KR101906557B1 - 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법 - Google Patents

합성 펩타이드를 이용한 유도만능줄기세포의 제조방법 Download PDF

Info

Publication number
KR101906557B1
KR101906557B1 KR1020150111223A KR20150111223A KR101906557B1 KR 101906557 B1 KR101906557 B1 KR 101906557B1 KR 1020150111223 A KR1020150111223 A KR 1020150111223A KR 20150111223 A KR20150111223 A KR 20150111223A KR 101906557 B1 KR101906557 B1 KR 101906557B1
Authority
KR
South Korea
Prior art keywords
cells
peptide
pluripotent stem
stem cells
differentiation
Prior art date
Application number
KR1020150111223A
Other languages
English (en)
Other versions
KR20170017385A (ko
Inventor
박윤정
정종평
서진숙
이주연
이동우
Original Assignee
서울대학교산학협력단
주식회사 나이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 주식회사 나이벡 filed Critical 서울대학교산학협력단
Priority to KR1020150111223A priority Critical patent/KR101906557B1/ko
Priority to EP16833217.9A priority patent/EP3345999B1/en
Priority to JP2017543696A priority patent/JP6446566B2/ja
Priority to US15/514,337 priority patent/US10066212B2/en
Priority to PCT/KR2016/007857 priority patent/WO2017022981A1/ko
Publication of KR20170017385A publication Critical patent/KR20170017385A/ko
Application granted granted Critical
Publication of KR101906557B1 publication Critical patent/KR101906557B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4723Cationic antimicrobial peptides, e.g. defensins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF] (urogastrone)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/50Fibroblast growth factors [FGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0037Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0043Medium free of human- or animal-derived components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/005Protein-free medium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0056Xeno-free medium

Abstract

본 발명은 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법에 관한 것으로, 보다 상세하게는 NF-κB의 활성을 저해하고 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET)를 촉진시키는 펩타이드를 이용한 유도만능줄기세포의 제조방법에 관한 것이다. 본 발명에 따른 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법은 동물혈청 또는 이종세포와의 공배양 등이 필요없는 무-이종감염(xenopathogen free) 또는 무-지지세포(feeder cell-free) 조건에서 미분화 상태의 다능성 줄기세포를 효율적으로 제조할 수 있으므로, 임상적용이 가능한 줄기세포 치료제 개발에 매우 유용하다.

Description

합성 펩타이드를 이용한 유도만능줄기세포의 제조방법 {Method for Preparing Induced Pluripotent Stem Cells Using Synthetic Peptide}
본 발명은 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법에 관한 것으로, 보다 상세하게는 NF-κB의 활성을 저해하고 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET)를 촉진시키는 펩타이드를 이용한 유도만능줄기세포의 제조방법에 관한 것이다.
줄기세포(stem cells)는 무한하게 자가 재생을 할 수 있고 신체 모든 조직의 세포로 분화할 수 있는 미분화 세포로, 재생의학, 신약 개발과 같은 세포치료제의 개발, 인체 질환의 발병 원인 및 치료 등을 연구하는 중요한 대상으로 각광받고 있다. 배아줄기세포는 다양한 세포로 분화가 가능하고, 기관 전체를 만들 수 있지만, 세포치료제로서 난자를 사용해야 하는 윤리적 문제와 면역거부반응이 있어 임상에 사용하기 어렵다.
이러한 문제를 해결하기 위해, 2006년에 분화가 진행된 체세포를 체외 배양과정에서 역분화(dedifferentiation) 및 리프로그래밍(reprogramming)함으로써 배아줄기세포의 특성인 자가재생산능 및 전분화능을 가진 역분화 유도만능줄기세포(iPSC)를 생산하는 기술이 일본 교토대 야마나카 교수팀에 의해 세계최초로 성공하였다 (Takahashi K et al., Cell 126(4):663-676, 2006; Takahashi K et al., Cell 131(5):861-72, 2007). 역분화는 이미 분화된 세포들이 초기 미분화 상태로 되돌아가는 상태를 말하며, 이러한 역분화 현상은 일련의 후생학적 역행과정인 ‘리프로그래밍’을 통해 이루어진다. 따라서, 역분화 만능줄기세포(iPSC)는 이미 분화된 체세포에 외부에서 인위적인 자극을 주어 우리 몸을 이루는 모든 기관의 세포로 분화 가능한 배아줄기세포와 비슷한 전분화능(pluripotency)을 획득한 세포를 의미한다.
현재까지 역분화 인자의 세포내 도입은 바이러스를 이용하는 방법이 가장 효과적이지만, 치료 목적을 위한 역분화 만능줄기세포를 제작하는데 바이러스를 이용하는 것은 잠재적 위험성을 지니고 있으며, 세포내 유전체의 무작위로 매우 안정적으로 들어가기 때문에 유전자의 변이와 같은 다양한 문제들이 항상 내제하고 있다. 또한, 소태아혈청(fetal bovine serum, FBS) 및 동물유래의 지지세포(feeder cells)인 마우스 배아섬유아세포(mouse embryonic fibroblasts, MEF)등의 이종감염물질(xenopathogen)이 역분화 유도 과정에서 필요하므로, 역분화 만능줄기세포의 궁극적인 목적이 인체에 이식될 수 있는 조직을 생성하는 것이라고 할 때, 상기와 같은 위험성으로 인해 임상에 적용하는 것은 한계가 있다. 그리고, 분화된 인간 체세포를 전분화능을 띄는 유도만능줄기세포로 리프로그래밍 하기 위하여 배아줄기세포 특이적 전사인자인 Oct4, Sox2, c-Myc, Klf4 유전자군을 역분화 유도인자로 사용하여 과발현시키는 현재의 제조기법은 그 효율이 0.1% 정도로 상당히 낮다는 문제점을 가지고 있다 (Takahashi, K. et al., Cell 131:861-872, 2007). 따라서, 세포치료제로 역분화 유도만능줄기세포(iPSC)를 활용하기 위해서는 역분화 유도 효율을 획기적으로 개선할 수 있는 다양한 역분화 유도인자의 개발 및 이들을 역분화 과정에서 실질적으로 활용할 수 있는 후속 기술의 개발이 절실히 요구된다.
최근, NF-κB는 상피세포-중간엽세포 전이(Epithelial-Mesenchymal Transition,EMT)를 촉진한다는 것과(Huber MA et al., J Clin Invest. 114(4):569-81, 2004), 중간엽세포-상피세포 전이(Mesenchymal-Epithelial Transition, MET)는 마우스유래 섬유아세포(mouse fibroblasts)를 역분화(dedifferentiation)시키는데 필수적 (Li R et al., Cell Stem Cell. 7(1):51-63, 2010)이라는 것이 보고되었다.
이에, 본 발명자들은 임상적용에 안전한 세포치료제를 개발하기 위해 역분화 유도만능줄기세포(iPSC)의 역분화 유도 효율을 높이고자 예의 노력한 결과, 세포내 NF-κB 단백질의 활성을 저해하는 기능성 펩타이드를 발굴하고, 상기 펩타이드가 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET)를 유도하여 만능줄기세포(iPSC)로의 역분화를 촉진시키는 것을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 유효성분으로 함유하는 분화된 세포에서 유도만능줄기세포로의 역분화 촉진용 조성물을 제공하는데 있다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
본 발명의 다른 목적은 (a) 분화된 세포에 역분화 유도인자를 도입하는 단계; 및 (b) 역분화 유도인자가 도입된 세포에 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 처리하여 배양하는 단계를 포함하는 분화된 세포로부터 역분화 유도만능줄기세포의 제조방법을 제공하는데 있다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 유효성분으로 함유하는 분화된 세포에서 유도만능줄기세포로의 역분화 촉진용 조성물을 제공한다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
본 발명은 또한, (a) 분화된 세포에 역분화 유도인자를 도입하는 단계; 및 (b) 역분화 유도인자가 도입된 세포에 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 처리하여 배양하는 단계를 포함하는 분화된 세포로부터 역분화 유도만능줄기세포의 제조방법을 제공한다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
본 발명에 따른 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법은 동물혈청 또는 이종세포와의 공배양 등이 필요없는 무-이종감염(xenopathogen free) 또는 무-지지세포(feeder cell-free) 조건에서 미분화 상태의 다능성 줄기세포를 효율적으로 제조할 수 있으므로, 임상적용이 가능한 줄기세포 치료제 개발에 매우 유용하다.
도 1은 역분화 인자가 도입된 인간유래 섬유아세포(human dermal fibroblasts)에 기능성 펩타이드(P1, P2, P3) 및 대조군 펩타이드(C1, C2)를 10일 동안 24시간 간격으로 처리 후, 알칼린포스페테이즈 염색(Alkaline phosphatase staining, AP)을 통해 확인한 콜로니 염색 결과이다.
도 2는 도 1과 같은 방법으로 펩타이드를 처리 후, 면역형광법(immunofluorescence, IF)을 통해 배아줄기세포(embryonic stem cell, ES cell) 마커(marker)인 Oct4 발현을 확인한 결과이다.
도 3은 도 1과 같은 방법으로 펩타이드를 처리 후, 유세포분석기(flow cytometry, FACS)를 통해 분화된 체세포의 역분화 과정인 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET) 정도를 인간유래 섬유아세포(human dermal fibroblasts)의 마커(marker)인 THY1과 상피세포(epithelial cell)의 마커(marker)인 EPCAM(epithelial cell adhesion molecule)로 확인한 결과이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 NF-κB 단백질의 활성을 저해하는 기능성 펩타이드를 발굴하고, 상기 펩타이드가 상피세포-중간엽세포 전이(Epithelial Mesenchymal Transition,EMT)를 저해하고 나아가 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET)를 유도하여 역분화(dedifferentiation)를 촉진시키는 것을 확인하였다.
따라서, 본 발명은 일관점에서 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 유효성분으로 함유하는 분화된 세포에서 유도만능줄기세포로의 역분화 촉진용 조성물에 관한 것이다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
본 발명은 다른 관점에서, (a) 분화된 세포에 역분화 유도인자를 도입하는 단계; 및 (b) 역분화 유도인자가 도입된 세포에 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 처리하여 배양하는 단계를 포함하는 분화된 세포로부터 역분화 유도만능줄기세포의 제조방법에 관한 것이다.
[일반식 I] GKCSTRGRKX1X2RRKK
상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
본 발명에 있어서, 상기 펩타이드는 서열번호 1 내지 3으로 구성된 군에서 선택된 어느 하나인 것이 바람직하나, 이에 한정되는 것은 아니다.
P1 펩타이드 : GKCSTRGRKCCRRKK (서열번호 1)
P2 폡타이드 : GKCSTRGRKC M RRKK (서열번호 2)
P3 폡타이드 : GKCSTRGRK M CRRKK (서열번호 3)
본 발명에 있어서, 펩타이드는 0.01~100μM 농도인 것이 바람직하며, 더욱 바람직하게는 10μM 인 것이나, 이에 한정되는 것은 아니다. 또한, 상기 펩타이드는 24시간 간격으로 10일 동안 처리하는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 분화된 세포는 체세포 또는 전구세포인 것이 바람직하며, 인간 유래인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 “체세포”란 간충직(mesenchymal) 특징을 갖는 인간유래 섬유아세포(human dermal fibroblasts)를 말한다.
본 발명에 있어서, 체세포 배양에는 EMEM(Eagle’s Minimum Essential Medium, ATCC 30-2003)을 사용하는 것이 바람직하며, 펩타이드를 처리한 이후에는 Essential 8 Medium(Gibco, A15169-01)를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 역분화 유도인자는 Oct3/4, Sox2, c-Myc, Klf4 및 Lin28로 이루어진 군에서 선택된 어느 하나 이상인 것이 바람직하나, 이에 한정되는 것은 아니다. Oct3/4, Sox2, Klf4, c-Myc 또는 Lin28 역분화 인자 (reprogramming gene)는 분화가 끝난 세포를 재프로그램화시킬 수 있는 유전자들을 의미하며, 특히 Oct4, Sox2, Klf4 및 c-Myc는 Yamanaka 인자라고 부른다.
본 발명에서는 공지된 방법에 따라, 상기 역분화 인자를 서로 다른 3개의 episomal vector에 나누어 제작하고 p53 shRNA를 함께 발현시켜 (pCXLE-hOCT3/4-shp53, pCXLE-hSK, pCXLE-hUL) 역분화 줄기세포의 확립 효율을 높였다 (Okita K et al., Nat Methods. 8(5):409-12, 2011).
본 발명에서 역분화 인자를 분화된 세포에 전달하는 방법은 역분화 유도인자를 분화된 세포의 배양액에 투여하는 방법, 직접 주입하는 방법 또는 역분화 인자를 삽입한 바이러스 벡터로 트랜스팩션(transfection)시킨 패키징 세포로부터 얻은 바이러스로 분화된 세포를 감염시키는 방법 등을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 상기 역분화 인자를 분화된 세포에 직접 주입하는 방법으로 미세주입법(microinjection), 전기천공법(electroporation), 인슐레이터(insulator), 입자 분사법(particle bombardment) 등을 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에서는 Lonza의 nucleofector(Amaxa, US/Nucleofector, Electroporation Gene Transfer, Lonza) 기기를 이용한 전기천공법(electroporation)으로 역분화 인자를 주입하였으며, 역분화 유도인자가 도입된 체세포는 배양 접시에서 3~5일 정도 배지를 매일 교체하며 안정화를 시켜준 후 펩타이드를 처리하는 것이 바람직하다.
본 발명은 무-이종감염(xenopathogen free) 또는 무-지지세포(feeder cell free) 조건하에서 역분화 유도만능줄기세포를 제조함으로써 세포치료제로 이용이 가능하다. 본 발명에서는 인간유래 재조합비트로넥틴 단백질(Vitronectin Recombinant Human protein, VTN-N)을 배양접시 표면에 코팅하여, 이종세포인 지지세포(feeder cell free)의 사용을 배재하고 이종감염물질(xenopathogen)의 문제를 해결하였다. 역분화 인자가 도입된 체세포를 비트로넥틴 단백질이 코팅된 배양접시에 배양하면서 상기의 기능성 펩타이를 처리하면, 유도만능줄기세포로의 역분화 효율 또한 촉진시킬 수 있다.
본 발명에 있어서, 펩타이드의 처리는 세포 배양 배지에 직접 처리하거나, 배양용 생체재료와 혼합하여 처리할 수 있고, 생체재료란 합성고분자 또는 천연고분자를 말한다. 본 발명에 있어서, 합성고분자는 폴록사머, 폴리에틸렌 글리콘 및 폴르프로필렌 글리콜인 것이 바람직하며, 천연고분자는 비트로넥틴, 콜라겐, 젤라틴, 알긴산, 황산 콘드로이틴, 피브로넥틴 및 세포외기질 단백질인 것이 바람직하나, 이에 한정되는 것은 아니다. 본 발명에서는 천연고분자인 트로넥틴을 사용하였으며, 이러한 생체재료는 배양용기에 코팅하여 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.
또한, 본 발명은 기존의 유도만능줄기세포(iPSC) 배양시에 사용하는 동물유래의 지지세포(feeder cells)인 마우스 배아섬유아세포(mouse embryonic fibroblasts, MEF)를 대체할 수 있는 배양용 생체재료를 사용함으로써, MEF 지지세포로부터 여러가지 인자들이 유도만능줄기세포로 공급되어 발생하는 이종감염물질(xenopathogen)을 배제할 수 있다. 따라서, 본 발명의 펩타이드를 이용한 역분화 유도만능줄기세포(iPSC)의 제조는 미분화 다능성 줄기세포를 세포치료제로 사용하는데 있어 고려될 이종감염물질(xenopathogen)과 역분화 유도 효율 문제를 모두 개선할 수 있다.
본 발명에 있어서, 상기 기능성 펩타이드는 역분화 인자가 도입된 체세포내 NF-κB 단백질의 핵 내 이동을 억제하며 NF-κB 신호기전을 저해함으로써 NF-κB 활성을 억제한다는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 펩타이드를 역분화 인자가 도입된 체세포에 처리하면 펩타이드에 의해 NF-κB 단백질의 핵 내 이동이 저해되어, 상피세포-중간엽세포 전이(Epithelial Mesenchymal Transition,EMT)를 억제하고 중간엽세포-상피세포 전이(Mesenchymal-Epithelial transition, MET)를 촉진함으로써 인간유래 체세포에서 유도만능줄기세포(iPSC)로의 역분화(dedifferentiation) 효율이 증가하는 것을 확인하였다.
본 발명에서는, 다능성 줄기세포의 미분화 상태의 유지를 ALP (alkaline phosphatase), OCT4, SOX2, hERT (human telomerase reverse transcriptase) 및 SSEA-4로 이루어진 군으로부터 선택되는 하나 이상의 유전자 발현이 증가되는 것으로 확인하였다. 즉, 역분화 인자가 도입된 체세포에 기능성 펩타이드를 처리하고 알칼린포스페테이즈 염색(Alkaline phosphatase staining, AP staining)을 통해 역분화 단계 중 콜로니가 생성되는 초기단계를 관찰하였으며, 또한 Oct4 항체(antibody)를 이용하여 Oct4의 발현을 면역형광법(immunofluorescence, IF)으로 확인하였다. 마지막으로 체세포의 역분화 과정에서 간엽세포-상피세포 전이(Mesenchymal-Epithelial Transition, MET) 정도를 인간유래 섬유아세포(human dermal fibroblasts)의 마커(marker)인 THY1 및 상피세포(epithelial cell)의 마커(marker)인 EPCAM(epithelial cell adhesion molecule)의 항체를 사용하여 유세포분석기(flow cytometry, FACS)로 확인하였다.
본 발명은 역분화 유도 효율을 향상시킬 수 있으며, 이러한 방법으로 제조된 유도만능줄기세포는 다능성 줄기세포로서의 특성을 정상적으로 나타내는 미분화 상태의 다능성 줄기세포이다. 이에, 궁극적으로 임상적용이 가능한 다능성 줄기세포를 효과적으로 제조하고, 임상적용이 가능한 다능성 줄기세포 자원을 확보할 수 있는 대량배양 시스템을 개발하는데 매우 유용하다.
[실시예]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 역분화 유도 촉진 펩타이드의 합성
P1 펩타이드(GKCSTRGRKCCRRKK :서열번호 1)를 합성장치를 이용하여 C 말단으로부터 F-moc 고체상 화학합성방법으로 합성하였다. 즉, 블로킹 그룹(Blocking group)으로 Fmoc-(9-Fluorenylmethoxycarbonyl)이 결합된 Rink 레진 (0.075 mmol/g, 100 ~ 200 mesh, 1% DVB crosslinking)을 사용하여 합성하였으며, 합성기에 50 mg의 Rink Amide MBHA 레진을 넣은 뒤 DMF로 레진을 스웰링(swelling) 시킨 후 Fmoc-group의 제거를 위해 20% piperidine/DMF 용액을 사용하였다. C 말단부터 서열대로 0.5M amino acid 용액(용매: DMF), 1.0M DIPEA(용매: DMF&NMP), 0.5M HBTU (용매: DMF)를 각각 5, 10, 15 당량씩 넣어 질소 기류하에서 1~2시간 동안 반응시켰다. 상기 디프로텍션(deprotection)과 커플링(coupling) 단계가 끝날 때마다 DMF와 메탄올로 두번씩 세척하는 과정을 거쳤다. 마지막 아미노산을 커플링(coupling) 시킨 후에도 디프로텍션(deprotection)을 해주어 Fmoc-group을 제거하였다.
합성의 확인은 닌하이드린 테스트(ninhydrin test) 방법을 이용하였고, 테스트를 거치고 합성이 완료된 레진은 건조시킨 후 Reagent K cleavage 칵테일을 레진 1g 당 20ml의 비율로 넣어 3시간 동안 shaking 시킨 후 필터링을 통해 레진과 펩타이드가 녹아 있는 칵테일을 분리하였다. 필터로 걸러진 용액을 콜드 에테르(cold ether)를 넣어주어 펩타이드를 고체상으로 결정화시키고 이를 원심분리하여 분리해내었다. 이때 에테르로 여러 번 세척과 원심분리 과정을 거쳐 Reagent K cleavage 칵테일을 완전히 제거하였다. 이렇게 해서 얻어진 crude를 증류수에 녹여 액체크로마토 그래피를 이용하여 분리 정제하였으며, 정제된 펩타이드는 동결건조 하였다.
P1 펩타이드 : GKCSTRGRKCCRRKK (서열번호 1)
또한, P1 펩타이드(서열번호 1)의 C 말단 5번째 시스테인을 메티오닌으로 치환한 P2 펩타이드(서열번호 2) 및 P1 펩타이드(서열번호 1)의 C 말단 6번째 시스테인을 메티오닌으로 치환한 P3 펩타이드(서열번호 3)를 합성장치를 이용하여 F-moc 고상 화학합성 방법으로 합성하였다.
P2 폡타이드 : GKCSTRGRKC M RRKK (서열번호 2)
P3 폡타이드 : GKCSTRGRK M CRRKK (서열번호 3)
비교예 1 : 기능성 펩타이드(P1, P2, P3)의 대조군 C1 펩타이드
상기 실시예 1과 같은 합성장치를 이용하여 F-moc 고상 화학합성 방법으로 합성하였다.
C1 펩타이드 : HRRCNKNNKKR (서열번호 4)
비교예 2 : 기능성 펩타이드(P1, P2, P3)의 대조군 C2 펩타이드
상기 실시예 1과 같은 합성장치를 이용하여 F-moc 고상 화학합성 방법으로 합성하였다.
C2 펩타이드 : GLRSKSKKFRRPDIQYPDA (서열번호 5)
실시예 2: 인간유래 체세포의 역분화에 대한 펩타이드별 유도 효율 검증
2-1: ALP 염색을 통한 역분화 만능줄기세포 콜로니 개수 확인
펩타이드별 역분화 유도효율을 확인하기 위하여, 인간 재조합 비트로넥틴 단백질(Vitronectin Recombinant Human protein, VTN-N)이 코팅 된 6-웰(well)을 이용하여 1.5×105개/웰(well)의 인간유래 피부섬유아세포(hDF : human dermal fibroblasts)에 전기천공(electroporation)기법으로 역분화 유도인자 (Oct3/4, Sox2, c-Myc, Klf4, Lin28) DNA를 2μg씩 도입하였다. 상기 역분화 인자들은 공지의 방법에 따라, 서로 다른 3개의 episomal vector에 나누어 제작하고 p53 shRNA를 함께 발현시켜 (pCXLE-hOCT3/4-shp53, pCXLE-hSK, pCXLE-hUL) 역분화 줄기세포의 확립 효율을 높였다 (Okita K et al., Nat Methods. 8(5):409-12, 2011). 역분화 인자가 도입된 세포는 EMEM(Eagle’s minimal essential medium, ATCC)배지로 배양하여, 세포 confluency가 50%가 될 때까지 24시간 간격으로 배지를 교체하였다. Confluency가 50% 되었을 때, Essential 8 배지로 교체하면서 역분화 유도 촉진 펩타이드와 대조군 펩타이드를 각각 10μM 처리하였으며, 24시간 마다 배지 교체와 동시에 펩타이드를 처리하였다. 펩타이드를 24시간 간격으로 10일 동안 처리하고, 배아줄기세포의 마커(marker)로 알려진 알칼린 포스페테이즈(Alkaline Phosphatase, AP)로 펩타이드별 역분화 효율을 확인하기 위해, AP 염색 키트는 Milipore의 Alkaline Phosphatase Detection Kit를 구입하여 사용하였다. 배지를 제거하고 4% 파라포름알데하이드(Paraformaldehyde)를 세포에 넣어 2분 동안 고정하여 Naphthol/Fast Red Violet 염색약을 웰(well) 넣고 20분 이상 어두운 공간에 실온 보관하여 반응시킨 후, DPBS(Dulbecco’s phosphate buffered saline)로 염색약을 세척하고 현미경으로 염색된 콜로니의 개수 확인하였다.
그 결과, 도 1에 나타난 바와 같이, 펩타이드를 처리하지 않은 세포 및 C1, C2 펩타이드를 처리한 대조군에 비해 P1, P2, P3 펩타이드를 처리한 세포에서 더 많은 콜로니가 염색된 것을 확인할 수 있었다. 콜로니의 개수를 세어 정량화한 그래프에서도 마찬가지로 P1, P2, P3 펩타이드가 더 역분화를 효율적으로 유도하는 것을 확인할 수 있었다 (도 1).
2-2 : 배아줄기세포 마커 염색을 통한 역분화만능줄기세포 형성 확인
실시예 2-1과 동일한 방법으로, 인간피부세포(human Dermal fibrolasts)에 전기천공(electroporataion)기법으로 역분화 인자를 세포 내로 도입하고 비트로넥틴(Vitronectin)이 코팅된 6-웰(well)에 분주하였다. 이후, 면역형광(immunofluorescence, IF)기법을 이용하여 배아줄기세포 마커(marker)인 Oct4의 발현정도를 비교하였다.
10일 동안 각각의 펩타이드 10μM 을 처리한 세포들에 4% 파라포름알데하이드(Paraformaldehyde)를 넣고 실온에서 10분 동안 고정시킨 후, 0.5% Triton-X 100을 넣고 15분 동안 실온에서 배양하여 세포내 핵까지 투과할 수 있도록 세포벽을 뚫고 3% 소혈청알부민(Bovine Serum Albumin, BSA)가 녹아있는 완충용액(PBS)으로 30분 동안 블록킹을 하였다. Oct4 1차 항체(antibody)를 1% 소혈청알부민이 녹아있는 완충용액(PBS)에 1:100의 비율로 희석하여 4℃에서 16시간 동안 반응시키고, 형광염료(Fluorescein isothiocyanate, FITC)가 결합된 2차 항체를 1:200 비율로 희석하여 실온에서 1시간 동안 반응시켰다. 마지막으로, 핵을 염색하는 염료(Hoechst 33342, blue)를 상온에서 10분 동안 처리하고, 완충용액(PBS)으로 세척하여 공초점 주사전자현미경(confocal scanning microscope, IX 70, Olympus Co, Tokyo, Japan)으로 웰(well)에서 가장 형광발현이 선명한 콜로니를 촬영하였다.
그 결과, 도 2에 나타난 바와 같이, 펩타이드를 처리하지 않은 세포 및 C1, C2 펩타이드를 처리한 대조군에 비해 P1, P2, P3 펩타이드를 처리한 세포에서 더 많은 형광이 발현된 것을 확인할 수 있었다. 이는 배아줄기세포 마커(marker)인 Oct4의 발현양이 많다는 것으로, P1, P2, P3 펩타이드가 역분화를 촉진시킨다는 것을 알 수 있다. AP 염색 또한 P1, P2, P3 펩타이드를 처리한 군에서 더 선명하게 나타난 바, 기능성 P1, P2, P3 펩타이드가 역분화 만능줄기세포(iPSC)의 형태인 콜로니(colony)로의 역분화를 촉진한다는 것을 확인하였다 (도 2).
2-3 : 유세포분석기 ( FACS )를 이용한 펩타이드별 역분화 유도차이 확인
실시예 2-1과 동일한 방법으로, 인간피부세포(human Dermal fibrolasts)에 전기천공(electroporataion)기법으로 역분화 인자를 세포 내로 도입하고 비트로넥틴(Vitronectin)이 코팅된 6-웰(well)에 분주하였다. 세포가 안정화 된 펩타이드 처리 10일 후에, 스크래퍼를 이용하여 세포를 15ml 팔콘튜브(Falcon tube)에 모은 다음 1500rpm으로 3분동안 원심분리하였다. 완충용액(PBS)로 세척 후, 차가운 완충용액(cold PBS)을 이용하여 1.5×105 개의 세포를 각각의 튜브에 옮긴다. 튜브에 10μg/ml 농도의 THY1(cat : sc-59398), EPCAM(cat : ab20160) 항체를 3% BSA/PBS 용액에 희석하여 넣고 4℃에서 30분 동안 반응시킨 다음, 1500rpm으로 5분 동안 3번 원심분리하였다. 차가운 완충용액(cold PBS)로 세척 후, 라운드튜브(round tube)로 옮겨 유세포분석기(flow cytometry, FACS)로 분석하였다. 샘플들을 측정하기에 앞서, THY1은 인간유래 섬유아세포(human dermal fibroblasts)를 사용하고, EPCAM은 인간유래 유방상피세포(human mammary epithelial cell, HMEC)를 사용하여 컨트롤 기준값을 고정하였다.
그 결과, C1, C2 펩타이드를 처리한 대조군에 비해 P1, P2, P3 펩타이드를 처리한 군에서, 간충직 (mesenchymal) 모양을 갖는 섬유아세포가 눈에 띄게 상피(epithelial) 모양으로 변화된 것을 확인할 수 있었다 (도 3).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
<110> Seoul National University R&DB Foundation <120> Method for Preparing Induced Pluripotent Stem Cells Using Synthetic Peptide <130> P15-B243 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> P1 <400> 1 Gly Lys Cys Ser Thr Arg Gly Arg Lys Cys Cys Arg Arg Lys Lys 1 5 10 15 <210> 2 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> P2 <400> 2 Gly Lys Cys Ser Thr Arg Gly Arg Lys Cys Met Arg Arg Lys Lys 1 5 10 15 <210> 3 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> P3 <400> 3 Gly Lys Cys Ser Thr Arg Gly Arg Lys Met Cys Arg Arg Lys Lys 1 5 10 15 <210> 4 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> C1 <400> 4 His Arg Arg Cys Asn Lys Asn Asn Lys Lys Arg 1 5 10 <210> 5 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> C2 <400> 5 Gly Leu Arg Ser Lys Ser Lys Lys Phe Arg Arg Pro Asp Ile Gln Tyr 1 5 10 15 Pro Asp Ala

Claims (17)

  1. 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 유효성분으로 함유하는 분화된 세포에서 유도만능줄기세포로의 역분화 촉진용 조성물:
    [일반식 I] GKCSTRGRKX1X2RRKK
    상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
  2. 제1항에 있어서, 상기 펩타이드는 서열번호 1 내지 3으로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 유도만능줄기세포로의 역분화 촉진용 조성물.
  3. 제1항에 있어서, 상기 분화된 세포는 체세포 또는 전구세포인 것을 특징으로 하는 유도만능줄기세포로의 역분화 촉진용 조성물.
  4. 제1항에 있어서, 상기 분화된 세포는 인간 유래인 것을 특징으로 하는 유도만능줄기세포로의 역분화 촉진용 조성물.
  5. 다음 단계를 포함하는 분화된 세포로부터 역분화 유도만능줄기세포의 제조방법:
    (a) 분화된 세포에 Oct3/4, Sox2, c-Myc, Klf4 및 Lin28로 이루어진 군에서 선택된 어느 하나 이상의 역분화 유도인자를 도입하는 단계; 및
    (b) 역분화 유도인자가 도입된 세포에 하기 일반식 I의 아미노산 서열로 표시되는 펩타이드를 처리하여 배양하는 단계;
    [일반식 I] GKCSTRGRKX1X2RRKK
    상기 X1 및 X2는 시스테인(C: cysteine) 또는 메티오닌(M: methionine)이다.
  6. 제5항에 있어서, 상기 펩타이드는 서열번호 1 내지 3으로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  7. 제5항에 있어서, 상기 펩타이드는 0.01~100μM 농도인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  8. 제5항에 있어서, 상기 분화된 세포는 체세포 또는 전구세포인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  9. 제5항에 있어서, 상기 분화된 세포는 인간 유래인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  10. 제5항에 있어서, 무-이종감염(xenopathogen free) 또는 무-지지세포(feeder cell free) 조건인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  11. 삭제
  12. 제5항에 있어서, 상기 펩타이드는 NF-κB 활성을 억제하는 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  13. 제5항에 있어서, 상기 펩타이드는 중간엽세포-상피세포 전이(Mesenchymal-Epithelial Transition, MET)를 촉진하는 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  14. 제5항에 있어서, 상기 (b) 단계는 펩타이드를 배양 배지에 직접 처리하거나, 배양용 생체재료와 혼합하여 처리하는 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  15. 제14항에 있어서, 상기 생체재료는 합성고분자 또는 천연고분자인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  16. 제15항에 있어서, 상기 합성고분자는 폴록사머, 폴리에틸렌 글리콘 및 폴르프로필렌 글리콜로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
  17. 제15항에 있어서, 상기 천연고분자는 비트로넥틴, 콜라겐, 젤라틴, 알긴산, 황산 콘드로이틴, 피브로넥틴 및 세포외기질 단백질로 구성된 군에서 선택된 어느 하나인 것을 특징으로 하는 역분화 유도만능줄기세포의 제조방법.
KR1020150111223A 2015-08-06 2015-08-06 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법 KR101906557B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150111223A KR101906557B1 (ko) 2015-08-06 2015-08-06 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법
EP16833217.9A EP3345999B1 (en) 2015-08-06 2016-07-19 Method for producing induced pluripotent stem cells by using synthetic peptide
JP2017543696A JP6446566B2 (ja) 2015-08-06 2016-07-19 合成ペプチドを利用した人工多能性幹細胞の製造方法
US15/514,337 US10066212B2 (en) 2015-08-06 2016-07-19 Method for preparing induced pluripotent stem cells using synthetic peptide
PCT/KR2016/007857 WO2017022981A1 (ko) 2015-08-06 2016-07-19 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150111223A KR101906557B1 (ko) 2015-08-06 2015-08-06 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법

Publications (2)

Publication Number Publication Date
KR20170017385A KR20170017385A (ko) 2017-02-15
KR101906557B1 true KR101906557B1 (ko) 2018-10-11

Family

ID=57943220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150111223A KR101906557B1 (ko) 2015-08-06 2015-08-06 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법

Country Status (5)

Country Link
US (1) US10066212B2 (ko)
EP (1) EP3345999B1 (ko)
JP (1) JP6446566B2 (ko)
KR (1) KR101906557B1 (ko)
WO (1) WO2017022981A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631542B1 (ko) * 2018-03-14 2024-02-01 서울대학교산학협력단 염증 감소능 및 줄기세포로부터 연골세포로의 분화 촉진능을 가지는 이중 기능성 펩타이드 및 이의 용도
KR102631543B1 (ko) * 2018-03-14 2024-02-01 서울대학교산학협력단 세포 투과능 및 근육 재생능을 가지는 이중 기능성 펩타이드 및 이의 용도
KR102244161B1 (ko) * 2018-08-31 2021-04-26 주식회사 나이벡 다중의 질환 바이오마커의 기능 및 발현을 억제하는 펩타이드의 신규한 용도
WO2020046002A1 (ko) * 2018-08-31 2020-03-05 주식회사 나이벡 다중의 질환 바이오마커의 기능 및 발현을 억제하는 펩타이드의 신규한 용도

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258539A1 (en) 2009-10-13 2012-10-11 Temple University of the Commonwealth of Higher Education Office of Technology Transfer Use of nibp polypeptides
WO2011105869A2 (ko) * 2010-02-26 2011-09-01 주식회사 나이벡 치아의 접합능을 향상시키기 위한 치과용 클린저 조성물
KR101400668B1 (ko) 2011-04-22 2014-05-30 주식회사 나이벡 펩타이드에 의한 표면활성형 콜라겐 차폐막
GB2493540A (en) 2011-08-10 2013-02-13 Follicum Ab Agents for stimulating hair growth in mammals
KR101456026B1 (ko) 2012-09-18 2014-11-04 서울대학교산학협력단 종양선택적 투과기능성을 가지는 펩타이드 및 그 용도
KR101529634B1 (ko) 2013-08-28 2015-06-30 서울대학교산학협력단 역분화 유도를 위한 세포투과성 융합 단백질 및 그 용도

Also Published As

Publication number Publication date
US10066212B2 (en) 2018-09-04
EP3345999A1 (en) 2018-07-11
KR20170017385A (ko) 2017-02-15
EP3345999B1 (en) 2023-10-18
US20170275594A1 (en) 2017-09-28
EP3345999A4 (en) 2019-01-16
WO2017022981A1 (ko) 2017-02-09
JP2017533731A (ja) 2017-11-16
JP6446566B2 (ja) 2018-12-26
WO2017022981A9 (ko) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6937821B2 (ja) 生体組織から単離できる多能性幹細胞
Wright et al. Induced pluripotent stem cells as custom therapeutics for retinal repair: progress and rationale
KR101906557B1 (ko) 합성 펩타이드를 이용한 유도만능줄기세포의 제조방법
CN103857797A (zh) 用于修复软骨损伤的非遗传修饰性重编程细胞的组合物和方法
CN110300798B (zh) 从干细胞分化诱导的软骨细胞的制备方法
JP2013534525A (ja) 心臓疾患の治療のために遺伝子改変を伴わずに細胞を再プログラミングするための組成物および方法
WO2012133942A1 (ja) 生体の臍帯又は脂肪組織から単離できる多能性幹細胞
Luo et al. Feeder-free generation and transcriptome characterization of functional mesenchymal stromal cells from human pluripotent stem cells
US10190097B2 (en) Method and composition for inducing human pluripotent stem cells
CA2908225A1 (en) Method for culturing hepatoblast-like cells and culture product thereof
MX2012002117A (es) Eficiencia mejorada para la generacion de celulas madre pluripotentes inducidas a partir de las celulas somaticas humanas.
WO2010099643A1 (zh) 一种促进体细胞增殖的方法
JP6916523B2 (ja) 筋衛星細胞培養用材料および筋衛星細胞の培養方法
JPWO2015199041A1 (ja) 新規合成ペプチドおよびその利用
TWI769410B (zh) 新穎誘導性多能幹細胞(ipscs)及其應用
Sachenberg et al. Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on various extracellular matrix proteins
Ziaee Engineering self-assembling peptide hydrogels for pluripotent stem cell and cardiac organoid culture
Montgomery Combining induced pluripotent stem cells and fibrin matrices for spinal cord injury repair
Lee Study on control of stem cell differentiation and tissue regeneration by synthetic peptide
Freeman The role of stem cell fusion in (re) programming somatic cells both in vitro and in vivo: Implications for cardiac regeneration
Dawson Cardiac Tissue Engineering
JP2014217351A (ja) メタボリックシンドロームモデルラット誘導多能性幹細胞及び製造方法

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant