 않는 비교적 사이즈가 작은 광원상(42)이 되도록, 제1 미러 요소(31a)의 반사면에 대하여, x1 방향을 따른 원하는 곡률 및 y1 방향을 따른 원하는 곡률을 부여한다. 그 결과, 제1 미러 요소(31a)의 반사면의 x1 방향을 따른 곡률과 y1 방향을 따른 곡률은 서로 상이한 것이 된다.
단, 광원상(42)의 사이즈를 너무 작게 하면, 제2 미러 요소(32a)의 반사면을 형성하는 다층막이 광조사에 의해 열변형하거나 손상을 받기 쉬워지는 경우가 있다. 그 경우, 제1 미러 요소(31a)의 반사면의 x1 방향을 따른 곡률 및 y1 방향을 따른 곡률을 적절하게 조정하는 것에 의해, 도 13에 도시하는 바와 같이 전체적으로 디포커싱한 비교적 사이즈가 큰 광원상(43)을 적극적으로 형성하여, 다층막의 열변형 및 손상을 경감할 수 있다.
구체적인 수치예로서, 콜렉터 광학 부재(11)를 구성하는 오목면 반사경의 집광면의 y4 방향을 따른 곡률 Cy4: x4 방향을 따른 곡률 Cx4는, 예컨대 5:6이나 7:8이다. 이 경우, 제1 미러 요소(31a)의 반사면의 x1 방향을 따른 곡률 Cx1: y1 방향을 따른 곡률 Cy1을, 예컨대 5:6, 6:5, 7:8, 8:7로 설정할 수 있다. 그리고, 콜렉터 광학 부재(11)에서의 곡률 Cy4: 곡률 Cx4가 5:6일 때에, 제1 미러 요소(31a)의 곡률 Cx1: 곡률 Cy1을 5:6으로 하면, 제2 미러 요소(32a) 위에 비교적 사이즈가 작은 광원상(42)이 얻어지고, 더 나아가서는 광량 손실 및 중첩 조명 영역의 붕괴의 발생을 방지할 수 있다.
또한, 콜렉터 광학 부재(11)에서의 곡률 Cy4: 곡률 Cx4가 5:6일 때에, 제1 미러 요소(31a)의 곡률 Cx1: 곡률 Cy1을 7:8로 하면, 제2 미러 요소(32a) 위에 비교적 사이즈가 큰 광원상(43)이 얻어지고, 더 나아가서는 다층막의 열변형 및 손상을 경감할 수 있다. 이 때, 콜렉터 광학 부재(11)의 집광면 및 제1 미러 요소(31a)의 반사면의 곡률이 방향을 따라 상이한 것이 마스크(M) 위에서의 조명 효율에 미치는 영향을, 콜렉터 광학 부재(11)의 곡률과 제1 미러 요소(31a)의 곡률과의 관계를 조정하는 것에 의해 보정(보상)할 수 있으면, 제2 미러 요소(32a)의 반사면은 구면 형상 그대로도 좋다. 콜렉터 광학 부재(11)와 제1 미러 요소(31a) 사이의 곡률 관계를 조정하여도 보정할 수 없는 경우, 제2 미러 요소(32a)의 반사면을 원하는 토로이달면형상으로 형성하는 것에 의해 보정이 가능하게 된다.
제2 변형예에서는, 모든 제1 미러 요소(31a)의 반사면을 토로이달면형상으로 할 필요는 없고, 필요로 하는 수(하나 이상)의 제1 미러 요소(31a)의 반사면을 토로이달면형상으로 형성하는 것에 의해, 광량 손실 및 중첩 조명 영역의 붕괴 발생을 방지하는 효과, 또는 다층막의 열변형 및 손상을 경감하는 효과가 얻어진다. 이들 효과는, 제1 미러 요소(31a)의 반사면의 x1 방향을 따른 곡률 Cx1과 y1 방향을 따른 곡률 Cy1이, 예컨대 다음의 조건식 (7)을 만족시키는 것에 의해 얻어진다.
1.0<Cx1/Cy1<1.2 또는 1.0<Cy1/Cx1<1.2 (7)
전술한 설명에서는, 도 7의 변형예의 구성에 대하여 제1 미러 요소(31a)의 반사면을 토로이달면형상으로 하는 방법을 적용하고 있다. 그러나, 도 7의 변형예의 구성에 한정되지 않고, 도 1의 실시형태의 구성에 대해서도 제1 미러 요소(31a)의 반사면을 토로이달면형상으로 하는 방법을 적용할 수 있다. 도 1의 실시형태의 구성에서는, 콜렉터 광학 부재(1)로부터의 광의 집광점 P2는, 방향에 의존하지 않고 일치하고 있다.
그 결과, 도 14의 좌측 도면에 도시하는 바와 같이, 제2 미러 요소(32a)의 반사면에는 비교적 사이즈가 작은 광원상(42)이 형성되어, 다층막이 광조사에 의해 열변형하거나 손상을 받기 쉬워지는 경우가 있다. 이 경우, 도 1의 실시형태의 구성에서도, 제1 미러 요소(31a)의 반사면의 x1 방향을 따른 곡률 Cx1 및 y1 방향을 따른 곡률 Cy1을 적절하게 조정하는 것에 의해, 도 14의 우측 도면에 도시하는 바와 같이, 전체적으로 디포커싱한 비교적 사이즈가 큰 광원상(43)을 적극적으로 형성하여, 다층막의 열변형 및 손상을 경감할 수 있다.
