KR101854941B1 - Highly active water gas shift catalyst, preparation process and use thereof - Google Patents

Highly active water gas shift catalyst, preparation process and use thereof Download PDF

Info

Publication number
KR101854941B1
KR101854941B1 KR1020137007248A KR20137007248A KR101854941B1 KR 101854941 B1 KR101854941 B1 KR 101854941B1 KR 1020137007248 A KR1020137007248 A KR 1020137007248A KR 20137007248 A KR20137007248 A KR 20137007248A KR 101854941 B1 KR101854941 B1 KR 101854941B1
Authority
KR
South Korea
Prior art keywords
catalyst
present
weight
support material
metal
Prior art date
Application number
KR1020137007248A
Other languages
Korean (ko)
Other versions
KR20140002618A (en
Inventor
슈테판 하트셔
마르쿠스 횔즐
페렌 토르슈텐 폰
알렉산더 섀퍼
Original Assignee
바스프 에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바스프 에스이 filed Critical 바스프 에스이
Publication of KR20140002618A publication Critical patent/KR20140002618A/en
Application granted granted Critical
Publication of KR101854941B1 publication Critical patent/KR101854941B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 고 활성 수성 가스 전환 촉매 및 이것을 제조하는 방법, 및 또한 이 촉매를 사용하여 넓은 온도 범위에서 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 수소 및 이산화탄소로 전환하는 방법에 관한 것이다.The present invention relates to a highly active water gas shift catalyst and a process for producing the same, and also to a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide over a wide temperature range using the catalyst.

Description

고 활성 수성 가스 전환 촉매, 이의 제조 방법 및 용도{HIGHLY ACTIVE WATER GAS SHIFT CATALYST, PREPARATION PROCESS AND USE THEREOF}HIGHLY ACTIVE WATER GAS SHIFT CATALYST, PREPARATION PROCESS AND USE THEREOF BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 고 활성 수성 가스 촉매 및 이것을 제조하는 방법, 및 또한 이 촉매를 사용하여 넓은 온도 범위에서 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 수소 및 이산화탄소로 전환하는 방법에 관한 것이다.The present invention relates to a highly active aqueous gas catalyst and a process for preparing it and also to a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide over a wide temperature range using the catalyst.

연료 전지에서, 전기 에너지는 화학 반응을 사용하여 얻어진다. 대부분의 연료 전지는 환원 스트림과 산화 스트림의 반응, 보통 수소 및 산소를 활용한다. 연료 전지에서 연료를 사용할 수 있게 하기 위하여, 이것은 사전에 수소 농후 스트림으로 전환되어야 한다.In a fuel cell, electrical energy is obtained using a chemical reaction. Most fuel cells utilize the reaction of the reducing and oxidizing streams, usually hydrogen and oxygen. In order to be able to use the fuel in the fuel cell, this must be converted in advance to the hydrogen-rich stream.

연료의 예비 처리는 주로 3 단계로 수행된다:The preliminary treatment of the fuel is performed in three stages:

연료는 먼저 개질(reform)되어 이러한 방법으로 CO와 H2로 해리된다. 생성된 CO를 온도 의존 평형 반응에서 물과 반응시켜 CO2와 H2를 생성하는 수성 가스 전환 단계가 이어진다:The fuel is first reformed and dissociated into CO and H 2 in this way. Followed by a water gas conversion step in which the produced CO is reacted with water in a temperature dependent equilibrium reaction to produce CO 2 and H 2 :

CO + H2O → CO2 + H2 CO + H 2 O? CO 2 + H 2

이 평형에서 H2와 CO2의 쪽에 더 놓일수록 온도가 더 낮아진다. 보통 CO 미세 정제 단계가 이어진다.In this equilibrium, the further the H 2 and CO 2 side, the lower the temperature. Usually a CO refining step is followed.

CO의 고농도(50 ppm 초과)는 연료 전지의 애노드를 손상시킨다. 따라서 CO 함량은 실제 전지에 앞서서 최소화되어야 한다. 이것은 수성 가스 전환 단계에서 및 또한 CO 미세 정제 단계에서 수행된다. 수성 가스 전환 단계는 보통 2개의 온도 단계에서 일어난다. 150~280℃ 범위 내 온도에서의 반응은 저온 전환 반응(LTS)으로 지칭된다. LTS는 보통 Cu/Zn 산화물 촉매를 사용하여 촉매적으로 수행된다. 280~550℃ 범위 내에서, 반응은 고온 전환 반응(HTS)으로 지칭된다. 이것은 전통적으로 Fe/Cr 촉매 상에서 수행된다. 이 반응은 또한 Mo, Ni 및 추가 원소들에 의해 촉진될 수 있다. 세륨 산화물 상의 귀금속들은 마찬가지로 이 반응을 위한 촉매로서 수차례 기술되어왔다.The high concentration of CO (> 50 ppm) damages the anode of the fuel cell. Therefore, the CO content must be minimized prior to the actual cell. This is carried out in the water gas conversion step and also in the CO micro-purification step. The water gas conversion step usually occurs at two temperature steps. The reaction at a temperature within the range of 150 to 280 ° C is referred to as a low temperature conversion reaction (LTS). The LTS is usually carried out catalytically using a Cu / Zn oxide catalyst. Within the range of 280 to 550 캜, the reaction is referred to as a high temperature conversion reaction (HTS). This is traditionally performed on Fe / Cr catalysts. This reaction can also be promoted by Mo, Ni and further elements. Precious metals on cerium oxide have also been described numerous times as catalysts for this reaction.

전환 반응은 촉매독(catalyst poison) CO의 제거를 유도할 뿐만 아니라 연료 스트림에서 바람직한 생성물 H2의 비율을 증가시킨다. 따라서 HTS를 위한 촉매는 CO 및 H2O로부터 H2의 생성을 촉진하지만 바람직한 생성물 H2의 제거 또는 고갈을 야기하는 반응들은 촉진하지 않는다는 점이 중요하다. 이러한 반응들은, 특히, 고온의 니켈 촉매 상에서 및 심지어 350℃ 초과인 온도의 귀금속 촉매 상에서 관찰될 수 있는 메탄화를 포함한다. 이것은 하기 2 가지 반응 경로를 수반한다:Conversion the desired product increases the rate of H 2 in the fuel stream, as well as to induce the removal of catalyst poisons (catalyst poison) CO. It is therefore important that the catalyst for HTS promotes the production of H 2 from CO and H 2 O but does not promote the elimination or depletion of the desired product H 2 . These reactions include, among other things, methanation, which can be observed on noble metal catalysts at elevated temperatures, and even above 350 ° C. This involves the following two reaction pathways:

CO + 3 H2 → CH4 + H2O CO + 3 H 2 - > CH 4 + H 2 O

CO2 + 4 H2 → CH4 + 2 H2O CO 2 + 4 H 2 → CH 4 + 2 H 2 O

두 반응들 모두는 바람직한 생성물 H2를 소모하고 따라서 수소 수율을 감소시킨다.All of the two reactions are then consume the desired product H 2 and thus reduce the hydrogen yield.

수소의 매우 높은 수율을 제공하고 메탄화 발생에 매우 낮은 경향성을 보이는 반응 및 촉매는 종래 기술로부터 공지되어 있다.Reactions and catalysts which provide a very high yield of hydrogen and exhibit a very low tendency to methanation are known from the prior art.

EP 1 571 125 A2에서는 수소 가스로부터 일산화탄소를 분리하는 촉매를 개시한다. 이것은 이산화지르코늄, 이산화티탄, 산화알루미늄, 이산화규소, 이산화규소-산화알루미늄, 제올라이트 및 산화세륨을 포함하는 산화 지지 물질을 포함한다. 백금은 촉매적 활성 금속으로서 존재한다. 더 나아가, 리튬, 나트륨, 칼륨, 루비듐 또는 세슘과 같은 알칼리 금속은 추가 무기 화합물로서 존재할 수 있어 수성 가스 전환 반응에서 이산화탄소로의 전환에 의해 일산화탄소를 제거하기 위한 촉매의 활성을 향상시킨다. 촉매적 활성 금속은, EP 1 571 125 A2에 따라, 2 중량%의 양으로 촉매에 존재한다.EP 1 571 125 A2 discloses a catalyst for separating carbon monoxide from hydrogen gas. This includes oxide support materials including zirconium dioxide, titanium dioxide, aluminum oxide, silicon dioxide, silicon dioxide-aluminum oxide, zeolites, and cerium oxide. Platinum is present as a catalytically active metal. Further, alkali metals such as lithium, sodium, potassium, rubidium or cesium can be present as additional inorganic compounds, thereby improving the activity of the catalyst for removing carbon monoxide by conversion to carbon dioxide in the water gas shift reaction. The catalytically active metal is present in the catalyst in an amount of 2% by weight, according to EP 1 571 125 A2.

