EP2608882A1 - Highly active water gas shift catalyst, preparation process and use thereof - Google Patents

Highly active water gas shift catalyst, preparation process and use thereof

Info

Publication number
EP2608882A1
EP2608882A1 EP11819508.0A EP11819508A EP2608882A1 EP 2608882 A1 EP2608882 A1 EP 2608882A1 EP 11819508 A EP11819508 A EP 11819508A EP 2608882 A1 EP2608882 A1 EP 2608882A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
alkaline earth
alkali
catalyst according
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11819508.0A
Other languages
German (de)
French (fr)
Other versions
EP2608882A4 (en
Inventor
Stephan Hatscher
Markus HÖLZLE
Thorsten Von Fehren
Alexander SCHÄFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP11819508.0A priority Critical patent/EP2608882A4/en
Publication of EP2608882A1 publication Critical patent/EP2608882A1/en
Publication of EP2608882A4 publication Critical patent/EP2608882A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a highly active water gas conversion catalyst and a process for its preparation, and to a process for converting a gas mixture containing at least carbon monoxide and water into hydrogen and carbon dioxide over a wide temperature range using this catalyst.
  • the fuel is reformed and split into CO and H 2 .
  • This is followed by a water-gas conversion stage in which the CO formed is converted with water in a temperature-dependent equilibrium to C0 2 and H 2 :
  • the water gas conversion stage usually occurs in two temperature stages. At temperatures between 150 ° C and 280 ° C is referred to a low temperature conversion (TTK).
  • TTK low temperature conversion
  • the TTK is mostly catalytically using Cu / Zn oxide catalysts. Between 280 ° C and 550 ° C is referred to a high-temperature conversion (HTK).
  • HTK high-temperature conversion
  • EP 1 571 125 A2 discloses a catalyst for separating carbon monoxide from hydrogen gas.
  • This consists of an oxidic support material comprising zirconia, titania, alumina, silica, silica-alumina, zeolites and ceria.
  • the catalytically active metal is platinum.
  • there may be alkali metals such as lithium, sodium, potassium, rubidium or cesium, thus improving the activity of the catalyst for separating carbon monoxide by converting into carbon dioxide in the water-gas shift reaction.
  • the catalytically active metal is present in the catalyst according to EP 1 571 125 A2 in an amount of 2% by weight.
  • WO 2005/072871 A1 discloses a catalyst for the water gas shift reaction which contains metallic particles and particles of metal oxide. Suitable metal oxides are, for example, cerium oxide, titanium dioxide, iron oxide, manganese oxide or zinc oxide. Suitable metal particles are, for example, gold or platinum and are present in an amount of from 0.5 to 25% by weight with respect to the oxidic material.
  • US 2006/0002848 A1 discloses a catalyst comprising a support material of, for example, alumina, titania, silica, zirconia or a combination thereof.
  • alkali metals or alkaline earth metals can be present, as well as metals selected from lead, bismuth, polonium, magnesium, titanium vanadium chromium, manganese iron, nickel or cobalt, etc.
  • catalytically active metals are platinum, palladium, copper, rhodium, etc.
  • EP 1 908 517 A1 discloses a catalyst for converting H 2 O / carbon monoxide into hydrogen and the use of this catalyst for hydrogen enrichment of a stream used to supply a fuel cell.
  • This catalyst is a solid comprising an active phase containing elements of the eighth group on a support material consisting of alumina, silica, zirconia or mixtures thereof and a promoter from the group of rare earths, for example lanthanum or cerium.
  • US 2005/0207958 A1 discloses a process for reducing the amount of carbon monoxide in a water gas shift reactor without formation of methane.
  • a catalyst is used which has a carrier material based on cerium oxide and zirconium oxide or cerium oxide and lanthanum oxide. Promoters which avoid methanation use copper, manganese, iron compounds or combinations thereof. Other promoters may be alkali or alkaline earth metals.
  • the amount of platinum present on the catalyst is at least 1% by weight.
  • US 2005/0191224 A1 discloses a catalyst for separating carbon monoxide from hydrogen gas.
  • the catalyst used for this purpose has a support of metal oxide, a platinum component and an alkali metal, applied to this support.
  • zirconia, titania, alumina, silica, silica-alumina, zeolites or ceria are suitable as the carrier material. It was therefore the task of finding an active catalyst which can be used over a wide temperature window and in this case forms little methane.
  • the catalyst should have the lowest possible noble metal entry.
  • Noble metal-containing catalysts are prepared either by impregnation of a shaped carrier material with metal salt solutions of the noble metal component or by impregnation of the carrier powder and subsequent shaping.
  • the object of the invention was therefore further to provide a method in which the least possible precious metal component is deposited at inaccessible to the reaction points.
  • a catalyst comprising at least one noble metal in an amount of 0.001 to 1, 10 wt .-%, based on the total weight of the catalyst, at least one alkali and / or alkaline earth metal and at least one dopant selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a support material.
  • Further objects of the present invention are a process for the preparation of such a catalyst and a process for the conversion of a gas mixture containing at least carbon monoxide and water, to hydrogen and carbon dioxide, using such a catalyst.
  • the catalyst of the invention comprises at least one noble metal and at least one alkali and / or alkaline earth metal, each in specific amounts, as well as a doping with at least one element selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a support material.
  • the at least one noble metal is preferably selected from the group consisting of Au, Pt, Pd, Rh and Ru. Particular preference is given to using Pt. Also advantageous are combinations of Pt with one or more of said noble metals or combinations of one or more of said precious metals without Pt.
  • the present invention particularly preferably relates to the catalyst according to the invention, wherein the noble metal is selected from the group consisting of Au, Pt, Pd, Rh, Ru and mixtures thereof. Very particular preference is given to using Pt as the noble metal, and it is particularly preferable for Pt to be the only noble metal on the catalyst according to the invention.
  • the concentration of the at least one noble metal according to the invention is advantageously from 0.001 to 1, 10 wt .-%, preferably 0.01 to 1, 00 wt .-%, particularly preferably 0.1 to 0.99 wt .-%, for example 0.1 to 0.96 wt .-%, each based on the total weight of the catalyst. Due to the specific combination of features of the catalyst according to the invention, it is possible to be able to use very small amounts of expensive noble metal, and yet to achieve a high catalytic activity. According to the invention, Li, Na, K, Rb, Cs, Mg, Ca and / or Sr are preferably used as at least one alkali metal and / or alkaline earth metal. Particular preference is given to Li, Na, K and Rb, in particular Na or K.
  • the present invention therefore particularly preferably relates to the catalyst according to the invention, wherein the alkali and / or alkaline earth metal is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof.
  • the concentration of the at least one alkali metal and / or alkaline earth metal in a preferred embodiment is 1.0 to 4.0% by weight, more preferably 1.2 to 4.0% by weight, most preferably 1.8 to 3 , 5 wt .-%, particularly preferably 2.0 to 3.2 wt .-%, each based on the total weight of the catalyst. In a further preferred embodiment, from 1.2 to 3.5% by weight, based on the total weight of the catalyst, of K or Na is used. Therefore, in a preferred embodiment, the present invention relates to the catalyst according to the invention, wherein the at least one alkali and / or alkaline earth metal in an amount of 1, 0 to 4.0 wt .-%, based on the total catalyst, is present.
  • the catalyst according to the invention contains at least one doping agent selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof. Very particular preference is given to using iron as doping agent according to the invention. Particularly preferred is exclusively Fe used as a dopant.
  • the at least one doping agent, in particular iron is present in a concentration of generally 0.01 to 5% by weight, preferably 0.05 to 2.5% by weight, particularly preferably 0.1 to 1, 5 wt .-%, each based on the total weight of the catalyst, before.
  • the catalyst according to the invention may contain further dopants, for example rare earth metals and / or main group elements of groups 13 to 15. Such further dopants may have concentrations of altogether at most 15% by weight. exhibit.
  • Suitable carrier materials according to the invention are all materials which can usually be used for this purpose in catalyst chemistry and which have a sufficiently high BET surface area.
  • the BET surface area should be at least 50 m 2 / g.
  • the carrier materials containing combinations of lanthanide oxides and transition metals particularly preferably Ce / Zr oxide.
  • the ratio of Ce oxide to Zr oxide should advantageously be from 15 to 25 to 85 to 75 wt .-%, each based on the total weight of the carrier material.
  • the Ce / Zr oxide support material contains dopants of further oxides, for example Al 2 O 3 and / or La oxide.
  • a preferred ratio of Al 2 O 3 to Ce / Zr oxide according to the invention is 5 to 20 to 95 to 80, more preferably 8 to 12 to 92 to 88, for example 10 to 90.
  • the amount of La oxide (La 2 O 3 ) may for example be 1 to 10 wt .-%, preferably 3 to 8 wt .-%, particularly preferably 4 to 6 wt .-%, each based on the total weight of the carrier material ,
  • the present invention therefore particularly preferably relates to the catalyst according to the invention, wherein the support material contains at least Ce and / or Zr.
  • the present invention relates to the catalyst according to the invention, wherein the support material additionally contains La and / or Al.
  • the present invention relates to the catalyst according to the invention, wherein Pt is present as a noble metal, the alkali and / or alkaline earth metal is selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof, the Dopant is Fe, and a carrier material containing Ce and / or Zr is present.
  • Pt is present as a noble metal
  • the alkali and / or alkaline earth metal is selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof
  • the Dopant is Fe
  • a carrier material containing Ce and / or Zr is present.
  • the present invention particularly preferably relates to this catalyst according to the invention, wherein the support material additionally contains La.
  • the present or optionally present in the catalyst according to the invention components d. H. the said noble metals, alkali metals and / or alkaline earth metals, dopants and support materials are present in elemental and / or oxidic form.
  • the present invention relates to the catalyst according to the invention, wherein the at least one noble metal, in particular Pt, in an amount of 0.001 to 1, 10 wt .-%, preferably 0.01 to 1, 00 wt .-%, especially preferably 0.1 to 0.99 wt .-%, for example 0.1 to 0.96 wt .-%, the at least one alkali and / or alkaline earth metal, in particular Na or K, in an amount of 1, 2 to 4 , 0 wt .-%, preferably 1, 8 to 3.5 wt .-%, particularly preferably 2.0 to 3.2 wt .-%, and the at least one dopant, in particular Fe, in an amount of 0.05 to 2.5 wt .-%, particularly preferably 0.1 to 1, 5 wt .-%, each based on the total weight of the catalyst, is present, and the carrier material contains at least Ce and / or Zr. Very particularly preferred embodiments of the present invention
  • a catalyst which, used in a shift reaction, has a very high reactivity, combined with a very high efficiency, shows.
  • the high reactivity of the catalysts according to the invention can be demonstrated, for example, by the fact that said shift reaction takes place even at a relatively low temperature with almost complete thermodynamically possible conversion.
  • the particularly high efficiency of the catalyst according to the invention can be demonstrated by the fact that the catalyst in the shift reaction has little tendency to methanation, ie. h., That only a small proportion of the hydrogen formed is converted by the formation of methane.
  • the catalyst according to the invention can be prepared by impregnating the individual components onto the support material.
  • the active components are applied to powdered carrier material, which is then at least partially kneaded and extruded. It is also possible that one combines the production variants with each other and, for example, only a part of the active components applied to the powdered carrier material and thus kneaded and extruded and the remaining active components or their remaining subsets are then impregnated.
  • the active components are preferably used in the form of their salts or their oxides.
  • Suitable salts according to the invention are, for example, oxides, nitrates, hydroxides, acetates, acetylacetonates, carbonates, nitrosyl nitrates or halides, such as fluorides, chlorides, bromides and iodides.
  • the components are in an advantageous embodiment soaked in the carrier material. Since due to conditions to be observed, such as pH, concentrations, etc., usually different metal salts can not be impregnated in parallel, the preparation of a catalyst with different promoters is often but not exclusively in a variety of impregnation steps, for example, two steps of impregnation, carried out sequentially become.
  • the application of the active components by impregnation on the carrier material can be carried out in the usual manner, such. B. as a washcoat on a monolith.
  • the active material is first applied at least in part to the carrier material, preferably powdered carrier material, and then kneaded and then extruded, the kneading and extrusion of the carrier material with the active materials can be carried out in the usual manner with known apparatuses.
  • the carrier material preferably powdered carrier material
  • the present invention therefore relates in particular to a process for the preparation of the catalyst according to the invention, wherein the at least one noble metal, at least one alkali and / or alkaline earth metal, and the at least one dopant are applied to the support material as a solution or dispersion or a part or all of the at least one noble metal, the at least one alkali and / or alkaline earth metal and / or the at least one doping agent are applied to a carrier material as a solution or dispersion and this carrier material is mixed with the remaining part of the components.
  • moldings from pulverulent raw materials can be carried out by customary methods known to the person skilled in the art, such as, for example, tableting, aggregation or extrusion, as described i.a. in the Handbook of Heterogenous Catalysis, Vol. 1, VCH Verlagsgesellschaft Weinheim, 1997, pp. 414-417.
  • auxiliaries known to the person skilled in the art such as binders, lubricants and / or solvents, may be added.
  • the described production methods are simple and inexpensive.
  • the inventive catalyst is highly active with respect to the shift reaction, but suppresses the methanation reaction, for example by the catalyst according to the invention a methane content of less than 100 ppm, preferably less than 50 ppm (each at 350 ° C) and less than 500 ppm, preferably less than 300 ppm, (each at 450 ° C) reached.
  • the catalyst described can be used in the process according to the invention for the conversion of a gas mixture containing at least carbon monoxide and water to hydrogen and carbon dioxide.
  • the process can be carried out under the usual conditions of a conversion reaction, both in the TTK range at temperatures of usually 150-280 ° C., and in the HTK range at temperatures of usually 280-550 ° C. Due to the low tendency of methanation of the catalyst according to the invention even at high temperatures, this is particularly recommended for the HTK, are unsuitable in the previous catalysts of the prior art.
  • the conversion reaction according to the invention in a temperature range of 180 to 550 ° C. It is thus possible and advantageous, both in the stage the HTK and in the stage of TTK use the catalyst of the invention.
  • the process according to the invention for reducing carbon monoxide (CO) by the process of a conversion reaction on the highly active conversion catalyst according to the invention is carried out in customary apparatuses and under customary conditions for carrying out a conversion reaction, as described, for example, in the Handbook of heterogeneous catalysis, 2nd edition, Vol. 1, VCH Verlagsgesellschaft Weinheim, 2008, pages 354-355, and with overflow of the catalyst with a CO and water-containing process gas.
  • the process gas used is a gas mixture, in addition to carbon monoxide and water, which are reacted in the conversion reaction described, usually also other gases such. As hydrogen, carbon dioxide and nitrogen.
  • the present invention therefore also relates to the use of the catalyst according to the invention, the conversion of carbon monoxide and water to carbon dioxide and hydrogen.
  • the present invention relates to a process for the conversion of a gas mixture containing at least carbon monoxide and water, to carbon dioxide and hydrogen, wherein a catalyst according to the invention is used.
  • FIG. 1 shows an exemplary measuring scheme.
  • the abbreviations have the following meanings:
  • Catalysts and catalysts according to the invention which serve as a comparison are prepared by the following processes:
  • the preparation of the catalysts according to the invention and the comparative catalysts can be carried out by impregnation, as shown by the following example for the preparation of a catalyst:
  • the required amount of iron nitrate is dissolved in the stated amount of platinum nitrate solution and distilled with H 2 0. diluted to a volume corresponding to 90% of the water absorption of the Ce / Zr support material.
  • the strands are presented and spray-impregnated while circulating with the platinum / iron nitrate solution. After soaking, the strands are circulated for a further 5 minutes, then dried and then calcined.
  • potassium hydroxide is distilled with H 2 0. diluted to a volume equivalent to 90% of the water uptake of the resulting Pt / Fe doped strands. These strands are then spray-impregnated with the resulting dilute potassium hydroxide solution with constant circulation. After soaking, the strands are recirculated for another 5 minutes, then dried and then calcined. Drying: 4h at 200 ° C in a convection oven
  • the preparation of the catalysts according to the invention and of the comparative catalysts can be carried out by kneading, as shown by the following example for the preparation of a catalyst:
  • Kneader submitted The least with H 2 0. Nitric acid diluted to 20 ml total volume is added slowly and kneaded for 10 minutes. Then the iron nitrate is dissolved in the platinum nitrate solution, destilled with H 2 0. diluted to 30 ml total volume, added and kneaded for 5 minutes. Subsequently, the potassium hydroxide solution is added undiluted and kneaded again for 10 minutes. H 2 0 dist. Is added in small portions until a plastic mass is obtained. stands. The plastic mass is deformed by means of an extruder to 1, 5 mm strands.
  • Catalyst installation 15 mL catalyst (bed) or 8 to 12 mL (volume of a monolith) are installed in the reactor,
  • composition of the reaction gas used for the testing is:
  • test method M 26% by weight of H 2 O
  • the catalyst loading GHSV during testing is 12,279 / h.
  • This test variant is referred to below as test method M.
  • the temperature program can be changed, for example, by reducing the final temperature to 380 ° C. with the starting temperature unchanged for method M and the heating rate (° C./min).
  • Heating convection oven with temperature range up to max. 600 ° C,
  • Linseis-36 channel recorder as interface for data storage
  • Table 1 shows the results of the catalysts according to the invention and the catalysts prepared for comparison: Table 1: Results of the various catalysts according to the invention and the catalysts for comparison

Abstract

A highly active water gas shift catalyst, preparation process and use thereof are provided. The catalyst comprises at least one noble metal in an amount of from 0.001 to 1.10% by weight, based on the total weight of the catalyst, at least one alkali metal and/or alkaline earth metal and at least one dopant selected from the group of Fe, Cr, Cu, Zn and mixtures thereof on a support material. The catalyst can be used to convert carbon monoxide and water into carbon dioxide and hydrogen in a wide temperature range.

Description

Hochaktive Konvertierungskatalysatoren Beschreibung Die vorliegende Erfindung betrifft einen hochaktiven Wassergaskonvertierungskataly- sator und ein Verfahren zu dessen Herstellung, sowie ein Verfahren zur Konvertierung eines mindestens Kohlenmonoxid und Wasser enthaltenden Gasgemisches zu Wasserstoff und Kohlendioxid in einem breiten Temperaturbereich unter Verwendung dieses Katalysators.  The present invention relates to a highly active water gas conversion catalyst and a process for its preparation, and to a process for converting a gas mixture containing at least carbon monoxide and water into hydrogen and carbon dioxide over a wide temperature range using this catalyst.
In einer Brennstoffzelle wird elektrische Energie durch chemische Reaktion gewonnen. Die meisten Brennstoffzellen nutzen dabei die Reaktion zwischen einem reduzierenden und einem oxidierenden Strom aus, meist Wasserstoff und Sauerstoff. Um einen Brennstoff in einer Brennstoffzelle nutzbar zu machen, muss dieser zuvor in einen wasserstoffreichen Strom umgewandelt werden. In a fuel cell, electrical energy is gained by chemical reaction. Most fuel cells use the reaction between a reducing and an oxidizing current, usually hydrogen and oxygen. In order to harness a fuel in a fuel cell, it must first be converted into a hydrogen-rich stream.
Die Aufbereitung von Brennstoffen erfolgt dabei oft in drei Schritten: The treatment of fuels often takes place in three steps:
Zunächst wird der Brennstoff reformiert und so zu CO und H2 aufgespalten. Es folgt eine Stufe der Wassergaskonvertierung, in der das gebildete CO mit Wasser in einem temperaturabhängigen Gleichgewicht zu C02 und H2 umgewandelt wird: First, the fuel is reformed and split into CO and H 2 . This is followed by a water-gas conversion stage in which the CO formed is converted with water in a temperature-dependent equilibrium to C0 2 and H 2 :
CO + H20 -> C02 + H2 Dieses Gleichgewicht liegt umso mehr auf der Seite von H2 und C02, je tiefer die Temperatur ist. Meist folgt eine CO-Feinreinigungsstufe. CO + H 2 0 -> C0 2 + H 2 This equilibrium is all the more on the side of H 2 and C0 2 , the lower the temperature is. Mostly followed by a CO fine cleaning stage.
Hohe Konzentrationen (größer als 50 ppm) an CO schädigen die Anodenelektrode der Brennstoffzelle. Daher muss vor der eigentlichen Zelle der CO-Gehalt minimiert wer- den. Dies geschieht zum einen in der Wassergaskonvertierungsstufe, zum anderen in der CO-Feinreinigungsstufe. Die Wassergaskonvertierungsstufe kommt dabei üblicherweise in zwei Temperaturstufen vor. Bei Temperaturen zwischen 150 °C und 280 °C wird von einer Tieftemperaturkonvertierung (TTK) gesprochen. Die TTK erfolgt zumeist katalytisch unter Verwendung von Cu/Zn-Oxid-Katalysatoren. Zwischen 280 °C und 550 °C wird von einer Hochtemperaturkonvertierung (HTK) gesprochen. Traditionell wird diese an Fe/Cr-Katalysatoren durchgeführt. Auch an Mo, Ni und weiteren Elementen kann diese Reaktion katalysiert werden. Edelmetalle auf Ceroxiden wurden ebenfalls mehrfach als Katalysatoren für diese Reaktion beschrieben. Die Konvertierungsreaktion führt nicht nur zu einer Entfernung des Katalysatorgiftes CO, sie erhöht auch den Anteil am Wertprodukt H2 im Brennstoff ström. Wichtig ist daher, dass ein Katalysator für die HTK neben der Produktion von H2 aus CO und H20 nicht Reaktionen katalysiert, die zu einer Vernichtung oder Abreicherung des Wertpro- duktes H2 führen. Dazu zählt vor allem die Methanisierung, die an Nickelkatalysatoren bei hohen Temperaturen, an Edelmetallkatalysatoren bereits bei Temperaturen oberhalb von 350 °C beobachtet werden kann. Hierbei liegen zwei Reaktionswege vor: High concentrations (greater than 50 ppm) of CO damage the anode electrode of the fuel cell. Therefore, the CO content must be minimized before the actual cell. This happens on the one hand in the Wassergaskonvertierungsstufe, on the other hand in the CO fine cleaning stage. The water gas conversion stage usually occurs in two temperature stages. At temperatures between 150 ° C and 280 ° C is referred to a low temperature conversion (TTK). The TTK is mostly catalytically using Cu / Zn oxide catalysts. Between 280 ° C and 550 ° C is referred to a high-temperature conversion (HTK). Traditionally, this is done on Fe / Cr catalysts. Also on Mo, Ni and other elements, this reaction can be catalyzed. Precious metals on cerium oxides have also been described several times as catalysts for this reaction. The conversion reaction not only leads to a removal of the catalyst poison CO, it also increases the proportion of the desired product H 2 in the fuel Ström. It is therefore important that a catalyst for the HTK not only catalyzes reactions in addition to the production of H 2 from CO and H 2 O, which leads to destruction or depletion of the value product H 2 . These include above all the methanation, which can be observed at nickel catalysts at high temperatures, at noble metal catalysts already at temperatures above 350 ° C. There are two reaction pathways here:
CO + 3 H2 -> CH4 + H20 CO + 3 H 2 -> CH 4 + H 2 O
C02 + 4 H2 -> CH4 + 2 H20 C0 2 + 4 H 2 -> CH 4 + 2 H 2 0
Beide Reaktionen konsumieren das Wertprodukt H2 und mindern demnach die Wasserstoffausbeute. Verfahren und Katalysatoren, die eine möglichst hohe Ausbeute an Wasserstoff und eine möglichst geringe Methanisierungsneigung aufweisen, sind aus dem Stand der Technik bekannt. Both reactions consume the valuable product H 2 and thus reduce the hydrogen yield. Methods and catalysts which have the highest possible yield of hydrogen and the lowest possible tendency to methanation are known from the prior art.
EP 1 571 125 A2 offenbart einen Katalysator zur Abtrennung von Kohlenstoffmonoxid aus Wasserstoffgas. Dieser besteht aus einem oxidischen Trägermaterial umfassend Zirkoniumdioxid, Titaniumdioxid, Aluminiumoxid, Siliziumdioxid, Siliziumdioxid- Aluminiumoxid, Zeolithe und Ceroxid. Als katalytisch aktives Metall liegt Platin vor. Des Weiteren können als weitere anorganische Verbindungen Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium oder Cäsium vorliegen und so die Aktivität des Katalysators zur Abtrennung von Kohlenmonoxid durch Überführen in Kohlendioxid in der Wasser- Gas-Shiftreaktion verbessern. Das katalytisch aktive Metall liegt in dem Katalysator gemäß EP 1 571 125 A2 in einer Menge von 2 Gew.-% vor. EP 1 571 125 A2 discloses a catalyst for separating carbon monoxide from hydrogen gas. This consists of an oxidic support material comprising zirconia, titania, alumina, silica, silica-alumina, zeolites and ceria. The catalytically active metal is platinum. Further, as further inorganic compounds, there may be alkali metals such as lithium, sodium, potassium, rubidium or cesium, thus improving the activity of the catalyst for separating carbon monoxide by converting into carbon dioxide in the water-gas shift reaction. The catalytically active metal is present in the catalyst according to EP 1 571 125 A2 in an amount of 2% by weight.
WO 2005/072871 A1 offenbart einen Katalysator für die Wassergas-Shiftreaktion, der metallische Partikel und Partikel aus Metalloxid enthält. Geeignete Metalloxide sind beispielsweise Ceroxid, Titandioxid, Eisenoxid, Manganoxid oder Zinkoxid. Geeignete Metallpartikel sind beispielsweise Gold oder Platin und liegen in einer Menge von 0,5 bis 25 Gew.-% bezüglich des oxidischen Materials vor. US 2006/0002848 A1 offenbart einen Katalysator, der ein Trägermaterial aus beispielsweise Aluminiumoxid, Titandioxid, Siliziumdioxid, Zirkoniumdioxid oder einer Kombination davon aufweist. Des Weiteren können Alkali- oder Erdalkalimetalle vorliegen, sowie Metalle ausgewählt aus Blei, Bismut, Polonium, Magnesium, Titanvanadiumchrom, Manganeisen, Nickel oder Kobalt etc. Als katalytisch aktive Me- talle liegen beispielsweise Platin, Palladium, Kupfer, Rhodium, etc. vor. EP 1 908 517 A1 offenbart einen Katalysator zur Umwandlung von H20/Kohlenmonoxid in Wasserstoff und die Verwendung dieses Katalysators für die Wasserstoffanreicherung eines Stroms, der für die Versorgung einer Brennstoffzelle eingesetzt wird. Dieser Katalysator ist ein Feststoff umfassend eine aktive Phase enthaltend Elemente der achten Gruppe auf einem Trägermaterial bestehend aus Aluminiumoxid, Siliziumdioxid, Zirkoniumdioxid oder Mischungen davon und einem Promoter aus der Gruppe der seltenen Erden, beispielsweise Lanthan oder Cer. US 2005/0207958 A1 offenbart ein Verfahren zur Reduktion der Menge an Kohlenmo- noxid in einem Wassergas-Shiftreaktor ohne Bildung von Methan. Dazu wird ein Katalysator eingesetzt, der ein Trägermaterial auf Basis von Ceroxid und Zirkoniumoxid oder Ceroxid und Lanthanoxid aufweist. Als Promotoren, die die Methanisierung vermeiden, werden Kupfer, Mangan, Eisenverbindungen oder Kombinationen davon ein- gesetzt. Weitere Promotoren können Alkali- oder Erdalkalimetalle sein. Die Menge an Platin, die auf dem Katalysator vorliegt, beträgt mindestens 1 Gew.-%. WO 2005/072871 A1 discloses a catalyst for the water gas shift reaction which contains metallic particles and particles of metal oxide. Suitable metal oxides are, for example, cerium oxide, titanium dioxide, iron oxide, manganese oxide or zinc oxide. Suitable metal particles are, for example, gold or platinum and are present in an amount of from 0.5 to 25% by weight with respect to the oxidic material. US 2006/0002848 A1 discloses a catalyst comprising a support material of, for example, alumina, titania, silica, zirconia or a combination thereof. Furthermore, alkali metals or alkaline earth metals can be present, as well as metals selected from lead, bismuth, polonium, magnesium, titanium vanadium chromium, manganese iron, nickel or cobalt, etc. Examples of catalytically active metals are platinum, palladium, copper, rhodium, etc. EP 1 908 517 A1 discloses a catalyst for converting H 2 O / carbon monoxide into hydrogen and the use of this catalyst for hydrogen enrichment of a stream used to supply a fuel cell. This catalyst is a solid comprising an active phase containing elements of the eighth group on a support material consisting of alumina, silica, zirconia or mixtures thereof and a promoter from the group of rare earths, for example lanthanum or cerium. US 2005/0207958 A1 discloses a process for reducing the amount of carbon monoxide in a water gas shift reactor without formation of methane. For this purpose, a catalyst is used which has a carrier material based on cerium oxide and zirconium oxide or cerium oxide and lanthanum oxide. Promoters which avoid methanation use copper, manganese, iron compounds or combinations thereof. Other promoters may be alkali or alkaline earth metals. The amount of platinum present on the catalyst is at least 1% by weight.
US 2005/0191224 A1 offenbart einen Katalysator zur Abtrennung von Kohlenmonoxid aus Wasserstoffgas. Der dazu eingesetzte Katalysator weist einen Träger aus Metall- oxid, eine Platin-Komponente und ein Alkalimetall, aufgebracht auf diesen Träger, auf. Gemäß dieser Schrift sind beispielsweise Zirkoniumdioxid, Titandioxid, Aluminiumoxid, Siliziumdioxid, Siliziumdioxid-Aluminiumoxid, Zeolithe oder Ceroxid als Trägermaterial geeignet. Es bestand demnach die Aufgabe, einen aktiven Katalysator zu finden, der über ein breites Temperaturfenster einsetzbar ist und hierbei wenig Methan bildet. Der Katalysator sollte einen möglichst geringen Edelmetalleintrag aufweisen. US 2005/0191224 A1 discloses a catalyst for separating carbon monoxide from hydrogen gas. The catalyst used for this purpose has a support of metal oxide, a platinum component and an alkali metal, applied to this support. According to this document, for example, zirconia, titania, alumina, silica, silica-alumina, zeolites or ceria are suitable as the carrier material. It was therefore the task of finding an active catalyst which can be used over a wide temperature window and in this case forms little methane. The catalyst should have the lowest possible noble metal entry.
Edelmetallhaltige Katalysatoren werden entweder durch Tränkung eines ausgeformten Trägermaterials mit Metallsalzlösungen der Edelmetallkomponente hergestellt oder durch Tränkung des Trägerpulvers und anschließender Ausformung. Die Aufgabe der Erfindung bestand deshalb weiter darin, ein Verfahren bereitzustellen, bei dem möglichst wenig Edelmetallkomponente an für die Reaktion unzugänglichen Stellen deponiert wird. Noble metal-containing catalysts are prepared either by impregnation of a shaped carrier material with metal salt solutions of the noble metal component or by impregnation of the carrier powder and subsequent shaping. The object of the invention was therefore further to provide a method in which the least possible precious metal component is deposited at inaccessible to the reaction points.
Die Aufgaben werden erfindungsgemäß gelöst durch einen Katalysator, enthaltend wenigstens ein Edelmetall in einer Menge von 0,001 bis 1 ,10 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, wenigstens ein Alkali- und/oder Erdalkalimetall und wenigstens ein Dotierungsmittel ausgewählt aus der Gruppe bestehend aus Fe, Cr, Cu, Zn und Mischungen davon, auf einem Trägermaterial. Weitere Gegenstände der vorliegenden Erfindung sind ein Verfahren zur Herstellung eines solchen Katalysators sowie ein Verfahren zur Konvertierung eines Gasgemisches, enthaltend mindestens Kohlenmonoxid und Wasser, zu Wasserstoff und Kohlendioxid, unter Einsatz eines solchen Katalysators. The objects are achieved by a catalyst comprising at least one noble metal in an amount of 0.001 to 1, 10 wt .-%, based on the total weight of the catalyst, at least one alkali and / or alkaline earth metal and at least one dopant selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a support material. Further objects of the present invention are a process for the preparation of such a catalyst and a process for the conversion of a gas mixture containing at least carbon monoxide and water, to hydrogen and carbon dioxide, using such a catalyst.
Die Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemäßen Gegenstandes nicht nur in den jeweils angegebenen Kombinationen, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen. The embodiments of the present invention can be taken from the claims, the description and the examples. It is understood that the features mentioned above and those yet to be explained of the article according to the invention can be used not only in the respective combinations indicated, but also in other combinations, without departing from the scope of the invention.
Es wurde überraschend gefunden, dass bei Einsatz eines geträgerten Edelmetallkatalysators, der wenigstens ein Edelmetall in einer Menge von 0,001 bis 1 ,10 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, wenigstens ein Alkali- und/oder Erdalkalimetall und wenigstens ein Dotierungsmittel ausgewählt aus der Gruppe bestehend aus Fe, Cr, Cu, Zn und Mischungen davon, auf einem Trägermaterial aufweist, die Wassergaskonvertierung in einem breiten Temperaturbereich erfolgreich durchgeführt werden kann, wobei, insbesondere bei höheren Temperaturen, wie sie bei der HTK auftreten, die unerwünschte Methanisierung unterdrückt wird. Gerade die Merkmalskombination des erfindungsgemäßen Katalysators ergibt die genannten Vorteile. It has surprisingly been found that when using a supported noble metal catalyst containing at least one noble metal in an amount of 0.001 to 1, 10 wt .-%, based on the total weight of the catalyst, at least one alkali and / or alkaline earth metal and at least one doping agent selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a carrier material, the water gas conversion can be carried out successfully in a wide temperature range, wherein, especially at higher temperatures, as they occur in the HTK, suppresses the undesirable methanation becomes. Especially the feature combination of the catalyst according to the invention gives the advantages mentioned.
Bekannt ist, dass in einem edelmetallhaltigen Shiftkatalysator durch einen Zusatz von beispielsweise Natrium eine Erhöhung der Shiftaktivität bei verstärkter Methanisierungsneigung bewirkt wird. Durch Zusatz von beispielsweise Eisen wird eine Verringerung der Shiftaktivität bei verringerter Methanisierungsneigung erreicht. Daraus resultiert, dass zwischen Einsatz von beispielsweise Eisen und Alkalimetall ein Optimum gefunden werden muss, bei dem sowohl eine ausreichende Shiftaktivität vorhanden ist, als auch die Methanisierungsneigung ausreichend stark unterdrückt wird. It is known that in a noble metal-containing shift catalyst by an addition of, for example, sodium an increase in the shift activity is effected with increased methanation tendency. By adding iron, for example, a reduction in the shift activity is achieved with a reduced tendency to methanation. As a result, an optimum must be found between the use of, for example, iron and alkali metal, in which both a sufficient shift activity is present, and the Methanisierungsneigung is sufficiently suppressed.
Der erfindungsgemäße Katalysator enthält wenigstens ein Edelmetall und wenigstens ein Alkali- und/oder Erdalkalimetall, jeweils in spezifischen Mengen, sowie eine Dotierung mit wenigstens einem Element ausgewählt aus der Gruppe bestehend aus Fe, Cr, Cu, Zn und Mischungen davon, auf einem Trägermaterial. The catalyst of the invention comprises at least one noble metal and at least one alkali and / or alkaline earth metal, each in specific amounts, as well as a doping with at least one element selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a support material.
Das wenigstens eine Edelmetall ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Au, Pt, Pd, Rh und Ru. Besonders bevorzugt wird Pt eingesetzt. Vorteilhaft sind auch Kombinationen von Pt mit einem oder mehreren der genannten Edelmetalle oder auch Kombinationen von einem oder mehreren der genannten Edelmetalle ohne Pt. Die vorliegende Erfindung betrifft besonders bevorzugt den erfindungsgemäßen Katalysator, wobei das Edelmetall ausgewählt ist aus der Gruppe bestehend aus Au, Pt, Pd, Rh, Ru und Mischungen davon. Ganz besonders bevorzugt wird als Edelmetall Pt eingesetzt, insbesondere bevorzugt liegt auf dem erfindungsgemäßen Katalysator Pt als einziges Edelmetall vor. The at least one noble metal is preferably selected from the group consisting of Au, Pt, Pd, Rh and Ru. Particular preference is given to using Pt. Also advantageous are combinations of Pt with one or more of said noble metals or combinations of one or more of said precious metals without Pt. The present invention particularly preferably relates to the catalyst according to the invention, wherein the noble metal is selected from the group consisting of Au, Pt, Pd, Rh, Ru and mixtures thereof. Very particular preference is given to using Pt as the noble metal, and it is particularly preferable for Pt to be the only noble metal on the catalyst according to the invention.
Die Konzentration des wenigstens einen Edelmetalls beträgt erfindungsgemäß vorteilhafterweise 0,001 bis 1 ,10 Gew.-%, vorzugsweise 0,01 bis 1 ,00 Gew.-%, besonders bevorzugt 0,1 bis 0,99 Gew.-%, beispielsweise 0,1 bis 0,96 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Katalysators. Durch die spezifische Merkmalskombination des erfindungsgemäßen Katalysators ist es möglich sehr geringe Mengen an kostspieligem Edelmetall einsetzen zu können, und dennoch eine hohe katalytische Aktivität zu erzielen. Erfindungsgemäß werden als wenigstens ein Alkali- und/oder Erdalkalimetall vorzugsweise Li, Na, K, Rb, Cs, Mg, Ca und/oder Sr eingesetzt. Besonders bevorzugt werden Li, Na, K und Rb, insbesondere Na oder K. The concentration of the at least one noble metal according to the invention is advantageously from 0.001 to 1, 10 wt .-%, preferably 0.01 to 1, 00 wt .-%, particularly preferably 0.1 to 0.99 wt .-%, for example 0.1 to 0.96 wt .-%, each based on the total weight of the catalyst. Due to the specific combination of features of the catalyst according to the invention, it is possible to be able to use very small amounts of expensive noble metal, and yet to achieve a high catalytic activity. According to the invention, Li, Na, K, Rb, Cs, Mg, Ca and / or Sr are preferably used as at least one alkali metal and / or alkaline earth metal. Particular preference is given to Li, Na, K and Rb, in particular Na or K.
Die vorliegende Erfindung betrifft daher besonders bevorzugt den erfindungsgemäßen Katalysator, wobei das Alkali- und/oder Erdalkalimetall ausgewählt ist aus der Gruppe bestehend aus Li, Na, K, Rb, Cs, Mg, Ca, Sr und Mischungen davon. The present invention therefore particularly preferably relates to the catalyst according to the invention, wherein the alkali and / or alkaline earth metal is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof.
Die Konzentration des wenigstens einen Alkali- und/oder Erdalkalimetalls beträgt in einer bevorzugten Ausführungsform 1 ,0 bis 4,0 Gew.-%, besonders bevorzugt 1 ,2 bis 4,0 Gew.-%, ganz besonders bevorzugt 1 ,8 bis 3,5 Gew.-%, insbesondere bevorzugt 2,0 bis 3,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Katalysators. In einer weiter bevorzugten Ausführungsform werden 1 ,2 bis 3,5 Gew.-%, bezogen auf das Gesamtgewicht des Katalysators, K oder Na verwendet. Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform den erfindungsgemäßen Katalysator, wobei das wenigstens eine Alkali- und/oder Erdalkalimetall in einer Menge von 1 ,0 bis 4,0 Gew.-%, bezogen auf den gesamten Katalysator, vorliegt. Als weitere Komponente enthält der erfindungsgemäße Katalysator wenigstens ein Dotierungsmittel ausgewählt aus der Gruppe bestehend aus Fe, Cr, Cu, Zn und Mischungen davon. Ganz besonders bevorzugt wird erfindungsgemäß Eisen als Dotierungsmittel eingesetzt. Insbesondere bevorzugt wird ausschließlich Fe als Dotierungsmittel eingesetzt. In dem erfindungsgemäßen Katalysator liegt das wenigstens eine Dotierungsmittel, insbesondere Eisen, in einer Konzentration von im Allgemeinen 0,01 bis 5 Gew.-%, bevorzugt 0,05 bis 2,5 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Katalysators, vor. The concentration of the at least one alkali metal and / or alkaline earth metal in a preferred embodiment is 1.0 to 4.0% by weight, more preferably 1.2 to 4.0% by weight, most preferably 1.8 to 3 , 5 wt .-%, particularly preferably 2.0 to 3.2 wt .-%, each based on the total weight of the catalyst. In a further preferred embodiment, from 1.2 to 3.5% by weight, based on the total weight of the catalyst, of K or Na is used. Therefore, in a preferred embodiment, the present invention relates to the catalyst according to the invention, wherein the at least one alkali and / or alkaline earth metal in an amount of 1, 0 to 4.0 wt .-%, based on the total catalyst, is present. As a further component, the catalyst according to the invention contains at least one doping agent selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof. Very particular preference is given to using iron as doping agent according to the invention. Particularly preferred is exclusively Fe used as a dopant. In the catalyst according to the invention, the at least one doping agent, in particular iron, is present in a concentration of generally 0.01 to 5% by weight, preferably 0.05 to 2.5% by weight, particularly preferably 0.1 to 1, 5 wt .-%, each based on the total weight of the catalyst, before.
Neben dem wenigstens einen Alkali- und/oder Erdalkalimetall und dem wenigstens einen Dotierungsmittel kann der erfindungsgemäße Katalysator weitere Dotierungen enthalten, beispielsweise Seltenerdmetalle und/oder Hauptgruppenelemente der Gruppen 13 bis 15. Solche weiteren Dotierungsmittel können Konzentrationen von insge- samt höchstens 15 Gew.-% aufweisen. In addition to the at least one alkali metal and / or alkaline earth metal and the at least one doping agent, the catalyst according to the invention may contain further dopants, for example rare earth metals and / or main group elements of groups 13 to 15. Such further dopants may have concentrations of altogether at most 15% by weight. exhibit.
Als Trägermaterial sind erfindungsgemäß alle üblicherweise in der Katalysatorchemie für diese Zwecke einsetzbaren Materialien geeignet, die eine ausreichend hohe BET- Oberfläche aufweisen. Suitable carrier materials according to the invention are all materials which can usually be used for this purpose in catalyst chemistry and which have a sufficiently high BET surface area.
Vorteilhafterweise sollte die BET-Oberfläche mindestens 50 m2/g aufweisen. Advantageously, the BET surface area should be at least 50 m 2 / g.
Vorzugsweise eingesetzt werden Trägermaterialien enthaltend Kombinationen aus Lanthanidoxiden und Übergangsmetallen, besonders bevorzugt Ce/Zr-Oxid. Dabei sollte das Verhältnis von Ce-Oxid zu Zr-Oxid vorteilhafterweise von 15 bis 25 zu 85 bis 75 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Trägermaterials, betragen. In einer vorteilhaften Ausführungsform enthält das Ce/Zr-Oxid-Trägermaterial Dotierungen weiterer Oxide, beispielsweise von Al203 und/oder La-Oxid. Beispielsweise beträgt ein erfindungsgemäß bevorzugtes Verhältnis von Al203 zu Ce/Zr-Oxid 5 bis 20 zu 95 bis 80, besonders bevorzugt 8 bis 12 zu 92 bis 88, beispielsweise 10 zu 90. Preferably used are carrier materials containing combinations of lanthanide oxides and transition metals, particularly preferably Ce / Zr oxide. In this case, the ratio of Ce oxide to Zr oxide should advantageously be from 15 to 25 to 85 to 75 wt .-%, each based on the total weight of the carrier material. In an advantageous embodiment, the Ce / Zr oxide support material contains dopants of further oxides, for example Al 2 O 3 and / or La oxide. For example, a preferred ratio of Al 2 O 3 to Ce / Zr oxide according to the invention is 5 to 20 to 95 to 80, more preferably 8 to 12 to 92 to 88, for example 10 to 90.
Die Menge an La-oxid (La203) kann beispielsweise 1 bis 10 Gew.-%, bevorzugt 3 bis 8 Gew.-%, besonders bevorzugt 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Trägermaterials, betragen. The amount of La oxide (La 2 O 3 ) may for example be 1 to 10 wt .-%, preferably 3 to 8 wt .-%, particularly preferably 4 to 6 wt .-%, each based on the total weight of the carrier material ,
Die vorliegende Erfindung betrifft daher besonders bevorzugt den erfindungsgemäßen Katalysator, wobei das Trägermaterial mindestens Ce und/oder Zr enthält. In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung den erfindungsgemäßen Katalysator, wobei das Trägermaterial zusätzlich La und/oder AI enthält. The present invention therefore particularly preferably relates to the catalyst according to the invention, wherein the support material contains at least Ce and / or Zr. In a preferred embodiment, the present invention relates to the catalyst according to the invention, wherein the support material additionally contains La and / or Al.
In einer besonders bevorzugten Ausführungsform betrifft die vorliegende Erfindung den erfindungsgemäßen Katalysator, wobei als Edelmetall Pt vorliegt, das Alkali- und/oder Erdalkalimetall ausgewählt ist aus Li, Na, K, Rb, Cs, Mg, Ca, Sr und Mischungen davon ist, das Dotierungsmittel Fe ist, und ein Trägermaterial enthaltend Ce und/oder Zr vorliegt. Besonders bevorzugt betrifft die vorliegende Erfindung diesen erfindungsgemäßen Katalysator, wobei das Trägermaterial zusätzlich La enthält. In a particularly preferred embodiment, the present invention relates to the catalyst according to the invention, wherein Pt is present as a noble metal, the alkali and / or alkaline earth metal is selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof, the Dopant is Fe, and a carrier material containing Ce and / or Zr is present. The present invention particularly preferably relates to this catalyst according to the invention, wherein the support material additionally contains La.
Erfindungsgemäß können die in dem erfindungsgemäßen Katalysator vorliegenden bzw. gegebenenfalls vorliegenden Komponenten, d. h. die genannten Edelmetalle, Alkali- und/oder Erdalkalimetalle, Dotierungsmittel und Trägermaterialien in elementarer und/oder oxidischer Form vorliegen. According to the invention, the present or optionally present in the catalyst according to the invention components, d. H. the said noble metals, alkali metals and / or alkaline earth metals, dopants and support materials are present in elemental and / or oxidic form.
In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung den erfindungsgemäßen Katalysator, wobei das wenigstens eine Edelmetall, insbesondere Pt, in einer Menge von 0,001 bis 1 ,10 Gew.-%, bevorzugt 0,01 bis 1 ,00 Gew.-%, besonders bevorzugt 0,1 bis 0,99 Gew.-%, beispielsweise 0,1 bis 0,96 Gew.-%, das wenigstens eine Alkali- und/oder Erdalkalimetall, insbesondere Na oder K, in einer Menge von 1 ,2 bis 4,0 Gew.-%, bevorzugt 1 ,8 bis 3,5 Gew.-%, besonders bevorzugt 2,0 bis 3,2 Gew.-%, und das wenigstens eine Dotierungsmittel, insbesondere Fe, in einer Menge von 0,05 bis 2,5 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Katalysators, vorliegt, und das Trägermaterial mindestens Ce und/oder Zr enthält. Ganz besonders bevorzugte Ausführungsformen der vorliegenden Erfindung enthaltend spezifische Kombinationen von Edelmetall, Alkali- und/oder Erdalkalimetall, Dotierungsmittel und Trägermaterial sind in den Beispielen offenbart. In a further preferred embodiment, the present invention relates to the catalyst according to the invention, wherein the at least one noble metal, in particular Pt, in an amount of 0.001 to 1, 10 wt .-%, preferably 0.01 to 1, 00 wt .-%, especially preferably 0.1 to 0.99 wt .-%, for example 0.1 to 0.96 wt .-%, the at least one alkali and / or alkaline earth metal, in particular Na or K, in an amount of 1, 2 to 4 , 0 wt .-%, preferably 1, 8 to 3.5 wt .-%, particularly preferably 2.0 to 3.2 wt .-%, and the at least one dopant, in particular Fe, in an amount of 0.05 to 2.5 wt .-%, particularly preferably 0.1 to 1, 5 wt .-%, each based on the total weight of the catalyst, is present, and the carrier material contains at least Ce and / or Zr. Very particularly preferred embodiments of the present invention containing specific combinations of noble metal, alkali metal and / or alkaline earth metal, dopants and support material are disclosed in the examples.
Gerade die erfindungsgemäße Kombination von Edelmetall, Alkali- und/oder Erdalka- limetall, Dotierungsmittel und Trägermaterial, insbesondere in Kombination mit den genannten Mengen ergeben einen Katalysator, der, eingesetzt in einer Shiftreaktion, eine sehr hohe Reaktivität, verbunden mit einer sehr hohen Effizienz, zeigt. Die hohe Reaktivität der erfindungsgemäßen Katalysatoren kann beispielsweise dadurch gezeigt werden, dass die genannte Shiftreaktion schon bei einer relativ niedrigen Temperatur mit nahezu vollständigem thermodynamisch möglichem Umsatz stattfindet. Des Weiteren kann die besonders hohe Effizienz des erfindungsgemäßen Katalysators dadurch gezeigt werden, dass der Katalysator bei der Shiftreaktion nur wenig zur Methanisierung neigt, d. h., dass nur ein geringer Anteil des gebildeten Wasserstoffs durch Bildung von Methan umgesetzt wird. Especially the combination according to the invention of noble metal, alkali metal and / or alkaline earth metal, doping agent and carrier material, in particular in combination with the stated amounts, gives a catalyst which, used in a shift reaction, has a very high reactivity, combined with a very high efficiency, shows. The high reactivity of the catalysts according to the invention can be demonstrated, for example, by the fact that said shift reaction takes place even at a relatively low temperature with almost complete thermodynamically possible conversion. Furthermore, the particularly high efficiency of the catalyst according to the invention can be demonstrated by the fact that the catalyst in the shift reaction has little tendency to methanation, ie. h., That only a small proportion of the hydrogen formed is converted by the formation of methane.
Es versteht sich, dass die vorstehend genannten und nachstehend noch angegebenen Merkmale des Katalysators nicht nur in den angegebenen Kombinationen und Wertebereichen, sondern auch in anderen Kombinationen und Wertebereichen in den Grenzen des Hauptanspruchs verwendbar sind, ohne den Rahmen der Erfindung zu verlas- sen. Der erfindungsgemäße Katalysator kann durch Auftränken der einzelnen Komponenten auf das Trägermaterial hergestellt werden. In einer weiteren vorteilhaften Herstellungsvariante werden die Aktivkomponenten auf pulverförmiges Trägermaterial aufgebracht, das danach mindestens zum Teil verknetet und extrudiert wird. Möglich ist auch, dass man die Herstellungsvarianten miteinander kombiniert und beispielsweise nur einen Teil der Aktivkomponenten auf dem pulverförmigem Trägermaterial aufbringt und damit verknetet und extrudiert und die übrigen Aktivkomponenten bzw. deren restliche Teilmengen danach aufgetränkt werden. It is understood that the above-mentioned and below-mentioned features of the catalyst can be used not only in the specified combinations and value ranges, but also in other combinations and value ranges within the limits of the main claim, without leaving the scope of the invention. The catalyst according to the invention can be prepared by impregnating the individual components onto the support material. In a further advantageous production variant, the active components are applied to powdered carrier material, which is then at least partially kneaded and extruded. It is also possible that one combines the production variants with each other and, for example, only a part of the active components applied to the powdered carrier material and thus kneaded and extruded and the remaining active components or their remaining subsets are then impregnated.
Die Aktivkomponenten werden dabei vorzugsweise in Form ihrer Salze oder ihrer Oxide eingesetzt. Erfindungsgemäß geeignete Salze sind beispielsweise Oxide, Nitrate, Hydroxide, Acetate, Acetylacetonate, Carbonate, Nitrosylnitrate oder Halogenide, wie Fluoride, Chloride, Bromide und lodide. The active components are preferably used in the form of their salts or their oxides. Suitable salts according to the invention are, for example, oxides, nitrates, hydroxides, acetates, acetylacetonates, carbonates, nitrosyl nitrates or halides, such as fluorides, chlorides, bromides and iodides.
Um eine gute Zugänglichkeit des Edelmetalls zu gewährleisten, werden die Komponenten in einer vorteilhaften Ausführungsform auf dem Trägermaterial aufgetränkt. Da aufgrund von einzuhaltenden Bedingungen, wie beispielsweise pH-Wert, Konzentrationen usw., zumeist verschiedene Metallsalze nicht parallel aufgetränkt werden können, erfolgt die Herstellung eines Katalysators mit verschiedenen Promotoren oft aber nicht ausschließlich in einer Vielzahl von Tränkschritten, beispielsweise zwei Tränkschritten, die nacheinander ausgeführt werden. In order to ensure good accessibility of the noble metal, the components are in an advantageous embodiment soaked in the carrier material. Since due to conditions to be observed, such as pH, concentrations, etc., usually different metal salts can not be impregnated in parallel, the preparation of a catalyst with different promoters is often but not exclusively in a variety of impregnation steps, for example, two steps of impregnation, carried out sequentially become.
Das Aufbringen der Aktivkomponenten durch Tränken auf das Trägermaterial kann auf übliche Art und Weise erfolgen, wie z. B. als Washcoat auf einen Monolithen. The application of the active components by impregnation on the carrier material can be carried out in the usual manner, such. B. as a washcoat on a monolith.
Wird gemäß der weiteren vorteilhaften Ausführungsformen das Aktivmaterial zunächst auf dem Trägermaterial, vorzugsweise pulverförmigem Trägermaterial, mindestens zum Teil aufgebracht und dann verknetet sowie anschließendem Extrudieren, kann das Verkneten und Extrudieren des Trägermaterials mit den Aktivmassen auf übliche Art und Weise mit bekannten Apparaturen erfolgen. If, according to the further advantageous embodiments, the active material is first applied at least in part to the carrier material, preferably powdered carrier material, and then kneaded and then extruded, the kneading and extrusion of the carrier material with the active materials can be carried out in the usual manner with known apparatuses.
Die vorliegende Erfindung betrifft daher insbesondere ein Verfahren zur Herstellung des erfindungsgemäßen Katalysators, wobei das wenigstens eine Edelmetall, das we- nigstens eine Alkali- und/oder Erdalkalimetall, und das wenigstens eine Dotierungsmittel als Lösung oder Dispersion auf das Trägermaterial aufgebracht werden oder ein Teil oder das Gesamte des wenigstens einen Edelmetalls, des wenigstens einen Alkali- und/oder Erdalkalimetalls und/oder des wenigstens einen Dotierungsmitteln auf ein Trägermaterial als Lösung oder Dispersion aufgebracht werden und dieses Trägermaterial mit dem verbleibenden Teil der Komponenten vermischt wird. The present invention therefore relates in particular to a process for the preparation of the catalyst according to the invention, wherein the at least one noble metal, at least one alkali and / or alkaline earth metal, and the at least one dopant are applied to the support material as a solution or dispersion or a part or all of the at least one noble metal, the at least one alkali and / or alkaline earth metal and / or the at least one doping agent are applied to a carrier material as a solution or dispersion and this carrier material is mixed with the remaining part of the components.
Entgegen der Annahme, dass bei einem direkt verkneteten Katalysator auf Grund der homogenen Verteilung der Aktivkomponenten über das gesamte Volumen der Katalysatorteilchen die relative Aktivität verglichen mit einem durch Tränkung hergestellten Katalysator mir gleicher Aktivitätsmasse geringer sein sollte, wird nach vorliegender Erfindung eine ähnliche Aktivität gefunden. Contrary to the assumption that in a direct kneaded catalyst, due to the homogeneous distribution of the active components over the entire volume of the catalyst particles, the relative activity should be lower compared to a catalyst prepared by impregnation with the same activity mass, a similar activity is found in the present invention.
Die Herstellung von Formkörpern aus pulverförmigen Rohstoffen kann durch übliche, dem Fachmann bekannte Methoden, wie beispielsweise Tablettierung, Aggregation oder Extrusion erfolgen, wie sie u.a. im Handbook of Heterogeneous Catalysis, Vol. 1 , VCH Verlagsgesellschaft Weinheim, 1997, S. 414-417 beschrieben sind, erfolgen. The production of moldings from pulverulent raw materials can be carried out by customary methods known to the person skilled in the art, such as, for example, tableting, aggregation or extrusion, as described i.a. in the Handbook of Heterogenous Catalysis, Vol. 1, VCH Verlagsgesellschaft Weinheim, 1997, pp. 414-417.
Bei der Verformung bzw. dem Aufbringen können dem Fachmann bekannte Hilfsstoffe, wie Binder, Schmiermittel und/oder Lösungsmittel, zugesetzt werden. In the case of deformation or application, auxiliaries known to the person skilled in the art, such as binders, lubricants and / or solvents, may be added.
Die beschriebenen Herstellungsverfahren sind einfach und kostengünstig. Der erfin- dungsgemäße Katalysator ist hochaktiv hinsichtlich der Shiftreaktion, unterdrückt aber die Methanisierungsreaktion, beispielsweise wird durch den erfindungsgemäßen Katalysator ein Methangehalt von kleiner 100 ppm, vorzugsweise kleiner 50 ppm (jeweils bei 350°C) und kleiner 500 ppm, vorzugsweise kleiner 300 ppm, (jeweils bei 450°C) erreicht. The described production methods are simple and inexpensive. The inventive catalyst is highly active with respect to the shift reaction, but suppresses the methanation reaction, for example by the catalyst according to the invention a methane content of less than 100 ppm, preferably less than 50 ppm (each at 350 ° C) and less than 500 ppm, preferably less than 300 ppm, (each at 450 ° C) reached.
Der beschriebene Katalysator ist in dem erfindungsgemäßen Verfahren zur Konvertierung eines Gasgemisches, enthaltend mindestens Kohlenmonoxid und Wasser, zu Wasserstoff und Kohlendioxid, einsetzbar. Das Verfahren kann dabei bei den üblichen Bedingungen einer Konvertierungsreaktion durchgeführt werden, sowohl im TTK-Bereich bei Temperaturen von üblicherweise 150 - 280 °C, als auch im HTK-Bereich bei Temperaturen von üblicherweise 280 - 550 °C. Auf Grund der niedrigen Methanisierungsneigung des erfindungsgemäßen Katalysators auch bei hohen Temperaturen, empfiehlt sich dieser insbesondere für die HTK, bei der bisherige Katalysatoren des Standes der Technik ungeeignet sind. Ganz besonders erfolgreich läuft die erfindungsgemäße Konvertierungsreaktion in einem Temperaturbereich von 180 bis 550 °C. Es ist somit möglich und vorteilhaft, sowohl in der Stufe der HTK als auch in der Stufe der TTK den erfindungsgemäßen Katalysator einzusetzen. The catalyst described can be used in the process according to the invention for the conversion of a gas mixture containing at least carbon monoxide and water to hydrogen and carbon dioxide. The process can be carried out under the usual conditions of a conversion reaction, both in the TTK range at temperatures of usually 150-280 ° C., and in the HTK range at temperatures of usually 280-550 ° C. Due to the low tendency of methanation of the catalyst according to the invention even at high temperatures, this is particularly recommended for the HTK, are unsuitable in the previous catalysts of the prior art. Especially successful is the conversion reaction according to the invention in a temperature range of 180 to 550 ° C. It is thus possible and advantageous, both in the stage the HTK and in the stage of TTK use the catalyst of the invention.
Mit dem erfindungsgemäßen Katalysator ist auch eine Reduzierung auf nur eine Kon- vertierungsstufe möglich, die dann bei mittlerer Temperatur, beispielsweise von 230 °C bis 450 °C, durchgeführt werden kann, da die hohe Aktivierung des Katalysators bei niedriger Temperatur noch immer gute Umsätze erlaubt. With the catalyst according to the invention, a reduction to only one conversion stage is possible, which can then be carried out at medium temperature, for example from 230 ° C. to 450 ° C., since the high activation of the catalyst at low temperature still allows good conversions ,
Das erfindungsgemäße Verfahren zur Reduzierung von Kohlenmonoxid (CO) durch den Prozess einer Konvertierungsreaktion an dem erfindungsgemäßen hochaktiven Konvertierungskatalysator erfolgt in üblichen Apparaturen und unter üblichen Bedingungen zur Durchführung einer Konvertierungsreaktion, wie sie beispielsweise im Handbook of heterogeneous catalysis, 2nd edition, Vol. 1 , VCH Verlagsgesellschaft Weinheim, 2008, Seiten 354-355, beschrieben sind, und unter Überströmen des Kata- lysators mit einem CO und wasserhaltigen Prozessgas. The process according to the invention for reducing carbon monoxide (CO) by the process of a conversion reaction on the highly active conversion catalyst according to the invention is carried out in customary apparatuses and under customary conditions for carrying out a conversion reaction, as described, for example, in the Handbook of heterogeneous catalysis, 2nd edition, Vol. 1, VCH Verlagsgesellschaft Weinheim, 2008, pages 354-355, and with overflow of the catalyst with a CO and water-containing process gas.
Das eingesetzte Prozessgas ist ein Gasgemisch, das neben Kohlenmonoxid und Wasser, die in der beschriebenen Konvertierungsreaktion umgesetzt werden, üblicherweise auch weitere Gase, wie z. B. Wasserstoff, Kohlendioxid und Stickstoff, enthält. The process gas used is a gas mixture, in addition to carbon monoxide and water, which are reacted in the conversion reaction described, usually also other gases such. As hydrogen, carbon dioxide and nitrogen.
Die vorliegende Erfindung betrifft daher auch die Verwendung des erfindungsgemäßen Katalysators die Konvertierung von Kohlenmonoxid und Wasser zu Kohlendioxid und Wasserstoff. The present invention therefore also relates to the use of the catalyst according to the invention, the conversion of carbon monoxide and water to carbon dioxide and hydrogen.
Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zur Konvertierung eines Gasgemisches, enthaltend wenigstens Kohlenmonoxid und Wasser, zu Kohlendioxid und Wasserstoff, wobei ein erfindungsgemäßer Katalysator eingesetzt wird. Furthermore, the present invention relates to a process for the conversion of a gas mixture containing at least carbon monoxide and water, to carbon dioxide and hydrogen, wherein a catalyst according to the invention is used.
Figur: Figure:
Figur 1 zeigt ein exemplarisches Messschema. Dabei haben die Abkürzungen die folgenden Bedeutungen: FIG. 1 shows an exemplary measuring scheme. The abbreviations have the following meanings:
A Menge CO am Reaktorausgang A quantity of CO at the reactor outlet
B Methangehalt in ppm  B Methane content in ppm
T Temperatur in °C  T temperature in ° C
MGi Methangehalt bei 350 °C in ppm  MGi methane content at 350 ° C in ppm
MG2 Methangehalt bei 450 °C in ppm Die Erfindung sei durch die nachstehenden Beispiele in nicht einschränkender Weise erläutert: MG 2 methane content at 450 ° C in ppm The invention is illustrated by the following non-limiting examples:
Beispiele Examples
Es werden erfindungsgemäße Katalysatoren und Katalysatoren, die als Vergleich dienen, nach den folgenden Verfahren hergestellt: Catalysts and catalysts according to the invention which serve as a comparison are prepared by the following processes:
1. Herstellung durch Tränkung (T): 1. Preparation by impregnation (T):
Die Herstellung der erfindungsgemäßen Katalysatoren und der Vergleichskatalysatoren kann durch Tränkung erfolgen, wie an folgendem Beispiel zur Herstellung eines Katalysators gezeigt wird: The preparation of the catalysts according to the invention and the comparative catalysts can be carried out by impregnation, as shown by the following example for the preparation of a catalyst:
Einsatzstoffe: Starting Materials:
Durchführung: Execution:
Die benötigte Menge Eisennitrat wird in der angegebenen Menge Platinnitratlösung gelöst und mit H20 dest. auf ein Volumen entsprechend 90% der Wasseraufnahme des Ce/Zr-Trägermaterials verdünnt. Die Stränge werden vorgelegt und unter Umwälzen mit der Platin-/Eisennitratlösung sprühgetränkt. Nach dem Tränken werden die Stränge weitere 5 Minuten umgewälzt, dann getrocknet und anschließend calciniert. In einem nächsten Präparationsschritt wird Kaliauge mit H20 dest. auf ein Volumen entsprechend 90% der Wasseraufnahme der erhaltenen Pt/Fe-dotierten Stränge verdünnt. Diese Stränge werden anschließend mit der erhaltenen verdünnten Kalilauge unter ständigem Umwälzen sprühgetränkt. Nach dem Tränken werden die Stränge erneut weitere 5 Minuten umgewälzt, dann getrocknet und anschließend calciniert. Trocknung: 4h bei 200 °C in einem Umlufttrockenschrank The required amount of iron nitrate is dissolved in the stated amount of platinum nitrate solution and distilled with H 2 0. diluted to a volume corresponding to 90% of the water absorption of the Ce / Zr support material. The strands are presented and spray-impregnated while circulating with the platinum / iron nitrate solution. After soaking, the strands are circulated for a further 5 minutes, then dried and then calcined. In a next preparation step, potassium hydroxide is distilled with H 2 0. diluted to a volume equivalent to 90% of the water uptake of the resulting Pt / Fe doped strands. These strands are then spray-impregnated with the resulting dilute potassium hydroxide solution with constant circulation. After soaking, the strands are recirculated for another 5 minutes, then dried and then calcined. Drying: 4h at 200 ° C in a convection oven
Calcinierunq: 2h bei 500 °C  Calcination: 2 hours at 500 ° C
Auswaqe: 1001 ,8 g  Auswaqe: 1001, 8 g
Erhaltene Dotierung: 0,9 g Pt /100 g Katalysator Received doping: 0.9 g Pt / 100 g catalyst
0,2 g Fe/100 g Katalysator  0.2 g Fe / 100 g catalyst
2,0 g K/100 g Katalysator  2.0 g K / 100 g of catalyst
2. Herstellung durch Knetung (K): 2. Preparation by kneading (K):
Die Herstellung der erfindungsgemäßen Katalysatoren und der Vergleichskatalysato- ren kann durch Knetung erfolgen, wie an folgendem Beispiel zur Herstellung eines Katalysators gezeigt wird: The preparation of the catalysts according to the invention and of the comparative catalysts can be carried out by kneading, as shown by the following example for the preparation of a catalyst:
Einsatzstoffe: Starting Materials:
Durchführung: Das Ce / Zr - Oxid Pulver wird zusammen mit dem Pural SB in einem  Procedure: The Ce / Zr - oxide powder is combined with the Pural SB in one
Kneter vorgelegt. Die mit H20 dest. auf 20 ml Gesamtvolumen verdünnte Salpetersäure wird langsam zugegeben und 10 Minuten geknetet. Anschließend wird das Eisennitrat in der Platinnitratlösung gelöst, mit H20 dest. auf 30 ml Gesamtvolumen verdünnt, zugegeben und 5 Minuten nachgeknetet. Im Anschluss daran wird die Kalilauge unverdünnt zugegeben und nochmals 10 Minuten geknetet. H20 dest. Wird in kleinen Portionen zugegeben bis eine plastische Masse ent- steht. Die plastische Masse wird mittels einer Strangpresse zu 1 ,5 mm Strängen verformt. Kneader submitted. The least with H 2 0. Nitric acid diluted to 20 ml total volume is added slowly and kneaded for 10 minutes. Then the iron nitrate is dissolved in the platinum nitrate solution, destilled with H 2 0. diluted to 30 ml total volume, added and kneaded for 5 minutes. Subsequently, the potassium hydroxide solution is added undiluted and kneaded again for 10 minutes. H 2 0 dist. Is added in small portions until a plastic mass is obtained. stands. The plastic mass is deformed by means of an extruder to 1, 5 mm strands.
Gesamtverbrauch H20 dest: 69 ml (enthält das H20 dest. zum Verdünnen der HN03 und der Pt / Fe-Lsg.) Total consumption H 2 0 dist: 69 ml (contains H 2 O dest. For diluting HN0 3 and Pt / Fe solution)
Pressdruck: 60 bar  Pressing pressure: 60 bar
Knetdauer: 49 Minuten  Kneading time: 49 minutes
Trocknung: 4 Stunden bei 200 °C im Umlufttrockenschrank Drying: 4 hours at 200 ° C in a convection oven
Calcinierung: 2 Stunden bei 500 °C im Umluftofen Calcination: 2 hours at 500 ° C in a convection oven
Erhaltene Dotierung: 0,9 g Pt /100 g Katalysator Received doping: 0.9 g Pt / 100 g catalyst
0,2 g Fe /100 g Katalysator  0.2 g Fe / 100 g catalyst
1 ,0 g K /100 g Katalysator  1, 0 g K / 100 g of catalyst
3. Testung der Katalysatoren: 3. Testing of the catalysts:
Um die Eignung der hergestellten Katalysatoren zu zeigen, werden diese und in einer Shiftreaktion eingesetzt. Die Testung erfolgt folgendermaßen: In order to demonstrate the suitability of the catalysts prepared, these are used and in a shift reaction. The testing is done as follows:
1 . Katalysator-Einbau: 15 mL Katalysator (Schüttung) bzw. 8 bis 12 mL (Volumen eines Monolithen) werden in den Reaktor eingebaut, 1 . Catalyst installation: 15 mL catalyst (bed) or 8 to 12 mL (volume of a monolith) are installed in the reactor,
2. Dichtigkeitsprüfung des gesamten Apparatur nach Einbau des Katalysators und vor Inbetriebnahme,  2. Tightness test of the entire apparatus after installation of the catalyst and before commissioning,
3. Aufheizen auf 220 °C, währenddessen Reduzierung des Katalysators mit einer 1 :1 -Mischung von H2 und N2, 3. heating to 220 ° C while reducing the catalyst with a 1: 1 mixture of H 2 and N 2 ,
4. Bei Erreichen von 220 °C Temperatur wird diese 5 Minuten gehalten, dann Versuchsstart,  4. When 220 ° C temperature is reached, this is held for 5 minutes, then test start,
5. Datenerfassung starten, 5. start data acquisition,
6. Temperaturprogramm starten, d. h. Aufheizen von 220 °C auf 450 °C in 600 Minuten (kont),  6. Start temperature program, d. H. Heating from 220 ° C to 450 ° C in 600 minutes (cont),
7. 450 °C für 20 min halten,  7. keep 450 ° C for 20 min,
8. Abkühlen von 450 °C auf 220 °C in 600 Minuten (kont.),  8. cooling from 450 ° C to 220 ° C in 600 minutes (cont.),
Die Zusammensetzung des für die Testung verwendeten Reaktionsgases ist: The composition of the reaction gas used for the testing is:
7 Gew.-% CO, 7% by weight of CO,
7 Gew.-% C02, 33 Gew.-% H2, 7% by weight of C0 2 , 33% by weight H 2 ,
27 Gew.-% N2 und 27 wt .-% N 2 and
26 Gew.-% H20 Die Katalysatorbelastung GHSV beträgt während Testung 12279/h. Diese Testvariante wird im Folgenden als Testmethode M bezeichnet. 26% by weight of H 2 O The catalyst loading GHSV during testing is 12,279 / h. This test variant is referred to below as test method M.
Alternativ zu dieser Testmethode M kann z. B. das Temperaturprogramm geändert werden, beispielsweise durch Verringerung der Endtemperatur auf 380°C bei zur Me- thode M unveränderter Starttemperatur und Aufheizrate (°C/min). As an alternative to this test method M can z. For example, the temperature program can be changed, for example, by reducing the final temperature to 380 ° C. with the starting temperature unchanged for method M and the heating rate (° C./min).
Es werden die folgenden Geräte verwendet: The following devices are used:
Beheizung: Umluftofen mit Temperatur-Bereich bis max. 600 °C, Heating: convection oven with temperature range up to max. 600 ° C,
- Temperatur-Messung erfolgt außen am Reaktor anliegend, Temperature measurement takes place on the outside of the reactor,
Gasdosierung: Massflowcontroler (Brooks)  Gas Dosing: Massflow Controller (Brooks)
Wasserdosierung: Liquid-Flow  Water dosage: Liquid flow
Analysengerät für CO und C02: Siemens Ultramat 23 Analyzer for CO and C0 2 : Siemens Ultramat 23
Analysengerät für Methan: FID der Firma J.U.M. Engineering Modell 3-300A - Druckhaltung durch Reco-Druckhalteventil  Analyzer for methane: FID from J.U.M. Engineering Model 3-300A - Pressure maintenance by Reco pressure relief valve
Linseis-36 Kanal Schreiber als Schnittstelle für Datenspeicherung  Linseis-36 channel recorder as interface for data storage
Datenauswertung per Software  Data evaluation by software
Es werden die folgenden Parameter gemessen: The following parameters are measured:
1 . Temperatur T-i (Temperatur mit dem niedrigsten CO-Gehalt zu Beginn der ersten Rampenfahrt [°C]) 1 . Temperature T-i (temperature with the lowest CO content at the beginning of the first ramp [° C])
2. Temperatur T2 (Temperatur mit dem niedrigsten CO-Gehalt nach Durchfahren der ersten Temperaturrampe [°C]) 2. Temperature T 2 (temperature with the lowest CO content after passing through the first temperature ramp [° C])
3. Methangehalt MGi in ppm bei einer Temperatur von 350 °C  3. Methane content MGi in ppm at a temperature of 350 ° C
4. Methangehalt MG2 in ppm bei einer Temperatur von 450 °C 4. Methane content MG 2 in ppm at a temperature of 450 ° C
5. Methode M (Rampe von 220 bis 440 °C? Chevron etc.  5. Method M (Ramp from 220 to 440 ° C? Chevron etc.
4. Ergebnisse 4. Results
In der folgenden Tabelle 1 sind die Ergebnisse der erfindungsgemäßen Katalysatoren und der zum Vergleich hergestellten Katalysatoren abgebildet: Tabelle 1 : Ergebnisse der verschiedenen erfindungsgemäßen Katalysatoren und der Katalysatoren zum Vergleich Table 1 below shows the results of the catalysts according to the invention and the catalysts prepared for comparison: Table 1: Results of the various catalysts according to the invention and the catalysts for comparison
wiedergegeben sind Element; Menge [Gew.-%] wiedergegeben sind Element, Menge [Gew.-%] T = Tränkung; K = Knetung  reproduced are element; Amount [% by weight] are represented by element, amount [% by weight] T = impregnation; K = kneading
Vergleichsversuch  Comparative test

Claims

Patentansprüche claims
Katalysator, enthaltend wenigstens ein Edelmetall in einer Menge von 0,001 bis 1 ,10 Gew.-%, bezogen auf den gesamten Katalysator, wenigstens ein Alkali- und/oder Erdalkalimetall und wenigstens ein Dotierungsmittel ausgewählt aus der Gruppe bestehend aus Fe, Cr, Cu, Zn und Mischungen davon, auf einem Trägermaterial. Catalyst comprising at least one precious metal in an amount of 0.001 to 1, 10 wt .-%, based on the total catalyst, at least one alkali and / or alkaline earth metal and at least one dopant selected from the group consisting of Fe, Cr, Cu, Zn and mixtures thereof, on a support material.
Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass das wenigstens eine Alkali- und/oder Erdalkalimetall in einer Menge von 1 ,0 bis 4,0 Gew.-%, bezogen auf den gesamten Katalysator, vorliegt. A catalyst according to claim 1, characterized in that the at least one alkali and / or alkaline earth metal in an amount of 1, 0 to 4.0 wt .-%, based on the total catalyst, is present.
Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Edelmetall ausgewählt ist aus der Gruppe bestehend aus Au, Pt, Pd, Rh, Ru oder Mischungen davon. Catalyst according to claim 1 or 2, characterized in that the noble metal is selected from the group consisting of Au, Pt, Pd, Rh, Ru or mixtures thereof.
Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Alkali- und/oder Erdalkalimetall ausgewählt ist aus der Gruppe bestehend aus Li, Na, K, Rb, Cs, Mg, Ca, Sr oder Mischungen davon. Catalyst according to one of claims 1 to 3, characterized in that the alkali and / or alkaline earth metal is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr or mixtures thereof.
5. Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Trägermaterial mindestens Ce und/oder Zr enthält. 5. Catalyst according to one of claims 1 to 4, characterized in that the carrier material contains at least Ce and / or Zr.
6. Katalysator nach Anspruch 5, dadurch gekennzeichnet, dass das Trägermaterial zusätzlich La und/oder AI enthält. 6. Catalyst according to claim 5, characterized in that the carrier material additionally contains La and / or Al.
7. Katalysator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Edelmetall Pt vorliegt, das Alkali- und/oder Erdalkalimetall ausgewählt ist aus Li, Na, K, Rb, Cs, Mg, Ca, Sr und Mischungen davon, das Dotierungsmittel Fe ist, und ein Trägermaterial enthaltend Ce und/oder Zr vorliegt. 7. A catalyst according to any one of claims 1 to 6, characterized in that is present as noble metal Pt, the alkali and / or alkaline earth metal is selected from Li, Na, K, Rb, Cs, Mg, Ca, Sr and mixtures thereof, the Dopant Fe is, and a support material containing Ce and / or Zr is present.
8. Katalysator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das wenigstens eine Edelmetall in einer Menge von 0,001 bis 1 ,10 Gew.-%, das wenigstens eine Alkali- und/oder Erdalkalimetall in einer Menge von 1 ,2 bis 4,08. Catalyst according to one of claims 1 to 7, characterized in that the at least one noble metal in an amount of 0.001 to 1, 10 wt .-%, the at least one alkali and / or alkaline earth metal in an amount of 1, 2 to 4.0
Gew.-% und das wenigstens eine Dotierungsmittel in einer Menge von 0,05 bis 2,5 Gew.-% jeweils bezogen auf das Gesamtgewicht des Katalysators, vorliegt, und das Trägermaterial mindestens Ce und/oder Zr enthält. Verfahren zur Herstellung eines Katalysators nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das wenigstens eine Edelmetall, das wenigstens eine Alkali- und/oder Erdalkalimetall, und das wenigstens eine Dotierungsmittel als Lösung oder Dispersion auf das Trägermaterial aufgebracht werden oder ein Teil oder das Gesamte des wenigstens einen Edelmetalls, des wenigstens einen Alkali- und/oder Erdalkalimetalls und/oder des wenigstens einen Dotierungsmitteln auf ein Trägermaterial als Lösung oder Dispersion aufgebracht werden und dieses Trägermaterial mit dem verbleibenden Teil der Komponenten vermischt wird. Wt .-% and the at least one dopant in an amount of 0.05 to 2.5 wt .-%, each based on the total weight of the catalyst, is present, and the support material at least Ce and / or Zr. A process for preparing a catalyst according to any one of claims 1 to 8, characterized in that the at least one noble metal, the at least one alkali and / or alkaline earth metal, and the at least one dopant are applied as a solution or dispersion to the carrier material or a part or the entire of the at least one noble metal, the at least one alkali and / or alkaline earth metal and / or the at least one dopant are applied to a carrier material as a solution or dispersion and this carrier material is mixed with the remaining part of the components.
Verwendung des Katalysators nach einem der Ansprüche 1 bis 8 für die Konvertierung von Kohlenmonoxid und Wasser zu Kohlendioxid und Wasserstoff. Use of the catalyst according to any one of claims 1 to 8 for the conversion of carbon monoxide and water to carbon dioxide and hydrogen.
Verfahren zur Konvertierung eines Gasgemisches, enthaltend wenigstens Kohlenmonoxid und Wasser, zu Kohlendioxid und Wasserstoff, dadurch gekennzeichnet, dass ein Katalysator gemäß einem der Ansprüche 1 bis 8 eingesetzt wird. Process for the conversion of a gas mixture containing at least carbon monoxide and water to carbon dioxide and hydrogen, characterized in that a catalyst according to any one of claims 1 to 8 is used.
EP11819508.0A 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof Withdrawn EP2608882A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11819508.0A EP2608882A4 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10174163 2010-08-26
PCT/IB2011/053729 WO2012025897A1 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof
EP11819508.0A EP2608882A4 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof

Publications (2)

Publication Number Publication Date
EP2608882A1 true EP2608882A1 (en) 2013-07-03
EP2608882A4 EP2608882A4 (en) 2014-11-12

Family

ID=45722974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11819508.0A Withdrawn EP2608882A4 (en) 2010-08-26 2011-08-25 Highly active water gas shift catalyst, preparation process and use thereof

Country Status (5)

Country Link
EP (1) EP2608882A4 (en)
JP (1) JP5961166B2 (en)
KR (1) KR101854941B1 (en)
CA (1) CA2805259A1 (en)
WO (1) WO2012025897A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968465B2 (en) * 2012-12-28 2016-08-10 三菱重工業株式会社 CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
EP2939739B1 (en) * 2012-12-28 2023-12-20 Mitsubishi Heavy Industries, Ltd. Co shift catalyst
BR102016022962B1 (en) * 2016-10-03 2021-10-26 Petróleo Brasileiro S.A. - Petrobras PREPARATION PROCESS OF AN IRON-CHROME CATALYST PROMOTED WITH PLATINUM, AND, COMPOSITE IRON-CHROME CATALYST PROMOTED WITH PLATINUM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956330A (en) * 1989-06-19 1990-09-11 Phillips Petroleum Company Catalyst composition for the oxidation of carbon monoxide
US5830425A (en) * 1993-02-09 1998-11-03 Sud-Chemie Ag Chromium-free catalyst based on iron oxide for conversion of carbon monoxide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303715A1 (en) * 1993-02-09 1994-08-11 Sued Chemie Ag Chromium-free catalyst based on iron oxide for the conversion of carbon monoxide
DE69534557T2 (en) * 1994-02-22 2006-06-01 The Standard Oil Co., Cleveland Process for the preparation of a catalyst for the production of vinyl acetate in a fluidized bed
JPH08243355A (en) * 1995-03-10 1996-09-24 Agency Of Ind Science & Technol Removing method of nitrogen oxide by catalytic reduction
DE19929281A1 (en) * 1999-06-25 2000-12-28 Basf Ag Process and catalyst for the production of C¶2¶ oxygenates from synthesis gas
US6969505B2 (en) 2002-08-15 2005-11-29 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
US7160533B2 (en) * 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-ruthenium containing catalyst formulations for hydrogen generation
EP1578688A2 (en) * 2002-12-20 2005-09-28 Honda Giken Kogyo Kabushiki Kaisha Catalyst formulations for hydrogen generation
EP1578529A2 (en) * 2002-12-20 2005-09-28 Honda Giken Kogyo Kabushiki Kaisha Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation
JP2006511425A (en) * 2002-12-20 2006-04-06 本田技研工業株式会社 Platinum-free ruthenium-cobalt catalyst formulation for hydrogen generation
US7744849B2 (en) * 2002-12-20 2010-06-29 Honda Giken Kogyo Kabushiki Kaisha Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation
GB0402104D0 (en) 2004-02-02 2004-03-03 Johnson Matthey Plc Water gas shift catalyst
JP4537091B2 (en) 2004-03-01 2010-09-01 エヌ・イーケムキャット株式会社 Catalyst for removing carbon monoxide from hydrogen gas
US7238333B2 (en) 2004-03-18 2007-07-03 General Motors Corporation High activity water gas shift catalysts with no methane formation
JP4296430B2 (en) * 2004-12-27 2009-07-15 戸田工業株式会社 Catalyst for water gas shift reaction and process for producing the same
ES2279691B1 (en) 2005-07-08 2008-08-01 Consejo Sup. De Invest. Cientificas CATALYSTS FOR CONVERSION OF CARBON MONOXIDE IN HYDROGEN AND ITS USE IN THE CATALYTIC PROCESS OF ENRICHMENT IN HYDROGEN OF A GAS CURRENT THAT CAN FEED A BATTERY OF FUEL.
KR100761512B1 (en) * 2006-08-22 2007-10-04 주식회사 효성 Dehydrogenation process of dimethylnaphthalene by metal catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956330A (en) * 1989-06-19 1990-09-11 Phillips Petroleum Company Catalyst composition for the oxidation of carbon monoxide
US5830425A (en) * 1993-02-09 1998-11-03 Sud-Chemie Ag Chromium-free catalyst based on iron oxide for conversion of carbon monoxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012025897A1 *

Also Published As

Publication number Publication date
JP2013536076A (en) 2013-09-19
KR101854941B1 (en) 2018-05-04
CA2805259A1 (en) 2012-03-01
KR20140002618A (en) 2014-01-08
JP5961166B2 (en) 2016-08-02
WO2012025897A1 (en) 2012-03-01
EP2608882A4 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
DE60205061T2 (en) Noble metal-supported supported catalyst and process for its preparation
DE3103171C2 (en) Solid catalyst for the synthesis of methane and process for its production
EP2049249B1 (en) Catalyst for low-temperature conversion and process for the low-temperature conversion of carbon monoxide and water into carbon dioxide and hydrogen
EP3576871B1 (en) Manganese doped nickel based catalysts for the methanation of carbon monoxide and carbon dioxide
EP1136441A2 (en) Method for the catalytic conversion of carbon monoxide in a hydrogen containing gas mixture
EP1136442A2 (en) Method for the catalytic conversion of carbon monoxide in a hydrogen containing gas mixture with improved cold start and catalyst therefor
DE10392445T5 (en) Catalyst for the production of hydrogen
DE10392447T5 (en) Ceria-based misch metal oxide structure, including the method of preparation and use
DE69920379T2 (en) Palladium-ceria supported catalyst and process for producing methanol
EP1440731A2 (en) Ce/Cu/Mn-Catalysts and process for making them
DE60111690T2 (en) Catalyst for steam reforming of methanol and method for producing hydrogen with this catalyst
DE102009045804A1 (en) Catalyst for the steam reforming of methanol
DE3415634C2 (en)
DE10062578A1 (en) Methanol reforming catalyst useful for producing hydrogen for fuel cells comprises metal oxide support impregnated with palladium-zinc alloy
EP1249275B1 (en) Catalyst and method for the removal of carbon monoxide from a reformate gas and method for the preparation of the catalyst
DE10010007A1 (en) Catalyst used for reforming hydrocarbon fuel comprises precious metal and element of groups 2B and 3B on porous metal oxide carrier
DE112013001920T5 (en) Catalyst for high-temperature combustion
EP1843844A1 (en) Catalytically active composition for the selective methanation of carbon monoxide and method for producing said composition
EP3274088A1 (en) Ruthenium-rhenium-based catalyst and a method for the selective methanation of carbon monoxide
DE60305308T2 (en) CATALYST FOR REMOVING CARBON MONOXIDE IN HYDROGENFUL GAS ACCORDING TO THE CONVERSION REACTION
WO2012025897A1 (en) Highly active water gas shift catalyst, preparation process and use thereof
DE112021000826T5 (en) Catalyst for CO2 methanation reaction with high activity and long-term stability and process therefor
WO2018141646A1 (en) Nickel methanation catalysts doped with iron and manganese
EP2125201B1 (en) Method for the selective methanation of carbon monoxide
DE60036681T2 (en) A method for reducing the carbon monoxide concentration in a hydrogen-containing gas and catalyst therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141010

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 3/16 20060101ALI20141006BHEP

Ipc: B01J 23/89 20060101AFI20141006BHEP

Ipc: B01J 23/78 20060101ALI20141006BHEP

Ipc: C01B 31/20 20060101ALI20141006BHEP

Ipc: B01J 23/58 20060101ALI20141006BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 23/78 20060101ALI20200714BHEP

Ipc: B01J 23/58 20060101ALI20200714BHEP

Ipc: C01B 32/00 20170101ALI20200714BHEP

Ipc: B01J 23/89 20060101AFI20200714BHEP

Ipc: C01B 3/16 20060101ALI20200714BHEP

INTG Intention to grant announced

Effective date: 20200805

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201216