이상과 같이, 전술한 실시형태 및 변형예에 따른 조명 광학계(IL)에서는, Y 방향의 길이보다 X 방향의 길이가 긴 제1 영역, 전형적으로는 X 방향으로 가늘고 긴 원호형의 중첩 조명 영역이, 마스크(M)의 패턴면에 형성된다. 제1 형태의 광학 장치는, 광원 유닛[LU(LU')]과 마스크(M) 사이의 광로 중에 배치되고, 광원 유닛[LU(LU')]으로부터의 광을 집광하여, y1 방향(Y 방향에 대응)의 길이보다 x1 방향(X 방향에 대응)의 길이가 긴 제2 영역(x1 방향으로 긴 직경을 가지며 y1 방향으로 짧은 직경을 갖는 타원형상의 입사 광속 영역)을 정해진 면에 형성하는 콜렉터 광학 부재[1(11)]와, 제2 영역을 포함하는 정해진 면 내에 설치되고, 콜렉터 광학 부재[1(11)]의 광을 제1 영역에 유도하는 복수의 제1 미러 요소(31a)를 갖는 제1 플라이 아이 광학 부재(31)를 구비하고 있다.
제2 형태의 광학 장치는, 광원 유닛[(LU(LU')]과 마스크(M) 사이의 광로 중에 설치되고, y1 방향(Y 방향에 대응)의 길이보다 x1 방향(X 방향에 대응)의 길이가 긴 외형 형상을 갖는 제1 미러 요소(31a)를, 정해진 면에 복수 배열하며, 배열된 제1 미러 요소(31a)의 집합체의 y1 방향과 x1 방향의 길이가 서로 상이한 제1 플라이 아이 광학 부재(31)와, 제1 플라이 아이 광학 부재(31)와 마스크(M) 사이의 광로 중에 설치되고, 제1 미러 요소(31a)에 광학적으로 대응하도록 설치된 복수의 제2 미러 요소(32a)를 갖는 제2 플라이 아이 광학 부재(32)를 구비하고 있다.
제3 형태의 광학 장치는, 제2 영역(x1 방향으로 긴 직경을 가지며 y1 방향으로 짧은 직경을 갖는 타원형상의 입사 광속 영역)을 포함하는 정해진 면 내에 설치되고, 복수의 제1 미러 요소(31a)를 갖는 제1 플라이 아이 광학 부재(31)를 구비하고 있다. 복수의 제1 미러 요소(31a) 중 하나 이상의 미러 요소는, 제2 영역과 직교하는 면 중에서, y1 방향(제3 방향)을 따른 면의 곡률과, x1 방향(제4 방향)을 따른 면의 곡률이 서로 상이한 광학면(즉 반사면)을 갖는다. 일반적으로, 제1 플라이 아이 광학 부재를 구성하는 제1 광학 요소가 반사 부재인 경우, 2방향에서 곡률이 서로 상이한 광학면은 반사면, 회절면 등이다. 한편, 제1 광학 요소가 광 투과부재인 경우, 2방향에서 곡률이 서로 상이한 광학면은, 렌즈면, 회절면 등이다.
전술한 실시형태 및 변형예에 따른 조명 광학계(IL)에서는, 옵티컬 인터그레이터(3)의 대형화를 초래하지 않고 디스토션의 발생을 억제하고, 더 나아가서는 조명 필드의 중복 오차에 기인하는 광량 손실의 발생을 작게 억제하며 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명할 수 있다. 그 결과, 전술한 실시형태 및 변형예에 따른 노광 장치에서는, 광량 손실을 작게 억제하고 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명하는 조명 광학계(IL)를 이용하여, 양호한 조명 조건하에서 양호한 노광을 행할 수 있다.
제1 형태 및 제2 형태에서는, 제2 영역[x1 방향으로 긴 직경을 가지며 y1 방향으로 짧은 직경을 갖는 타원형상의 입사 광속 영역; 제1 플라이 아이 광학 부재(31)에의 입사 광속의 영역]에서의 y1 방향의 길이보다, x1 방향의 길이가 1.1배 이상 길도록 구성하여도 좋다. 또한 제2 영역에서의 y1 방향의 길이와 x1 방향의 길이의 아스펙트비가 1:α라고 하면, α가 1.1 이상의 조건을 만족시키도록 구성하여도 좋다. 또한 α를 4.0 이하로 할 수 있다.
제1 형태 및 제2 형태에서는, 옵티컬 인터그레이터(3)의 미러 요소(31a)가 제2 영역내에만, 배열되도록 구성하는 것에 의해, 광량 손출을 더 저감할 수 있다. 또한, 미러 요소(31a)의 집합체에서의 y1 방향의 길이보다 x1 방향의 길이가 1.1배 이상 길도록 구성하여도 좋다. 또한, 미러 요소(31a)의 집합체에서의 y3 방향의 길이와 x1 방향의 길이의 아스펙트비가 1:α라고 하면, α가 1.1 이상의 조건을 만족시키도록 구성하여도 좋다. 또한 α를 4.0 이하로 할 수 있다.
제1 형태 및 제2 형태에서는, 옵티컬 인터그레이터(3)에의 입사 광속[더 나아가서는 제1 플라이 아이 광학 부재(31)에의 입사 광속]의 단면에서의 y1 방향의 길이보다 x1 방향의 길이가 1.1배 이상 길도록 구성하여도 좋다. 또한, 옵티컬 인터그레이터(3)에의 입사 광속의 단면에서의 y1 방향의 길이와 x1 방향의 길이의 아스펙트비가 1:α라고 하면, α가 1.1 이상의 조건을 만족시키도록 구성하여도 좋다. 또한 α를 4.0 이하로 할 수 있다.
또한, 전술한 실시형태 및 변형예에서는, Y 방향과 교차하는 X 방향으로 긴 조명 영역, 즉 X 방향으로 가늘고 긴 원호형의 조명 영역이, 마스크(M)의 패턴면에 형성된다. 옵티컬 인터그레이터(3)중 제1 플라이 아이 광학 부재(31)는, 조명 영역에 대응한 외형 형상, 즉 x1 방향(X 방향에 대응)으로 가늘고 긴 원호형의 외형 형상을 갖는 미러 요소(31a)를 y1 방향(Y 방향에 대응)과 x1 방향으로 복수 배열하는 것에 의해 구성되어 있다. 제1 플라이 아이 광학 부재(31)에서는, 배열된 미러 요소(31a)의 집합체의 y1 방향과 x1 방향의 길이가 서로 상이하다.