WO 2005/072871 A1에서는 금속성 입자 및 산화 금속 입자를 포함하는 수성 가스 전환 반응을 위한 촉매를 개시한다. 적합한 산화 금속은, 예를 들어, 산화세륨, 이산화티탄, 산화철, 산화망간 또는 산화아연이다. 적합한 금속 입자는, 예를 들어, 금 또는 백금이고 산화 물질을 기준으로 0.5~25 중량%의 양으로 존재한다.WO 2005/072871 A1 discloses a catalyst for an aqueous gas conversion reaction comprising metallic particles and metal oxide particles. Suitable metal oxides are, for example, cerium oxide, titanium dioxide, iron oxide, manganese oxide or zinc oxide. Suitable metal particles are, for example, gold or platinum and are present in an amount of from 0.5 to 25% by weight, based on the oxide material.

US 2006/0002848 A1에서는, 예를 들어, 산화알루미늄, 이산화티탄, 이산화규소, 이산화지르코늄 또는 이들의 조합으로 구성된 지지 물질을 갖는 촉매를 개시한다. 더 나아가, 알칼리 또는 알칼리 토금속 및 또한 납, 비스무트, 폴로늄, 망간, 티탄-바나듐-크롬, 망간 철, 니켈 또는 코발트 등 중에서 선택된 금속들이 존재할 수 있다. 존재하는 촉매적 활성 금속은 예를 들어 백금, 팔라듐, 구리, 로듐 등이다.US 2006/0002848 A1 discloses a catalyst having a support material composed of, for example, aluminum oxide, titanium dioxide, silicon dioxide, zirconium dioxide or a combination thereof. Further, metals selected from alkali or alkaline earth metals and also lead, bismuth, polonium, manganese, titanium-vanadium-chromium, manganese iron, nickel or cobalt may be present. Existing catalytically active metals are, for example, platinum, palladium, copper, rhodium, and the like.

EP 1 908 517 A1에서는 H2O/일산화탄소를 수소로 전환하기 위한 촉매 및 연료 전지 공급을 위해 사용된 스트림에서의 수소 농도를 증가시키기 위한 이 촉매의 용도를 개시한다. 이 촉매는 산화알루미늄, 이산화규소, 이산화지르코늄 또는 이들의 혼합물을 포함하는 지지 물질 상의 Ⅷ족 원소를 포함하는 활성상(active phase) 및 희토류의 군, 예를 들어 란탄 또는 세륨으로부터의 프로모터(promoter)를 포함하는 고체이다.EP 1 908 517 A1 discloses a catalyst for the conversion of H 2 O / carbon monoxide to hydrogen and the use of this catalyst for increasing the hydrogen concentration in the stream used for fuel cell supply. The catalyst may be a promoter from a group of active phases and rare earths, such as lanthanum or cerium, containing active Group VIII elements on a support material comprising aluminum oxide, silicon dioxide, zirconium dioxide or mixtures thereof, ≪ / RTI >

US 2005/0207958 A1에서는 메탄의 형성 없이 수성 가스 전환 반응기에서 일산화탄소의 양을 감소시키는 방법을 개시한다. 산화세륨 및 산화지르코늄 또는 산화세륨 및 산화란탄을 기재로 한 지지 물질을 갖는 촉매가 이 목적을 위해 사용된다. 메탄화를 피하는 프로모터로서, 사용은 구리, 망간, 철 화합물 또는 조합으로 구성된다. 추가 프로모터는 알칼리 또는 알칼리 토금속이 가능하다. 촉매에 존재하는 백금의 양은 1 중량% 이상이다. US 2005/0207958 A1 discloses a method for reducing the amount of carbon monoxide in a water gas shift reactor without the formation of methane. Catalysts with cerium oxide and zirconium oxide or support materials based on cerium oxide and lanthanum oxide are used for this purpose. As a promoter to avoid methanation, use is made of copper, manganese, iron compounds or a combination. Additional promoters may be alkaline or alkaline earth metals. The amount of platinum present in the catalyst is at least 1% by weight.

US 2005/0191224 A1에서는 수소 가스로부터 일산화탄소를 분리하기 위한 촉매를 개시한다. 이 목적을 위해 사용된 촉매는 산화 금속으로 구성된 지지체를 가지고 이 지지체에 도포된 백금 성분 및 알칼리 금속을 가진다. 이 문헌에 따르면, 예를 들어, 이산화지르코늄, 이산화티탄, 산화알루미늄, 이산화규소, 이산화규소-산화알루미늄, 제올라이트 또는 산화세륨이 지지 물질로서 적합하다.US 2005/0191224 A1 discloses a catalyst for separating carbon monoxide from hydrogen gas. The catalyst used for this purpose has a support composed of a metal oxide and has a platinum component and an alkali metal applied to the support. According to this document, zirconium dioxide, titanium dioxide, aluminum oxide, silicon dioxide, silicon dioxide-aluminum oxide, zeolite or cerium oxide, for example, are suitable as support materials.

따라서 본 발명의 목적은 넓은 온도 범위에 걸쳐 사용될 수 있고 메탄을 거의 형성하지 않는 활성 촉매를 알아내는 것이다. 이 촉매는 이상적으로는 귀금속 저투입량을 가져야 한다.It is therefore an object of the present invention to find an active catalyst which can be used over a wide temperature range and which scarcely forms methane. The catalyst should ideally have a low precious metal input.

귀금속을 포함하는 촉매는 성형된 지지 물질을 귀금속 성분의 금속 염 용엑에 함침시킴으로써 또는 지지체 분말을 함침시키고 이어서 이것을 성형시킴으로써 제조된다. 따라서 본 발명의 추가 목적은 반응에 접근이 어려운 장소에서 극소량의 귀금속 성분을 침적시키는 방법을 제공하는 것이다.The catalyst comprising the noble metal is prepared by impregnating the shaped support material with a noble metal component metal salt solution or by impregnating the support powder and subsequently molding it. It is therefore a further object of the present invention to provide a method of depositing a very small amount of noble metal component in a location where access to the reaction is difficult.

상기 목적은 본 발명에 따라, 지지 물질 상에, 1 이상의 귀금속을 촉매의 총 중량을 기준으로 0.001~1.10 중량%의 양으로, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 Fe, Cr, Cu, Zn 및 이들의 혼합물로 이루어진 군으로부터 선택된 1 이상의 도판트를 포함하는 촉매에 의해 달성된다.This object is achieved according to the present invention by providing on a support material at least one noble metal in an amount of 0.001 to 1.10% by weight, based on the total weight of the catalyst, of at least one alkali metal and / or alkaline earth metal and at least one of Fe, Cr, Cu, Zn And mixtures thereof. ≪ Desc / Clms Page number 2 >

추가로 본 발명은 이러한 촉매를 제조하는 방법 및 또한 이러한 촉매를 사용하여 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 수소 및 이산화탄소로 전환하는 방법을 포함한다.The invention further comprises a process for preparing such a catalyst and also a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide using such a catalyst.

본 발명의 실시양태를 특허청구범위, 명세서 및 실시예에서 확인할 수 있다. 말할 필요 없이, 본 발명의 주제의 상기 언급된 특징들 및 앞으로 설명될 하기 특징들은 각 경우에 기재된 조합으로뿐만 아니라 본 발명의 범위를 벗어나지 않는 다른 조합으로도 사용될 수 있다. Embodiments of the invention can be ascertained in the claims, specification and examples. Needless to say, the above-mentioned features of the subject matter of the present invention and the features to be described hereinafter can be used in combination in each case described, as well as in other combinations not departing from the scope of the invention.

놀랍게도, 지지 물질 상에, 1 이상의 귀금속을 촉매의 총 중량을 기준으로 0.001~1.10 중량%의 양으로, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 Fe, Cr, Cu, Zn 및 이들의 혼합물로 이루어진 군으로부터 선택된 1 이상의 도판트를 갖는 지지된 귀금속 촉매가 사용되는 경우, 수성 가스 전환 반응은 넓은 온도 범위에서 성공적으로 수행될 수 있고 바람직하지 않은 메탄화는, 특히 HTS에서 일어나는 것과 같은 고온에서, 억제된다. 이것은 정확히는 언급된 장점들을 제공하는 본 발명의 촉매의 특징들의 조합이다.Surprisingly, it has been found that, on the support material, at least one noble metal in an amount of from 0.001 to 1.10% by weight, based on the total weight of the catalyst, of at least one alkali metal and / or alkaline earth metal and a mixture of Fe, Cr, Cu, When a supported noble metal catalyst having at least one dopant selected from the group is used, the water gas shift reaction can be successfully carried out in a wide temperature range and the undesirable methanation can be carried out at a high temperature, do. This is precisely the combination of features of the catalyst of the present invention which provide the mentioned advantages.

예를 들어 나트륨의 첨가에 의한 귀금속 함유 전환 촉매는 메탄화 발생의 증가된 경향성과 조합된 전환 활성에서의 증가를 유발한다. 예를 들어 철의 첨가는 메탄화 발생의 감소된 경향성과 조합된 전환 활성에서의 감소를 유발한다. 이러한 이유로, 최적은, 예를 들어 철과 알칼리 금속 양쪽이 만족할만한 전환 활성을 제공하고 메탄화 발생의 경향성을 충분한 양으로 억제하는, 철과 알칼리 금속의 첨가 사이에서 발견되어야 한다. For example, conversion catalysts containing noble metals by the addition of sodium cause an increased tendency of methanation and an increase in the combined conversion activity. For example, the addition of iron leads to a reduced tendency of methanation and a decrease in the combined conversion activity. For this reason, the optimum should be found between the addition of iron and an alkali metal, for example, both iron and alkali metals provide satisfactory conversion activity and inhibit the tendency of methanation formation to a sufficient amount.

본 발명의 촉매는 지지 물질 상에, 각 경우 특정된 양으로, 1 이상의 귀금속 및 1 이상의 알칼리 금속 및/또는 알칼리 토금속, 및 또한 Fe, Cr, Cu, Zn 및 이들의 혼합물로 이루어진 군으로부터 선택된 1 이상의 원소를 포함하는 도판트를 포함한다.The catalysts of the present invention may comprise on the support material a mixture of at least one noble metal selected from the group consisting of Fe, Cr, Cu, Zn, and mixtures thereof in amounts specified in each case, at least one noble metal and at least one alkali metal and / or alkaline earth metal, And a dopant including the above elements.

1 이상의 귀금속은 바람직하게는 Au, Pt, Pd, Rh 및 Ru으로 이루어진 군으로부터 선택된다. Pt를 사용하는 것이 특히 바람직하다. Pt와 상기 언급된 1 이상의 귀금속들의 조합 또는 Pt를 제외하고 상기 언급된 1 이상의 귀금속들의 조합이 또한 유리하다. The at least one noble metal is preferably selected from the group consisting of Au, Pt, Pd, Rh and Ru. It is particularly preferable to use Pt. A combination of Pt and one or more of the above-mentioned noble metals or a combination of one or more of the noble metals mentioned above except Pt is also advantageous.

본 발명은 특히 바람직하게는 귀금속이 Au, Pt, Pd, Rh, Ru 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 본 발명에 따른 촉매를 제공한다. 귀금속으로서 Pt를 사용하는 것이 매우 특히 바람직하며; 특히, Pt는 바람직하게는 본 발명의 촉매 상에 단독 귀금속으로서 존재한다.The invention particularly preferably provides a catalyst according to the invention, wherein the noble metal is selected from the group consisting of Au, Pt, Pd, Rh, Ru and mixtures thereof. Very particular preference is given to using Pt as the noble metal; In particular, Pt is preferably present as the sole noble metal on the catalyst of the present invention.

1 이상의 귀금속의 농도는, 본 발명에 따라, 유리하게는 각 경우 촉매의 총 중량을 기준으로 0.001~1.10 중량%, 바람직하게는 0.01~1.00 중량%, 특히 바람직하게는 0.1~0.99 중량%, 예를 들어 0.1~0.96 중량%이다. 본 발명의 촉매의 특징들의 특정된 조합은 고가의 귀금속의 극소량을 사용하며 그럼에도 불구하고 고 촉매 활성을 달성하는 것을 가능하게 한다.The concentration of one or more noble metals according to the invention is advantageously in each case 0.001 to 1.10% by weight, preferably 0.01 to 1.00% by weight, particularly preferably 0.1 to 0.99% by weight, based on the total weight of the catalyst, 0.1 to 0.96% by weight. The specific combination of features of the catalyst of the present invention makes use of very small amounts of expensive precious metals and nevertheless makes it possible to achieve high catalytic activity.

본 발명에 따라, Li, Na, K, Rb, Cs, Mg, Ca 및/또는 Sr은 바람직하게는 1 이상의 알칼리 금속 및/또는 알칼리 토금속으로서 사용된다. Li, Na, K 및 Rb, 특히 Na 및 K가 특히 바람직하다.According to the present invention, Li, Na, K, Rb, Cs, Mg, Ca and / or Sr are preferably used as at least one alkali metal and / or alkaline earth metal. Li, Na, K and Rb, especially Na and K are particularly preferred.

따라서 본 발명은 특히 바람직하게는 알칼리 금속 및/또는 알칼리 토금속이 Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 본 발명의 촉매를 제공한다.Accordingly, the present invention particularly preferably provides a catalyst of the present invention wherein the alkali metal and / or alkaline earth metal is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof .

바람직한 실시양태에서, 1 이상의 알칼리 금속 및/또는 알칼리 토금속의 농도는 각 경우 촉매의 총 중량을 기준으로 1.0~4.0 중량%, 특히 바람직하게는 1.2~4.0 중량%, 매우 특히 바람직하게는 1.8~3.5 중량%, 특히 2.0~3.2 중량%이다. 추가로 바람직한 실시양태에서, 촉매의 총 중량을 기준으로 1.2~3.5 중량%의 K 또는 Na가 사용된다.In a preferred embodiment, the concentration of one or more alkali metals and / or alkaline earth metals is in each case 1.0 to 4.0% by weight, particularly preferably 1.2 to 4.0% by weight, very particularly preferably 1.8 to 3.5% by weight, By weight, especially 2.0 to 3.2% by weight. In a further preferred embodiment, 1.2-3.5 wt.% Of K or Na is used, based on the total weight of the catalyst.

따라서 본 발명은, 바람직한 실시양태에서, 1 이상의 알칼리 금속 및/또는 알칼리 토금속이 총 촉매를 기준으로 1.0~4.0 중량%의 양으로 존재하는 것인 본 발명의 촉매를 제공한다.The present invention thus provides, in a preferred embodiment, a catalyst according to the invention in which at least one alkali metal and / or alkaline earth metal is present in an amount of from 1.0 to 4.0% by weight, based on the total catalyst.

추가 성분으로서, 본 발명의 촉매는 Fe, Cr, Cu, Zn 및 이들의 혼합물로 이루어진 군으로부터 선택된 1 이상의 도판트를 포함한다. 본 발명에 따라, 도판트로서 철을 사용하는 것이 매우 특히 바람직하다. 특히, 독점적으로 철이 도판트로서 사용된다.As a further component, the catalyst of the present invention comprises at least one dopant selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof. According to the invention, it is very particularly preferred to use iron as the dopant. In particular, iron is used exclusively as a dopant.

본 발명의 촉매에서, 1 이상의 도판트, 특히 철은 각 경우 촉매의 총 중량을 기준으로 일반적으로 0.01~5 중량%, 바람직하게는 0.05~2.5 중량%, 특히 바람직하게는 0.1~1.5 중량%의 농도로 존재한다.In the catalyst of the present invention, the at least one dopant, in particular iron, is in each case generally from 0.01 to 5% by weight, preferably from 0.05 to 2.5% by weight, particularly preferably from 0.1 to 1.5% by weight, based on the total weight of the catalyst Lt; / RTI >

1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 1 이상의 도판트 외에, 본 발명의 촉매는 추가 도판트, 예를 들어 희토류 금속 및/또는 13족 내지 15족의 주족 원소를 포함할 수 있다. 이러한 추가 도판트는 15 중량% 이하의 총 농도를 가질 수 있다.In addition to one or more alkali metals and / or alkaline earth metals and one or more dopants, the catalyst of the present invention may comprise further dopants, such as rare earth metals and / or Group 13 elements of Group 15 to Group 15 elements. Such additional dopants may have a total concentration of up to 15% by weight.

본 발명의 목적을 위한 적합한 지지 물질은 촉매 화학에서 이들 목적을 위해 통상적으로 사용될 수 있고 충분히 높은 BET 비표면적을 가진 모든 물질이다. Suitable support materials for the purposes of the present invention are all materials which can be used conventionally for these purposes in catalytic chemistry and which have a sufficiently high BET specific surface area.

BET 표면적은 유리하게는 50 m2/g 이상이어야 한다.The BET surface area should advantageously be at least 50 m 2 / g.

란탄족 산화물 및 전이금속의 조합, 특히 바람직하게는 Ce/Zr 산화물을 포함하는 지지 물질을 사용하는 것이 바람직하다. 여기서, Ce 산화물 대 Zr 산화물의 비율은 유리하게는, 각 경우 지지 물질의 총 중량을 기준으로 15-25 : 85-75 중량%이어야 한다. 유리한 실시양태에서, Ce/Zr 산화물 지지 물질은 도판트로서 추가 산화물, 예를 들어 Al2O3 및/또는 La 산화물을 함유한다. 예를 들어, 본 발명에 따라 바람직한 Al2O3 대 Ce/Zr 산화물의 비율은 5-20 : 95-80, 특히 바람직하게는 8-12 : 92-88, 예를 들어 10 : 90이다.It is preferred to use a support material comprising a combination of a lanthanide oxide and a transition metal, particularly preferably a Ce / Zr oxide. Here, the ratio of Ce oxide to Zr oxide should advantageously be 15-25: 85-75% by weight, based on the total weight of the support material in each case. In an advantageous embodiment, the Ce / Zr oxide support material contains additional oxides, such as Al 2 O 3 and / or La oxide, as dopants. For example, the preferred ratio of Al 2 O 3 to Ce / Zr oxide according to the invention is 5-20: 95-80, particularly preferably 8-12: 92-88, for example 10:90.

La 산화물(La2O3)의 양은, 예를 들어, 각 경우 지지 물질의 총 중량을 기준으로 1~10 중량%, 바람직하게는 3~8 중량%, 특히 바람직하게는 4~6 중량%일 수 있다.The amount of La oxide (La 2 O 3 ) is, for example, in each case 1 to 10% by weight, preferably 3 to 8% by weight, particularly preferably 4 to 6% by weight, based on the total weight of the support material .

따라서 본 발명은 특히 바람직하게는 지지 물질이 적어도 Ce 및/또는 Zr를 포함하는 것인 본 발명의 촉매를 제공한다. 바람직한 실시양태에서, 본 발명은 지지 물질이 La 및/또는 Al을 추가로 포함하는 것인 본 발명의 촉매를 제공한다.Thus, the present invention particularly preferably provides a catalyst of the present invention wherein the support material comprises at least Ce and / or Zr. In a preferred embodiment, the present invention provides a catalyst of the present invention wherein the support material further comprises La and / or Al.

특히 바람직한 실시양태에서, 본 발명은 Pt가 귀금속으로서 존재하고, 알칼리 금속 및/또는 알칼리 토금속이 Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 이들의 혼합물 중에서 선택되며, 도판트는 Fe이고, Ce 및/또는 Zr을 포함하는 지지 물질이 존재하는 것인 본 발명의 촉매를 제공한다. 본 발명은 특히 바람직하게는 지지 물질이 추가로 La를 포함하는 것인 본 발명에 따른 이 촉매를 제공한다.In a particularly preferred embodiment, the present invention relates to a process for the preparation of platinum complexes, wherein Pt is present as a noble metal and the alkali and / or alkaline earth metals are selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof, , And a support material comprising Ce and / or Zr is present. The present invention particularly preferably provides this catalyst according to the invention in which the support material further comprises La.

본 발명에 따라, 상기 성분들은 본 발명의 촉매에 존재하거나 임의로 존재하며, 즉, 상기 언급된 귀금속, 알칼리 금속 및/또는 알칼리 토금속, 도판트 및 지지 물질은 원소 형태 및/또는 산화 형태로 존재할 수 있다.According to the present invention, the components are present or optionally present in the catalyst of the present invention, i.e. the abovementioned noble metals, alkali metals and / or alkaline earth metals, dopants and supporting materials may be present in elemental form and / have.

추가로 바람직한 실시양태에서, 본 발명은, 각 경우 촉매의 총 중량을 기준으로, 1 이상의 귀금속, 특히 Pt이 0.001~1.10 중량%, 바람직하게는 0.01~1.00 중량%, 특히 바람직하게는 0.1~0.99 중량%, 예를 들어 0.1~0.96 중량%의 양으로 존재하며, 1 이상의 알칼리 금속 및/또는 알칼리 토금속, 특히 Na 또는 K이 1.2~4.0 중량%, 바람직하게는 1.8~3.5 중량%, 특히 바람직하게는 2.0~3.2 중량%의 양으로 존재하고 1 이상의 도판트, 특히 Fe이 0.05~2.5 중량%, 특히 바람직하게는 0.1~1.5 중량%의 양으로 존재하며, 그리고 지지 물질은 적어도 Ce 및/또는 Zr을 포함하는 것인 본 발명에 따른 촉매를 제공한다.In a further preferred embodiment, the present invention relates to a process for the preparation of catalysts, which comprises, in each case based on the total weight of the catalyst, from 0.001 to 1.10% by weight, preferably from 0.01 to 1.00% by weight, By weight, for example from 0.1 to 0.96% by weight, of one or more alkali metals and / or alkaline earth metals, in particular from 1.2 to 4.0% by weight, preferably from 1.8 to 3.5% by weight, Is present in an amount of 2.0 to 3.2% by weight and at least one dopant, in particular Fe, is present in an amount of 0.05 to 2.5% by weight, particularly preferably 0.1 to 1.5% by weight, and the support material comprises at least Ce and / or Zr Based on the total weight of the catalyst.

귀금속, 알칼리 금속 및/또는 알칼리 토금속, 도판트 및 지지 물질의 특정된 조합들을 포함하는 본 발명의 매우 특히 바람직한 실시양태들이 하기 실시예에 개시되어 있다.Very particularly preferred embodiments of the present invention, including specific combinations of precious metals, alkali metals and / or alkaline earth metals, dopants and support materials, are disclosed in the following examples.

이것은 정확히는 귀금속, 알칼리 금속 및/또는 알칼리 토금속, 도판트 및 지지 물질의 본 발명에 따른 조합, 특히 전환 반응에 사용되는 경우, 매우 고 효율과 조합된 매우 고 활성을 나타내는 촉매를 제공하는 것인, 특정된 양으로의 조합이다. 본 발명의 촉매의 고 반응성은, 예를 들어 상기 언급된 전환 반응이 상대적으로 낮은 온도에서도 열역학적으로 가능한 전환을 사실상 완성하도록 수행된다는 사실에 의해 나타내어질 수 있다. 추가로, 본 발명의 촉매의 특히 높은 효율은 이 촉매가 전환 반응에서 메탄화 발생에 대해 적은 경향성만을 나타낸다는, 즉, 형성된 수소의 매우 적은 비율만이 메탄의 형성에 의해 반응된다는 사실에 의해 나타내어질 수 있다.This precisely provides a catalyst according to the invention of noble metals, alkali metals and / or alkaline earth metals, dopants and supporting materials, in particular very high activity combined with very high efficiency when used in conversion reactions. It is a combination in a specified amount. The high reactivity of the catalysts of the present invention may be indicated, for example, by the fact that the above-mentioned conversion reactions are carried out to substantially complete the thermodynamically feasible conversion even at relatively low temperatures. In addition, a particularly high efficiency of the catalyst of the present invention is indicated by the fact that this catalyst exhibits only a small tendency towards methanation in the conversion reaction, i.e. only a very small proportion of the formed hydrogen is reacted by the formation of methane It can be done.

말할 필요 없이, 촉매의 상기 언급된 특징들 및 앞으로 기재될 하기 특징들은 기재된 조합들 및 값 범위들에서뿐만 아니라 본 발명의 범위를 벗어나지 않는 주 청구항(main claim)의 경계 내인 다른 조합들 및 수치 범위들에서도 사용될 수 있다.Needless to say, the above-mentioned features of the catalyst and the following features which will be described hereinafter are to be understood as being within the scope of the present invention, as well as other combinations and numerical ranges within the scope of the main claim Lt; / RTI >

본 발명의 촉매는 지지 물질의 함침에 의해 개별 성분들로서 제조될 수 있다. 추가로 유리한 제조 변형예에서, 활성 성분을 이후 적어도 부분적으로 반죽(knead)하고 압출되는 분말형 지지 물질에 도포한다. 제조 변형예들을 서로 조합하는 것 및, 예를 들어 활성 성분의 일부만을 분말형 지지 물질에 도포하고, 후자를 반죽 및 압출하고 그 이후 남은 활성 성분 또는 이것의 남은 일부 양을 도포하는 것 또한 가능하다.The catalyst of the present invention can be prepared as individual components by impregnation of the support material. In a further advantageous manufacturing variant, the active ingredient is then at least partially kneaded and applied to the extruded powdery support material. It is also possible to combine manufacturing variants with each other and, for example, to apply only a portion of the active ingredient to the powdered support material, knead and extrude the latter, and then apply the remaining active ingredient or some remaining amount thereof .

활성 성분은 바람직하게는 이들의 염 또는 이들의 산화물 형태로 사용된다. 본 발명의 목적에 적합한 염은, 예를 들어, 산화물, 질산화물, 수산화물, 아세테이트, 아세틸아세토네이트, 탄산염, 니트로실 니트레이트 또는 할로겐화물, 예컨대 플루오르화물, 염화물, 브롬화물 및 요오드화물이다.The active ingredients are preferably used in the form of their salts or their oxides. Salts suitable for the purposes of the present invention are, for example, oxides, nitrates, hydroxides, acetates, acetylacetonates, carbonates, nitrosyl nitrates or halides such as fluorides, chlorides, bromides and iodides.

유리한 실시양태에서, 귀금속의 우수한 이용 가능성을 보장하기 위하여, 이 성분을 지지 물질에 도포한다. 예를 들어 pH, 농도 등의 지켜져야 하는 조건들에 의해 다양한 금속 염들을 보통 병행하여 도포할 수 없기 때문에, 다양한 프로모터를 가진 촉매는 독점적으로는 아니지만 종종 복수의 함침 단계로, 예를 들어 연속하여 수행되는 2 회의 함침 단계로 제조된다.In an advantageous embodiment, this component is applied to the support material to ensure good availability of the noble metal. Catalysts with various promoters, for example, are not exclusive, but often in a plurality of impregnation steps, for example in succession, because the various metal salts can not usually be applied in parallel due to conditions such as pH, And two impregnation steps being carried out.

지지 물질로의 도포에 의한 활성 성분의 도입은 종래 방법, 예를 들어 모노리스 상의 워시코트(wash coat on a monolith)로서 수행될 수 있다.The introduction of the active ingredient by application to a support material can be carried out in a conventional manner, for example as a wash coat on a monolith.

만일, 추가로 유리한 실시양태에 따라, 활성 물질을 먼저 지지 물질, 바람직하게는 분말형 지지 물질에 적어도 일부 도포하고, 이후 반죽하고 이어서 압출되는 경우, 지지 물질과 활성 조성물과의 반죽 및 압출은 공지된 장치를 사용하여 종래의 기술로 수행될 수 있다.If, in accordance with a further advantageous embodiment, the active substance is first applied at least in part onto a support material, preferably a powdered support material, and then kneaded and then extruded, the dough and extrusion of the support material and the active composition, Lt; RTI ID = 0.0 > conventional < / RTI > technique.

따라서 본 발명은, 특히, 본 발명의 촉매를 제조하는 방법을 제공하며, 여기서 1 이상의 귀금속, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 1 이상의 도판트를 지지 물질에 용액 또는 분산액으로서 도포하거나, 또는The present invention thus provides, in particular, a process for preparing the catalyst of the present invention, wherein one or more noble metals, at least one alkali metal and / or alkaline earth metal and at least one dopant are applied to the support material as a solution or dispersion,

1 이상의 귀금속, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 1 이상의 도판트의 일부 또는 전부를 지지 물질에 용액 또는 분산액으로서 도포하고 이 지지 물질을 성분들의 남은 부분과 혼합한다.At least one noble metal, at least one alkali metal and / or alkaline earth metal, and at least a portion of at least one dopant is applied as a solution or dispersion to the support material and the support material is mixed with the remainder of the components.

동일한 활성 조성을 갖지만 함침으로 제조된 촉매와 비교하여, 촉매 입자의 전체 부피에 걸친 활성 성분의 균일한 분포 때문에 직접 반죽된 촉매의 경우 상대적 활성이 더 낮을 것이라는 가정과는 반대로, 비슷한 활성이 본 발명에 따라 발견되었다. Contrary to the assumption that the relative activity will be lower for direct kneaded catalysts due to the uniform distribution of the active ingredient over the whole volume of the catalyst particles as compared to the catalyst having the same active composition but prepared by impregnation, Found.

분말형 원재료로부터 성형체의 제조는 당업자들에게 공지된 종래 방법, 예를 들어, 그중에서도, 문헌[Handbook of Heterogeneous Catalysis, Vol. 1, VCH Verlagsgesellschaft Weinheim, 1997, S. 414-417 beschrieben sind, erfolgen]에 기술된 바와 같은, 정제화(tableting), 응집(aggregation) 또는 압출로 수행될 수 있다.The preparation of shaped bodies from powdery raw materials can be carried out using conventional methods known to those skilled in the art, for example, Handbook of Heterogeneous Catalysis, Vol. 1, VCH Verlagsgesellschaft Weinheim, 1997, S. 414-417 beschrieben sind, erfolgen].

당업자에게 공지된 보조제, 예를 들어 결합제, 윤활유 및/또는 용매를 성형 또는 도포 중에 첨가할 수 있다.Adjuvants known to those skilled in the art, for example binders, lubricants and / or solvents, may be added during molding or application.

기술된 제조 방법은 간단하고 저렴하다. 본 발명의 촉매는 전환 반응에 대해 고 활성이지만 메탄화 반응은 억제하며; 예를 들어, 메탄 함량의 (각 경우 350℃에서) 100 ppm 미만, 바람직하게는 50 ppm 미만 및 (각 경우 450℃에서) 500 ppm 미만, 바람직하게는 300 ppm 미만이 본 발명의 촉매를 사용하여 달성된다.The described manufacturing process is simple and inexpensive. The catalyst of the present invention is highly active for the conversion reaction but inhibits the methanation reaction; For example, less than 100 ppm, preferably less than 50 ppm and (in each case 450 ° C) less than 500 ppm, preferably less than 300 ppm, of the methane content (in each case at 350 ° C) .

기술된 촉매는 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 수소 및 이산화탄소로 전환하는 방법에서 사용될 수 있다.The catalyst described can be used in a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide.

상기 방법은 전환 반응의 일반 조건 하에, 보통 150~280℃의 온도에서의 LTS 범위 및 보통 280~550℃의 온도에서의 HTS 범위 양쪽에서 수행될 수 있다.The process can be carried out under the general conditions of the conversion reaction, usually in the LTS range at temperatures of 150 to 280 DEG C and in the HTS range at temperatures of usually 280 to 550 DEG C.

본 발명의 촉매가 사용되는 경우 메탄화 발생의 낮은 경향성에 의해, 고온에서도, 이 촉매는 종래 기술의 이전 촉매가 적합하지 않은 HTS에서 특히 유용하다. 본 발명에 따른 전환 반응은 180~550℃의 온도 범위 내에서 특히 성공적으로 수행된다. 따라서 HTS의 단계 및 LTS의 단계 양쪽에서 본 발명의 촉매를 사용하는 것이 가능하고 유리하다.Due to the low tendency of methanation, when the catalyst of the present invention is used, even at high temperatures, this catalyst is particularly useful in HTS where prior catalysts of the prior art are not suitable. The conversion reaction according to the invention is carried out particularly successfully within the temperature range of 180 to 550 占 폚. It is therefore possible and advantageous to use the catalyst of the invention both in the stage of HTS and in the stage of LTS.

본 발명의 촉매는 또한, 중온(moderate temperature), 예를 들어 230℃~450℃에서 수행될 수 있는 단일한 전환 단계로 축소시키는데, 이것은 촉매의 고활성이 저온에서도 우수한 전환을 가능하게 하기 때문이다.The catalyst of the present invention also reduces to a single conversion step which can be carried out at a moderate temperature, for example 230 DEG C to 450 DEG C, because the high activity of the catalyst allows for good conversion even at low temperatures .

본 발명의 고 활성 전환 촉매를 통한 전환 반응의 방법으로 일산화탄소(CO)의 농도를 감소시키기 위한 본 발명의 방법은, CO 및 물을 포함하는 반응 가스는 촉매를 통과하며, 예를 들어, 문헌[Handbook of heterogeneous catalysis, 2nd edition, Vol. 1, VCH Verlagsgesellschaft Weinheim, 2008, Seiten 354-355]에 기술된 바와 같이, 전환 반응을 수행하기 위한 종래 장치에서 및 통상 조건 하에 수행된다.The method of the present invention for reducing the concentration of carbon monoxide (CO) by the method of conversion reaction through the highly active conversion catalyst of the present invention is characterized in that the reaction gas comprising CO and water is passed through a catalyst, Handbook of heterogeneous catalysis, 2nd edition, Vol. 1, VCH Verlagsgesellschaft Weinheim, 2008, Seiten 354-355), and under conventional conditions.

사용된 반응 가스는, 기술된 전환 반응에서 반응된 일산화탄소 및 수소에 추가하여, 추가 가스, 예를 들어 수소, 이산화탄소 및 질소를 보통 포함하는 가스 혼합물이다.The reaction gas used is a gas mixture which usually contains additional gases such as hydrogen, carbon dioxide and nitrogen in addition to the carbon monoxide and hydrogen reacted in the conversion reactions described.

따라서 본 발명은 또한 일산화탄소 및 물을 이산화탄소 및 수소로 전환시키기 위한 본 발명의 촉매의 용도를 제공한다.The present invention thus also provides the use of the catalysts of the present invention for the conversion of carbon monoxide and water to carbon dioxide and hydrogen.

추가로 본 발명은 본 발명에 따른 촉매를 사용하여 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 이산화탄소 및 수소로 전환하는 방법을 제공한다.The present invention further provides a method of converting a gas mixture comprising at least carbon monoxide and water to carbon dioxide and hydrogen using a catalyst according to the present invention.

도:Degree:

도 1은 예시적 측정도를 도시한다. 여기서, 각 약자는 하기의 의미를 가진다:Figure 1 shows an exemplary measurement diagram. Wherein each abbreviation has the following meaning:

A 반응기 배출구에서의 CO 양 [ppm]A CO amount at reactor outlet [ppm]

B 메탄 함량 [ppm]B Methane content [ppm]

T 온도 [℃]T Temperature [캜]

MG1 350℃에서의 메탄 함량 [ppm]MG 1 Methane content at 350 ° C [ppm]

MG2 450℃에서의 메탄 함량 [ppm]MG 2 Methane content at 450 ° C [ppm]

본 발명은 하기 실시예들로 예시되나, 어떠한 제한도 포함하지 않는다.The present invention is illustrated by the following examples, but does not include any limitations.

실시예Example

본 발명에 따른 촉매 및 비교예로 사용되는 촉매를 하기 방법에 따라 제조하였다.The catalyst according to the present invention and the catalyst used as a comparative example were prepared by the following method.

1.One. 함침(I)에In impregnation (I) 의한 제조: Manufacturing by:

본 발명에 따른 촉매들 및 비교 촉매들은, 하기 촉매 제조의 예에 의해 나타난 바와 같이 함침에 의해 제조될 수 있다.The catalysts according to the present invention and the comparative catalysts can be prepared by impregnation as shown by the following examples of catalyst preparation.

출발 물질:Starting material:

Figure 112013024828776-pct00001

Figure 112013024828776-pct00001

제조 방법:Manufacturing method:

질산 철의 필요량을 질산 백금 용액의 기재된 양에 용해시키고 증류된 H2O를 사용하여 Ce/Zr 지지 물질의 수분 흡수의 90%에 해당하는 부피로 희석하였다. 압출물을 용기로 도입하고 순환시키면서 질산 백금/철 용액으로 분무-함침시켰다. 함침 이후에, 압출물을 다시 추가 5분 동안 순환시키고, 이후 건조시키고 이어서 하소시켰다. 다음 제조 단계에서, 수산화칼륨 용액을 증류된 H2O를 사용하여 얻어진 백금/철-도핑된 압출물의 수분 흡수의 90%에 해당하는 부피로 희석하였다. 이어서 이들 압출물을 연속 순환시키면서 얻어진 희석 수산화칼륨 용액으로 분무-함침시켰다. 함침 이후에, 압출물을 다시 추가 5분 동안 순환시키고, 이후 건조시키고 이어서 하소시켰다.The required amount of iron nitrate was dissolved in the stated amount of platinum nitrate solution and diluted with distilled H 2 O to a volume corresponding to 90% of the water absorption of the Ce / Zr support material. The extrudate was introduced into the vessel and spray-impregnated with a platinum / iron nitrate solution while circulating. After impregnation, the extrudate was again circulated for an additional 5 minutes, then dried and then calcined. In the next manufacturing step, a platinum / iron obtained by use of the H 2 O distilled potassium hydroxide solution were diluted to a volume corresponding to 90% of the dope extrudate moisture absorption. These extrudates were then spray-impregnated with a dilute potassium hydroxide solution obtained with continuous circulation. After impregnation, the extrudate was again circulated for an additional 5 minutes, then dried and then calcined.

건조: 컨벡션 건조 오븐 내 200℃에서 4h Dry: 4 h at 200 ° C in a convection drying oven

하소: 500℃에서 2h Calcination: 2h at 500 ° C

생성물 중량: 1001.8 g Product weight: 1001.8 g

얻어진 도핑: 촉매 100 g 당 Pt 0.9 g Doping obtained: Pt 0.9 g < RTI ID = 0.0 >

촉매 100 g 당 Fe 0.2 gFe 0.2 g per 100 g of catalyst

촉매 100 g 당 K 2.0 gK 2.0 g per 100 g of catalyst

2.2. 반죽(K)에 의한 제조:Production by Dough (K):

본 발명에 따른 촉매들 및 비교 촉매들은, 하기 촉매 제조의 예에 의해 나타난 바와 같이 반죽에 의해 제조될 수 있다.The catalysts according to the present invention and the comparative catalysts can be prepared by kneading as shown by the following examples of catalyst preparation.

출발 물질:Starting material:

Figure 112013024828776-pct00002

Figure 112013024828776-pct00002

제조 방법: 산화 Ce/Zr 분말을 Pural SB와 함께 반죽기에 도입하였다. 증류된 H2O를 사용하여 20 ml의 총 부피로 희석된 질산을 천천히 첨가하고 혼합물을 10분간 반죽하였다. 이어서 질산 철을 질산백금 용액에 용해시키고, 증류된 H2O를 사용하여 30 ml의 총 부피로 희석하고, 첨가하고 혼합물을 추가 5분간 반죽하였다. 이어서 희석되지 않은 수산화칼륨 용액을 첨가하고 혼합물을 추가 10분간 반죽하였다. 플라스틱 조성물이 형성될 때까지 증류된 H2O를 소량 첨가하였다. 플라스틱 조성물을 압출기를 사용하여 성형하여 1.5 mm 압출물을 얻었다.Preparation method: CeO2 / Zr powder was introduced into a kneader together with Pural SB. Diluted nitric acid was added slowly to a total volume of 20 ml using distilled H 2 O and the mixture was kneaded for 10 minutes. The iron nitrate was then dissolved in a platinum nitrate solution, diluted to a total volume of 30 ml with distilled H 2 O, added and the mixture was kneaded for an additional 5 minutes. An undiluted potassium hydroxide solution was then added and the mixture was kneaded for an additional 10 minutes. A small amount of distilled H 2 O was added until the plastic composition was formed. The plastic composition was molded using an extruder to obtain a 1.5 mm extrudate.

증류된 H2O의 총 소비량: 69 ml (HNO3 및 Pt/Fe 용액을 희석하기 위한 증류된 H2O를 포함함)Total consumption of distilled H 2 O: 69 ml (containing distilled H 2 O to dilute HNO 3 and Pt / Fe solution)

가압 압력: 60 barPressure: 60 bar

반죽 시간: 49분Dough time: 49 minutes

건조: 컨벡션 건조 오븐 내 200℃에서 4hDry: 4 h at 200 ° C in a convection drying oven

하소: 컨벡션 퍼니스 내 500℃에서 2hCalcination: 2 h at 500 ° C in a convection furnace

얻어진 도핑: 촉매 100 g 당 Pt 0.9 gDoping obtained: Pt 0.9 g < RTI ID = 0.0 >

촉매 100 g 당 Fe 0.2 gFe 0.2 g per 100 g of catalyst

촉매 100 g 당 K 1.0 gK 1.0 g per 100 g of catalyst

3.3. 촉매들의 시험:Testing of catalysts:

제조된 촉매들의 적합성을 입증하기 위하여, 이들을 전환 반응에 사용하였다. 시험을 하기와 같이 수행하였다:To demonstrate the suitability of the prepared catalysts, they were used in the conversion reaction. The test was carried out as follows:

1. 촉매 설치: 15 ml의 촉매(베드) 또는 8~12 ml(모노리스의 부피)를 반응기 내 설치함,1. Catalyst installation: 15 ml catalyst (bed) or 8-12 ml (volume of monolith) installed in the reactor,

2. 전체 장치가 촉매 설치 이후 및 시동 전에 누출이 없는지 시험,2. Test the entire device for leaks after catalyst installation and before startup,

3. 220℃로의 가열 및 H2 및 N2의 1:1 혼합물을 사용하는 촉매의 동시 감소,Simultaneous reduction of the catalyst used the first mixture: 3.1 of H 2 and N 2 and heated to 220 ℃

4. 220℃의 온도에 도달하면서, 5분간 이를 유지하고 이후 시험을 시작함,4. Keeping it for 5 minutes while reaching a temperature of 220 캜 and then starting the test,

5. 데이터 기록을 시작,5. Start recording data,

6. 온도 프로그램을 시작, 즉 600분(연속) 후 220℃에서 450℃으로 가열,6. Start the temperature program, ie 600 min (continuous), then heat from 220 ° C to 450 ° C,

7. 20분간 450℃으로 유지,7. Keep at 450 ° C for 20 minutes,

8. 즉 600분(연속) 후 450℃에서 220℃으로 냉각.8. After 600 minutes (continuous), cool from 450 to 220 ° C.

시험에 사용된 반응 가스의 조성은 하기와 같다:The composition of the reaction gas used in the test is as follows:

7 중량%의 CO,7% by weight of CO,

7 중량%의 CO2,7% by weight of CO 2 ,

33 중량%의 H2,33% by weight of H 2 ,

27 중량%의 N227% by weight of N 2 and

26 중량%의 H2O.26% by weight of H 2 O.

시험 중 촉매에 대한 GHSV은 12279/h이었다. 이 시험 변형예는 하기에서 시험 방법 M으로 지칭될 것이다.The GHSV for the catalyst during the test was 12279 / h. This test variant will be referred to below as test method M.

이 시험 방법 M의 대안으로서, 예를 들어, 온도 프로그램을, 방법 M으로부터 변화되지 않은 초기 온도 및 가열 속도(℃/분)에서, 예를 들어 마지막 온도를 380℃로 감소시킴으로써 변화시킬 수 있다.As an alternative to this test method M, for example, the temperature program can be varied by reducing the final temperature to, for example, 380 占 폚 at an initial temperature and heating rate (占 폚 / min) unchanged from the method M.

하기 장치들을 사용하였다:The following devices were used:

- 가열: 최대 600℃ 이하의 온도 범위를 지닌 컨벡션 퍼니스,- Heating: Convection furnace with temperature range up to 600 ℃,

- 반응기 외부에서의 온도 측정기,- a temperature meter outside the reactor,

- 가스 측정: 질량 유량계(Brooks)- Gas measurement: Mass flowmeter (Brooks)

- 물 측정: 액체 유량- Water measurement: liquid flow rate

- CO 및 CO2에 대한 분석 기기: Siemens Ultramat 23- Analyzer for CO and CO2: Siemens Ultramat 23

- 메탄에 대한 분석 기기: J.U.M. Engineering Model 3-300A의 FID- Analytical instrument for methane: J.U.M. FID of Engineering Model 3-300A

- Reco 압력 조정 밸브를 사용한 압력 조정- Pressure adjustment using Reco pressure regulating valve

- 데이터 저장에 대한 인터페이스로서 Linseis 36 채널 기록기- Linseis 36 channel recorder as interface for data storage

- 소프트웨어에 의한 데이터 평가- Evaluation of data by software

하기 매개변수들을 측정하였다:The following parameters were measured:

1. 온도 T1 (제1 램프(ramp)의 시작에서의 최저 CO 함량의 온도 [℃])1. Temperature T 1 (temperature [° C] of the lowest CO content at the beginning of the first ramp)

2. 온도 T2 (제1 온도 램프의 이후의 최저 CO 함량의 온도 [℃])2. Temperature T 2 (temperature [° C] of the lowest CO content in the first temperature ramp)

3. 350℃의 온도에서 메탄 함량 MG1 [ppm]3. The methane content at a temperature of 350 ℃ MG 1 [ppm]

4. 450℃의 온도에서 메탄 함량 MG2 [ppm]4. At a temperature of 450 ° C, the methane content MG 2 [ppm]

5. 방법 M (220~440℃로부터의 램프, 셰브론(Chevron) 등)5. Method M (lamp from 220-440 DEG C, Chevron, etc.)

4.4. 결과result

본 발명에 따른 촉매들 및 비교를 위해 제조된 촉매들의 결과를 하기 표 1에 나타내었다:The results of the catalysts according to the invention and the catalysts prepared for comparison are shown in the following Table 1:

본 발명에 따른 다양한 촉매들 및 비교예를 위한 촉매들의 결과Results of various catalysts according to the invention and catalysts for comparison 번호number Pt
[중량%]
Pt
[weight%]
도핑1) Doping 1) 알칼리 금속/알칼리 토금속2) Alkali metal / alkaline earth metal 2) 제조3) Manufacturing 3) T1
[℃]
T 1
[° C]
T2
[℃]
T 2
[° C]
MG1
[ppm]
MG 1
[ppm]
MG2
[ppm]
MG 2
[ppm]
MM
1One 0.950.95 Fe; 0.2Fe; 0.2 K; 2K; 2 II 260.8260.8 301.18301.18 30.6230.62 278.5278.5 ×× 22 0.950.95 Fe; 0.2Fe; 0.2 K; 1K; One KK 260260 300300 71.3371.33 -- 오직 380℃Only 380 ° C 33 0.90.9 Fe; 0.2Fe; 0.2 K; 1K; One KK 270270 305305 67.3967.39 -- 오직 380℃Only 380 ° C 44 0.80.8 Fe; 0.2Fe; 0.2 K; 1K; One KK 280280 310310 54.4954.49 -- 오직 380℃Only 380 ° C 55 0.90.9 Fe; 0.2Fe; 0.2 K; 2K; 2 KK 292.44292.44 345.22345.22 28.6628.66 145.54145.54 ×× 66 0.350.35 Fe; 0.2Fe; 0.2 K; 2K; 2 II 320320 325325 19.6719.67 285.33285.33 ×× C74) C7 4) 0.350.35 Fe; 0.07Fe; 0.07 K; 0.7K; 0.7 II 330330 345345 180.69180.69 1383.891383.89 ×× 88 0.950.95 Fe; 0.3Fe; 0.3 K; 2K; 2 II 268.66268.66 280.96280.96 48.6248.62 216.3216.3 ×× 99 0.950.95 Fe; 0.4Fe; 0.4 K; 2K; 2 II 285.22285.22 314314 17.7717.77 101.96101.96 ×× 1010 0.950.95 Fe; 0.25Fe; 0.25 K; 2K; 2 KK 286.29286.29 293.57293.57 45.2745.27 -- ×× 1111 0.950.95 Fe; 0.15Fe; 0.15 K; 2K; 2 KK 284.81284.81 285.2285.2 68.9868.98 -- 오직 380℃Only 380 ° C 1212 0.950.95 Fe; 0.2Fe; 0.2 K; 3K; 3 II 262.48262.48 321.29321.29 -- -- 오직 380℃Only 380 ° C C134) C13 4) 0.950.95 Fe; 0.2Fe; 0.2 -- II 282.23282.23 307.46307.46 291.56291.56 1885.451885.45 ×× C144) C14 4) 0.950.95 Fe; 0.5Fe; 0.5 -- II 296.27296.27 319.63319.63 77.2377.23 329.51329.51 ×× C154) C15 4) 0.950.95 Fe; 0.8Fe; 0.8 -- II 315.15315.15 351.55351.55 68.3168.31 246.63246.63 ×× C164) C16 4) 0.950.95 Fe; 1.0Fe; 1.0 Na; 2Na; 2 II 310.87310.87 331.72331.72 30.0730.07 43.3843.38 ×× 1717 0.950.95 Fe; 0.5Fe; 0.5 Na; 2Na; 2 II 310.38310.38 343.08343.08 54.5254.52 208.73208.73 ×× C184) C18 4) 0.950.95 Fe; 1.0Fe; 1.0 Na; 2Na; 2 KK 331.61331.61 363.68363.68 30.8930.89 75.9875.98 ×× C194) C19 4) 0.950.95 -- K; 5K; 5 II 292.74292.74 346.69346.69 72.0672.06 913.61913.61 ×× C204) C20 4) 0.950.95 Fe; 5Fe; 5 Ni; 1Ni; One II 359.03359.03 358.8358.8 25698.7825698.78 32595.5732595.57 ×× 2121 0.950.95 Fe; 0.5Fe; 0.5 Li; 2Li; 2 II 285.63285.63 297.78297.78 104.51104.51 786.67786.67 ×× 2222 0.950.95 Fe; 0.5Fe; 0.5 Rb; 2Rb; 2 II 293.08293.08 304.74304.74 52.3452.34 179.14179.14 ×× 2323 0.950.95 Fe; 0.5Fe; 0.5 Cs; 2Cs; 2 II 259.89259.89 -- 109.03109.03 554.88554.88 ×× C244) C24 4) 0.950.95 Mn; 0.2Mn; 0.2 K; 2K; 2 II 276.89276.89 314.25314.25 291.41291.41 4111.024111.02 ×× C254) C25 4) 0.950.95 Co; 0.2Co; 0.2 K; 2K; 2 II 304.19304.19 318.84318.84 590.55590.55 4731.534731.53 ×× 2626 0.950.95 Fe; 0.2Fe; 0.2 Mg; 2Mg; 2 II 321.44321.44 311.44311.44 80.0980.09 694.34694.34 ×× 2727 0.950.95 Fe; 0.2Fe; 0.2 Ca; 2Ca; 2 II 300.59300.59 323.29323.29 143.21143.21 1194.771194.77 ×× 2828 0.950.95 Fe; 0.2Fe; 0.2 Cs; 2Cs; 2 II 293.18293.18 294.92294.92 178.32178.32 1626.741626.74 ×× 2929 0.950.95 Fe; 0.2Fe; 0.2 K; 2K; 2 II 281.56281.56 307.02307.02 -- -- ×× 3030 0.950.95 Fe; 0.5Fe; 0.5 K; 2K; 2 II 282.83282.83 209.57209.57 24.1524.15 108.47108.47 ×× C314) C31 4) 0.950.95 Fe; 5Fe; 5 -- II 265.95265.95 298.15298.15 43.7243.72 388.31388.31 ×× 1) 원소; 양[중량%]을 기록함
2) 원소; 양[중량%]을 기록함
3) I = 함침; K = 반죽
4) 비교 실시예
1) element; Record amount [wt%]
2) element; Record amount [wt%]
3) I = impregnation; K = kneading
4) Comparative Example

Claims (11)

지지 물질 상에, Au, Pt, Pd, Rh 및 이들의 혼합물로부터 선택되는 1 이상의 귀금속을 촉매의 총 중량을 기준으로 0.1~0.96 중량%의 양으로, 1 이상의 알칼리 금속 및/또는 알칼리 토금속을 촉매의 총 중량을 기준으로 1.0~4.0 중량%의 양으로, 및 도판트로서 적어도 Fe를 촉매의 총 중량을 기준으로 0.01~5 중량%의 양으로 포함하는 수성 가스 전환 촉매.The method of claim 1 wherein at least one noble metal selected from Au, Pt, Pd, Rh and mixtures thereof is applied on the support material in an amount of from 0.1 to 0.96 wt.%, Based on the total weight of the catalyst, of at least one alkali metal and / In an amount of from 1.0 to 4.0% by weight, based on the total weight of the catalyst, and as a dopant, in an amount of at least 0.01 to 5% by weight based on the total weight of the catalyst. 제1항에 있어서, 알칼리 금속 및/또는 알칼리 토금속은 Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 수성 가스 전환 촉매.The aqueous gas conversion catalyst according to claim 1, wherein the alkali metal and / or alkaline earth metal is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof. 제1항에 있어서, 지지 물질은 적어도 Ce 및/또는 Zr를 포함하는 것인 수성 가스 전환 촉매.The aqueous gas conversion catalyst according to claim 1, wherein the support material comprises at least Ce and / or Zr. 제3항에 있어서, 지지 물질이 La 및/또는 Al을 추가로 포함하는 것인 수성 가스 전환 촉매.The water gas shift catalyst according to claim 3, wherein the support material further comprises La and / or Al. 제1항 내지 제4항 중 어느 한 항에 있어서, Pt가 귀금속으로서 존재하고, 알칼리 금속 및/또는 알칼리 토금속이 Li, Na, K, Rb, Cs, Mg, Ca, Sr 및 이들의 혼합물 중에서 선택되며, 도판트는 Fe이고, Ce 및/또는 Zr을 포함하는 지지 물질이 존재하는 것인 수성 가스 전환 촉매.The method according to any one of claims 1 to 4, wherein Pt is present as a noble metal and the alkali metal and / or alkaline earth metal is selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr, Wherein the dopant is Fe and a support material comprising Ce and / or Zr is present. 제1항 내지 제4항 중 어느 한 항에 있어서, 각 경우 촉매의 총 중량을 기준으로, 1 이상의 귀금속이 0.1~0.96 중량%의 양으로 존재하며, 1 이상의 알칼리 금속 및/또는 알칼리 토금속이 1.2~4.0 중량%의 양으로 존재하고, 도판트로서 적어도 Fe가 0.05~2.5 중량%의 양으로 존재하며, 그리고 지지 물질은 적어도 Ce 및/또는 Zr을 포함하는 것인 수성 가스 전환 촉매.The process according to any one of claims 1 to 4, wherein in each case at least one noble metal is present in an amount of from 0.1 to 0.96% by weight, based on the total weight of the catalyst, and wherein at least one alkali metal and / To 4.0% by weight, wherein at least Fe as the dopant is present in an amount of 0.05 to 2.5% by weight, and the support material comprises at least Ce and / or Zr. 제1항 내지 제4항 중 어느 한 항에 따른 수성 가스 전환 촉매를 제조하는 방법으로서,
1 이상의 귀금속, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 도판트로서 적어도 Fe의 일부가 지지 물질에 용액 또는 분산액으로서 도포되고 상기 지지 물질은 도포되지 않고 남은 성분과 혼합되거나, 또는
1 이상의 귀금속, 1 이상의 알칼리 금속 및/또는 알칼리 토금속 및 도판트로서 적어도 Fe의 전부가 지지 물질에 용액 또는 분산액으로서 도포되는 것인 제조 방법.
A process for producing a water gas shift catalyst according to any one of claims 1 to 4,
At least one noble metal, at least one alkali metal and / or alkaline earth metal and at least a portion of Fe as a dopant is applied as a solution or dispersion to the support material and the support material is mixed with the remaining components without application,
At least one noble metal, at least one alkali metal and / or alkaline earth metal, and at least all of Fe as a dopant is applied as a solution or dispersion to the support material.
일산화탄소 및 물을 이산화탄소 및 수소로 전환하기 위해 제1항 내지 제4항 중 어느 한 항에 따른 수성 가스 전환 촉매를 사용하는 방법.A process for the conversion of carbon monoxide and water to carbon dioxide and hydrogen using the aqueous gas conversion catalyst according to any one of claims 1 to 4. 적어도 일산화탄소 및 물을 포함하는 가스 혼합물을 이산화탄소 및 수소로 전환하는 방법으로서, 제1항 내지 제4항 중 어느 한 항에 따른 수성 가스 전환 촉매를 사용하는 방법.A process for the conversion of a gas mixture comprising at least carbon monoxide and water to carbon dioxide and hydrogen using a water gas shift catalyst according to any one of claims 1 to 4. 삭제delete 삭제delete
KR1020137007248A 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof KR101854941B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10174163.5 2010-08-26
EP10174163 2010-08-26
PCT/IB2011/053729 WO2012025897A1 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof

Publications (2)

Publication Number Publication Date
KR20140002618A KR20140002618A (en) 2014-01-08
KR101854941B1 true KR101854941B1 (en) 2018-05-04

Family

ID=45722974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137007248A KR101854941B1 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof

Country Status (5)

Country Link
EP (1) EP2608882A4 (en)
JP (1) JP5961166B2 (en)
KR (1) KR101854941B1 (en)
CA (1) CA2805259A1 (en)
WO (1) WO2012025897A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012397688B2 (en) * 2012-12-28 2016-05-26 Mitsubishi Heavy Industries Engineering, Ltd. CO shift catalyst, CO shift reactor, and method for purifying gasification gas
WO2014103075A1 (en) * 2012-12-28 2014-07-03 三菱重工業株式会社 Co shift catalyst, co shift reactor, and method for purifying gasification gas
BR102016022962B1 (en) * 2016-10-03 2021-10-26 Petróleo Brasileiro S.A. - Petrobras PREPARATION PROCESS OF AN IRON-CHROME CATALYST PROMOTED WITH PLATINUM, AND, COMPOSITE IRON-CHROME CATALYST PROMOTED WITH PLATINUM

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956330A (en) * 1989-06-19 1990-09-11 Phillips Petroleum Company Catalyst composition for the oxidation of carbon monoxide
US5830425A (en) 1993-02-09 1998-11-03 Sud-Chemie Ag Chromium-free catalyst based on iron oxide for conversion of carbon monoxide
DE4303715A1 (en) * 1993-02-09 1994-08-11 Sued Chemie Ag Chromium-free catalyst based on iron oxide for the conversion of carbon monoxide
ES2249764T3 (en) * 1994-02-22 2006-04-01 The Standard Oil Company PREPARATION PROCESS OF A CATALYST TO MANUFACTURE VINYL ACETATE IN A FLUID MILK.
JPH08243355A (en) * 1995-03-10 1996-09-24 Agency Of Ind Science & Technol Removing method of nitrogen oxide by catalytic reduction
DE19929281A1 (en) * 1999-06-25 2000-12-28 Basf Ag Process and catalyst for the production of C¶2¶ oxygenates from synthesis gas
US6969505B2 (en) 2002-08-15 2005-11-29 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
US7160533B2 (en) * 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-ruthenium containing catalyst formulations for hydrogen generation
US7160534B2 (en) * 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-free ruthenium-cobalt catalyst formulations for hydrogen generation
CA2511018A1 (en) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Catalyst formulations for hydrogen generation
US7744849B2 (en) * 2002-12-20 2010-06-29 Honda Giken Kogyo Kabushiki Kaisha Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation
WO2004058399A2 (en) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation
GB0402104D0 (en) 2004-02-02 2004-03-03 Johnson Matthey Plc Water gas shift catalyst
JP4537091B2 (en) 2004-03-01 2010-09-01 エヌ・イーケムキャット株式会社 Catalyst for removing carbon monoxide from hydrogen gas
US7238333B2 (en) * 2004-03-18 2007-07-03 General Motors Corporation High activity water gas shift catalysts with no methane formation
JP4296430B2 (en) * 2004-12-27 2009-07-15 戸田工業株式会社 Catalyst for water gas shift reaction and process for producing the same
ES2279691B1 (en) 2005-07-08 2008-08-01 Consejo Sup. De Invest. Cientificas CATALYSTS FOR CONVERSION OF CARBON MONOXIDE IN HYDROGEN AND ITS USE IN THE CATALYTIC PROCESS OF ENRICHMENT IN HYDROGEN OF A GAS CURRENT THAT CAN FEED A BATTERY OF FUEL.
KR100761512B1 (en) * 2006-08-22 2007-10-04 주식회사 효성 Dehydrogenation process of dimethylnaphthalene by metal catalyst

Also Published As

Publication number Publication date
JP5961166B2 (en) 2016-08-02
JP2013536076A (en) 2013-09-19
EP2608882A1 (en) 2013-07-03
CA2805259A1 (en) 2012-03-01
EP2608882A4 (en) 2014-11-12
KR20140002618A (en) 2014-01-08
WO2012025897A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN101385976A (en) Preparation method of cuprum cerium composite oxides catalyst
JP2001232197A (en) Methanol reforming catalyst, methanol reforming device and methanol reforming method
US20070249496A1 (en) Catalyst for Production of Hydrogen
CN101279271A (en) Catalyst for preparing synthesis gas by catalytic partial oxidation of methane and preparation method thereof
CN115382542A (en) Double-catalyst for hydrogen production by biological ethanol reforming and preparation method thereof
KR101854941B1 (en) Highly active water gas shift catalyst, preparation process and use thereof
KR101109394B1 (en) Catalyst for Removal of Carbon Monoxide from Hydrogen Gas
US8395009B2 (en) Catalyst for selective methanization of carbon monoxide
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
KR100976789B1 (en) Catalyst for water gas shift reaction, method for production thereof, and method of water gas shift by using same
US9248436B2 (en) Highly active shift catalysts
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
CN102438752B (en) Method for producing catalyst for use in selective oxidation reaction of carbon monoxide
KR101754130B1 (en) A Reduced Coke Catalyst Impregnated with Noble Metal and Metal Oxide and an Accelerated Life-Time Measurement Method Therewith
JP2010058043A (en) Method for manufacturing steam reforming catalyst and hydrogen
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
JP2002079102A (en) Catalyst for shift reaction and reaction method
KR101080860B1 (en) Catalyst for water-gas shift reaction of carbon monoxide and preparation method thereof
CN114425320B (en) Carrier for methanation catalyst and preparation method thereof, and methanation method
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JP2001232198A (en) Catalyst and manufacturing method of catalyst
JPH0578382B2 (en)
JP2024095452A (en) Mixed catalyst and method for producing dimethyl ether
JP2005536421A (en) Production of hydrogen gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal