KR101933659B1 - 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법 - Google Patents

백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법 Download PDF

Info

Publication number
KR101933659B1
KR101933659B1 KR1020180003740A KR20180003740A KR101933659B1 KR 101933659 B1 KR101933659 B1 KR 101933659B1 KR 1020180003740 A KR1020180003740 A KR 1020180003740A KR 20180003740 A KR20180003740 A KR 20180003740A KR 101933659 B1 KR101933659 B1 KR 101933659B1
Authority
KR
South Korea
Prior art keywords
magnesium hydroxide
calcium chloride
dolomite
reaction
solution
Prior art date
Application number
KR1020180003740A
Other languages
English (en)
Other versions
KR20180035187A (ko
Inventor
규 재 유
Original Assignee
규 재 유
바이오칼슘 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 규 재 유, 바이오칼슘 주식회사 filed Critical 규 재 유
Priority to KR1020180003740A priority Critical patent/KR101933659B1/ko
Publication of KR20180035187A publication Critical patent/KR20180035187A/ko
Application granted granted Critical
Publication of KR101933659B1 publication Critical patent/KR101933659B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • C01F11/30Concentrating; Dehydrating; Preventing the adsorption of moisture or caking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 주성분이 칼슘(Ca) 21.70%와 마그네슘(Mg) 13.19%, 탄산(CO3) 65.11%로 혼합조성된 백운석[Dolomite Ca.Mg(CO3)2]을 파쇄 분급하여 소성로에서 소성대 온도 800℃~1100℃에서 경소성 탈탄산(CO2↑)하여 백운회(CaO.MgO)를 만들고 수화하여 수산화칼슘[Ca(OH)2]과 수산화마그네슘[Mg(OH)2]이 혼합된 백운회유을 제조하고, 백운회유에 백운석, 백운회, Magnesite, Brucite, Olivine, Huntite, 사문석과 미수화 백운회 잔류물 등 마그네슘 함유물을 염산에 용해하는 염화용액(MgCl2와 CaCl2혼성)을 기질로 첨가 반응하여, 고형물인 Mg(OH)2와 수용액인 염화칼슘액(CaCl2)으로 물성 변환 반응을 하고 여과 탈수로 고액 분리하여 성분을 분리하고, Mg(OH)2는 수세하여 순도를 높이고 이를 원료로 탄산화반응과 열해반응으로 안정한 염기성탄산마그네슘[4MgCO3Mg(OH)24H2O]을 제조하고 여과액 염화칼슘액(CaCl2)을 농도 조정하여 액상염화칼슘 제품화와 분무 건조하여 분말염화칼슘을 제조하는 방법에 관한 발명이다.

Description

백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법{The manufacturing method of magnesium carbonate and calcium chloride using dolomite as raw material}
본 발명은, 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법에 관한 것으로, 이러한 제조 방법으로 얻어진 수산화마그네슘을 원료로 탄산마그네슘을 제조하는 방법을 더 포함한다.
염화칼슘은 제설, 방진, 흡습, Polymer 응고제, 식품첨가물 등으로 사용되며 수산화마그네슘과 탄산마그네슘은 합성기술에 의해 다양한 품질 종류와 부가가치가 다른 소재로 고무, Plastic, Sealant, Paint, Ink, 화장품, 난연재, 보온재, 유리, 비료, 환경처리제, 식품, 인체와 동물의 무기영양소, 의약 원료용등 광범위한 용도로 사용되는 정밀화학 무기소재 분야이다.
탄산마그네슘의 원료인 수산화마그네슘의 원료는 Magnesite, Brucite, 함수, Huntite, Serpentinite, 사리염(Epsomite), 해수용존 MgCl2와 백운석이 있으며 해수원의 MgCl2는 석회의 품질에 따라 수산화마그네슘의 품질이 크게 영향을 받게 된다.
현재의 백운석광 활용은 채광 조쇄하여 30~60mmø 크기로 체별한 원광석을 소성로(Shaft Kiln, Rotary Kiln, BK Kiln 등)에서 소성대 온도 800~1100℃에서 소성으로 탈탄산(CO2)하여 경소백운회(CaO.MgO)를 제조하며 제강 및 제철공정의 Slag 제거용도로 사용되고 물과 수화된 Ca(OH)2와 Mg(OH)2 혼성 백운회유는 주로 산성 폐수 정화제와 배연 탈황용으로 사용되고 있으며 배연 SO2 및 SO3는 Ca(OH)2와 반응하여 석고가 되어 침전됨으로 2차폐기물 석고를 재처리해야 하는 문제성이 있다.
Ca(OH)2와 Mg(OH)2의 분리는 MgCl2를 기질로 하여 고형물Ca(OH)2을 용액 CaCl2로 치환 반응하여 고액 분리되는 방법이 문헌 등에 개시되어 공지되어 있으나 MgCl2는 고가의 화학제품으로 과중한 원가와 경제성 문제로 활용성이 제약되고 있다.
Figure 112018003431497-pat00001
1. 中國 化學工業出版社 胡慶福 主編 2. 鹽基性炭酸マグネツウムに就て(講演會硏究報告書) 日本コム協會關西支部 3. Lime and Limestone Chemistry and Technology Production and Uses by J.A.H. Oates
분리물의 안정조달과 경제성 확보 및 탈황의 2차폐기물 재처리의 문제성 등을 개선하기 위해 마그네슘 함유광물과 경소백운회 미수화 잔유물을 사용하여 치환제 MgCl26H2O 대체 기질을 제작하여 수산화마그네슘을 분리하고, 탄산마그네슘 제조와 부산물염화칼슘 제조기술 발명을 목적으로 한다.
백운석 원광석을 분쇄하여 경소성용으로 30mmØ~60mmØ 체별한 30mmØ 이하 원석 또는 경소백운회의 미수화 잔유물 또는 마그네슘성분 함유광물을 염산에 용해하면 CaCl2, MgCl2 및 물이 생성되는 염산용해액(MgCl2+CaCl2 혼성용액)을 기질로 하여 백운회유에 혼합된 Ca(OH)2와 Mg(OH)2 분리방법을 고안하였다. 백운석은 염산에 다음과 같이 용해된다.
백운석 염산용해반응 : CaMg(CO3)2+4HCl → MgCl2+CaCl2+2CO2↑+2H2O (1)
염산용해액에 함유되어 있는 Fe2 +, Fe3 +, Mn2 +, Al2 +, Cr2 + 등의 불순물을 제거하기 위해 산화촉매제로 H2O2를 적가교반하고, H2O2, NaOH, KOH, Ca(OH)2 및 NH4OH, 중에서 선택적으로 첨가하여 Fe(OH)3, Mn(OH)2, Al(OH)3, Cr(OH)2 등의 수산화 침전물로 여과 제거하고 기질로 하여 치환 반응을 수행한다.
분리반응 : Ca(OH)2+Mg(OH)2+MgCl2+CaCl2 → 2Mg(OH)2↓+2CaCl2 (2)
상기 2Mg(OH)2↓를 Filter Press로 탈수분리하면 Cake는 Mg(OH)2↓이며 CaCl2용액이 Cake에 약 40% 잔류되어 Cake를 충분한 물로 분산희석 하여 잔류 CaCl2 용액을 재 탈수하면 Mg(OH)2 순도 약 96%로 분리된다.
Cake를 분산희석 할 때 분산제로 메타인산소다등을 약 0.1~2 중량부 첨가하여 신속한 분산과 탈수효율을 증대시킨다. 탈수용액은 CaCl2로 농도 22~38%로 조정하여 제설제 및 Polymer 응고제, 방진제 용도의 액상염화칼슘으로 제조하며 분무식 건조를 하여 식품용, 방습제용의 분말염화칼슘을 제조한다.
국제 경쟁력있는 고품위 백운석광상이 국내에 대량 부존되어 고순도로 성분분리하면 국내 석회석의 저품질 경쟁력을 보완하고 Magnesite 대체광물로 자원자급의 대안이 되며 고부가 소재로 수입대체와 안정적 기초소재의 공급기반이 조성이 될 수 있다.
본 발명은 백운석의 소성, 수화, 성분분리, 탄산화합성, 열해숙성, 탈수, 건조, 해쇄의 탄산마그네슘 제조 전공정 연관제품과 염화칼슘 제조에 관한 발명이다.
탄산마그네슘은 Magnesite, Brucite, 해수수산화마그네슘, 함수등이 주원료로 사용되며, 주로 Magnesite 광석을 소성-수화-탄화-여과-열해-탈수-건조-해쇄의 공정으로 제조되고, 탄화속도, 첨가제, 반응온도, 농도 등의 조건에 의해 편상, 구상, 봉상의 탄산마그네슘 입자를 합성할 수 있다.
백운석의 종래기술은 소성, 탈탄산하여 MgO와 CaO를 만들고, 물에 수화하여 고형물 Ca(OH)2와 Mg(OH)2 혼합물의 백운회유로 만들어 정제한 후, 4~8%의 농도와 20℃ 이하의 온도에서 CO2 3mole를 백운회유에 주입하여 Ca(OH)2는 탄산칼슘으로 합성되어 침전되며 Mg(OH)2는 Mg(HCO3)2 불안정한 중탄산마그네슘 수용액이 되며 탄산칼슘은 여과분리하고 Mg(HCO3)2는 80℃ 이상의 온도로 승온하면 CO2가 분리 배출되며 탄산마그네슘이 석출되며 여과탈수하고 건조 해쇄하여 탄산마그네슘을 제조한다.
이러한 공정들의 화학반응식은 다음과 같다.
소성반응 : Ca.Mg(CO3)2 + Heat 900~1100℃ → CaO + MgO + 2CO2
수화반응 : CaO.MgO + 2H2O → Ca(OH)2 + Mg(OH)2
탄화반응 : Ca(OH)2 + Mg(OH)2 + 3CO2 → CaCO3↓ + Mg(HCO3)2 + H2O
열해반응 : Mg(HCO3)2 + 2H2O →(+80℃) → MgCO3.3H2O + CO2
5MgCO3.3H2O+12H2O → 4MgCO3.Mg(OH)2.8H2O+CO2↑ + 6H2O
4MgCO3.Mg(OH)2.8H2O → 4MgCO3.Mg(OH)2.5H2O + 3H2O
4MgCO3.Mg(OH)2.5H2O → 4MgCO3.Mg(OH)2.4H2O + H2O
종래 기술을 활용하는 데는 다음과 같은 문제점들이 있다.
1) 백운원석 입도를 30mmø 이하를 소성하면 통풍장해로 소성장해의 원인.
2) 탄화반응에서는 온도를 20℃ 이하로 낯추고 열해 반응에서 80℃ 이상 가온하는 Energy 다소비.
3) 탄산칼슘을 반응기에서 거출하여 여과 탈수하는 물류이동 공정이 필요.
4) 탄화반응시간 24~28시간과 열해반응 승온후 3~4시간 소요되는 장시간 반응.
5) 열해 석출농도는 3~4%로 낮은 수율.
6) Mg(HCO3)2는 대단히 불안정하여 탄화 후 바로 분해되어 CO2↑를 방출하며 Mg(OH)2로 환원 석출됨으로 반응종점 정확도가 생산과 직결되는 문제점.
종래기술의 상기 주요 문제점을 개선하는 다음과 같은 과제를 해결하는 화합방법을 발명의 목적으로 하였다.
1) Energy 저소비와 공정 단순화 화합방법의 고안
2) 탄산칼슘 화합방식과 같이 동일한 반응기에서 이동 없이 화합을 완성하는 방안.
3) 화합반응 농도를 8~15% 까지 높이어 생산성을 향상하는 화합 방법
4) 공정 중 물성변동 없이 장시간 반응을 중단하여도 재반응을 할 수 있는 방법.
또한 본 발명은 현장에서 생산성을 극대화하고 공정 페기물을 재사용 하여 산화마그네슘(MgO), 수산화마그네슘[Mg(OH)2), 탄산마그네슘(4MgCO3.Mg(OH)2.4H2O), 황산마그네슘(MgSO4) 및 산화칼슘(CaO), 수산화칼슘(Ca(OH)2), 탄산칼슘(CaCO3), 염화칼슘(CaCl2)등 무기소재를 백운석을 원료로 하여 공업용, 농업용, 식품용, 사료용, 동식물의 무기영양소, 의약용등의 용도로 제공하는 백운석가공기술 을 개발하여 부존자원이 없는 Magnesite 대체자급과 저품질 석회석대체로 활용될 수 있는 것을 발명을 목적으로 한다.
이러한 종래의 기술의 문제점을 해결하기 위해, 본 발명의 일 실시형태에 따른 수산화마그네슘과 염화칼슘의 제조 방법은, 백운석을 30~60mmø의 크기로 파쇄 및 분급하여 소성로에 장입하여 800~1100℃ 온도에서 경소성하여 백운회를 제조하는 단계: 상기 백운회를 수화하며 미수화 잔유물을 체별하여 수산화칼슘(Ca(OH)2)과 수산화마그네슘(Mg(OH)2)이 혼합된 백운회유를 제조하는 단계; Magnesite(MgCO3), Brucite[(Mg(OH)2), Serpentinite[Mg6Si4O10(OH)8], Huntite[Mg3Ca(CO3)4], Dolomite[CaMg(CO3)2] 및 Epsomite(MgSO47H2O)으로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 염산에 용해시켜 염화용액을 제조하는 단계; 상기 염화용액에 H2O2, NaOH, KOH, NH4OH 및 Ca(OH)2 중 어느 하나를 선택적으로 적가하여 불순물을 안정화 침전시키고 여과분리를 통해 제거하는 단계; 상기 염화용액에 아디티온산나트륨(Sodium Hydrosulfite-Na2S2O4)를 적가하여 착색이온을 안정화시킴으로써 백색도를 향상시키는 단계; 및 상기 백운회유에 백색도가 향상된 염화용액을 첨가하면서 교반시킴으로써, 고형물 수산화마그네슘(Mg(OH)2)과 수용물 염화칼슘(CaCl2)을 상분리시키는 단계;를 포함한다.
상기 상분리시키는 단계는, 여과 및 탈수 단계를 통해 고형물인 수산화마그네슘을 수용액상에 액상으로 존재하는 염화칼슘과 분리하는 것이 바람직하고, 분리된 수산화마그네슘에 분산제를 0.1~3중량부 첨가한 후, 물에 분산시키고 재탈수 과정을 반복함으로써, 수산화마그네슘의 순도를 높이는 단계;를 더 포함하는 것이 더욱 바람직하다.
본 발명에서 사용되는 분산제는, 메타인산소다, 아라비아검등의 천연검류, 대두다당류, PGA, 레시친 및 Vitamin-D로 이루어진 군에서 선택되는 적어도 어느 하나 이상일 수 있다.
본 발명의 다른 실시 형태로, 이러한 방법으로 얻어진 수산화마그네슘을 습식 마쇄하고 체별하여 입자응집을 해쇄함으로써, 고반응성 액상수산화마그네슘을 제조하는 단계; 상기 고반응성 액상수산화마그네슘을 탈수, 건조, 해쇄하여 고반응성 분말 수산화마그네슘을 제조하는 단계; 상기 고반응성 분말 수산화마그네슘을 지방산, 수지산, Silane Coupling Agent 또는 Stearic산으로 습식 또는 건식으로 표면을 처리하여 수산화마그네슘을 제조하는 단계; 수산화마그네슘을 고형분 농도 4~15중량%로 조정하고 온도를 50℃ 이상 승온하여 화학반응기에 도입한 후, 수산화마그네슘 고형분 1mole에 2~4mole의 탄산가스를 20부피% 이상의 농도로 공기와 혼합하여 취입하면서 교반하는 탄산화반응 단계; 및 상기 탄산화반응이 종결된 후, 반응액의 온도를 80℃ 이상으로 승온하여 열분해 반응으로 생성된 탄산가스를 배출하여 안정된 탄산마그네슘으로 변성시키는 열해반응 단계;를 포함하는 탄산마그네슘의 제조 방법을 들 수 있다.
본 발명의 또 다른 실시 형태로, 앞서 언급된 방법으로 얻어진 액상의 염화칼슘 수용액을 분무 또는 진공 건조하여 분말 염화칼슘을 제조하는 단계;를 포함하는 염화칼슘 분말의 제조 방법을 들 수 있으며, 상기 분말 염화칼슘을 제조하는 단계 이후에, 분말 염화칼슘의 표면에 Agar, 지방산 혹은 수지산을 코팅하여 방습기능을 부여하는 방습처리 단계;를 더 포함하는 것도 가능하다.
본 발명으로 마그네슘 화합물의 주원료 광물인 Magensite 부존이 없어도 백운석으로 대체할 수 있고 탄산마그네슘을 종래의 제조방법 보다 공정을 단축하고 에너지 소비를 절약하며 폐자원도 재활용하여 제조할 수 있게된다.
또한 분리 Mg(OH)2는 수세를 반복하여 순도를 높게 분리가능하며 마그네슘 금속 출발소재로 부터 약 25여종의 화합물 제조의 기초소재로 활용할 수 있게 된다.
또한 공정부산물인 액상염화칼슘을 건조하고 표면코팅하여 경제성을 배가 하게 된다.
도 1은 본 발명에 따라 제조된 수산화마그네슘의 SEM 사진이다.
도 2는 본 발명에 따라 제조된 편상 탄산마그네슘의 SEM 사진이다.
도 3은 본 발명에 따라 제조된 구상 탄산마그네슘의 SEM 사진이다.
도 4는 본 발명에 따라 제조된 봉상 탄산마그네슘의 SEM 사진이다.
1) 경소소성의 최적화 소성
종래기술의 문제점을 개선하고 기술과제를 해결하기 위한 수단으로 백운석 광물을 채광하여 조쇄와 파쇄를 하고, 입도분류를 30~60mmø 크기로 더욱 소성이 용이하게 하기 위하여는 30~50mmø로 분급하고 연료는 CO2 재사용 농도를 25%이상 높이고 소성로 내 연소용 공기 통풍을 원활히 하기 위해 원석크기의 약1/3 이상의 무연탄 또는 Cokes등 괴탄을 사용한다.
공기분배를 로단면 전 면적에서 균일하게 공급되도록 공기량 분산분배 제어장치와 로내 소성대 온도와 체류시간을 제어하며 운전할 수 있는 설비에서 연소성을(Soft Burning)하여 미소성, 과소성, 사소성(Dead Burnning)을 최소화 하도록 한다.
원석 입도는 소성로의 형태와 경소백운회의 용도에 따라 주요한 픔질영향 요소로 화학용 경소성은 Shaft Kiln에서 30~60mmø 입도가 적합하며 기타 Rotary Kiln에서는 10~30mmø, Clinker, 연와용에는 전기로에서 10mmø 이하로 경소성하여 경소백운회를 제조한다.
2) 경소백운회 최적수화
경소백운회의 수화는 CaO 성분은 물과 접하면 신속한 발열 수화반응이 이루어지나 MgO는 고온 장시간 수화를 요한다. 실험 실예로 80℃~90℃ 여유량의 열수 수화를 12~24시간 수화하여도 MgO의 약 25% 전후가 수화되고 잔여량은 미수화 상태이다.
경소백운회의 수화는 1.7~7.0 기압인 증기압 즉 온도로는 115℃~165℃ 온도의 열수 수화가 최적의 수화 조건이다. 때문에 일반적인 수화백운회는 30~40% 정도 미수화 상태의 제품이 유통되고 있어 2차 폐기물 과다와 품질 저하의 원인이 되고 있다.
최적 수화는 우선 상온수로 CaO를 수화하고 미수화물을 Autoclave에 장입하고 이론 수화수량의 5~10배로 고압고온에서 수화를 하며 수화시간은 소성성에 따라 다르다.
3) 백운회유 정제
백운회 수화는 다음과 같이 발열반응을 하여 유액의 온도는 40℃ 이상 상승한다.
CaO + H2O ↔ Ca(OH)2 + 276kcal/kg-CaO
MgO + H2O ↔ Mg(OH)2 + 211kcal/kg-MgO
유액의 고형분 입자는 수화직후 불안정하여 응집이 많고 불균일하므로 유액을 습식 Pin Mill 또는 Bead Mill로 해쇄를 하고, 저장탱크에서 교반숙성을 하여 입자의 안정 즉 표면전위(Surface Potential), 표면장력(Surface Tension) 및 Vander Waals Force 최소화하며 미세 균일화하여 반응성을 높여준다.
4) 백운회 유액의 성분분리
유액은 Ca(OH)2와 Mg(OH)2의 혼합 Slurry로 다음과 같이 유사한 특성을 나타낸다.
Physical Constant(d : decomposes)
특성 Ca(OH)2 Mg(OH)2 CaCl2 MgCl2.6H2O Dolomite
분자량 74.09 58.33 110.00 203.31 184.41
밀도(Density) 2.24 2.36 2.15 2.569 2.872
용해/100부 0.17/10℃ 산에 용해 42.20/20℃ 116/20℃ 0.032/18℃
Melting(℃) 522-H2O 268 d 722 118 d 730 d
1. 백운석 염산용해
염산에 백운석을 첨가하면 탄산가스와 맹독성 염소가스가 배출되며 용해된다. 배출가스는 Scrubber등 기액반응 장치 하부에서 배기를 blowing하고 소석회를 분무하여 기액 반응으로 CaCl2 염산용해액 임으로 회수재사용한다.
백운석 염산용해 반응 : Ca.Mg(CO3)2 + 4HCl → CaCl2 + MgCl2 + 2H2O
마그네슘광물은 Magnesite(MgCO3), Brucite[(Mg(OH)2], Huntite[Mg3Ca(CO3)4], Dolomite[CaMg(CO3)2], Epsomite(MgSO4.7H2O), 경소백운회 미수화잔사는 염산에 용해됨으로 하나 이상을 선택하여 염산용해액으로 사용할 수 있다.
2. 백운회유의 MgCl2 반응
백운회유에 염산용해액을 첨가교반하면 다음과 같이 반응되어 이성질 혼합물로 고액분리가 가능한 상태로 변성된다.
MgCl2 반응 : Ca(OH)2↓ + Mg(OH)2↓ + CaCl2 + MgCl2 →2Mg(OH)2↓ + 2CaCl2
상기 MgCl2 반응으로 Ca(OH2) 고형물에서 수용CaCl2 용액으로 물성이 변경되며 Mg(OH)2↓는 고형물임으로 고액분리가 가능한 반응물로 된다.
이러한 처리의 반응방법은 및 Lime and Limestone등의 문헌에 공지된 일반식이다.
3. 성분 고액분리
상기 반응에서 고형물 2Mg(OH)2↓와 수용 2CaCl2는 Filter Press, Centrifuge, Decanter등으로 탈수하여 2Mg(OH)2↓는 고형물로 여과시 내부에 Cake 형상으로 잡히고 2CaCl2는 액상으로 약25~42% 농축된 염화칼슘 용액으로 분리된다.
Mg(OH)2 순도를 높이기 위해 Cake를 분산 희석하여 1회 정도 추가 탈수를 하면 약 96% 순도로 분리 가능하다.
Cake 분산을 용이하게 하기 위해 분산제를 사용하고 교반하면 입자 응집이 해쇄되며 반응성도 향상된다. 추가로 Bead Mill등으로 습식마쇄를 행하고 500Mesh 체별 하면 균일한 미세입자의 고반응성 Mg(OH)2로 되어 산화마그네슘, 난연제, 탄산마그네슘등 Magenesium 화합물 약 25여종의 원료로 사용될 수 있다.
5) 탄산마그네슘 제조방법
상기 분리된 Mg(OH)2 Slurry를 고형분 농도 5~15%에 온도를 50℃ 이상으로 승온하고 분산제로 메타인산소다, 아라비아검 등의 천연검류, 대두다당류, PGA, 레시친, Vitamin-D 등에서 하나 이상으로 선택하여 첨가하고, 고속교반을 하며 CO2 가스농도 25%~35%로 조정하여 가스공급이 균일하게 반응기 하부에서 Mg(OH)2 1mole에 2~3 mole의 CO2를 반응량에 따라 60~120분간 탄산화반응을 행하면 발열반응으로 70~80℃로 승온되며 5MgCO3.3H2O + 12H2O → 4MgCO3.Mg(OH)2.8H2O + CO2↑ + 6H2O로 반응이 진행되며 반응액이 급격히 감소되며 탄산화반응이 종료된다.
반응유를 80℃ 이상으로 유지하면 열해반응에 의해 CO2↑가 이탈되며 불안정한 탄산마그네슘 5MgCO3.3H2O 구조가 안정한 구조로 변경된다. CO2↑이탈이 용이하도록 공기를 주입하며 교반하여 안정한 염기성 탄산마그네슘 4MgCO3.Mg(OH)2.4H2O 합성이 종료된다.
이를 체별하고 탈수 건조 해쇄하여 고품질의 염기성탄산마그네슘을 제조한다.
이와 같은 합성으로 종래기술의 문제점들은 대부분 해소되며 미수화 잔사를 재사용하고 백운석 소성시 배출되는 CO2와 열해반응시 이탈되는 CO2를 회수하여 재활용 할 수 있다.
성분분리의 탈수용액은 염화칼슘 용액이며 이를 정제하여 액상염화칼슘으로 제설제, Polymer 응고제, 방진제 등의 제품으로 활용하며 분무식 또는 진공식 건조로 분말염화칼슘을 제조하여 식품첨가물, 흡습제, 응고제 용도로 제품화하며 염화칼슘은 흡습성이 강열함으로 흡습방지용으로 Agar, 지방산, 수지산, Steralic산을 열수에 용해하여 표면 코팅하여 흡습이 방지되도록 가공한다.
이하에서는 본 발명의 실시를 위한 구체적인 내용을 주요 공정별로 실험예로 설명하며 본 실험예는 공정 설명과 공정 확인을 위한 실험이며 발명의 범위를 제한하는 것은 아니다.
[ 실험예 1]
1. 백운석 원석 염산용해 시험
백운석을 염산에 용해하는 실험을 다음과 같이 실시하고 본 발명의 제1기질로 활용하는데 적합한 소재임이 확인되었다.
목적: Dolomite 원석을 염산에 용해하여 용액양태 및 기질활용성 시험
원료: Dolomite-대성 백운석 파쇄 선별원석(25~45mmø)
염산: 덕산화학의 시약용 Assy 36.36%
시험순서
(1) 백운석 원석을 Spray 수세 1회하여 부착 오염물 세정
(2) 원석 시료량 : 2.00kg 평량
(3) 시료를 Plastic 용기에 넣고 염산을 1병(1kg)을 부어 기포가 발생되지 않을 때까지 자연 용해함(독성 가스 위험하므로 풍향등 주시하며 가스 흡입 절대금지)
(4) 60분 경과하여 기포발생이 없어짐 약 1시간 끓음
(5) 용액과 잔유석 분리함 : 용해액 2,802g (잔유석 1,688g + 용액 1,114g)
(6) 2회차 염산 1병(1kg) 잔유석에 붓고 30분 자연 용해하고 기포 극소량 발생 용해액 분리 : 용해액 2510g (잔유석 1212g + 용액 1298g)
(7) 3회차 염산 1병 붓고 30분 자연용해: 용해 2020g (잔유석 754g + 용액 1266g)
(8) 4회차 염산 1병 붓고 30분 자연용해: 용해액 1580g(잔유석 312g + 용액 1268g)
용해시험 종합표 및 용해비율
염산 용해 용해액/용해율 비고
백운석[g] 염산량[g] 합계[g] 용액[g] 잔석[g] 합계[g] 용해율[%]
2,000 1,000 3,000 1,114 1,688 2,802 15.60
1,688 1,000 2,688 1,298 1,212 2,510 28.20
1,212 1,000 2,212 1,266 754 2,020 37.79
754 1,000 1,754 1,268 312 1,580 58.62
2,000 4,000 6,000 4,946 312 5,258 84.40 pH 4.15
(9) 용해고찰: 입자가 미세할수록 용해속도 빠르며 pH 1.7정도에서 완속 용해됨. 장시간 염산에 담가 두면 pH4.15에서 용해 종료됨.
(10) 용액 여과시험: 여과 전 용액: 흑색에 유사한 용액으로 점성이 있음.
1회 유체 여과: 여과지가 막혀 여과지를 교한하였으며 여과액색은 검붉은 Pink
2회 유체 여과: 여과지 1장으로 전량 여과되며 Pink 연한색으로 밝음
여과액농도: 42.43%
(11) 여과고찰: 여지가 바로 막혀 여과가 어려음으로 고압 Filter Press 또는 원심분리기 채용등 적정 여과기종 선택해야 함.
(12) 여과용액 정제
1) 백운석 원석을 용액에 소량 넣고 1분 후 Fe2 +/Fe3 + Layer 생성되며 용액 Clear 됨
2) 여과액을 약산성으로 하여(NaOH) pH 2.5~3.0으로 조정하고 35% H2O2 를 소량 적가하며 가온하고
3) H2O2를 촉매제로 하고 KOH, NaOH NH4OH 혹은 Ca(OH)2를 첨가하여 상기 불순물들이 Fe(OH)3↓, Al(OH)3↓, Mn(OH)2↓ 수산화물이 되어 침전된다.
4) 시험 고찰결과: 유기성 불순물은 여과 제거하고 유색 금속이온은 과산화수소, KOH, NaOH, NH4OH, NH4Cl, NaClO, NaHClO등 산화제를 선택적으로 사용하여 금속이온 제거하여 백운회유의 성분분리 기질로 사용 가능함.
2. 경소성 백운회 염산용해 시험
백운석 원석 염산용해액은 유색금속원소 및 유색 유기물의 용출로 노랑 회흑색으로 여과 2회액이 연노랑 순액으로 됨으로 경소성 백운회를 염산에 용해시험 결과 유기 유색물등이 소성시 소각되어 염산용해액은 여과 없이 백운석 용해액 2회 여과액과 동등한 Clear 용액임이 확인되었으며 용해 종말점은 pH 2.45로, 백운석 pH 4.15에 비해 강산성에서 종료되었으나 여과공정 없이 기질로 사용 가능함이 확인되었다.
소성의 검정 탄재 성분이 존재하므로 부유선광으로 기포를 제거하여 정제함.
용해액의 농도 : 56.03% = CaCl2 30.16% + MgCl2 25.87%
[ 실험예 2]
경소백운회 수화와 백운석 염산용해액 치환반응을 다음과 같이 실험하였다.
경소백운회 분말 3mmø 이하: 14.00kg
이론 수화수량: 14x132.32(수화물분자량)÷96.32(산화물분자량)-14=5.2325kg
실시 수화수량: 5.2325 x 8.8 = 46kg
수화 농도계산: 산화물 농도 14/60=23.33% 수화물농도 19.2325/60=32.00%
시간 온도변화: 17:30/50℃(수화직후 끓이며 승온)-30분-65℃-30분-81℃-20분-90℃-40분-96℃(수화시각 부터 120분 최고온도착)
수화유액 체별: 냉각된 유액 60kg을 500mesh 진동체로 선별하였음
잔사량: 건조후 잔사량 4.55kg 잔사율 4.55÷14.00=32.50%
유액량 : 순액량 50kg x 농도 11.70% = 5.85kg-고형분
mole: 5.85 ÷ 74.09/132.42 ÷ 74.09 = 44.178mole
백운석 염산용해액: 5.85kg x 55,95%(Ca(OH)2구성비 = 3.273kg-Ca(OH)2
반응할 수화유액: 3.273kg ÷ 74.09 Ca(OH)2mole 분자량 = 44.176mole
MgCl2 용질중량: MgCl2 분자량 95.22kg x 44.176mole = 4.20kg-MgCl2고형
4.20kg ÷ 0.4243 = 9.90kg-고형분44.43%
치환반응용 경소백운회 수화유액: 5.85kg x 4.94kg ÷ 9.90kg = 2.92kg
2.92kg ÷ 0.1170 = 25kg-농도11.70% 경소백운회 수화유액
MgCl2 치환반응: 경소백운회 수화유액 25kg에 백운석 염산용해액 4.94kg을 적가교반하며 치환반응 30분간하고 정치-침전하여 Filter Press로 탈수하고 Cake 고형물을 물 50kg에 재분산하여 다시 Filter Press로 탈수하고 Cake를 농도10%로 조정하여 최종 29.2kg 분리제품 수산화마그네슘 원료를 제작하였음(도 1 참조).
[ 실험예 3]
실험예 2에서 제조된 수산화마그네슘 Slurry 20kg(고형분 2.0kg=34.28mole)을 분취하여 55℃로 승온하여 Pilot 반응기에 담고 CO2 농도 33.3%인 혼합공기 130NL/분 속도로 60분간 교반하면서 첨가제와 반응속도를 달리하여 탄산화반응을 하여 백색의 탄산마그네슘 입자를 편상, 구상, 봉상으로 합성하고 2단계로. CO2 유량계는 잠그고 공기유량계 50NL/분 공기만 공급하며 Slurry를 85℃로 승온하여 30분간 열해 반응을 하고, 공기공급과 교반을 중지하고 액 표면에 기포발생이 없음을 확인하고 반응을 종료하여 탄산마그네슘 Slurry 제조를 완료하였다.
동 Slurry를 Filter Press 1 여과판에서 7kg/cm2 압축공기로 탈수하고 Box형 전기 건조기에서 건조하여 Cake상의 탄산마그네슘 3.2kg을 제조하였다.
가스 유량 결정근거
탄산 반응식: Mg(OH)2 + 2CO2 → Mg(HCO3)2
반응물 중량: 2.0kg = 2.00kg ÷ 58.33 = 34.2876mole
CO2 소요량: 34.2876mole x 2 x 22.4NL/CO2mole = 1,536NL
유량공급량: 1,536NL÷반응율 60%÷혼합율 33.3%÷60분 =129.3=130NL/분
CO2 유량계 45NL/분 + 공기유량계 85NL/분
[ 실험예 4]
실험예 2에서 1차 탈수 여액 1kg을 분취하여 전기건조기에서 130℃로 건조하여 분말염화칼슘 424g이 석출되어 고백색 염화칼슘을 시작하였다. 제작된 염화칼슘은 신속하게 유발로 분쇄하고 한천(Agar) 15g을 10배의 열수에 용해하여 분무식으로 분사해 표면 처리를 하고 다시 건조하여 1시간 동안 방치하여도 습윤없이 분말상으로 유지되었다.
본 실험예로 제작된 탄산마그네슘의 자체시험 주요품질은 다음과 같고, 이렇게 제조된 탄산마그네슘의 SEM 사진을 도 2 내지 4에 나타내었다.
1. 분리한 수산화마그네슘의 품질
Mg(OH)2 순도: 94.5% Ca(OH)2 함량 : 4.7%
2. 탄산마그네슘의 품질
강열감량: 43.5%(이론값 43.11% = 5xMgO 40.31÷탄산마그네슘 467.55)
Density: 0.10g/㎤ ~ 0.15g/㎤

Claims (8)

  1. 백운석을 30~60mmø의 크기로 파쇄 및 분급하여 소성로에 장입하여 800~1100℃ 온도에서 경소성하여 백운회를 제조하는 단계:
    상기 백운회를 수화하며 미수화 잔유물을 체별하여 수산화칼슘(Ca(OH)2)과 수산화마그네슘(Mg(OH)2)이 혼합된 백운회유를 제조하는 단계;
    Magnesite(MgCO3), Brucite[(Mg(OH)2), Serpentinite[Mg6Si4O10(OH)8], Huntite[Mg3Ca(CO3)4], Dolomite[CaMg(CO3)2] 및 Epsomite(MgSO47H2O)으로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 염산에 용해시켜 염화용액을 제조하는 단계;
    상기 염화용액에 H2O2, NaOH, KOH, NH4OH 및 Ca(OH)2 중 어느 하나를 선택적으로 적가하여 불순물을 안정화 침전시키고 여과분리를 통해 제거하는 단계;
    상기 염화용액에 아디티온산나트륨(Sodium Hydrosulfite-Na2S2O4)를 적가하여 착색이온을 안정화시킴으로써 백색도를 향상시키는 단계; 및
    상기 백운회유에 백색도가 향상된 염화용액을 첨가하면서 교반시킴으로써, 고형물 수산화마그네슘(Mg(OH)2)과 수용물 염화칼슘(CaCl2)을 상분리시키는 단계;를 포함하는, 수산화마그네슘과 염화칼슘의 제조 방법.
  2. 제1항에 있어서,
    상기 상분리시키는 단계는,
    여과 및 탈수 단계를 통해 고형물인 수산화마그네슘을 수용액상에 액상으로 존재하는 염화칼슘과 분리하는 것을 특징으로 하는, 수산화마그네슘과 염화칼슘의 제조 방법.
  3. 제1항에 있어서,
    상기 상분리시키는 단계 이후에, 분리된 수산화마그네슘에 분산제를 0.1~3중량부 첨가한 후, 물에 분산시키고 재탈수 과정을 반복함으로써, 수산화마그네슘의 순도를 높이는 단계;를 더 포함하는 것을 특징으로 하는, 수산화마그네슘과 염화칼슘의 제조 방법.
  4. 제3항에 있어서,
    상기 분산제는, 메타인산소다, 아라비아검등의 천연검류, 대두다당류, 알긴산프로필렌글리콜(PGA), 레시친 및 Vitamin-D로 이루어진 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는, 수산화마그네슘과 염화칼슘의 제조 방법.
  5. 삭제
  6. 제1항 내지 제4항 중 어느 한 항에 따른 방법으로 얻어진 수산화마그네슘을 습식 마쇄하고 체별하여 입자응집을 해쇄함으로써, 고반응성 액상수산화마그네슘을 제조하는 단계;
    상기 고반응성 액상수산화마그네슘을 탈수, 건조, 해쇄하여 고반응성 분말 수산화마그네슘을 제조하는 단계;
    상기 고반응성 분말 수산화마그네슘을 지방산, 수지산, Silane Coupling Agent 또는 Stearic산으로 습식 또는 건식으로 표면을 처리하여 수산화마그네슘을 제조하는 단계;
    수산화마그네슘을 고형분 농도 4~15중량%로 조정하고 온도를 50℃ 이상 승온하여 화학반응기에 도입한 후, 수산화마그네슘 고형분 1mole에 2~4mole의 탄산가스를 20부피% 이상의 농도로 공기와 혼합하여 취입하면서 교반하는 탄산화반응 단계; 및
    상기 탄산화반응이 종결된 후, 반응액의 온도를 80℃ 이상으로 승온하여 열분해 반응으로 생성된 탄산가스를 배출하여 안정된 탄산마그네슘으로 변성시키는 열해반응 단계;를 포함하는 탄산마그네슘의 제조 방법.
  7. 제1항 내지 제4항 중 어느 한 항에 따른 방법으로 얻어진 액상의 염화칼슘 수용액을 분무 또는 진공 건조하여 분말 염화칼슘을 제조하는 단계;를 포함하는 염화칼슘 분말의 제조 방법.
  8. 제7항에 있어서,
    상기 분말 염화칼슘을 제조하는 단계 이후에, 분말염화칼슘의 표면에 Agar, 지방산 혹은 수지산을 코팅하여 방습기능을 부여하는 방습처리 단계;를 더 포함하는 염화칼슘 분말의 제조 방법.
KR1020180003740A 2018-01-11 2018-01-11 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법 KR101933659B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180003740A KR101933659B1 (ko) 2018-01-11 2018-01-11 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180003740A KR101933659B1 (ko) 2018-01-11 2018-01-11 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160124698A Division KR20170004915A (ko) 2016-09-28 2016-09-28 백운석을 이용하는 탄산마그네슘과 염화칼슘 제조방법

Publications (2)

Publication Number Publication Date
KR20180035187A KR20180035187A (ko) 2018-04-05
KR101933659B1 true KR101933659B1 (ko) 2018-12-28

Family

ID=61977468

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180003740A KR101933659B1 (ko) 2018-01-11 2018-01-11 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법

Country Status (1)

Country Link
KR (1) KR101933659B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197669B1 (ko) 2019-10-29 2020-12-31 (주)티케이이엔에스 내방출성 연질 흡습제 조성물 및 이를 포함하는 흡습제품
CN115028179A (zh) * 2022-07-21 2022-09-09 陕西天宝矿业有限公司 一种环保高效煅烧温度低的轻质氧化镁生产工艺
KR20240080373A (ko) 2022-11-30 2024-06-07 재단법인 영월산업진흥원 백운석으로부터 고순도 산화마그네슘을 제조하는 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441238B1 (ko) 2013-03-22 2014-09-18 한국석회석신소재연구재단 백운석으로부터 칼슘계 화합물을 분리하는 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441238B1 (ko) 2013-03-22 2014-09-18 한국석회석신소재연구재단 백운석으로부터 칼슘계 화합물을 분리하는 방법

Also Published As

Publication number Publication date
KR20180035187A (ko) 2018-04-05

Similar Documents

Publication Publication Date Title
KR101759765B1 (ko) 고순도 침전형 탄산칼슘의 제조
US8658119B2 (en) Production and/or recovery of products from waste sludge
KR101933659B1 (ko) 백운석을 이용한 수산화마그네슘과 염화칼슘의 제조방법
US7338649B2 (en) Method of producing food grade hydrated lime
CN101746784B (zh) 一种活性氧化镁生产工艺
KR20170004915A (ko) 백운석을 이용하는 탄산마그네슘과 염화칼슘 제조방법
US3340003A (en) Process for producing high purity alkaline earth compounds
CN108017079A (zh) 一种石灰沫生产立方形碳酸钙的方法
US20060099132A1 (en) Process for the production of precipitated calcium carbonates and product produced thereby
US6790424B2 (en) Process for generation of precipitated calcium carbonate from calcium carbonate rich industrial by-product
CN101157464B (zh) 一种白云石湿法综合利用工艺
JP4084751B2 (ja) 高濃度の炭酸カルシウムを含有する産業副産物から沈降炭酸カルシウムを生成する方法
CN100384728C (zh) 从橄榄石制备二氧化硅的方法
JP3902718B2 (ja) アラゴナイト結晶系炭酸カルシウムの製造方法
KR20160124712A (ko) 백운석을 이용하는 수산화마그네슘과 염화칼슘 제조방법
JP5107493B2 (ja) 炭酸カルシウムの製造方法
CN110963520A (zh) 一种石灰沫生产立方形碳酸钙的方法
KR20010083819A (ko) 탄산칼슘의 제조 방법
CN100368295C (zh) 一种利用菱镁尾矿生产轻质碳酸镁的方法
JP2008230923A (ja) ドロマイト粒子の製造方法
CN113120935B (zh) 一种碳酸钙及其制备方法
US3455796A (en) Treatment of residues of oil shale retorting for magnesium recovery
KR0144702B1 (ko) 탄산칼슘의 제조방법
CN111994934B (zh) 一种利用方解石生产轻质碳酸钙的方法及轻质碳酸钙
ITMI950469A1 (it) Procedimento di produzione di derivati magnesiaci

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right