다른 표현을 하면, 제1 플라이 아이 광학 부재(31)의 수광면(입사면)의 길이가 y1 방향과 x1 방향에서 서로 상이하다. 또 다른 표현을 하면, 제1 플라이 아이 광학 부재(31)의 수광면에서의 y1 방향과 x1 방향의 배열의 수가 서로 상이하다. 이 구성에 의해, 전술한 실시형태 및 변형예에서는, 옵티컬 인터그레이터(3)의 대형화를 초래하지 않고, 디스토션의 발생을 억제하며, 더 나아가서는 조명 필드의 중복 오차에 기인하는 광량 손실의 발생을 작게 억제할 수 있다. 그 결과, 전술한 실시형태 및 변형예에 따른 노광 장치에서는, 광량 손실을 작게 억제하는 옵티컬 인터그레이터(3)를 구비하고 광 효율이 높은 필요로 하는 조명 조건으로 마스크(M)를 조명하는 조명 광학계(IL)를 이용하여, 양호한 조명 조건하에서 양호한 노광을 행할 수 있다.
배열된 미러 요소(31a)의 집합체의 y1 방향과 x1 방향의 아스펙트비가 1:α라고 하면, α가 1.1 이상의 조건을 만족시키도록 구성하여도 좋다. 또한 배열된 미러 요소(31a)의 집합체가 y1 방향에 대하여 x1 방향으로 1.1배 이상 길도록 구성하여도 좋다. 또한, 미러 요소(31a)의 집합체가 y1 방향으로 20열 이상, x1 방향으로 5열 이상 배열되어 있도록 구성하여도 좋다.
또한, 전술한 설명에서는, 콜렉터 광학 부재(1)와 옵티컬 인터그레이터(3) 사이에 콜리메이터 광학계(2)가 설치되어 있지만, 이것에 한정되지 않는다. 즉, 광원 유닛[(LU(LU')]으로부터의 광이, 파워를 갖는 광학 부재[예컨대 콜리메이터 광학계(2)와 같은 광학 부재]를 통하지 않고, 옵티컬 인터그레이터(3)의 제1 플라이 아이 광학 부재(31)에 입사하도록 구성하여도 좋다. 여기서, 광학 부재의 파워란, 해당 광학 부재의 초점 거리의 역수이다.
또한, 전술한 설명에서는, 정(正)동공 타입의 노광 장치에 기초하여 본 발명을 설명하고 있다. 여기서는, 입사 동공이 물체면[마스크(M)의 패턴면에 대응]보다 투영 광학계측에 위치하고 있는 투영 광학계를 구비하는 노광 장치를 정동공 타입의 노광 장치로 부른다. 그러나, 정동공 타입의 노광 장치에 한정되지 않고, 역동공 타입의 노광 장치에 대해서도 마찬가지로 본 발명을 적용할 수 있다. 입사 동공이 물체면을 사이에 두고 투영 광학계와는 반대측에 위치하고 있는 투영 광학계를 구비하는 노광 장치를 역동공 타입의 노광 장치라고 부른다.
구체적으로, 역동공 타입의 노광 장치에서는, 광원 유닛[LU(LU')]으로부터의 광이 콜렉터 광학 부재(1)[콜렉터 광학 부재(11)]를 경유한 후에, 콜리메이터 광학계(2)를 통해, 조명 광학계(IL)중 옵티컬 인터그레이터(3)에 입사한다. 그 후, 옵티컬 인터그레이터(3)를 경유한 광은, 경사 입사 미러(평면 반사경)를 통해, 마스크(M) 위에 원호형의 제1 영역을 형성한다. 즉, 옵티컬 인터그레이터(3)의 제2 플라이 아이 광학 부재(32)를 경유한 광은, 파워를 갖는 광학 부재[예컨대 콘덴서 광학계(5)와 같은 광학 부재]를 통하지 않고, 피조사면으로서의 마스크(M)의 패턴면에 유도된다. 또한 옵티컬 인터그레이터(3)와 피조사면 사이의 광로 중에 파워를 갖는 광학 부재가 개재되어도 좋다. 또한, 콜렉터 광학 부재[1(11)]와 옵티컬 인터그레이터(3) 사이에, 콜리메이터 광학계(2)와 같은 파워를 갖는 광학 부재를 통하지 않는 구성으로 하여도 좋다.
또한, 전술한 설명에서는, 제1 플라이 아이 광학 부재(31)중 제1 미러 요소(31a)가 원호형의 외형 형상을 가지며, 제2 플라이 아이 광학 부재(32)중 제2 미러 요소(32a)가 직사각형상의 외형 형상을 갖는다. 그러나, 이것에 한정되지 않고, 각 광학 요소의 외형 형상, 각 광학 요소의 파워의 정부(正負)에 대해서는 여러 가지 형태가 가능하다. 또한, 미러 요소 대신에 굴절 광학 요소나 회절 광학 소자를 이용할 수도 있다.
전술한 설명에서는, 제1 플라이 아이 광학 부재(31)에의 입사 광속의 단면의 긴 직경과 짧은 직경의 비를, 2:1 또는 1.1:1로 했지만, 제1 플라이 아이 광학 부재(31)에의 입사 광속의 단면의 긴 직경과 짧은 직경의 비는 이것에 한정되지 않고, α:1(단 α는 1.1 이상)로 할 수 있다. 또한, α를 4.0 이하로 하여도 좋다.
제6 형태에 따른 조명 방법에서는, 광원 유닛[LU(LU')]으로부터의 광에 의해, Y 방향의 길이보다 X 방향의 길이가 긴 제1 영역, 즉 X 방향으로 가늘고 긴 원호형의 중첩 조명 영역이, 마스크(M)의 패턴면에 형성된다. 이 조명 방법은, 정해진 면 위의 제2 영역에 광원으로부터의 광을 집광하여 유도하는 것과, 정해진 면 위에서 제3 방향의 길이보다 상기 제3 방향에 교차하는 제4 방향의 길이가 긴 외형 형상을 갖는 복수의 광속으로 파면 분할하는 것, 파면 분할된 복수의 광속을 제1 영역에 유도하는 것을 포함하고 있다. 제2 영역은, 제3 방향의 길이보다 제4 방향의 길이가 긴 형상(x1 방향으로 길고 y1 방향으로 짧은 입사 광속 영역)을 가지며, 정해진 면 위에서의 복수의 광속은, 제3 방향과 제4 방향을 따라 복수 배열된다.
제9 형태에 따른 광학 장치의 제조 방법에서는, 광원 유닛[LU(LU')]으로부터의 광에 의해, Y 방향의 길이보다 X 방향의 길이가 긴 조명 영역을 균일하게 조명하기 위해 이용되는 광학 장치의 제조 방법에서, 광원으로부터의 광을 집광하여, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 제2 영역(x1 방향으로 길고 y1 방향으로 짧은 입사 광속 영역)을 정해진 면에 형성하는 콜렉터 광학 부재를 얻는 것과, 제2 영역을 포함하는 정해진 면 내에, 복수의 제1 광학 요소를 갖는 제1 플라이 아이 광학 부재를 설치하는 것을 구비한다.
제10 형태에 따른 광학 장치의 제조 방법에서는, 광원 유닛[LU(LU')]으로부터의 광에 의해, Y 방향의 길이보다 X 방향의 길이가 긴 조명 영역을 균일하게 조명하기 위해 이용되는 광학 장치의 제조 방법에서, 제3 방향의 길이보다 상기 제3 방향과 교차하는 제4 방향의 길이가 긴 외형 형상을 갖는 복수의 제1 광학 요소를 준비하는 것과, 복수의 제1 광학 요소를 제3 방향과 제4 방향으로 배열하는 제1 광학 요소의 집합체가, 제3 방향의 길이와 제4 방향의 길이에서 서로 상이한 제1 플라이 아이 광학 부재를 얻는 것을 포함한다.
전술한 실시형태에서는, 마스크(M) 대신에, 정해진 전자 데이터에 기초하여 정해진 패턴을 형성하는 가변 패턴 형성 장치를 이용할 수 있다. 또한 가변 패턴 형성 장치로서는, 예컨대 정해진 전자 데이터에 기초하여 구동되는 복수의 반사 소자를 포함하는 공간광 변조 소자를 이용할 수 있다. 공간광 변조 소자를 이용한 노광 장치는, 예컨대 미국 특허 공개 제2007/0296936호 공보에 개시되어 있다. 또한 상기와 같은 비발광형의 반사형 공간광 변조기 이외에, 투과형 공간광 변조기를 이용하여도 좋고, 자(自)발광형의 화상 표시 소자를 이용하여도 좋다.
전술한 실시형태의 노광 장치는, 본원 특허청구범위에 든 각 구성 요소를 포함하는 각종 서브 시스템을, 정해진 기계적 정밀도, 전기적 정밀도, 광학적 정밀도를 유지하도록, 조립함으로써 제조된다. 이들 각종 정밀도를 확보하기 위해, 이 조립의 전후에는, 각종 광학계에 대해서는 광학적 정밀도를 달성하기 위한 조정, 각종 기계계에 대해서는 기계적 정밀도를 달성하기 위한 조정, 각종 전기계에 대해서는 전기적 정밀도를 달성하기 위한 조정이 행해진다. 각종 서브시스템으로부터 노광 장치에의 조립 공정은, 각종 서브시스템 상호의, 기계적 접속, 전기 회로의 배선 접속, 기압 회로의 배관 접속 등이 포함된다. 이 각종 서브시스템으로부터 노광 장치에의 조립 공정 전에, 각 서브 시스템 개개의 조립 공정이 있는 것은 물론이다. 각종 서브시스템의 노광 장치에의 조립 공정이 종료했다면, 종합 조정이 행해져, 노광 장치 전체로서의 각종 정밀도가 확보된다. 또한 노광 장치의 제조는 온도 및 클린도 등이 관리된 클린룸에서 행하여도 좋다.
다음에, 전술한 실시형태에 따른 노광 장치 또는 노광 방법을 이용한 디바이스 제조 방법에 대해서 설명한다. 도 15는, 반도체 디바이스의 제조 공정을 도시하는 흐름도이다. 도 15에 도시하는 바와 같이, 반도체 디바이스의 제조 공정에서는, 반도체 디바이스의 기판이 되는 웨이퍼(W)에 금속막을 증착하고(단계 S40), 이 증착한 금속막 위에 감광성 재료인 포토레지스트를 도포한다(단계 S42). 계속해서, 전술한 실시형태의 노광 장치를 이용하여, 마스크(레티클)(M)에 형성된 패턴을 웨이퍼(W) 위의 각 샷 영역에 전사하고(단계 S44: 노광 공정), 이 전사가 종료된 웨이퍼(W)의 현상, 즉 패턴이 전사된 포토레지스트의 현상을 행한다(단계 S46: 현상 공정). 그 후, 단계 S46에 의해 웨이퍼(W)의 표면에 생성된 레지스트 패턴을 마스크로 하고, 웨이퍼(W)의 표면에 대하여 에칭 등의 가공을 행한다(단계 S48: 가공 공정).
여기서, 레지스트 패턴이란, 전술한 실시형태의 노광 장치에 의해 전사된 패턴에 대응하는 형상의 요철이 생성된 포토레지스트층으로서, 그 오목부가 포토레지스트층을 관통하고 있는 것이다. 단계 S48에서는, 이 레지스트 패턴을 통해 웨이퍼(W) 표면의 가공을 말한다. 단계 S48에서 행해지는 가공에는, 예컨대 웨이퍼(W) 표면의 에칭 또는 금속막 등의 성막 중 하나 이상이 포함된다. 또한 단계 S44에서는, 전술한 실시형태의 노광 장치는, 포토레지스트가 도포된 웨이퍼(W)를 감광성 기판으로서 패턴의 전사를 행한다.
또한, 전술한 실시형태에서는, EUV광을 공급하기 위한 광원을 갖는 노광 장치에 본 발명을 적용하고 있지만, 이것에 한정되지 않고, EUV광 이외의 다른 파장광을 공급하는 광원을 갖는 노광 장치에 대해서도 본 발명을 적용할 수 있다.
또한, 전술한 실시형태에서는, 반사형의 마스크(M)를 이용하는 EUV 노광 장치의 조명 광학계에 대하여 본 발명을 적용하고 있지만, 이것에 한정되지 않고, 광원으로부터의 광에 기초하여 제1 영역을 조명하는 일반 조명 광학계에 대해서도 본 발명을 적용할 수 있다.
1, 11: 콜렉터 광학 부재, 2: 콜리메이터 광학 부재, 3: 옵티컬 인터그레이터, 5: 콘덴서 광학계, 31, 32: 플라이 아이 광학 부재, LU, LU': 광원 유닛, M: 마스크, MS: 마스크 스테이지, PL: 투영 광학계, W: 웨이퍼, WS: 웨이퍼 스테이지

Claims (26)

  1. 광원으로부터의 광으로 제1 면 상의 조명 영역을 조명하는 조명 광학계에 있어서,
    상기 제1 면과 교차하는 제2 면에 교차하도록 배치되며, 상기 광원으로부터의 광을, 상기 제2 면을 따른 제1 방향에 있어서의 제1 치수가, 상기 제1 방향과 교차하는 제2 방향에 있어서의 제2 치수보다도 짧아지는 단면 형상으로 하는 제1 광학계와,
    상기 제2 면과 교차하는 제1 배열면에 배열된 복수의 제1 반사 요소를 구비하고, 상기 제1 광학계로부터의 광을 반사하는 제1 플라이아이 광학 부재와,
    상기 제2 면과 교차하는 제2 배열면에 배열된 복수의 제2 반사 요소를 구비하고, 상기 제1 플라이아이 광학 부재로부터의 광을 반사하는 제2 플라이아이 광학 부재
    를 포함하며,
    상기 제1 플라이아이 광학 부재는, 상기 제2 배열면에서의 상기 광의 상기 제2 면을 따른 제3 방향에 있어서의 제3 치수에 대한 상기 제3 방향과 교차하는 제4 방향에 있어서의 제4 치수의 비가, 상기 제2 치수에 대한 상기 제1 치수의 비보다도 커지도록 상기 제2 플라이아이 광학 부재로 향해서 반사하는 광의 단면 형상을 바꾸는 것인, 조명 광학계.
  2. 제1항에 있어서,
    상기 제2 면과 교차하는 상기 제1 면내의 방향을 제5 방향으로 하고, 상기 제1 면내에서 상기 제5 방향과 교차하는 방향을 제6 방향으로 할 때,
    상기 조명 영역의 상기 제5 방향을 따른 제5 치수는, 상기 조명 영역의 상기 제6 방향을 따른 제6 치수보다도 짧은 것인, 조명 광학계.
  3. 제1항에 있어서,
    상기 복수의 제1 반사 요소로 반사된 광은, 상기 복수의 제1 반사 요소에 입사하는 광에 대하여 상기 제1 방향으로 멀어지도록 진행하는 것인, 조명 광학계.
  4. 제1항에 있어서,
    상기 제1 반사 요소의 상기 제1 방향에 있어서의 초점 거리와, 상기 제1 반사 요소의 상기 제2 방향에 있어서의 초점 거리는 서로 상이한 것인, 조명 광학계.
  5. 제1항에 있어서,
    상기 광원은, 상기 광원으로부터 발하는 광을 집광하는 집광 광학계를 포함하고,
    상기 제1 광학계는, 상기 집광 광학계를 통한 상기 광원으로부터 발하는 광을 반사하는 것인, 조명 광학계.
  6. 제5항에 있어서,
    상기 제2 면과 교차하는 상기 제1 광학계의 입사면 내의 방향을 제5 방향으로 하고, 상기 입사면 내에서 상기 제5 방향과 교차하는 방향을 제6 방향으로 할 때,
    상기 제1 광학계에 입사되는 광의 상기 제5 방향을 따른 제5 치수에 대한 상기 제6 방향을 따른 제6 치수의 비는, 상기 제2 치수에 대한 상기 제1 치수의 비보다도 큰 것인, 조명 광학계.
  7. 제1항에 있어서,
    상기 제2 면과 교차하는 상기 제1 광학계의 입사면 내의 방향을 제5 방향으로 하고, 상기 입사면 내에서 상기 제5 방향과 교차하는 방향을 제6 방향으로 할 때,
    상기 제1 광학계에 입사되는 광의 상기 제5 방향을 따른 제5 치수에 대한 상기 제6 방향을 따른 제6 치수의 비는, 상기 제2 치수에 대한 상기 제1 치수의 비보다도 큰 것인, 조명 광학계.
  8. 제1항에 기재된 조명 광학계를 이용하여 미리 정해진 패턴을 조명하는 것과,
    상기 미리 정해진 패턴의 상(像)을 워크피스에 노광하는 것
    을 포함하는 노광 방법.
  9. 제8항에 기재된 노광 방법을 이용하여, 상기 미리 정해진 패턴을 상기 워크피스에 노광하는 것과,
    상기 미리 정해진 패턴이 전사된 상기 워크피스를 현상하여, 상기 미리 정해진 패턴에 대응하는 형상의 마스크층을 상기 워크피스의 표면에 형성하는 것과,
    상기 마스크층을 통해 상기 워크피스의 표면을 가공하는 것
    을 포함하는 디바이스 제조 방법.
  10. 광원으로부터의 광으로 조명 영역을 조명하는 조명 광학계에 있어서,
    상기 광원으로부터의 광을, 상기 광의 진행 방향을 가로지르는 면내의 제1 방향에 있어서의 제1 치수가 상기 제1 방향과 교차하는 상기 면내에서의 제2 방향의 제2 치수보다도 짧아지는 단면 형상으로 하는 제1 광학계와,
    제1 배열면에 배열된 복수의 제1 반사 요소를 구비하고, 상기 제1 광학계로부터의 제1 축을 따라 진행하는 광을 반사하여, 상기 제1 축과 교차하는 제2 축을 따라 진행시키는 제1 플라이아이 광학 부재와,
    제2 배열면에 배열된 복수의 제2 반사 요소를 구비하고, 상기 제1 플라이아이 광학 부재로부터의 상기 제2 축을 따라 진행하는 광을 반사하는 제2 플라이아이 광학 부재를 포함하며,
    상기 제1 방향은, 상기 제1 축 및 상기 제2 축을 포함하는 평면 내의 방향이고,
    상기 제2 배열면에 있어서 상기 평면을 포함하는 방향을 제3 방향으로 하고, 상기 제3 방향과 교차하는 방향을 제4 방향으로 할 때, 상기 제1 플라이아이 광학 부재는, 상기 제2 배열면에서의 상기 광의 상기 제3 방향에 있어서의 제3 치수와 상기 제4 방향에 있어서의 제4 치수의 비가, 상기 제1 치수와 상기 제2 치수의 비보다도 커지도록 상기 제2 플라이아이 광학 부재로 향해 반사하는 광의 단면 형상을 바꾸는 것인, 조명 광학계.
  11. 제10항에 있어서,
    상기 조명 영역이 위치하는 면과 상기 평면과의 교선을 따른 제5 방향에 있어서의 상기 조명 영역의 제5 치수는, 상기 위치하는 면내에서 상기 방향과 교차하는 제6 방향을 따른 제6 치수보다도 짧은 것인, 조명 광학계.
  12. 제10항에 있어서,
    상기 복수의 제1 반사 요소로 반사된 광은, 상기 복수의 제1 반사 요소에 입사하는 광에 대하여 상기 제1 방향으로 멀어지도록 진행하는 것인, 조명 광학계.
  13. 제10항에 있어서,
    상기 제1 반사 요소의 상기 제1 방향에 있어서의 초점 거리와, 상기 제1 반사 요소의 상기 제2 방향에 있어서의 초점 거리는 서로 상이한 것인, 조명 광학계.
  14. 제10항에 있어서,
    상기 광원은, 상기 광원으로부터 발하는 광을 집광하는 집광 광학계를 포함하고,
    상기 제1 광학계는, 상기 집광 광학계를 통한 상기 광원으로부터 발하는 광을 반사하는 것인, 조명 광학계.
  15. 제14항에 있어서,
    상기 제1 광학계의 입사면에 있어서의 상기 평면을 따른 방향을 제5 방향으로 하고, 상기 입사면에 있어서 상기 제5 방향과 교차하는 방향을 제6 방향으로 할 때, 상기 제1 광학계에 입사되는 광의 상기 제5 방향을 따른 제5 치수에 대한 상기 제6 방향을 따른 제6 치수의 비는, 상기 제2 치수에 대한 상기 제1 치수의 비보다도 큰 것인, 조명 광학계.
  16. 제10항에 있어서,
    상기 제1 광학계의 입사면에 있어서의 상기 평면을 따른 방향을 제5 방향으로 하고, 상기 입사면에 있어서 상기 제5 방향과 교차하는 방향을 제6 방향으로 할 때, 상기 제1 광학계에 입사되는 광의 상기 제5 방향을 따른 제5 치수에 대한 상기 제6 방향을 따른 제6 치수의 비는, 상기 제2 치수에 대한 상기 제1 치수의 비보다도 큰 것인, 조명 광학계.
  17. 제10항에 기재된 조명 광학계를 이용하여, 미리 정해진 패턴을 조명하는 것과,
    상기 미리 정해진 패턴의 상을 워크피스에 노광하는 것
    을 포함하는 노광 방법.
  18. 제17항에 기재된 노광 방법을 이용하여, 상기 미리 정해진 패턴을 상기 워크피스에 노광하는 것과,
    상기 미리 정해진 패턴이 전사된 상기 워크피스를 현상하여, 상기 미리 정해진 패턴에 대응하는 형상의 마스크층을 상기 워크피스의 표면에 형성하는 것과,
    상기 마스크층을 통해 상기 워크피스의 표면을 가공하는 것
    을 포함하는 디바이스 제조 방법.
  19. 광원으로부터의 광으로 조명 영역을 조명하기 위해서 이용되는 광학 장치에 있어서,
    제1 배열면에 배열된 복수의 제1 반사 요소를 구비하고, 상기 제1 배열면과 교차하는 제1 축을 따라 진행하는 상기 광원으로부터의 광이 입사되는 제1 플라이아이 광학 부재와,
    제2 배열면에 배열된 복수의 제2 반사 요소를 구비하고, 상기 제2 배열면과 교차하는 제2 축을 따라 진행하는 상기 제1 플라이아이 광학 부재로부터의 광이 입사되는 제2 플라이아이 광학 부재
    를 포함하며,
    상기 제1 축 및 상기 제2 축을 포함하는 평면 및 상기 제1 배열면에 포함되는 축을 제3 축으로 하고, 상기 제1 배열면 내에서 상기 제3 축과 교차하는 축을 제4 축으로 할 때,
    상기 복수의 제1 반사 요소 중, 상기 제3 축을 따른 위치가 가장 외측의 위치인 2개의 제1 반사 요소의 제1 간격은, 상기 복수의 제1 반사 요소 중, 상기 제4 축을 따른 위치가 가장 외측의 위치인 2개의 제2 반사 요소의 제2 간격보다도 짧은 것인, 광학 장치.
  20. 제19항에 있어서,
    상기 제1 반사 요소의 상기 제3 축을 따른 방향에 있어서의 길이보다도 상기 제1 반사 요소의 상기 제4 축을 따른 방향에 있어서의 상기 길이 쪽이 긴 것인, 광학 장치.
  21. 제19항에 있어서,
    상기 조명 영역은, 제1 면 상에 형성되며 또한 상기 제1 면내의 제3 방향의 제3 길이보다도 상기 제1 면 상에 있어서 상기 제3 방향과 교차하는 제4 방향의 제4 길이 쪽이 긴 형상인 것인, 광학 장치.
  22. 제21항에 있어서,
    상기 제3 방향은 상기 제1 면 내의 방향인 것인, 광학 장치.
  23. 제19항에 있어서,
    상기 복수의 제1 반사 요소로 반사된 광은, 상기 복수의 제1 반사 요소에 입사되는 광에 대하여 상기 제2 축을 따른 방향으로 멀어지도록 진행하는 것인, 광학 장치.
  24. 제19항에 있어서,
    상기 제1 반사 요소의 상기 제3 축을 따른 방향에 있어서의 초점 거리와, 상기 제1 반사 요소의 상기 제4 축을 따른 방향에 있어서의 초점 거리는 서로 상이한 것인, 광학 장치.
  25. 제19항에 기재된 광학 장치를 이용하여 미리 정해진 패턴을 조명하는 것과,
    상기 미리 정해진 패턴의 상을 워크피스에 노광하는 것
    을 포함하는 노광 방법.
  26. 제25항에 기재된 노광 방법을 이용하여, 상기 미리 정해진 패턴을 상기 워크피스에 노광하는 것과,
    상기 미리 정해진 패턴이 전사된 상기 워크피스를 현상하여, 상기 미리 정해진 패턴에 대응하는 형상의 마스크층을 상기 워크피스의 표면에 형성하는 것과,
    상기 마스크층을 통해 상기 워크피스의 표면을 가공하는 것
    을 포함하는 디바이스 제조 방법.
KR1020177029894A 2010-04-02 2011-03-31 조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법 KR101944655B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32044310P 2010-04-02 2010-04-02
US32045310P 2010-04-02 2010-04-02
US61/320,453 2010-04-02
US61/320,443 2010-04-02
PCT/JP2011/058189 WO2011125827A1 (ja) 2010-04-02 2011-03-31 光源装置、光学装置、露光装置、デバイス製造方法、照明方法、露光方法、および光学装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020127028634A Division KR20130083833A (ko) 2010-04-02 2011-03-31 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197002269A Division KR102051267B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법

Publications (2)

Publication Number Publication Date
KR20170119732A KR20170119732A (ko) 2017-10-27
KR101944655B1 true KR101944655B1 (ko) 2019-01-31

Family

ID=44762765

Family Applications (8)

Application Number Title Priority Date Filing Date
KR1020127028634A KR20130083833A (ko) 2010-04-02 2011-03-31 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법
KR1020177029894A KR101944655B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법
KR1020227015373A KR102605356B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020207024346A KR102277452B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020197002269A KR102051267B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020237039607A KR20230160966A (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020217021477A KR102397041B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020197034427A KR102160046B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020127028634A KR20130083833A (ko) 2010-04-02 2011-03-31 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020227015373A KR102605356B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020207024346A KR102277452B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020197002269A KR102051267B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020237039607A KR20230160966A (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020217021477A KR102397041B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR1020197034427A KR102160046B1 (ko) 2010-04-02 2011-03-31 조명 광학계, 노광 방법 및 디바이스 제조 방법

Country Status (5)

Country Link
US (5) US9703204B2 (ko)
EP (2) EP4328647A2 (ko)
JP (1) JP5704519B2 (ko)
KR (8) KR20130083833A (ko)
WO (1) WO2011125827A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011065374A1 (ja) 2009-11-24 2013-04-18 株式会社ニコン 結像光学系、露光装置、およびデバイス製造方法
KR20130083833A (ko) * 2010-04-02 2013-07-23 가부시키가이샤 니콘 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법
KR102330570B1 (ko) * 2012-02-06 2021-11-25 가부시키가이샤 니콘 반사 결상 광학계, 노광 장치, 및 디바이스 제조 방법
ITRM20120265A1 (it) * 2012-06-07 2013-12-08 Consiglio Nazionale Ricerche Dispositivo di illuminazione comprendente una schiera di sorgenti optoelettroniche
US20140272684A1 (en) 2013-03-12 2014-09-18 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
US9354508B2 (en) 2013-03-12 2016-05-31 Applied Materials, Inc. Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
US9632411B2 (en) * 2013-03-14 2017-04-25 Applied Materials, Inc. Vapor deposition deposited photoresist, and manufacturing and lithography systems therefor
KR102125451B1 (ko) * 2013-11-15 2020-06-22 엘지이노텍 주식회사 조명 장치
DE102014203187A1 (de) * 2014-02-21 2015-08-27 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithografie
US11099483B2 (en) * 2016-05-19 2021-08-24 Nikon Corporation Euv lithography system for dense line patterning
KR102374206B1 (ko) 2017-12-05 2022-03-14 삼성전자주식회사 반도체 장치 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222041A1 (en) * 2005-04-01 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus
JP2009054340A (ja) 2007-08-24 2009-03-12 Seiko Epson Corp 照明装置及びプロジェクタ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636003A (en) * 1992-11-05 1997-06-03 Nikon Corporation Illumination optical apparatus and scanning exposure apparatus
JP3633002B2 (ja) * 1994-05-09 2005-03-30 株式会社ニコン 照明光学装置、露光装置及び露光方法
US6833904B1 (en) * 1998-02-27 2004-12-21 Nikon Corporation Exposure apparatus and method of fabricating a micro-device using the exposure apparatus
EP0955641B1 (de) * 1998-05-05 2004-04-28 Carl Zeiss Beleuchtungssystem insbesondere für die EUV-Lithographie
US6195201B1 (en) * 1999-01-27 2001-02-27 Svg Lithography Systems, Inc. Reflective fly's eye condenser for EUV lithography
JP2003506881A (ja) 1999-07-30 2003-02-18 カール ツァイス シュティフトゥング トレイディング アズ カール ツァイス Euv照明光学系の射出瞳における照明分布の制御
JP2002048977A (ja) * 2000-08-01 2002-02-15 Nikon Corp 反射光学系及びこの光学系を用いたプロキシミティ露光装置
US6919951B2 (en) * 2001-07-27 2005-07-19 Canon Kabushiki Kaisha Illumination system, projection exposure apparatus and device manufacturing method
US6883904B2 (en) 2002-04-24 2005-04-26 Eastman Kodak Company Apparatus and method for maintaining constant drop volumes in a continuous stream ink jet printer
ATE449417T1 (de) * 2003-01-10 2009-12-15 Nikon Corp Belichtungssystem und belichtungsverfahren
JP4340851B2 (ja) 2003-04-09 2009-10-07 株式会社ニコン 光源ユニット、照明光学装置、露光装置および露光方法
JP4322757B2 (ja) * 2004-09-06 2009-09-02 富士フイルム株式会社 パターン形成材料及びパターン形成方法
KR101240130B1 (ko) 2005-01-25 2013-03-07 가부시키가이샤 니콘 노광 장치, 노광 방법, 및 마이크로 디바이스 제조 방법
EP1811547A4 (en) * 2005-02-03 2010-06-02 Nikon Corp OPTICAL INTEGRATOR, OPTICAL LIGHTING DEVICE, EXPOSURE DEVICE AND EXPOSURE METHOD
JP2006253487A (ja) 2005-03-11 2006-09-21 Nikon Corp 照明装置、投影露光方法、投影露光装置、及びマイクロデバイスの製造方法
DE502006009171D1 (de) * 2005-10-18 2011-05-05 Zeiss Carl Smt Gmbh Kollektor für beleuchtungssysteme mit einer wellenlänge </= 193 nm
JP2007234717A (ja) * 2006-02-28 2007-09-13 Nikon Corp 露光装置
JPWO2007138805A1 (ja) * 2006-05-25 2009-10-01 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
JP5241270B2 (ja) * 2008-02-27 2013-07-17 キヤノン株式会社 照明光学系、これを用いた露光装置及びデバイス製造方法
JP5142892B2 (ja) * 2008-09-03 2013-02-13 キヤノン株式会社 照明光学系及び露光装置
US8497977B2 (en) * 2009-03-12 2013-07-30 Nikon Corporation Optical integrator, illumination optical system, exposure apparatus, and device manufacturing method
KR20130083833A (ko) * 2010-04-02 2013-07-23 가부시키가이샤 니콘 광원 장치, 광학 장치, 노광 장치, 디바이스 제조 방법, 조명 방법, 노광 방법, 및 광학 장치의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222041A1 (en) * 2005-04-01 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus
JP2009054340A (ja) 2007-08-24 2009-03-12 Seiko Epson Corp 照明装置及びプロジェクタ

Also Published As

Publication number Publication date
KR20230160966A (ko) 2023-11-24
KR102051267B1 (ko) 2019-12-02
US10831106B2 (en) 2020-11-10
KR20200103863A (ko) 2020-09-02
US11934104B2 (en) 2024-03-19
JP5704519B2 (ja) 2015-04-22
US20190302435A1 (en) 2019-10-03
US20220260923A1 (en) 2022-08-18
US11353795B2 (en) 2022-06-07
EP2555228A4 (en) 2018-01-17
US10345708B2 (en) 2019-07-09
WO2011125827A1 (ja) 2011-10-13
JPWO2011125827A1 (ja) 2013-07-11
KR20130083833A (ko) 2013-07-23
US20130128248A1 (en) 2013-05-23
US9703204B2 (en) 2017-07-11
KR102397041B1 (ko) 2022-05-12
US20170285314A1 (en) 2017-10-05
KR102605356B1 (ko) 2023-11-22
KR20190010743A (ko) 2019-01-30
KR20170119732A (ko) 2017-10-27
KR20220065085A (ko) 2022-05-19
EP2555228A1 (en) 2013-02-06
KR102160046B1 (ko) 2020-09-28
KR20210088765A (ko) 2021-07-14
US20210026251A1 (en) 2021-01-28
KR20190133067A (ko) 2019-11-29
EP4328647A2 (en) 2024-02-28
KR102277452B1 (ko) 2021-07-14

Similar Documents

Publication Publication Date Title
KR101944655B1 (ko) 조명 광학계, 광학 장치, 노광 방법 및 디바이스 제조 방법
US11467501B2 (en) Image-forming optical system, exposure apparatus, and device producing method
CN107390477B (zh) 照明系统、曝光装置及制造、图像形成、照明与曝光方法
JP5509933B2 (ja) オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法
JP5888585B2 (ja) 反射結像光学系、露光装置、およびデバイス製造方法
JP2004170869A (ja) 結像光学系、露光装置および露光方法
JP6551869B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2011150227A (ja) 露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
A107 Divisional application of patent