KR101944074B1 - A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar - Google Patents

A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar Download PDF

Info

Publication number
KR101944074B1
KR101944074B1 KR1020170055053A KR20170055053A KR101944074B1 KR 101944074 B1 KR101944074 B1 KR 101944074B1 KR 1020170055053 A KR1020170055053 A KR 1020170055053A KR 20170055053 A KR20170055053 A KR 20170055053A KR 101944074 B1 KR101944074 B1 KR 101944074B1
Authority
KR
South Korea
Prior art keywords
substrate
growth
leaf
composition
leafy vegetables
Prior art date
Application number
KR1020170055053A
Other languages
Korean (ko)
Other versions
KR20180120983A (en
Inventor
옥용식
야세르
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020170055053A priority Critical patent/KR101944074B1/en
Publication of KR20180120983A publication Critical patent/KR20180120983A/en
Application granted granted Critical
Publication of KR101944074B1 publication Critical patent/KR101944074B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/25Dry fruit hulls or husks, e.g. chaff or coir
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05G3/0064
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/20Liquid fertilisers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Hydroponics (AREA)

Abstract

본 발명은 바이오차를 유효성분으로 포함하는 엽채류의 성장과 영양 상태를 개선하는 수경재배용 조성물에 관한 것으로, 더욱 상세하게는 펄라이트 및 바이오차를 유효성분으로 포함하는 수경재배용 엽채류 성장용 조성물에 관한 것이다. 본 발명에 따르면, 수경 재배 기질로 PL 및 RB의 조합은 펄라이트 단독으로 성장시킨 식물과 비교하여 약 2-배의 엽채류의 수율을 증가시켰고, PL + RB 기질을 영양분 용액에서 조류 성장을 조절하고 높은 수율의 안전하고 건강한 식물을 얻을 수 있는 우수한 수경재배 기질로서 추천될 수 있다. The present invention relates to a composition for hydroponics which improves the growth and nutritional status of leafy vegetables containing bio-tea as an active ingredient, and more particularly to a composition for growing leafy vegetables for hydroponics which comprises pearlite and biocha as an active ingredient . According to the present invention, the combination of PL and RB as a hydroponic culture substrate increased the yield of about 2-fold leafy vegetables compared to plants grown with pearlite alone, and regulated the PL + RB substrate in the nutrient solution, Can be recommended as an excellent hydroponic substrate for obtaining safe and healthy plants in yield.

Description

바이오차를 유효성분으로 포함하는 엽채류의 성장과 영양 상태를 개선하는 수경재배용 조성물{A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar} Technical Field [0001] The present invention relates to a composition for enhancing the growth and nutritional status of leaf vegetables containing bio-tea as an active ingredient,

본 발명은 바이오차를 유효성분으로 포함하는 엽채류의 성장과 영양 상태를 개선하는 수경재배용 조성물에 관한 것이다.The present invention relates to a composition for hydroponics which improves the growth and nutritional status of leaf vegetables containing bio-tea as an active ingredient.

현재 수경재배용으로 개발되어 이용되고 있는 배지는 농업용암면(금강암면) 배지, 입상암면 배지, 펄라이트 배지, 펄라이트와 입상암면의 혼합 배지, 펄라이트와 훈탄의 혼합 배지, 팽연왕겨 배지 등이 있다. 이들 배지 중암면과 펄라이트가 국내 수경재배를 양분하고 있으며, 수경재배용 배지 사용은 2004년 기준으로 볼 때 펄라이트가 36%, 암면이 34.6%로 양분되고 있다.The medium that has been developed and used for hydroponic cultivation now includes agar-lava (medium rock surface) medium, granular rock medium, pearlite medium, mixed medium of pearlite and granular rock surface, mixed medium of pearlite and milk, and puffy rice hull culture medium. These mediums are dominated by hydroponic cultivation. The use of medium for hydroponics is divided into 36% of perlite and 34.6% of rock surface in 2004.

그러나, 암면 재배는 1ha 재배시 최소한 100㎡의 폐 암면 매트와 12㎡의 폐 암면 포트가 배출되어 환경 및 처리 비용 면에서 문제점을 유발시키고 있고, 펄라이트 재배는 펄라이트 충진 및 폐기시 분진 발생 등으로 작업과 폐기시에 문제점이 나타나고 있어, 새로운 환경친화형 배지 개발의 필요성이 증대되어 왔다.However, when cultivated in rocky ground, rocky rock surface mats of at least 100 m 2 and waste rock surface ports of 12 m 2 are discharged at the time of cultivation of 1 ha, causing problems in terms of environment and treatment cost, and pearlite cultivation is performed by filling pearlite and dust And disposal problems have arisen, and the necessity of developing a new environmentally friendly medium has been increased.

이처럼 무기 배지는 사용과 폐기시 상기한 문제점이 발생하므로, 이를 대체할 배지로서 사용 후 폐기가 용이한 유기 배지 개발이 요구된다.As described above, since the above-mentioned problems arise when using and disposing of the inorganic medium, it is required to develop an organic medium which can be easily discarded after use as a medium to replace the inorganic medium.

유기 배지로는 코코넛, 톱밥, 왕겨, 팽연왕겨, 훈탄, 피트모스, 바크 등이 거론되고 있으나, 저렴한 부숙왕겨,팽연왕겨, 훈탄 등은 사용기간이 1년 내외로 지속되면 급속한 물리성 악화 등의 문제점을 나타내고 있고, 피트모스와 바크는 물리성 및 화학성이 수경재배용으로는 부적합한 상태이다. 톱밥은 물량 구입이 어렵고 축산농가에서 사용 증가로 가격이 상승하고 있으며 나무에 따라 균일성이 낮다.Organic mediums include coconut, sawdust, rice husk, puffed rice hull, honey, peat moss, and bark. However, if the shelf life of rice is low, , And peat moss and bark are in a state in which physical and chemical properties are not suitable for hydroponic cultivation. Sawdust is difficult to buy in quantity, price is rising due to increased use in livestock farming, and it is low uniformity according to the tree.

[선행 특허 문헌][Prior Patent Literature]

대한민국 특허등록번호 제10-0824973호 Korean Patent Registration No. 10-0824973

본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 엽채류(leafy vegetables)의 성장을 증가시키는 신규한 수경재배 조성물을 제공하는 것이다.The present invention solves the above problems and aims to provide a novel hydroponic culture composition which increases the growth of leafy vegetables.

본 발명의 목적은 엽채류(leafy vegetables)의 성장을 증가시키는 신규한 수경재배 방법을 제공하는 것이다.It is an object of the present invention to provide a novel hydroponic cultivation method for increasing the growth of leafy vegetables.

상기의 목적을 달성하기 위하여 본 발명은 펄라이트 및 바이오차를 유효성분으로 포함하는 수경재배용 엽채류 성장용 조성물을 제공한다.In order to accomplish the above object, the present invention provides a composition for growing leafy vegetables for hydroponics, which comprises pearlite and biocha as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 바이오차는 왕겨인 것이 바람직하나 이에 한정되지 아니하고, 상기 펄라이트 및 바이오차의 조합비는 1:1(부피비)인 것이 바람직하나 이에 한정되지 아니한다.In an embodiment of the present invention, the bio-tea is preferably rice husk, but is not limited thereto, and the combination ratio of the pearlite and bio-tea is preferably 1: 1 (volume ratio), but is not limited thereto.

본 발명의 다른 구현예에 있어서, 상기 엽채류는 양배추, 딜(dill), 아욱, 상추 또는 타차이(tatsoi)인 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the leafy vegetables are preferably but not limited to cabbage, dill, mullet, lettuce or tatsoi.

또 본 발명은 펄라이트 및 왕겨 바이오차를 수경재배에서 기질로 사용하여 엽채류의 신선 및 건조 중량, 잎의 수 및 새순 길이를 증가시키는 방법을 제공한다.The present invention also provides a method for increasing the freshness, dry weight, number of leaves and growth of leaf vegetables by using pearlite and rice husk biocha as a substrate in hydroponics.

또한 본 발명은 펄라이트 및 바이오차를 유효성분으로 포함하는 수경재배에서 잎의 K, Mg, Mn, 및 Zn 양 증가용 조성물을 제공한다.The present invention also provides a composition for increasing the amount of K, Mg, Mn, and Zn in leaves in hydroponic cultivation comprising pearlite and biocha as an active ingredient.

또한 본 발명은 펄라이트 및 바이오차를 유효성분으로 포함하는 수경재배 영양분 용액에서 조류(algae) 성장 억제용 조성물을 제공한다.The present invention also provides a composition for inhibiting algae growth in a hydroponic nutrient solution containing pearlite and biocha as an active ingredient.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 수경재배 시스템에서 기질로 RB 단독 또는 PL과 조합이 엽채류의 성장을 촉진시킬 수 있고, 영양분 용액에서 조류(algae)의 성장을 제거할 수 있는지를 조사하였다. The present invention investigates whether RB alone or combination with PL as a substrate in a hydroponic culture system can promote the growth of leafy vegetables and remove algae growth from nutrient solutions.

먼저, 영양 필름 기술을 사용한 수경재배 시스템을 왕겨 바이오차(RB) 단독 또는 펄라이트(PL)의 것과 비교하여 엽채류의 성장을 증가시키는 기질로 PL과 조합한 것의 효과를 측정하였다. First, we measured the effect of a hydroponic culture system using nutrient film technology compared with rice briquettes (RB) alone or with pearlite (PL) in combination with PL as a substrate for increasing the growth of leafy vegetables.

양배추, 딜(dill), 아욱, 적상추 및 tatsoi 묘목을 온실에서 최적 환경 조건 하에서 30일 동안 PL, RB, 및 PL + RB (1:1 ratio of PL to RB, v/v) 기질에서 수경재배적으로 키웠다. (1: 1 ratio of PL to RB, v / v) substrate for 30 days under optimal environmental conditions in the greenhouse. .

RB 기질에서 키운 양배추, dill, 및 적상추의 새순 길이 및 신선/건조 중량은 PL 기질에서 키운 것과 비교하여 49% 감소하였다. 반면, PL + RB 기질은 PL 기질에서 키운 것과 비교하여 엽채류의 신선/건조 중량, 잎의 수 및 새순 길이 모두를 약 2배 증가시켰다. PL + RB 및 PL 기질에서 키운 식물의 잎 영양분 조성(Ca, Mg, K, Na, Mn, Fe, 및 Zn) 및 질소 상태(SPAD index)는 높은 수율 품질을 보증하는 최적 성장 조건의 존재를 시사한다. 또한, RB 기질은 PL 기질에서 키운 것과 비교하여 대부분의 식물에서 잎 K, Mg, Mn, 및 Zn 양에서 각각 1.2-3.5 배 증가에 기여하였다. RB 단독 또는 PL 기질과 조합은 RB 표면 상에서 미세조류의 주사 전자 현미경 사진으로 확인된 것과 같이 영양분 용액에서 조류 증가를 감소시켰다.The length and fresh / dry weight of cabbage, dill, and lettuce grown on RB substrates were reduced by 49% compared to those grown on PL substrates. On the other hand, the PL + RB substrate increased about twice the fresh / dry weight, leaf number and sprout length of leaf vegetables compared with those grown on PL substrate. Leaf nutrient composition (Ca, Mg, K, Na, Mn, Fe, and Zn) and nitrogen status (SPAD index) of plants grown on PL + RB and PL substrates suggest the existence of optimal growth conditions do. In addition, the RB substrate contributed 1.2-3.5 fold increase in leaf K, Mg, Mn, and Zn amounts in most plants compared to those grown in PL substrates. RB alone or in combination with PL substrates reduced algae growth in nutrient solutions as confirmed by scanning electron microscopy of microalgae on the RB surface.

수경 재배 기질로 PL 및 RB의 조합은 펄라이트 단독으로 성장시킨 식물과 비교하여 약 2-배의 엽채류의 수율을 증가시켰다. 그러나 RB 기질에서 키운 양배추, 딜 및 적상추의 수율은 PL 기질에서 키운 것과 비교하면 16.3%-91.7% 감소하였다. PL + RB 및 PL 기질에서 키운 식물들의 잎 영양 조성은 높은 수율을 보장하는 최적 성장 조건의 존재를 시사한다. 또한, RB 기질은 PL 기질에서 키운 것과 비교하면 대부분의 식물에서 잎 K, Mg, Mn, 및 Zn 양이 1.2-3.5-배 더 높았다. 또한, RB는 조류 성장을 감소시키고 따라서 인간의 소비를 위한 식물들의 안전성을 보장한다. PL + RB 기질에서 양배추, 아욱 및 적상추의 수경재배는 현재 영양분 용액을 사용하여 추천될 수 있다. PL + RB 기질을 영양분 용액에서 조류 성장을 조절하고 높은 수율의 안전하고 건강한 식물을 얻을 수 있는 우수한 수경재배 기질로서 추천될 수 있다.   The combination of PL and RB as a hydroponic substrate increased the yield of about 2 - fold leafy vegetables compared to plants grown with pearlite alone. However, yields of cabbage, dill and lettuce grown on RB substrate decreased by 16.3% -91.7% compared to those grown on PL substrate. Leaf nutritional composition of plants grown on PL + RB and PL substrates suggests optimal growth conditions to ensure high yield. In addition, the amount of K, Mg, Mn, and Zn in leaves was 1.2-3.5-fold higher in most plants than in the PL substrate. In addition, RB reduces algal growth and thus ensures the safety of plants for human consumption. Hydroponic cultivation of cabbage, mullein and lettuce in PL + RB substrates can now be recommended using nutrient solutions. PL + RB substrates can be recommended as an excellent hydroponic culture substrate to regulate algal growth in nutrient solutions and to obtain safe and healthy plants with high yields.

도 1은 펄라이트(PL: a)와 왕겨 바이오차 (RB: b) 기질의 주사 현미경 사진.
도 2는 수경재배 시스템이 30일 동안 엽채류를 생산한 후 펄라이트 (PL: a, b, c) 및 왕겨 바이오차 (RB: d, e, f) 기질의 주사 현미경 사진. 여러 미세 조류 세포(흑색 화살표로 표시)는 PL (b 및 c), 및 RB (e 및 f) 기질 상에 흡착됨. RB 표면상 유익 미생물(d)을 적색 사각형과 흑색 화살표로 표시.
도 3은 수경재배 시스템에서 엽채류의 생산을 위한 기질로 펄라이트(PL: a), 왕겨 바이오차 (RB: b), 및 두 종의 조합(PL + RB: c) 및 온실에서 실험 단위의 랜덤 배열(d, e).
도 4는 시스템에서 10일간 수행한 후 펄라이트 기질에서 성장한 엽채류에 대한 수경재배 용기의 영양 용액에서 미세조류의 성장(a)을 왕겨 바이오차(RB, b) 단독 또는 펄라이트와의 조합(PL + RB, c)에서 성장한 식물에 대한 수경 재배 용기에서 영양 용액에서 조류 형성의 결핍과 비교, (d) PL + RB 기질에서 30일간 수경재배적으로 키운 엽채류가 최대 뿌리 성장을 나타냄.
Brief Description of the Drawings Figure 1 is an SEM photograph of pearlite (PL: a) and rice bran biocar (RB: b) substrates.
Figure 2 is a scanning micrograph of pearlite (PL: a, b, c) and rice bran bio-tea (RB: d, e, f) substrates after hydroponic cultivation system produces leafy vegetables for 30 days. Several microalgae cells (indicated by black arrows) are adsorbed on PL (b and c), and RB (e and f) substrates. RB On the surface, the beneficial microorganism (d) is indicated by a red square and a black arrow.
Fig. 3 is a graph showing the relationship between pellet (PL: a), rice bark biocar (RB: b), and a combination of two species (PL + RB: c) (d, e).
4 shows the growth of microalgae (a) in the nutrient solution of the vegetable cultivation vessel for the leaf vegetables grown in the pearlite substrate after 10 days in the system, in combination with rice bacterium (RB, b) alone or with pearlite (d) 30 days of hydrolytically cultivated leafy vegetables showed maximum root growth in the PL + RB substrate.

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재한 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.The present invention will now be described in more detail by way of non-limiting examples. The following examples are intended to illustrate the present invention and the scope of the present invention is not to be construed as being limited by the following examples.

실시예Example 1: 수경재배 기질 및 야채 품종 1: Hydroponic cultivation substrate and vegetable variety

펄라이트(Perlite;PL), 수경재배 기질(평균 입자 크기, 1.2 mm; GFC Co., Ltd., Korea) 및 500°C에서 생산된 RB (≤2 mm; DAEWON GSI Co., Korea)는 시장에서 구입하였다. PL 및 RB 기질은 주사 전자현미경(SEM; Model S-4300, Hitachi, Tokyo, Japan)을 사용하여 규명하였다. PL 및 RB 기질의 그들의 표면 구조를 나타낸 주사 현미경 사진을 도 1에 나타내었다. 주사 전자 현미경(SEM) 이미지들은 PL의 표면은 불규칙하고 다공성인 반면, RB의 것은 잘 배열된 작은 불규칙한 형태 입자로 커버되어 있다는 것을 보여준다. 교잡 차이니스 양배추(Asia Alpine F1; Brassica rapa L. ssp. pekinensis), 딜(Anethum graveolens L.), 아욱 (Malva verticillata L.), 적상추(Lactuca sativa L.), 및 tatsoi (Brassica rapa var. rosularis)의 엽채류는 한국의 회사(Asia Seed Co., Ltd. and Jeil Seed & Agricultural Products Co., Ltd.)로부터 구입하였다. Perlite (PL), hydroponic substrate (average particle size, 1.2 mm; GFC Co., Ltd., Korea) and RB (≤2 mm; produced at 500 ° C, DAEWON GSI Co., Korea) Respectively. PL and RB substrates were identified using a scanning electron microscope (SEM; Model S-4300, Hitachi, Tokyo, Japan). A scanning electron micrograph showing their surface structure of PL and RB substrates is shown in Fig. Scanning electron microscope (SEM) images show that the surface of PL is irregular and porous while that of RB is covered with small irregular morphology particles arranged well. Hybridization difference varnish cabbage (Asia Alpine F1;. Brassica rapa L. ssp pekinensis), dill (Anethum graveolens L.), mallow (Malva verticillata L.), jeoksangchu (Lactuca sativa L.), and tatsoi (Brassica There is rapa . rosularis ) were purchased from a Korean company (Asia Seed Co., Ltd. and Jeil Seed & Agricultural Products Co., Ltd.).

실시예Example 2: 묘목(nursery seedlings) 생육 2: Growth of nursery seedlings

양배추, dill, 아욱, 상추 및 tatsoi 씨를 2015년 4월11일에 상업적 성장 기질(BM2; Berger Group Ltd., Canada)로 채운 128-cell plug 트레이(Bumnong. Co., Ltd., Korea)에 파종하였다. BM2 성장 기질은 70%-80% 화인(fine) sphagnum 피트모스, 화인 PL, 및 화인 버미쿠라이트로 구성되었다. 묘목 트레이를 Wonder Grow 비료(Chobi Co., Ltd., Korea)로 1주일 2회 오버헤드 관주법으로 비료를 주었다. 단일하고 활기찬 30일령 묘목을 수도물로 뿌리를 세척하여 성장 기질을 제거한 후 포트로 이식하였다.Seeded on a 128-cell plug tray (Bumnong. Co., Ltd., Korea) filled with commercial growth substrate (BM2; Berger Group Ltd., Canada) on April 11, 2015, Respectively. The BM2 growth substrate consisted of 70% -80% fine sphagnum peat moss, Fine PL, and Fine burumite. The seedlings trays were fed with fertilizer by Wonder Grow fertilizer (Chobi Co., Ltd., Korea) twice a week overhead method. A single, vigorous 30 - day - old seedlings were washed with tap water to remove the growth substrate and transplanted into the pot.

실시예Example 3: 수경재배 실험 3: Hydroponic cultivation experiment

여섯 영양 필름 기술 수경재배 시스템을 기업(Easy-Farm, Korea)으로부터 구입하였다. 수경재배 시스템은 105 cm X 40 cm 면적과 167 cm 높이를 가지고, 48 식물을 성장할 수 있는 영양 용액 용기(30 L) 및 20 W Young IL 워터 펌프(model YI-20; 도 S1)로 구성되었다. 더 상세한 설명은 Easy-Farm 회사 웹사이트(http://www.easy-farm.com)를 참고하면 된다.Six nutrition film technology Hydroponic cultivation system was purchased from company (Easy-Farm, Korea). The hydroponic cultivation system consisted of a nutrient solution vessel (30 L) and a 20 W Young IL water pump (model YI-20; Fig. S1) with an area of 105 cm x 40 cm and a height of 167 cm. For more detailed information, please refer to Easy-Farm's website ( http://www.easy-farm.com ).

각 식물 종자의 균일한 묘목을 플라스틱 포트(4.5 cm X 3 cm X 4.5 cm)에 식재하고, PL, RB, 또는 양자의 조합(PL: RB at a 1:1 ratio (v/v))으로 충진하였다. 수경재배 성장 시스템을 갖는 실험군을 자동으로 지붕이 개폐되는 강원대학교 농생명대학의 농장의 온실에서 30일간 놓았다. 식물들을 Siddiqui 등(Siddiqui, Z.A., Iqbal, A., Mahmood, I., 2001. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl. Soil Ecol. 16, 179-185)에 따른 온실 조건 하에서 성장시켰다. Uniform seedlings of each plant seed were planted in plastic pots (4.5 cm x 3 cm x 4.5 cm) and filled with PL, RB, or a combination of both (PL: RB at a 1: 1 ratio (v / v) Respectively. Experimental group with hydroponic growth system was placed in the greenhouses of farms of Kangwon National University, Kangwon National University, where roofs were opened and closed automatically for 30 days. The plants were grown in the same manner as Siddiqui et al. (Siddiqui, ZA, Iqbal, A., Mahmood, I., 2001. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato, Appl. Soil Ecol. 16, 179-185) Lt; / RTI > under greenhouse conditions.

요약하면, 평균 온도는 18°C (밤) 및 25-28°C (낮)에서 유지하고, 습도는 70%-85% 범위를 유지하였다. 이동 수경재배 유닛을 온실에서 랜덤하게 배열하고 최대 온도(밤에 약 32°C)를 11:00 am에서 2:00 pm까지 니트 쉐이드로 자동적으로 그늘화하고 팬을 사용하여 낮추었다. 두 수경재배 시스템을 각 성장 기질 조건에 대한 복제로 사용하고 각 시스템에 다섯 식물 품종의 묘목을 랜덤하게 배치하였다. 그 수경재배 시스템은 2.5 L/min의 물 유속 하에서 계속적으로 작동하였다.In summary, the average temperature was maintained at 18 ° C (night) and 25-28 ° C (day), while the humidity remained in the 70% -85% range. The mobile hydroponic unit was randomly arranged in the greenhouse and the maximum temperature (about 32 ° C at night) was automatically shaded from 11:00 am to 2:00 pm with a knitted shade and lowered using a fan. Two hydroponic cultivation systems were used as clones for each growth condition and seedlings of five plant varieties were randomly arranged in each system. The hydroponic cultivation system operated continuously at a water flow rate of 2.5 L / min.

실시예Example 4: 영양분 용액 4: nutrient solution

높은 EC-낮은 pH 영양분 용액을 Wonder Grow 비료(Wonder Grow Fertilizers, Chobi Co., Ltd., Seoul, Korea)로부터 제조하여 수경재배 시스템에서 엽채류 성장에 사용하였다(Vu, N.-T., Kim, Y.-S., Kang, H.-m., Kim, I.-S., 2014. Effect of Red LEDs during Healing and Acclimatization Process on the Survival Rate and Quality of Grafted Tomato Seedlings. Prot. Hortic. Plant Fac. 23, 43-49;Wortman, S.E., 2015. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 194, 34-42). RB 및 PL 단독 또는 조합(PL + RB)에서 영양분 용액의 pH는 5.8, 5.4, 및 5.6이었고, 반면에 ECs는 각각 1.6, 1.3, 및 1.5 dS/m이었다. 영양분 용액의 pH 및 EC는 10일마다 수경재배 용기에서 용액을 교체하여 각각 5.8 및 1.5 dS/m를 유지하였다. 본 발명에서 사용된 영양분 용액의 ㅎ화학적 특성을 표 1에 나타내었다.A high EC-low pH nutrient solution was prepared from Wonder Grow Fertilizers (Chobi Co., Ltd., Seoul, Korea) and used for growing leafy vegetables in a hydroponic culture system (Vu, N.-T., Kim, Y.-S., Kang, H.-M., Kim, I.-S., 2014. Effect of Red LEDs during Healing and Acclimatization Process on the Survival Rate and Quality of Grafted Tomato Seedlings. 23, 43-49; Wortman, SE, 2015. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic., 194, 34-42). In RB and PL alone or in combination (PL + RB), the pH of the nutrient solution was 5.8, 5.4, and 5.6, while the ECs were 1.6, 1.3, and 1.5 dS / m, respectively. The pH and EC of the nutrient solution were maintained at 5.8 and 1.5 dS / m, respectively, by replacing the solution in the hydroponic culture vessel every 10 days. Table 1 shows the chemical properties of the nutrient solution used in the present invention.

실시예Example 5: 성장 파라미터 5: Growth parameters

잎 클로로필 양은 최종 수확 직전에 Richardson et al. (Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 48, 271-284)을 따라서 Minolta SPAD 502Plus 클로로필 미터(Konica Minolta. Inc., Co., Tokyo, Japan)를 사용하여 측정하였다. 모든 식물 작물을 식재 후 30일에 수확하였다. 식물들을 수도물로 세척하고 탈이온수로 충분하게 헹군 후 새순과 뿌리로 나누었다. 선택된 파라미터들을 엽채류/처리 당 다섯 식물 (replicates; n = 5)에서 측정하였다. 새순(Shoot) 길이를 자로 측정하였다. 새순과 뿌리의 신선 중량을 기록하였다. 잎을 새순으로부터 분리하고 잎의 수를 카운트하였다. 각 식물의 전체 잎 면적을 면적 측정 시스템(T area meter; Delta-T Devices Ltd. Co., Burwell, Cambridge, England)을 사용하여 측정하였다. 새순과 뿌리를 전기 오븐에서 70°C에서 48 시간 동안 건조하고 새순과 뿌리의 건체 중량을 기록하였다. Leaf chlorophyll content was determined by the method of Richardson et al. (Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, AR, Lehmann, J., 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. (Konica Minolta, Inc., Tokyo, Japan) using a Minolta SPAD 502Plus chlorophyll meter. All plant crops were harvested 30 days after planting. Plants were rinsed with tap water, rinsed thoroughly with deionized water, and then split into larvae and roots. The selected parameters were measured in replicates (n = 5) per plant / treat. Shoot length was measured with a ruler. Fresh weight of sprouts and roots were recorded. The leaves were separated from the spikes and the number of leaves was counted. The total leaf area of each plant was measured using an area measuring system (Delta-T Devices Ltd. Co., Burwell, Cambridge, England). The larvae and roots were dried in an electric oven at 70 ° C for 48 hours and the dry weight of the larvae and roots was recorded.

실시예Example 6: 화학적 분석 6: Chemical analysis

수경재배 영양분 용액의 pH 및 EC 값들을 pH-EC 미터(Orion 3 Star; Thermo, USA)를 사용하여 측정하였다. 처리 식물당 삼중의 건조된 잎 샘플을 갈아서 10 mL 60% HNO3 및 2 mL 30% H2O2 을 사용하여 전자레인지(1600 W)에서 175 ± 5°C에서 EPA Method 3052 (USEPA, E., 1995. Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. Test Methods for Evaluating Solid Waste)에 따라서 다이제스트하였다. 그 다음에 잎 조직의 칼슘(Ca), 마그네슘(Mg), 칼륨(K), 나트륨(Na), 철(Fe), 망간(Mn), 및 아연(Zn) 농도를 유도적으로 커플된 플라즈마/원자 방출 스펙트로스코피(ICP-AES; Perkin Elmer Optima, USA)를 사용하여 분석하였다. The pH and EC values of the hydroponic nutrient solution were measured using a pH-EC meter (Orion 3 Star; Thermo, USA). A triple dried leaf sample per treated plant was ground and ground in a microwave (1600 W) using EPA Method 3052 (USEPA, E.) at 175 ± 5 ° C using 10 mL 60% HNO 3 and 2 mL 30% H 2 O 2 . , 1995. Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. Test Methods for Evaluating Solid Waste. Then, the concentration of calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), iron (Fe), manganese (Mn), and zinc And analyzed using atomic emission spectroscopy (ICP-AES; Perkin Elmer Optima, USA).

실시예Example 7: 주사 전자  7: scanning electron 현미경법Microscopic method

수확시에 각 수경재배 기질의 샘플을 모았다. 조류 성장으로 인하여 녹색을 가지는 입자들을 선택하여 냉동하였다. 각 수경재배 기질 표면 상 미세조류의 흡착을 초고 해상도 주사 전자 현미경(HI-9116-0002; Hitachi, Tokyo, Japan)을 사용하여 확인하였다. 그 현미경은 수경재배 기질의 원소 조성을 정량하하기 위하여 15 keV EDS(energy dispersive spectra)에서 동작하였다.Samples of each hydroponic substrate were collected at harvest time. Due to the growth of algae, green particles were selected and frozen. Adsorption of microalgae on the surface of each hydroponic substrate was confirmed by using ultra-high resolution scanning electron microscope (HI-9116-0002; Hitachi, Tokyo, Japan). The microscope operated at 15 keV EDS (energy dispersive spectra) to quantify the elemental composition of hydroponic substrates.

엽채류의 잎 영양 조성(n = 3) 및 평균 성장 파라미터(n = 5)를 일원 및 이원 분류 분산 분석 및 P < 0.05 '의 유의 수준을 가지는 Tukey's honestly 유의적 차이 테스트(SAS, 2004)를 사용하여 비교하였다. 데이터를 SAS/STAT 9.1를 사용하여 분석하였다. 평균의 표준 편차를 각각 성장 및 잎 영양 조성에 대해 오중 및 삼중 반복실험으로부터 계산하였다. The leaf nutrition composition (n = 3) and average growth parameters (n = 5) of leaf vegetables were analyzed using one- and two-way ANOVA and Tukey's honestly significant difference test with significance level of P <0.05 (SAS, 2004) Respectively. Data was analyzed using SAS / STAT 9.1. Mean standard deviations were calculated from the triplicate and triplicate experiments for growth and leaf nutrient composition, respectively.

엽채류의Leafy 성장 growth

여러 기질은 모든 테스트한 엽채류의 뿌리 및 새순 신선 및 건조 중량 및 새순 길이에 영향을 주었다; 그리고 딜과 상추의 잎 면적; dill, mallow, 및 상주의 잎 클로로필 양에도 영향을 주었다(표 2). 그러나, 모든 테스트한 엽채류의 잎의 수; cabbage, mallow, 및 tatsoi의 잎 면적; 및 tatsoi의 잎 클로로필 양은 현저하게 영향을 받지 않았다(표 2).Several substrates affected the roots and bud freshness and dry weight and bud length of all tested leafy vegetables; Leaf area of dill and lettuce; dill, mallow, and chlorophyll content of resident leaves (Table 2). However, the number of leaves of all tested leafy vegetables; leaf area of cabbage, mallow, and tatsoi; And chlorophyll amount of tatsoi leaves were not significantly affected (Table 2).

PL + RB 기질에서 수경재배적으로 키운 식물의 새순 및 뿌리의 신선 및 건조 중량 및 새순 길이는 현저하게 증가하였다; PL 기질 단독에서 키운 식물과 비교하여 이 특성은 약 1.7배 증가하였다(표 2). RB 기질에서 키운 아욱은 새순 길이, 새순의 신선 중량, 뿌리의 신선 및 건조 중량이 PL 기질에서 키운 것과 비교하여 1-1.4-배 증가하였다. 또한, RB 기질은 PL 기질에서 키운 식물에 비교하여 tatsoi 뿌리의 신선 및 건조 중량을 각각 36.5% 및 42.1% 증가시켰다. Fresh and dry weight and shoot length of larvae and roots grown hydroponically in PL + RB substrate were significantly increased; This characteristic increased about 1.7-fold compared to plants grown on PL substrate alone (Table 2). In the RB substrate, the height of the larvae, the fresh weight of the larvae, and the freshness and dry weight of the roots were increased by 1-1.4-fold compared to those grown on the PL substrate. In addition, the RB substrate increased the fresh and dry weight of tatsoi roots by 36.5% and 42.1%, respectively, compared to plants grown on PL substrates.

반면, RB 기질에서 키운 양배추, 딜 및 상추는 PL 기질에서 키운 것과 비교하여 새순 길이(0.1%-47.8%), 새순의 신선 중량(16.3%-91.7%), 새순의 건조 중량(55.8%-87.1%), 뿌리의 신선 중량(22.7%-63.6%/), 및 뿌리의 건조 중량이 크게 감소하였다(19.4%-65.9%). RB 기질에서 수경재배적으로 키운 상추는 PL 기질에서 키운 식물보다 새순의 신선 및 건조 중량이 7.7-/12.1-배 덜하여 최대 감소를 나타내었다.On the other hand, the cabbage, dill and lettuce grown on the RB substrate were significantly higher than those grown on the PL substrate (0.1% -47.8%), fresh weight (16.3% -91.7%) and dried weight (55.8% -87.1% %), Fresh weight of root (22.7% -63.6% /) and dry weight of root (19.4% -65.9%). Lettuce cultivated hydroponically from RB substrate showed the maximum decrease by 7.7- / 12.1-fold in freshness and dry weight of fresh shoots than in plants grown in PL substrate.

PL + RB에서 키운 아욱 식물의 잎 면적은 PL 기질에서 키운 식물과 비교하여 1.6배 증가하였다. PL+ RB 기질에서 키운 조사된 식물들의 잎 수, 잎 면적(아욱 제외), 및 잎 클로로필 양은 PL 기질에서 키운 것과 큰 차이가 없었다(표 2). 또한, RB 기질에서 성장한 엽채류의 전체 잎 면적은 딜과 상추 식물의 잎 면적에서 56% 및 92.5% 감소를 제외하고는 PL 기질에서 키운 식물의 것과 차이가 없었다 .In PL + RB, the leaf area of cultivated plants increased 1.6 times compared with plants grown in PL substrate. The number of leaves, leaf area (except for males), and leaf chlorophyll content of irradiated plants grown on PL + RB substrates were not significantly different from those on PL substrates (Table 2). In addition, the total leaf area of the leaf vegetables grown on the RB substrate was not different from that of the plants grown on the PL substrate except for 56% and 92.5% reduction in the leaf area of the dill and lettuce plants.

SPAD 값들은 RB 기질에서 키운 딜, 아욱 및 적상추의 클로로필 양은 PL 기질에서 키운 식물보다 매우 낮았다(17.4%-24.4%). RB 기질에서 키운 양배추 및 tatsoi 잎들의 클로로필 양은 PL 기질에서 키운 식물과 큰 차이가 없었다(표 2). 이 결과들은 RB 기질이 양배추, ELF 및 적상추 식물의 성장 및 수율을 감소시키나 아욱 또는 tatsoi 식물은 그러하지 않는다는 것을 나타낸다(표 2).SPAD values were much lower (17.4% -24.4%) in the RB substrate than in the PL substrate. The chlorophyll content of cabbage and tatsoi leaves grown on RB substrate was not significantly different from that of the PL substrate (Table 2). These results indicate that the RB substrate reduces the growth and yield of cabbage, ELF, and lettuce plants, but not the malt or tatsoi plants (Table 2).

따라서, 펄라이트와 왕겨 바이오차의 조합(PL + RB) 기질은 PL 기질 단독에서 키운 식물에 비하여 엽채류 수율이 크게 증가하였다(표 2). Therefore, the combination of PL + RB substrate with pearlite and rice bran biocide showed a significant increase in the yield of leaf vegetables compared with plants grown with PL substrate alone (Table 2).

잎 영양 조성Leaf nutrition composition

RB, PL, 및 그들의 조합 및 그 조사된 식물들의 잎 영양분(Ca, Mg, K, Na, Fe, Mn, 및 Zn)의 양에서 변화를 표 3에 나타내었다. 여러 기질들은 아욱 및 상추에서 잎 Ca 양; 양배추, 딜 및 아욱에서 잎 Mg 양; 양배추 및 아욱에서 잎 K 양; 딜, 상추 및 tatsoi에서 잎 Fe 양; 모든 테스트된 엽채류에서 잎 Mn 양;양배추, dill, 아욱 및 tatsoi에서 잎 Zn 양; 및 양배추 및 딜에서 잎 Na 양에 실질적으로 영향을 주었다(표 3). 그러나, 여러 기질들은 양배추 및 딜에서 잎 Ca 양; 상추 및 tatsoi에서 잎 Mg 양; 딜, 상추 및 tatsoi에서 잎 K 양; 양배추 및 아욱에서 잎 Fe 양; 상추에서 잎 Zn 양; 및 아욱, 상추 및 tatsoi에서 잎 Na 양에는 큰 영향이 없었다(표 3).The changes in the amounts of leaf nutrients (Ca, Mg, K, Na, Fe, Mn, and Zn) of RB, PL and their combinations and the irradiated plants are shown in Table 3. Several substrates were found in the amount of leaf Ca in lettuce and lettuce; Leaves from cabbage, dill and mullet Mg amount; Leaves from Cabbage and Mullet K Sheep; Dill, lettuce and leaves from tatsoi; Leaf Mn amount in all tested leafy vegetables; leaf Zn amount in cabbage, dill, mullet and tatsoi; And leaf Na in cabbage and dill (Table 3). However, several substrates were found in the amount of leaf Ca in cabbage and dill; Mg amount of leaf in lettuce and tatsoi; Dill, lettuce and leaves from tatsoi K sheep; Leaves from cabbage and mullet leaves; Leaf Zn content in lettuce; And leaf Na in males, lettuce and tatsoi (Table 3).

조사된 기질에서 키운 식물들의 잎 Ca 양은 RB에서 키운 아욱 및 상추를 제외하고는 유사한 경향을 나타내었다. RB기질에서 키운 아욱 및 상추의 Ca 양은 PL 기질에서 키운 것과 비교하여 각각 1.1-배 증가하고, 2.2-배 감소하였다(표 3). RB 기질에서 키운 양배추, 딜 및 아욱에서 잎 Mg 양의 수준은 PL 또는 PL + RB에서 키운 식물들과 비교하여 1.2-1.6-배 증가하였다. PL + RB 기질에서 키운 양배추 및 아욱 식물은 PL 기질에서 키운 식물들과 비교하여 잎 K양이 증가(1.3-배)하였다. The leaf Ca content of the plants grown on the irradiated substrate showed similar tendency except for the cultivated Awook and lettuce in RB. In the RB substrate, the amount of Ca 2+ and Ca 2+ in lettuce increased by 1.1-fold and 2.2-fold, respectively, compared to that in PL substrate (Table 3). Levels of leaf Mg in cabbage, dill and mullet grown on RB substrates increased 1.2-1.6-fold compared to plants grown in PL or PL + RB. Cabbage and mulberry plants grown on PL + RB substrates increased leaf K (1.3-fold) compared to plants grown on PL substrate.

RB 및 PL + RB 기질에서 키운 식물들은 PL 기질에서 키운 식물들과 비교하여 잎 Mn의 양(평균 2- 및 1.6-배 증가)과 비교하여 더 많았다. RB에서 키운 양배추, 딜 및 아욱에서 잎 Zn 양은 PL 기질에서 키운 식물과 비교하여 매우 높게(평균 3.5-배) 증가한 반면, RB 및 PL + RB 기질에서 키운 양배추 및 딜의 잎에서 Na 양은 더 적었다(표 3). Plants grown on RB and PL + RB substrates were more abundant compared to the amounts of leaf Mn (2- and 1.6-fold increase on average) compared to plants grown on PL substrates. The amount of leaf Zn in cabbage, dill and mullet cultivated in RB increased significantly (average 3.5-fold) compared to plants grown in PL substrate, while the amount of Na in leaves of cabbage and dill grown on RB and PL + RB substrates was smaller Table 3).

기질들의 표면 미세형태Surface morphology of substrates

PL, RB, 및 PL + RB 기질들의 표면 미세형태를 SEM-EDS를 사용하여 수확시에 조사하였다. PL 기질의 표면 및 영양분 용액에서 타원 및 구형 미세조류가 성장하였다(도 2 및 표 4). Surface morphology of PL, RB, and PL + RB substrates was investigated at harvest using SEM-EDS. Oval and spherical microalgae grew in the surface and nutrient solutions of PL substrates (FIG. 2 and Table 4).

미세 조류 세포들은 같이 모이고 PL 기질의 표면과 RB 입자의 미세공에 흡착하였다(도 2, 흑색 화살표). 염은 기질 표면 상에 백색 군집으로 침전하였다. 수경재배 기질의 동결 건조는 조류 세포 모양을 보존하고 컨푸루언트 균질층으로 평평하게 되었다. 미세조류(Microalgal) 성장은 PL 기질에서 RB 기질보다 더 높았다. 또한, PL + RB 기질은 일부 유익한 진균/미생물의 성장을 유도하였다(표 4). The microalgae cells were collected and adsorbed on the surface of the PL substrate and the micropores of the RB particles (Fig. 2, black arrow). Salts precipitated into white clusters on the substrate surface. The lyophilization of the hydroponic culture substrate preserved the avian cell shape and became flat with a confluent homogeneous layer. Microalgae growth was higher in the PL substrate than in the RB substrate. In addition, the PL + RB substrate induced some beneficial fungal / microbial growth (Table 4).

영양분 용액 (mg/L)Nutrient solution (mg / L) Common range (mg/L)
(Ferguson et al., 1978; Jones Jr, 2016)
Common range (mg / L)
(Ferguson et al., 1978; Jones Jr., 2016)
NN 110110 49 to 21049 to 210 PO4-PPO 4 -P 4848 15 to 19215 to 192 KK 150150 -- CaCa 110110 80 to 20080 to 200 MgMg 3030 24 to 6024 to 60 FeFe 0.350.35 -- MnMn 0.350.35 -- ZnZn 0.060.06 0 to 0.1460 to 0.146 BB 0.10.1 --

표 1은 본 발명에서 사용된 영양분 용액의 화학적 특성을 나타낸 표 Table 1 shows the chemical properties of the nutrient solution used in the present invention

Figure 112017041917767-pat00001
Figure 112017041917767-pat00001

표 2는 수경재배 시스템에서 펄라이트, 왕겨 바이오차 및 두 조합의 기질에서 키운 엽채류의 성장 파라미터를 나타낸 표 Table 2 shows the growth parameters of leaf vegetables grown on pearlite, rice bran bio-tea, and two combinations of substrates in a hydroponic culture system

Substrate/
vegetable
Substrate /
vegetable
CaCa MgMg KK FeFe MnMn ZnZn NaNa
CabbageCabbage PL a PL a 1.80±0.090 a1.80 ± 0.090 a 0.45±0.005 c0.45 ± 0.005 c 5.84?0.149 b5.84? 0.149 b 0.008±0.001 a0.008 ± 0.001 a 0.034±0.003 b0.034 ± 0.003 b 0.011±0.002 b0.011 ± 0.002 b 0.193±0.019 a0.193 + 0.019 a RBRB 1.89±0.123 a1.89 + 0.123 a 0.54±0.013 a0.54 + 0.013 a 6.31±0.114 b 6.31 + - 0.114 b 0.008±0.001 a0.008 ± 0.001 a 0.065±0.004 a0.065 ± 0.004 a 0.034±0.001 a0.034 + 0.001 a 0.116±0.014 b0.116 + 0.014 b PL + RBPL + RB 2.08? 0.114a2.08? 0.114a 0.49±0.009 b0.49 ± 0.009 b 7.45±0.063 a7.45 + 0.063 a 0.008±0.001a0.008 ± 0.001a 0.058±0.004 a0.058 ± 0.004 a 0.019±0.002 b0.019 ± 0.002 b 0.106±0.005 b0.106 ± 0.005 b DillDill PLPL 0.82±0.043 a0.82 ± 0.043 a 0.29±0.010 b0.29 + 0.010 b 7.60±0.210 a7.60 + - 0.210 a 0.008±0.001 a0.008 ± 0.001 a 0.033±0.001 c0.033 0.001 c 0.009±0.0002 c0.009 + - 0.0002 c 0.231±0.024 a0.231 + 0.024 a RBRB 0.93±0.074 a0.93 + 0.074 a 0.38±0.023 a0.38 + 0.023 a 7.47±0.379 a7.47 ± 0.379 a 0.004±0.0001 b0.004 ± 0.0001 b 0.057±0.002 a0.057 0.002 a 0.030±0.001 a0.030 0.001 a 0.149±0.008 b0.149 ± 0.008 b PL + RBPL + RB 0.93±0.032 a0.93 + 0.032 a 0.29±0.010 b0.29 + 0.010 b 8.48±0.479 a8.48 ± 0.479 a 0.006±0.0004 a0.006 ± 0.0004 a 0.046±0.002 b0.046 ± 0.002 b 0.013±0.001 b0.013 ± 0.001 b 0.135±0.010 b0.135 + 0.010 b MallowMallow PLPL 1.60±0.050 b1.60 + 0.050 b 0.34±0.015 b0.34 + 0.015 b 5.05±0.248 b5.05 + - 0.248 b 0.008±0.001 a0.008 ± 0.001 a 0.030±0.001 c0.030 0.001 c 0.007±0.0003 b0.007 ± 0.0003 b 0.067±0.011 a0.067 0.011 a RBRB 2.15±0.067 a2.15 + 0.067 a 0.55±0.016 a0.55 0.016 a 6.42±0.227 a6.42 ± 0.227 a 0.007±0.0005 a0.007 ± 0.0005 a 0.119±0.010 a0.119 + 0.010 a 0.029±0.002 a0.029 ± 0.002 a 0.072±0.006 a0.072 ± 0.006 a PL + RBPL + RB 1.58±0.029 b1.58 + 0.029 b 0.40±0.020 b0.40 ± 0.020 b 6.58±0.092 a6.58 + 0.092 a 0.007±0.001 a0.007 ± 0.001 a 0.061±0.005 b0.061 0.005 b 0.010±0.001 b0.010 0.001 b 0.057±0.0003 a0.057 ± 0.0003 a Red LettuceRed Lettuce PLPL 0.87±0.022 a0.87 + 0.022 a 0.41±0.009 a0.41 ± 0.009 a 6.62±0.162 a6.62 ± 0.162 a 0.010±0.001 a0.010 0.001 a 0.038±0.002 b0.038 ± 0.002 b 0.008±0.001 a0.008 ± 0.001 a 0.087±0.008 a0.087 ± 0.008 a RBRB 0.62±0.053 b0.62 ± 0.053 b 0.39±0.029 a0.39 ± 0.029 a 5.98±0.241 a5.98 ± 0.241 a 0.007±0.0004 b0.007 ± 0.0004 b 0.029±0.004 b0.029 ± 0.004 b 0.010±0.002 a0.010 0.002 a 0.057±0.004 a0.057 ± 0.004 a PL + RBPL + RB 0.86±0.017 a0.86 ± 0.017 a 0.37±0.023 a0.37 + 0.023 a 6.60±0.173 a6.60 + 0.173 a 0.009±0.0005 a0.009 ± 0.0005 a 0.060±0.002 a0.060 0.002 a 0.010±0.0004 a0.010 + 0.0004 a 0.081±0.011 a0.081 0.011 a TatsoiTatsoi PLPL 1.57±0.051 a1.57 ± 0.051 a 0.57±0.040 a0.57 + 0.040 a 7.16±0.229 a7.16 ± 0.229 a 0.008±0.0004 b0.008 ± 0.0004 b 0.051±0.002 b0.051 ± 0.002 b 0.021±0.004 b0.021 0.004 b 0.157±0.007 a0.157 ± 0.007 a RBRB 1.61±0.104 a1.61 + - 0.104 a 0.57±0.024 a0.57 + 0.024 a 7.11±0.172 a7.11 ± 0.172 a 0.006±0.0001 c0.006 ± 0.0001 c 0.076±0.006 a0.076 ± 0.006 a 0.037±0.006 a0.037 ± 0.006 a 0.102±0.014 a0.102 0.014 a PL + RBPL + RB 1.69±0.161 a1.69 ± 0.161 a 0.55±0.028 a0.55 0.028 a 8.50±0.620 a8.50 ± 0.620 a 0.010±0.0002 a0.010 + 0.0002 a 0.067±0.002 ab0.067 ± 0.002 ab 0.027±0.003 b0.027 ± 0.003 b 0.193±0.081 a0.193 + 0.081 a

표 3은 수경재배 시스템에서 펄라이트, 왕겨 바이오차 및 두 조합의 기질에서 키운 엽채류의 잎 영양분 조성(%)을 나타낸 표 (평균 ± 표준편차; n = 3).a PL: 대조군으로 펄라이트 기질; RB: 왕겨 바이오차 기질; PL + RB: PL 대 RB의 비율은 1:1, v/v.Table 3 shows the leaf nutrient composition (% standard deviation, n = 3) of leafy vegetables grown on a substrate of pearlite, rice bran bio-tea and two combinations in a hydroponic culture system. a PL: pearlite substrate as a control; RB: rice bran bio-tea substrate; PL + RB: ratio of PL to RB is 1: 1, v / v.

식물에서 각 컬럼에서 다른 글자는 유의적 차이를 나타냄 at P ≤ 0.05.Different letters in each column indicate significant differences in plants at P ≤ 0.05.

ElementElement PL alonePL alone PL in
PL + RB
PL in
PL + RB
RB aloneRB alone RB in
PL + RB
RB in
PL + RB
microalgae microalgae
CC -- 28.1628.16 26.5626.56 23.5623.56 36.6636.66 OO 40.5640.56 39.8539.85 36.1236.12 13.4313.43 39.4739.47 NaNa 1.561.56 1.261.26 -- -- 1.111.11 MgMg 0.260.26 -- -- 0.130.13 0.260.26 AlAl 11.7111.71 4.044.04 0.200.20 1.231.23 2.982.98 SiSi 35.8935.89 23.2323.23 35.7735.77 56.1256.12 16.4516.45 SS 1.871.87 -- -- -- 0.680.68 KK 5.045.04 2.392.39 0.370.37 1.981.98 1.871.87 CaCa 2.152.15 0.550.55 0.410.41 0.640.64 0.520.52 MnMn -- -- -- 1.291.29 -- FeFe 0.960.96 0.520.52 0.570.57 1.621.62 -- SEM imageSEM image

Figure 112017041917767-pat00002
Figure 112017041917767-pat00002
Figure 112017041917767-pat00003
Figure 112017041917767-pat00003
Figure 112017041917767-pat00004
Figure 112017041917767-pat00004
Figure 112017041917767-pat00005
Figure 112017041917767-pat00005
Figure 112017041917767-pat00006
Figure 112017041917767-pat00006

표 4는 30일의 수경재배 실험 후 펄라이트, 왕겨 바이오차 및 두 조합의 기질의 주사 전자 현미경-EDS(energy dispersive spectra) 분석을 사용하여 결정된 원소 조성(%)를 나타낸 표. PL: 대조군으로 펄라이트 기질; RB: 왕겨 바이오차 기질; PL + RB: PL 대 RB의 비율은 1:1, v/v.Table 4 summarizes the 30 day Table showing the element composition (%) determined using an energy dispersive spectroscopy (EDS) analysis of pearlite, rice bran biochambers and two combinations of substrates after hydroponic cultivation experiments. PL: pearlite substrate as a control; RB: rice bran bio-tea substrate; PL + RB: ratio of PL to RB is 1: 1, v / v.

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 펄라이트 및 바이오차를 유효성분으로 포함하는 수경재배 영양분 용액에서 조류(algae) 성장 억제용 조성물.A composition for inhibiting the growth of algae in a hydroponic nutrient solution comprising pearlite and biocha as an active ingredient. 제11항에 있어서,
상기 바이오차는 왕겨인 것을 특징으로 하는 조성물.

12. The method of claim 11,
Wherein the bio-tea is rice hull.

KR1020170055053A 2017-04-28 2017-04-28 A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar KR101944074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170055053A KR101944074B1 (en) 2017-04-28 2017-04-28 A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170055053A KR101944074B1 (en) 2017-04-28 2017-04-28 A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar

Publications (2)

Publication Number Publication Date
KR20180120983A KR20180120983A (en) 2018-11-07
KR101944074B1 true KR101944074B1 (en) 2019-01-30

Family

ID=64362959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170055053A KR101944074B1 (en) 2017-04-28 2017-04-28 A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar

Country Status (1)

Country Link
KR (1) KR101944074B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783307B1 (en) * 2015-10-01 2017-09-29 효성오앤비 주식회사 Solid medium composition for water culture, and grow bag and water culture method using it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables’, Journal of Cleaner Production, YASSER MAHMOUD AWAD et al., 156(2017), pp. 581-588

Also Published As

Publication number Publication date
KR20180120983A (en) 2018-11-07

Similar Documents

Publication Publication Date Title
Awad et al. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables
Agbna et al. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato
KR100741818B1 (en) Method and antifungal organic farming soil for planting
CN104705064B (en) A kind of easy succulent wintering method
Paul et al. Impact of vermicompost on vegetable transplant quality
JP4792587B2 (en) Low potassium spinach and its cultivation method
Kumari et al. Hydroponic techniques: A soilless cultivation in agriculture
CN106478184B (en) A kind of potting leek cultivation matrix and cultural method
Choi et al. Optimization of substrate formulation and mineral nutrition during the production of vegetable seedling grafts
CN103636373A (en) Method for vegetative propagation of vaccinium plants through fresh sphagnum
JP2002027849A (en) Rice culture method and soil for rice culture
Neocleous Grafting and silicon improve photosynthesis and nitrate absorption in melon (Cucumis melo L.) plants
CN102893847A (en) Seedling raising substrate and cutting propagation method of bilberry plants
Park et al. Influence of volumetric water content in a peat-perlite medium on mother plant growth and daughter plant occurrence during ‘Seolhyang’strawberry propagatio
CN106258079A (en) A kind of Fructus actinidiae chinensis seedling breeding method
KR101944074B1 (en) A composition for enhancing the nutritional status and growth of leafy vegetables comprising Biochar
Sajiv et al. Study on the growth of eggplant (Solanum melongena L.) under hydroponics with modified Hoagland solution
Madina et al. Effectiveness of Solutions on Soilless Production of Lettuce Grown in Makurdi and Plateau, Nigeria
CN106258575B (en) Double-layer substrate for radish lateral branch cuttage and application method
Chaudhari et al. Effect of rooting hormone and media on root induction in poinsettia (Euphorbia pulcherrima Willd.)
Celik et al. Enhancing germination of kiwifruit seeds with temperature, medium and gibberellic acid
KR20240076160A (en) Nutritional Solution for water culvation
CN111296227A (en) Organic planting soil and preparation method thereof
CN112655485A (en) Cultivation method for relieving downy mildew and anthracnose of Chinese cabbage stalk
Waiba et al. Study of growth parameters and germination of tomato seedlings in soil-less media under protected environment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant