WO2018141646A1 - Nickel methanation catalysts doped with iron and manganese - Google Patents
Nickel methanation catalysts doped with iron and manganese Download PDFInfo
- Publication number
- WO2018141646A1 WO2018141646A1 PCT/EP2018/051993 EP2018051993W WO2018141646A1 WO 2018141646 A1 WO2018141646 A1 WO 2018141646A1 EP 2018051993 W EP2018051993 W EP 2018051993W WO 2018141646 A1 WO2018141646 A1 WO 2018141646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- precipitate
- solution
- methanation
- carbon dioxide
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
- C07C1/044—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/0445—Preparation; Activation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/332—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/50—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/745—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/889—Manganese, technetium or rhenium
Definitions
- the energy supply through the so-called renewable energy photovoltaic and wind energy suffers from the problem of weather and daytime dependent fluctuations in electricity production.
- a way has to be found to intercept weather and time-dependent fluctuations in electricity production.
- One potential method of chemically storing the energy is the power-to-gas process, which uses excess electricity to split water into hydrogen and oxygen by electrolysis. Hydrogen in which the energy is stored after the electrolysis of water can itself be stored only with great effort or transported to the consumer. After the power-to-gas process, the hydrogen is therefore converted in a further step with carbon dioxide, which acts in the atmosphere as a greenhouse gas harmful to the climate, in the methanation reaction to methane and water.
- Methane can be easily stored in existing infrastructures, which have capacities for storage in the range of several months, can be transported almost lossless over longer distances and can be reconverted in times of energy demand.
- the methanation reaction which is associated with high energy release and usually catalyzes, forms the heart of the process.
- the high exothermicity of the reaction (-165 kJ / mol) gives rise to two direct problems.
- the thermodynamic equilibrium limits the maximum achievable methane yield at high temperatures.
- a high level of purity is necessary for the feeding of methane into the natural gas network.
- there is a demand for high catalyst activity and selectivity so that higher yields of methane can be achieved at industrially applied reaction pressures at low temperatures.
- catalysts which contain not only an active metal, but are promotiert. It is known from the literature that a promotion with iron or manganese can have a positive influence on the catalyst performance.
- a doping of nickel-based methanation catalysts with manganese is described, for example, in CN 103464163 A, CN 103752315 A, CN 102600860 A, CN 102553610 A, CN 102527405 A, CN 102513124 A, CN 102463120 A and CN 1024631 19 A and by Zhao et al. , Journal of Natural Gas Chemistry (2012), 21 (2), 170-177.
- a doping of nickel-based methanation catalysts with iron is described, for example, in CN 104399482 A, CN 104399466 A, CN 104209127 A, CN 102872874 A, CN 101703933 A, CN 101537357 A and WO 2007025691 A1 and by Pandey et al., Journal of Industrial and Engineering Chemistry (2016), 33, 99-107 and Gao et al., RSC Advances (2015), 5 (29), 22759-22776.
- CN 103706366 A describes a catalyst comprising 15 to 55% an active component, 1 to 6% of a 1. catalytic promoter, 3 to 15% of a second catalytic promoter and, moreover, a catalytic support, wherein the active component is nickel oxide, the catalytic support is Al 2 O 3 , the 1.
- the catalytic promoter is one selected from lanthanum oxide, cerium oxide or samarium oxide
- the second catalytic promoter is at least one of magnesium oxide, manganese oxide, iron oxide and zirconium oxide.
- the production method comprises the steps of dissolving a reducing agent in water to obtain a reducing solution, mixing in nickel nitrate, aluminum nitrate, the 1. Metal salt and the 2nd metal salt in water to obtain a raw material solution, and adding the reducing mixture to the raw material solution with uniform stirring to obtain a 1.
- the metal salt is one selected from lanthanum nitrate, cerium nitrate and samarium nitrate
- the second metal salt is at least one selected from magnesium nitrate, manganese nitrate, iron nitrate and zirconium nitrate
- the alkali solution is an aqueous solution of sodium carbonate, sodium hydroxide, potassium carbonate, ammonium carbonate, urea or NH 3 * H 2 0 is.
- the catalyst may be mixed with a binder (calcium aluminate), a lubricant (graphite) and water and then pressed in particulate form.
- the catalyst is suitable for methanating coal gas at high temperature and high pressure to produce synthetic natural gas.
- CN 104028270 A discloses a methanation catalyst comprising 5 to 60 wt .-% of a catalytically active NiO component, based on the total weight of the catalyst and otherwise Al 2 0 3 , which also 1 to 25 wt .-%, based on the total weight of Catalyst, may participate in participating component M, wherein the co-acting component M is selected from one or more oxides of the metals Ce, Ca, Co, La, Sm, Zr, Ba, Mn, Fe, Mo, Ti and Cu.
- the document also provides a method of preparing the methanation catalyst which comprises admixing the precursor of the catalytically active component, precursor of the co-acting component M, and a catalyst support according to the proportion in the methanation catalyst composition of an organic fuel and thoroughly mixing and drying to form a gel-like product, carrying out a combustion reaction, cleaning and drying to obtain the final product.
- CN 101745401 discloses a supported sulfur-resistant methanation catalyst characterized by comprising a main metal M as the active component, a second metal M1 as an excipient and S as a support material, wherein the weight ratio between M1, M and S is between 0.01 to 39 : 1 to 30: 0.01 to 90, M is one or more of Mo, W and / or V, the second metal M1 is one or more of Fe, Co, Ni, Cr, Mn, La, Y or / and Ce and the support S is Zr0 2 , Al 2 0 3 , MgO or Ti0 2 .
- the supported sulfur-resistant methanation catalyst is prepared by a sol-gel method. It is an object of the invention to provide a methanation catalyst for the methanation of carbon monoxide and / or carbon dioxide, which has a high selectivity compared to the catalysts of the prior art improved activity and stability.
- a catalyst for the methanation of carbon monoxide and / or carbon dioxide comprising aluminum oxide and a Ni active composition, and Fe and Mn, characterized in that the molar Ni / Fe ratio in the catalyst is 5.0 to 10.0, preferably 5.3 to 7.0 and more preferably 5.4 to 5.7.
- the stability of the catalyst in the sense of the application means the property of the catalyst to deactivate as little as possible under reaction conditions and to maintain the high selectivity / activity as far as possible.
- the alumina need not be stoichiometric Al 2 O 3, but may be a non-stoichiometric alumina.
- the molar Ni / Mn ratio in the catalyst is 5.0 to 32.0, preferably 9.0 to 11.0, more preferably 10 to 10.6, or else 27 to 34, preferably 28 to 32 is.
- catalysts having a Ni / Mn and Ni / Fe ratio (each in this order) 9.3 to 9.8 and 6.6 to 7.1; 29 to 30 and 6.6 to 7.1; 9.5 to 10.1 and 5.1 to 5.9; and 26 to 27 and 4.9 to 5.9.
- the catalysts having the following Ni / Mn and Ni / Fe ratios (each in that order): 9.4 and 6.8; 29.5 and 6.9; 9.8 and 5.6; as well as 26.5 and 5.4.
- the promoters Fe and Mn may be contained completely or partially in the Ni active material.
- the catalyst may contain further promoters in addition to Mn and Fe, but it may also contain exclusively the promoters Mn and Fe.
- the oxidation states of Al, Ni and the promoters can vary depending on the treatment of the catalyst.
- Al, Ni and the promoters are typically present as metal cations (eg Al 3+ , Ni 2+ , Mn 2+ , Mn 3+ , Mn 4+ , Fe 2+ , Fe 3+ ).
- the catalyst of the present invention may contain other components in addition to alumina (i.e., Al xx of x ⁇ 1.5) Ni, Fe, and Mn (as well as the oxygen anions necessary for charge balance), but may be composed solely of alumina Ni, Fe, and Mn.
- the catalyst does not contain any of the elements selected from Ta, In, Cu, Ce, Cr, Bi, P, Sb, Sn, B, Si, Ti, Zr, Co, Rh, Ru, Ag, Ir, Pd and Pt.
- the catalyst does not contain a noble metal.
- the atomic Al / Ni ratio may be between 0.5 and 1.5, preferably between 0.8 and 1.2, more preferably the Al / Ni ratio is approximately 1.
- the catalysts according to the invention can advantageously have crystallites in the Ni active composition with a diameter of less than 20 nm, preferably less than 10 nm.
- the Ni active composition may also consist wholly or substantially of crystallites having a diameter of less than 20 nm, preferably less than 10 nm.
- the Ni active material is preferably in a metallic state.
- the C0 2 absorption capacity of the catalysts at 35 ° C may be greater than 200 ⁇ / g and is preferably in the range between 200 to 400 ⁇ / g, more preferably, between 250 to 300 ⁇ / g.
- the BET surface area of the catalyst according to the invention is preferably greater than 100 m 2 / g, preferably greater than 200 m 2 / g, in particular in the range between 200 and 400 m 2 / g and in particular in the range between 200 and 300 m 2 / g.
- the specific metal surface area (Swiet) of the catalyst according to the invention may be greater than 5 m 2 / g, preferably greater than 10 m 2 / g, or between 5 and 25 m 2 / g, preferably between 10 and 20 m 2 / g, or in the range between 6 and 9 m 2 / g.
- the invention relates to a process for the preparation of a methanation catalyst, comprising the steps:
- step d) calcining the dried precipitate from step c).
- the solution from step a) is an aqueous solution and Al, Ni, Mn and Fe are present dissolved in the aqueous solution as ionic compounds.
- Al is preferably dissolved as aluminum nitrate, aluminum trichloride or aluminum sulfate.
- Mn is preferably present in the oxidation state II or IV and is dissolved as manganese nitrate, manganese acetate, manganese dichloride, manganese sulfate or in the oxidation state VII as a permanganate ion.
- Ni is preferably dissolved as nickel nitrate, nickel dichloride, nickel sulfate, nickel acetate or nickel carbonate.
- Fe is preferably in the oxidation state II or III and is dissolved as iron nitrate, iron or trichloride, iron acetate, iron sulfate or iron hydroxide.
- Al, Ni, Mn and Fe are in dissolved form as ionic compounds in the aqueous solution and have the same anion, which may be, for example, nitrate.
- the coprecipitation is carried out by adding the solution containing Al, Ni, Mn and Fe to a basic solution or by adding a basic solution to the solution which contains Al, Ni, Mn and Fe.
- the solution containing Al, Ni, Mn and Fe and the basic solution are simultaneously added to a vessel which may already contain a solvent such as water and is mixed therein.
- the basic solution has a pH greater than 7, preferably in the range from 8 to 10, and preferably contains an alkali hydroxide and / or an alkali carbonate.
- the basic solution is an aqueous solution of sodium hydroxide and sodium carbonate.
- the coprecipitation is preferably carried out under temperature control, so that the temperature of the solution is approximately room temperature or, for example, 30 ° C.
- the precipitate in the solution is aged for at least 30 minutes, preferably for more than 1 hour, more preferably for longer than 12 hours.
- the aging preferably takes place in that the precipitate is left in the solution (mother liquor) with stirring at approximately room temperature.
- the precipitate obtained by the coprecipitation is isolated, for example by filtering.
- the filtering can be done in a suitable manner, for example by a filter press.
- the isolated precipitate is preferably washed, for example with distilled water, until a neutral pH is reached.
- the isolated precipitate can be dried, for example at elevated temperature in air.
- the drying takes place at a temperature between 70 ° C and 90 ° C for a period longer than 4 hours, preferably longer than 12 hours.
- the isolated precipitate is calcined, this can be done in air at a temperature between 300 ° C to 600 ° C, preferably at 400 ° C to 500 ° C and in a period of 3 hours to 10 hours, preferably 5 to 7 hours.
- the catalyst according to the invention is intended to be used in particular in the methanation of carbon monoxide and / or carbon dioxide.
- the methanation of carbon dioxide can be represented by the following reaction equation:
- the methanation of carbon monoxide can be represented by the following reaction equation:
- the reaction gas containing carbon dioxide and / or carbon monoxide or a mixture of both is contacted with the catalyst at a temperature higher than 200 ° C.
- FIG. 1 activity / stability diagram of the samples described.
- the determination of the composition of the calcined catalysts was carried out by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). 50 mg of catalyst were dissolved in 50 ml of 1 molar phosphoric acid (VWR, pA) at 60 ° C. To dissolve any brownstone formed, 50 mg Na 2 S0 3 (Sigma Aldrich, pA) was added to the solution. After cooling, the solutions were diluted 1/10 and filtered by 0.1 ⁇ filters (Pall). The calibration solutions were prepared at 1, 10 and 50 mg I -1 (Merck). Determination of metal concentrations was performed using an Agilent 700 ICP-OES. Determination of the specific surface
- the specific surface area of the catalysts was determined by N 2 -BET analysis on a NOVA 4000e (Quantachrome). For this purpose, 100 mg of catalyst were degassed for 3 hours at 120 ° C and then absorbed adsorption and Desorptionsiso- therme in the p / p 0 range of 0.007 to 1. To determine the BET surface area, the data points in the p / p 0 range of 0.007 to 0.28 were used.
- the catalysts were prepared by coprecipitation and the atomic ratio of nickel and aluminum was adjusted to 1.
- iron (III) nitrate was added to the salt solution of nickel and aluminum nitrate during catalyst synthesis.
- manganese nitrate and iron (III) nitrate were added to the salt solution of nickel and aluminum nitrate during the catalyst synthesis.
- the purity of all the chemicals used was pa Water was purified by a Millipore filter system and the degree of purity was verified by means of conductivity measurements. The synthesis was carried out in a double-walled, 3 l stirred tank.
- the double jacket which was filled with water, controlled the temperature of the synthesis batch to 30 ° C via a thermostat, and two flow breakers provided for improved mixing.
- a KPG stirrer with 150 revolutions min -1 was used.
- the dosage of the mixture of dissolved nitrates was 2.5 ml min -1 .
- the controlled addition of the precipitating reagent was used to maintain the pH.
- T 7 5 As a measure of the activity was representative temperature T 7 5, i determined, which is necessary in order to achieve a CC conversion of 75% during the measuring step S-curve 1.
- T 7 5 the temperature in the specified range was gradually increased by 25 ° C. Therefore, the lower T 7 5, i, the higher the activity of the catalyst.
- the temperature T 7 5.2 was determined representative, which is necessary to achieve a CC conversion of 75% during the measuring step S-curve. 2
- the temperature in the specified range was gradually increased by 25 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
The invention relates to a catalyst for the methanation of carbon monoxide and/or carbon dioxide, comprising aluminium oxide, an Ni-active mass and Fe and Mn, characterised in that the molar Ni/Fe-ratio in the catalyst is 5.0 to 10.0, preferably 5.3 to 7.0 and particularly preferably 5.4 to 5.7. The catalyst preferably has a molar Ni/Mn-ratio of 5.0 to 32.0, preferably 9.0 to 10.0. The catalyst is characterised by improved activity combined with improved stability. The invention also relates to a method for producing a catalyst according to the invention, comprising the following steps: a) coprecipitation from a solution containing AI, Ni, Mn and Fe in the dissolved form, in order to obtain a precipitate; b) isolation of the precipitate from step a), c) drying of the isolated precipitate from step b); and d) calcination of the dried precipitate from step c).
Description
Eisen- und mangandotierte Nickel-Methanisierungskatalysatoren Iron and manganese-doped nickel methanation catalysts
Die Energieversorgung durch die sogenannten erneuerbaren Energien Photovoltaik und Windenergie leidet unter der Problematik der witterungs- und tageszeitabhängigen Schwankungen in der Stromproduktion. Zur Gewährleistung der Versorgungssicherheit muss ein Weg gefunden werden, um witterungs- und tageszeitabhängige Schwankungen in der Stromproduktion abzufangen. Eine potentielle Methode, um die Energie chemisch zu speichern, stellt das Power-to-Gas- Verfahren dar, in welchem überschüssiger Strom verwendet wird, um Wasser durch Elektrolyse in Wasserstoff und Sauerstoff zu spalten. Was- serstoff, in welchem die Energie nach der Wasserelektrolyse gespeichert ist, kann selbst nur mit hohem Aufwand gelagert oder zum Verbraucher transportiert werden. Nach dem Power-to-Gas- Verfahren wird der Wasserstoff daher in einem weiteren Schritt mit Kohlendioxid, welches in der Atmosphäre als klimaschädliches Treibhausgas wirkt, in der Methanisierungsreaktion zu Methan und Wasser umgesetzt. Methan kann in bereits vorhandenen Infrastrukturen, welche Kapazitäten zur Speicherung im Bereich von mehreren Monaten umfassen, leicht gespeichert, über größere Strecken nahezu verlustfrei transportiert und in Zeiten von Energiebedarf wieder rückverstromt werden. Die Methanisierungsreaktion, die mit einer hohen Energiefreisetzung verbunden ist und üblicherweise katalysiert abläuft, bildet das Kernstück des Verfahrens. Aus der hohen Exothermie der Reaktion (-165 kJ/mol) ergeben sich zwei direkte Probleme. Zum einen limitiert bei hohen Temperaturen das ther- modynamische Gleichgewicht die maximal erreichbare Ausbeute an Methan. Zum anderen ist für die Einspeisung von Methan in das Erdgasnetz eine hohe Reinheit notwendig. Daraus ergibt sich die Forderung nach einer hohen Katalysatoraktivität und -Selektivität, sodass bei industriell angewandten Reaktionsdrücken bei niedrigen Temperaturen höhere Ausbeuten an Methan erzielt werden können. The energy supply through the so-called renewable energy photovoltaic and wind energy suffers from the problem of weather and daytime dependent fluctuations in electricity production. To ensure security of supply, a way has to be found to intercept weather and time-dependent fluctuations in electricity production. One potential method of chemically storing the energy is the power-to-gas process, which uses excess electricity to split water into hydrogen and oxygen by electrolysis. Hydrogen in which the energy is stored after the electrolysis of water can itself be stored only with great effort or transported to the consumer. After the power-to-gas process, the hydrogen is therefore converted in a further step with carbon dioxide, which acts in the atmosphere as a greenhouse gas harmful to the climate, in the methanation reaction to methane and water. Methane can be easily stored in existing infrastructures, which have capacities for storage in the range of several months, can be transported almost lossless over longer distances and can be reconverted in times of energy demand. The methanation reaction, which is associated with high energy release and usually catalyzes, forms the heart of the process. The high exothermicity of the reaction (-165 kJ / mol) gives rise to two direct problems. On the one hand, the thermodynamic equilibrium limits the maximum achievable methane yield at high temperatures. On the other hand, a high level of purity is necessary for the feeding of methane into the natural gas network. As a result, there is a demand for high catalyst activity and selectivity so that higher yields of methane can be achieved at industrially applied reaction pressures at low temperatures.
Die hohe Exothermie der Methanisierungsreaktion bewirkt bei adiabatischer Reaktorfahrweise unter Umständen Hotspotbildungen im Reaktor. Dabei kommt es lokal zur Entwicklung hoher Temperaturen, die den Katalysator beschädigen können. Es besteht daher ein starkes Interesse darin, möglichst stabile Katalysatorsysteme zu entwickeln, um Kosten für Katalysatorwechsel/Stillstandzeit und Materialkosten zu minimieren. Weiterhin ergibt sich der Bedarf von möglichst aktiven und selektiven Katalysatoren für die Methanisierungsreaktion von C02. Für die Methanisierungsreaktion werden hauptsächlich nickelbasierte Katalysatoren verwendet, jedoch gibt es auch Ansätze mit anderen aktiven Metallen, wie beispielsweise Ru-
thenium oder Rhodium. Als Träger kommen neben Aluminiumoxid auch die Oxide von Silizium, Titan und Zirkonium zum Einsatz. Beschrieben werden solche Systeme zum Beispiel in den Offenlegungsschriften CN 104043454 A, CN 103480375 A, CN 102091629 A, CN 104888783 A und WO 20081 10331 A1 . The high exothermicity of the methanation reaction may cause hot spot formation in the reactor under adiabatic reactor operation. This leads to the development of high temperatures locally, which can damage the catalyst. There is therefore a strong interest in developing catalyst systems that are as stable as possible in order to minimize costs for catalyst replacement / downtime and material costs. Furthermore, there is a need for highly active and selective catalysts for the methanation reaction of C0 2 . For the methanation reaction mainly nickel-based catalysts are used, but there are also approaches with other active metals, such as Ru thenium or rhodium. In addition to aluminum oxide, the oxides of silicon, titanium and zirconium are also used as carriers. Such systems are described, for example, in the publications CN 104043454 A, CN 103480375 A, CN 102091629 A, CN 104888783 A and WO 20081 10331 A1.
Zusätzlich findet man Katalysatoren, welche nicht nur ein aktives Metall enthalten, sondern promotiert sind. Aus der Literatur ist bekannt, dass eine Promotierung mit Eisen oder Mangan einen positiven Einfluss auf die Katalysatorperformance haben kann. Eine Dotierung von nickelbasierten Methanisierungskatalysatoren mit Mangan wird zum Beispiel in CN 103464163 A, CN 103752315 A, CN 102600860 A, CN 102553610 A, CN 102527405 A, CN 102513124 A, CN 102463120 A und CN 1024631 19 A beschrieben sowie durch Zhao et al., Journal of Natural Gas Chemistry (2012), 21 (2), 170-177. Eine Dotierung von nickelbasierten Methanisierungskatalysatoren mit Eisen wird zum Beispiel in CN 104399482 A, CN 104399466 A, CN 104209127 A, CN 102872874 A, CN 101703933 A, CN 101537357 A und WO 2007025691 A1 beschrieben sowie durch Pandey et al., Journal of Industrial and Engineering Chemistry (2016), 33, 99-107und Gao et al., RSC Advances (2015), 5(29), 22759 - 22776. Additionally one finds catalysts, which contain not only an active metal, but are promotiert. It is known from the literature that a promotion with iron or manganese can have a positive influence on the catalyst performance. A doping of nickel-based methanation catalysts with manganese is described, for example, in CN 103464163 A, CN 103752315 A, CN 102600860 A, CN 102553610 A, CN 102527405 A, CN 102513124 A, CN 102463120 A and CN 1024631 19 A and by Zhao et al. , Journal of Natural Gas Chemistry (2012), 21 (2), 170-177. A doping of nickel-based methanation catalysts with iron is described, for example, in CN 104399482 A, CN 104399466 A, CN 104209127 A, CN 102872874 A, CN 101703933 A, CN 101537357 A and WO 2007025691 A1 and by Pandey et al., Journal of Industrial and Engineering Chemistry (2016), 33, 99-107 and Gao et al., RSC Advances (2015), 5 (29), 22759-22776.
Aus dem Stand der Technik sind Nickel-Aluminiumoxid-Katalysatoren bekannt, welche mit mehreren Elementen promotiert sein können, darunter CN 102259003 A und insbesondere CN 103706366 A, CN 104028270 A und CN 101745401 A. CN 103706366 A beschreibt einen Katalysator umfassend 15 bis 55 % einer aktiven Komponente, 1 bis 6 % eines 1 . katalytischen Promotors, 3 bis 15 % eines 2. katalytischen Promotors und im Übrigen einen katalytischen Träger, wobei die aktive Komponente Nickeloxid ist, der katalytische Träger Al203 ist, der 1 . katalytische Promotor einer ist, ausgewählt aus Lanthanoxid, Ceroxid oder Samariumoxid, der 2. katalytische Promotor mindes- tens einer ist aus Magnesiumoxid, Manganoxid, Eisenoxid und Zirkonoxid. Die Herstellungsmethode umfasst die Schritte: Auflösen eines Reduktionsmittels in Wasser, um eine reduzierende Lösung zu erhalten, Einmischen von Nickelnitrat, Aluminiumnitrat, dem 1 . Metallsalz und dem 2. Metallsalz in Wasser, um eine Rohmateriallösung zu erhalten und Hinzugeben der reduzierenden Mischung zur Rohmateriallösung unter gleichmäßigen Rühren, um eine 1 . Lösung zu erhalten, Hinzugeben einer Alkali-Lösung zur 1 . Lösung unter starkem Rühren, um eine 2. Lösung zu erhalten, Übertragen in einen abgedichteten Reaktor und Durchführen einer Reaktion bei 100 bis 200 °C für 10 bis 15 Stunden, Kühlen auf
Raumtemperatur, Filtrieren und Waschen bis zu einem pH-Wert von 6 bis 7, Trocknen bei 80 bis 120 °C für 4 bis 30 Stunden und Kalzinieren bei 300 bis 550 °C für 2 bis 12 Stunden, um einen Katalysator zu erhalten, in dem das Reduktionsmittel eines ist, ausgewählt aus Formaldehyd, Hydrazin-Hydrat, Natriumhypophosphit und Ascorbinsäure, wobei das 1 . Me- tallsalz eines ist, ausgewählt aus Lanthannitrat, Cernitrat und Samariumnitrat, das 2. Metallsalz mindestens eines ist, ausgewählt aus Magnesiumnitrat, Manganitrat, Eisennitrat und Zirkonnitrat, die Alkali-Lösung eine wässrige Lösung aus Natriumcarbonat, Natriumhydroxid, Kaliumcarbonat, Ammoniumcarbonat, Harnstoff oder NH3 * H20 ist. Der Katalysator kann mit einem Bindemittel (Calciumaluminat), einem Schmiermittel (Graphit) und Wasser vermischt werden und dann in Partikelform gepresst werden. Der Katalysator ist zur Methanisierung von Kohlegas bei hoher Temperatur und hohem Druck geeignet, um synthetisches Erdgas zu produzieren. Known from the prior art are nickel-alumina catalysts which may be promoted with several elements, including CN 102259003 A and in particular CN 103706366 A, CN 104028270 A and CN 101745401 A. CN 103706366 A describes a catalyst comprising 15 to 55% an active component, 1 to 6% of a 1. catalytic promoter, 3 to 15% of a second catalytic promoter and, moreover, a catalytic support, wherein the active component is nickel oxide, the catalytic support is Al 2 O 3 , the 1. the catalytic promoter is one selected from lanthanum oxide, cerium oxide or samarium oxide, the second catalytic promoter is at least one of magnesium oxide, manganese oxide, iron oxide and zirconium oxide. The production method comprises the steps of dissolving a reducing agent in water to obtain a reducing solution, mixing in nickel nitrate, aluminum nitrate, the 1. Metal salt and the 2nd metal salt in water to obtain a raw material solution, and adding the reducing mixture to the raw material solution with uniform stirring to obtain a 1. To obtain solution, adding an alkali solution to the 1st Solution with vigorous stirring to obtain a 2nd solution, transfer to a sealed reactor, and conduct a reaction at 100 to 200 ° C for 10 to 15 hours, cooling Room temperature, filtering and washing to a pH of 6 to 7, drying at 80 to 120 ° C for 4 to 30 hours and calcining at 300 to 550 ° C for 2 to 12 hours to obtain a catalyst in which the reducing agent is one selected from formaldehyde, hydrazine hydrate, sodium hypophosphite and ascorbic acid, wherein the 1. The metal salt is one selected from lanthanum nitrate, cerium nitrate and samarium nitrate, the second metal salt is at least one selected from magnesium nitrate, manganese nitrate, iron nitrate and zirconium nitrate, the alkali solution is an aqueous solution of sodium carbonate, sodium hydroxide, potassium carbonate, ammonium carbonate, urea or NH 3 * H 2 0 is. The catalyst may be mixed with a binder (calcium aluminate), a lubricant (graphite) and water and then pressed in particulate form. The catalyst is suitable for methanating coal gas at high temperature and high pressure to produce synthetic natural gas.
CN 104028270 A offenbart einen Methanisierungskatalysator umfassend 5 bis 60 Gew.-% einer katalytisch aktiven NiO-Komponente, basierend auf dem Gesamtgewicht des Katalysators und im Übrigen Al203, der auch 1 bis 25 Gew.-%, basierend auf dem Gesamtgewicht des Katalysators, an mitwirkender Komponente M umfassen kann, wobei die mitwirkende Komponente M ausgewählt ist aus einem oder mehreren Oxiden der Metalle Ce, Ca, Co, La, Sm, Zr, Ba, Mn, Fe, Mo, Ti und Cu. Das Dokument stellt auch ein Verfahren zur Her- Stellung des Methanisierungskatalysators zur Verfügung, welches das Mischen der Vorstufe der katalytisch aktiven Komponente, der Vorstufe der mitwirkenden Komponente M, sowie eines Katalysatorträgers - gemäß dem entsprechend Anteil in der Methanisierungs- katalysator-Zusammensetzung - das Hinzugeben eines organischen Brennstoffes und das gründliche Vermischen und Trocknen, um ein gelartiges Produkt zu formen, das Durchfüh- ren einer Verbrennungsreaktion, das Säubern und das Trocknen, um das endgültige Produkt zu erhalten, beinhaltet. CN 104028270 A discloses a methanation catalyst comprising 5 to 60 wt .-% of a catalytically active NiO component, based on the total weight of the catalyst and otherwise Al 2 0 3 , which also 1 to 25 wt .-%, based on the total weight of Catalyst, may participate in participating component M, wherein the co-acting component M is selected from one or more oxides of the metals Ce, Ca, Co, La, Sm, Zr, Ba, Mn, Fe, Mo, Ti and Cu. The document also provides a method of preparing the methanation catalyst which comprises admixing the precursor of the catalytically active component, precursor of the co-acting component M, and a catalyst support according to the proportion in the methanation catalyst composition of an organic fuel and thoroughly mixing and drying to form a gel-like product, carrying out a combustion reaction, cleaning and drying to obtain the final product.
CN 101745401 offenbart einen geträgerten schwefelresistenten Methanisierungskatalysator, welcher sich dadurch auszeichnet, dass er ein Hauptmetall M als aktive Komponente, ein 2. Metall M1 als Hilfsstoff und S als Trägermaterial beinhaltet, wobei das Gewichtsverhältnis zwischen M1 , M und S zwischen 0,01 bis 39 : 1 bis 30 : 0,01 bis 90 ist, M eines oder mehrere aus Mo, W und/oder V ist, das 2. Metall M1 eines oder mehrere aus Fe, Co, Ni, Cr, Mn, La, Y oder/und Ce ist und der Träger S Zr02, Al203, MgO oder Ti02 ist. Der geträ- gerte schwefelresistente Methanisierungskatalysator wird durch eine Sol-Gel- Methode dar- gestellt.
Es ist Aufgabe der Erfindung einen Methanisierungskatalysator zur Methanisierung von Kohlenmonoxid und/oder Kohlendioxid bereitzustellen, der bei hoher Selektivität eine gegenüber den Katalysatoren des Stands der Technik verbesserte Aktivität und Stabilität aufweist. CN 101745401 discloses a supported sulfur-resistant methanation catalyst characterized by comprising a main metal M as the active component, a second metal M1 as an excipient and S as a support material, wherein the weight ratio between M1, M and S is between 0.01 to 39 : 1 to 30: 0.01 to 90, M is one or more of Mo, W and / or V, the second metal M1 is one or more of Fe, Co, Ni, Cr, Mn, La, Y or / and Ce and the support S is Zr0 2 , Al 2 0 3 , MgO or Ti0 2 . The supported sulfur-resistant methanation catalyst is prepared by a sol-gel method. It is an object of the invention to provide a methanation catalyst for the methanation of carbon monoxide and / or carbon dioxide, which has a high selectivity compared to the catalysts of the prior art improved activity and stability.
Diese Aufgabe wird gelöst durch einen Katalysator zur Methanisierung von Kohlenmonoxid und/oder Kohlendioxid, umfassend Aluminiumoxid und eine Ni-Aktivmasse sowie Fe und Mn, dadurch gekennzeichnet, dass das molare Ni/Fe- Verhältnis im Katalysator 5,0 bis 10,0, bevorzugt 5,3 bis 7,0 und besonders bevorzugt 5,4 bis 5,7 beträgt. This object is achieved by a catalyst for the methanation of carbon monoxide and / or carbon dioxide, comprising aluminum oxide and a Ni active composition, and Fe and Mn, characterized in that the molar Ni / Fe ratio in the catalyst is 5.0 to 10.0, preferably 5.3 to 7.0 and more preferably 5.4 to 5.7.
Mit der Stabilität des Katalysators im Sinne der Anmeldung ist die Eigenschaft des Katalysators gemeint, unter Reaktionsbedingungen möglichst wenig zu desaktivieren und die hohe Selektivität/Aktivität möglichst beizubehalten. Bei dem Aluminiumoxid muss es sich nicht um stöchiometrisches AI2O3 handeln, vielmehr kann es sich hierbei auch um ein nicht-stöchiometrisches Aluminiumoxid handeln. The stability of the catalyst in the sense of the application means the property of the catalyst to deactivate as little as possible under reaction conditions and to maintain the high selectivity / activity as far as possible. The alumina need not be stoichiometric Al 2 O 3, but may be a non-stoichiometric alumina.
Bevorzugt ist, dass das molare Ni/Mn-Verhältnis im Katalysator 5,0 bis 32,0, bevorzugt 9,0 bis 1 1 ,0, besonders bevorzugt 10 bis 10,6 beträgt, oder aber auch 27 bis 34, bevorzugt 28 bis 32 beträgt. It is preferred that the molar Ni / Mn ratio in the catalyst is 5.0 to 32.0, preferably 9.0 to 11.0, more preferably 10 to 10.6, or else 27 to 34, preferably 28 to 32 is.
Besonders bevorzugt sind Katalysatoren mit einem Ni/Mn und Ni/Fe-Verhältnis (jeweils in dieser Reihenfolge) 9,3 bis 9,8 und 6,6 bis 7,1 ; 29 bis 30 und 6,6 bis 7,1 ; 9,5 bis 10,1 und 5,1 bis 5,9; sowie 26 bis 27 und 4,9 bis 5,9. Particularly preferred are catalysts having a Ni / Mn and Ni / Fe ratio (each in this order) 9.3 to 9.8 and 6.6 to 7.1; 29 to 30 and 6.6 to 7.1; 9.5 to 10.1 and 5.1 to 5.9; and 26 to 27 and 4.9 to 5.9.
Ganz besonders bevorzugt sind die Katalysatoren mit den folgenden Ni/Mn und Ni/Fe- Verhältnissen (jeweils in dieser Reihenfolge): 9,4 und 6,8; 29,5 und 6,9; 9,8 und 5,6; sowie 26,5 und 5,4. Die Promotoren Fe und Mn können vollständig oder teilweise in der Ni-Aktivmasse enthalten sein. Der Katalysator kann neben Mn und Fe weitere Promotoren enthalten, er kann aber auch ausschließlich die Promotoren Mn und Fe enthalten. Die Oxidationsstufen von AI, Ni sowie der Promotoren können je nach Behandlung des Katalysators variieren. AI, Ni und die Promotoren liegen typischerweise als Metallkationen (z.B. Al3+, Ni2+, Mn2+, Mn3+, Mn4+, Fe2+, Fe3+) vor. Nach der Kalzinierung, z.B. an Luft, können hohe Oxidationsstufen bzw. die maximalen Oxidationsstufen erreicht werden. Wird der Katalysator bei Tempera-
turen oberhalb Raumtemperatur reduziert, z.B. unter Reaktionsbedingungen mit Wasserstoff, können AI, Ni und die Promotoren niedrigere Oxidationsstufen annehmen oder teilweise oder ganz in der Oxidationsstufe 0 auftreten. Der Ladungsausgleich zu den Metallkationen erfolgt durch Sauerstoffanionen (02~). Most preferred are the catalysts having the following Ni / Mn and Ni / Fe ratios (each in that order): 9.4 and 6.8; 29.5 and 6.9; 9.8 and 5.6; as well as 26.5 and 5.4. The promoters Fe and Mn may be contained completely or partially in the Ni active material. The catalyst may contain further promoters in addition to Mn and Fe, but it may also contain exclusively the promoters Mn and Fe. The oxidation states of Al, Ni and the promoters can vary depending on the treatment of the catalyst. Al, Ni and the promoters are typically present as metal cations (eg Al 3+ , Ni 2+ , Mn 2+ , Mn 3+ , Mn 4+ , Fe 2+ , Fe 3+ ). After calcination, eg in air, high oxidation states or the maximum oxidation states can be achieved. If the catalyst is heated at Reduced temperatures above room temperature, for example under reaction conditions with hydrogen, AI, Ni and the promoters can assume lower oxidation states or partially or completely in the oxidation state 0 occur. The charge balance to the metal cations is carried out by oxygen anions (0 2 ~ ).
Der erfindungsgemäße Katalysator kann weitere Komponenten, neben Aluminiumoxid (d.h. AlOx mit x <1 ,5) Ni, Fe und Mn (sowie die zum Ladungsausgleich notwendigen Sauerstoffanionen) enthalten, er kann jedoch auch ausschließlich aus Aluminiumoxid Ni, Fe und Mn bestehen. Vorzugsweise enthält der Katalysator keines der Elemente ausgewählt aus Ta, In, Cu, Ce, Cr, Bi, P, Sb, Sn, B, Si, Ti, Zr, Co, Rh, Ru, Ag, Ir, Pd und Pt. Vorzugsweise enthält der Katalysator kein Edelmetall. The catalyst of the present invention may contain other components in addition to alumina (i.e., Al xx of x <1.5) Ni, Fe, and Mn (as well as the oxygen anions necessary for charge balance), but may be composed solely of alumina Ni, Fe, and Mn. Preferably, the catalyst does not contain any of the elements selected from Ta, In, Cu, Ce, Cr, Bi, P, Sb, Sn, B, Si, Ti, Zr, Co, Rh, Ru, Ag, Ir, Pd and Pt. Preferably, the catalyst does not contain a noble metal.
Das atomare Al/Ni-Verhältnis kann zwischen 0,5 und 1 ,5 sein, bevorzugterweise zwischen 0,8 und 1 ,2, besonders bevorzugt ist das Al/Ni-Verhältnis annähernd 1 . The atomic Al / Ni ratio may be between 0.5 and 1.5, preferably between 0.8 and 1.2, more preferably the Al / Ni ratio is approximately 1.
Die erfindungsgemäßen Katalysatoren können vorteilhafterweise in der Ni-Aktivmasse Kris- tallite mit einem Durchmesser unter 20 nm, bevorzugt unter 10 nm, aufweisen. Die Ni-Aktivmasse kann auch ganz oder zu wesentlichen Teilen aus Kristalliten mit einem Durchmesser unter 20 nm, bevorzugt unter 10 nm bestehen. Die Ni-Aktivmasse liegt vorzugsweise in einem metallischen Zustand vor. The catalysts according to the invention can advantageously have crystallites in the Ni active composition with a diameter of less than 20 nm, preferably less than 10 nm. The Ni active composition may also consist wholly or substantially of crystallites having a diameter of less than 20 nm, preferably less than 10 nm. The Ni active material is preferably in a metallic state.
Die C02-Aufnahmekapazität der Katalysatoren bei 35 °C kann größer 200 μηιοΙ/g sein und liegt vorzugsweise im Bereich zwischen 200 bis 400 μηιοΙ/g, besonders bevorzugt, zwischen 250 bis 300 μπιοΙ/g. The C0 2 absorption capacity of the catalysts at 35 ° C may be greater than 200 μηιοΙ / g and is preferably in the range between 200 to 400 μηιοΙ / g, more preferably, between 250 to 300 μπιοΙ / g.
Die BET-Oberfläche des erfindungsgemäßen Katalysators ist vorzugsweise größer als 100 m2/g, vorzugsweise größer als 200 m2/g, insbesondere im Bereich zwischen 200 und 400 m2/g und insbesondere im Bereich zwischen 200 und 300 m2/g. The BET surface area of the catalyst according to the invention is preferably greater than 100 m 2 / g, preferably greater than 200 m 2 / g, in particular in the range between 200 and 400 m 2 / g and in particular in the range between 200 and 300 m 2 / g.
Die spezifische Metalloberfläche (Swiet) des erfindungsgemäßen Katalysators kann größer als 5 m2/g, vorzugsweise größer als 10 m2/g sein, oder im Bereich zwischen 5 und 25 m2/g, vorzugsweise im Bereich zwischen 10 und 20 m2/g, oder im Bereich zwischen 6 und 9 m2/g. The specific metal surface area (Swiet) of the catalyst according to the invention may be greater than 5 m 2 / g, preferably greater than 10 m 2 / g, or between 5 and 25 m 2 / g, preferably between 10 and 20 m 2 / g, or in the range between 6 and 9 m 2 / g.
Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines Methanisierungskata- lysators, umfassend die Schritte: Furthermore, the invention relates to a process for the preparation of a methanation catalyst, comprising the steps:
a) Kopräzipitation aus einer Lösung, die AI, Ni, Mn und Fe in gelöster Form enthält, um einen Niederschlag zu erhalten,
b) Isolieren des Niederschlags aus Schritt a), a) co-precipitation from a solution containing Al, Ni, Mn and Fe in dissolved form to obtain a precipitate, b) isolating the precipitate from step a),
c) Trocknen des isolierten Niederschlags aus Schritt b) und c) drying the isolated precipitate from step b) and
d) Kalzinieren des getrockneten Niederschlags aus Schritt c). Bevorzugt ist hierbei, dass die Lösung aus Schritt a) eine wässrige Lösung ist und AI, Ni, Mn und Fe in der wässrigen Lösung gelöst als ionische Verbindungen vorliegen. d) calcining the dried precipitate from step c). It is preferred here that the solution from step a) is an aqueous solution and Al, Ni, Mn and Fe are present dissolved in the aqueous solution as ionic compounds.
AI liegt bevorzugterweise gelöst als Aluminiumnitrat, Aluminiumtrichlorid oder Aluminiumsulfat vor. Mn liegt bevorzugterweise in der Oxidationsstufe II oder IV vor und ist als Mangannitrat, Manganacetat, Mangandichlorid, Mangansulfat oder auch in der Oxidationsstufe VII als Permanganat-Ion gelöst. Ni liegt bevorzugterweise gelöst als Nickelnitrat, Ni- ckeldichlorid, Nickelsulfat, Nickelacetat oder Nickelcarbonat vor. Fe liegt bevorzugterweise in der Oxidationsstufe II oder III vor und ist als Eisennitrat, Eisenbi- oder trichlorid, Eisen- acetat, Eisensulfat oder Eisenhydroxid gelöst. Al is preferably dissolved as aluminum nitrate, aluminum trichloride or aluminum sulfate. Mn is preferably present in the oxidation state II or IV and is dissolved as manganese nitrate, manganese acetate, manganese dichloride, manganese sulfate or in the oxidation state VII as a permanganate ion. Ni is preferably dissolved as nickel nitrate, nickel dichloride, nickel sulfate, nickel acetate or nickel carbonate. Fe is preferably in the oxidation state II or III and is dissolved as iron nitrate, iron or trichloride, iron acetate, iron sulfate or iron hydroxide.
Bevorzugterweise, liegen AI, Ni, Mn und Fe in gelöster Form, als ionische Verbindungen in der wässrigen Lösung vor und weisen dasselbe Anion auf, welches zum Beispiel Nitrat sein kann. Die Kopräzipitation erfolgt durch Hinzugeben der Lösung, die AI, Ni, Mn und Fe enthält, zu einer vorgelegten basischen Lösung oder durch Zugabe einer basischen Lösung zu der vorgelegten Lösung die AI, Ni, Mn und Fe enthält. Alternativ wird die Lösung, die AI, Ni, Mn und Fe enthält und die basische Lösung gleichzeitig in ein Gefäß gegeben, welches bereits ein Lösungsmittel wie Wasser enthalten kann und wird darin vermischt. Die basische Lö- sung weist einen pH größer 7, vorzugsweise im Bereich von 8 bis 10 auf und enthält bevorzugterweise ein Alkali-Hydroxid und/oder ein Alkali-Carbonat. Zum Beispiel ist die basische Lösung eine wässrige Lösung aus Natriumhydroxid und Natriumcarbonat. Die Kopräzipitation erfolgt vorzugsweise unter Temperierung, sodass die Temperatur der Lösung annähernd Raumtemperatur oder zum Beispiel 30 °C beträgt. Preferably, Al, Ni, Mn and Fe are in dissolved form as ionic compounds in the aqueous solution and have the same anion, which may be, for example, nitrate. The coprecipitation is carried out by adding the solution containing Al, Ni, Mn and Fe to a basic solution or by adding a basic solution to the solution which contains Al, Ni, Mn and Fe. Alternatively, the solution containing Al, Ni, Mn and Fe and the basic solution are simultaneously added to a vessel which may already contain a solvent such as water and is mixed therein. The basic solution has a pH greater than 7, preferably in the range from 8 to 10, and preferably contains an alkali hydroxide and / or an alkali carbonate. For example, the basic solution is an aqueous solution of sodium hydroxide and sodium carbonate. The coprecipitation is preferably carried out under temperature control, so that the temperature of the solution is approximately room temperature or, for example, 30 ° C.
Nach der Fällung durch die Kopräzipitation wird vorzugsweise der Niederschlag in der Lösung für mindestens 30 Minuten, bevorzugterweise länger als 1 Stunde, stärker bevorzugt länger als 12 Stunden gealtert. Die Alterung erfolgt vorzugsweise dadurch, dass der Niederschlag bei annähernd Raumtemperatur in der Lösung (Mutterlauge) unter Rühren be- lassen wird.
Der durch die Kopräzipitation erhaltene Niederschlag wird isoliert, zum Beispiel indem eine Filterung durchgeführt wird. Die Filterung kann in geeigneter Weise zum Beispiel durch eine Filterpresse erfolgen. Der isolierte Niederschlag wird vorzugsweise gewaschen, zum Beispiel mit destilliertem Wasser, bis ein neutraler pH-Wert erreicht wird. After precipitation by coprecipitation, preferably the precipitate in the solution is aged for at least 30 minutes, preferably for more than 1 hour, more preferably for longer than 12 hours. The aging preferably takes place in that the precipitate is left in the solution (mother liquor) with stirring at approximately room temperature. The precipitate obtained by the coprecipitation is isolated, for example by filtering. The filtering can be done in a suitable manner, for example by a filter press. The isolated precipitate is preferably washed, for example with distilled water, until a neutral pH is reached.
Im Folgenden kann der isolierte Niederschlag getrocknet werden, zum Beispiel bei erhöhter Temperatur an Luft. Bevorzugterweise erfolgt die Trocknung bei einer Temperatur zwischen 70 °C und 90 °C für einen Zeitraum länger als 4 Stunden, vorzugsweise länger als 12 Stunden. In the following, the isolated precipitate can be dried, for example at elevated temperature in air. Preferably, the drying takes place at a temperature between 70 ° C and 90 ° C for a period longer than 4 hours, preferably longer than 12 hours.
Der isolierte Niederschlag wird kalziniert, dies kann an Luft bei einer Temperatur zwischen 300 °C bis 600 °C erfolgen, bevorzugterweise bei 400 °C bis 500 °C und in einem Zeitraum von 3 Stunde bis 10 Stunden, bevorzugterweise 5 bis 7 Stunden. The isolated precipitate is calcined, this can be done in air at a temperature between 300 ° C to 600 ° C, preferably at 400 ° C to 500 ° C and in a period of 3 hours to 10 hours, preferably 5 to 7 hours.
Der erfindungsgemäße Katalysator soll insbesondere in der Methanisierung von Kohlenmonoxid und/oder Kohlendioxid Verwendung finden. Die Methanisierung von Kohlendioxid lässt sich durch die folgende Reaktionsgleichung darstellen: The catalyst according to the invention is intended to be used in particular in the methanation of carbon monoxide and / or carbon dioxide. The methanation of carbon dioxide can be represented by the following reaction equation:
4H2 + C02 -> CH4 + 2H20 4H 2 + C0 2 -> CH 4 + 2H 2 0
Die Methanisierung von Kohlenmonoxid lässt sich durch die folgende Reaktionsgleichung darstellen: The methanation of carbon monoxide can be represented by the following reaction equation:
3H2 + CO -> CH4 + H20 3H 2 + CO -> CH 4 + H 2 O
Bei dem Verfahren zur Durchführung der Methanisierung wird das Reaktionsgas, welches Kohlendioxid und/oder Kohlenmonoxid oder ein Gemisch aus beidem enthält, bei einer Temperatur oberhalb von 200 °C mit dem Katalysator in Kontakt gebracht. In the method for carrying out the methanation, the reaction gas containing carbon dioxide and / or carbon monoxide or a mixture of both is contacted with the catalyst at a temperature higher than 200 ° C.
Figur 1 : Aktivitäts-/Stabilitätsdiagramm der beschriebenen Proben.
Methoden FIG. 1: activity / stability diagram of the samples described. methods
Elementaranalyse Elemental analysis
Die Bestimmung der Zusammensetzung der kalzinierten Katalysatoren erfolgte durch optische Emissionsspektroskopie mittels induktiv gekoppeltem Plasma (ICP-OES). 50 mg an Katalysa- tor wurden in 50 ml 1 molarer Phosphorsäure (VWR, p.A.) bei 60°C gelöst. Um gebildeten Braunstein zu lösen, wurden zur Lösung 50 mg Na2S03 (Sigma Aldrich, p.A.) zugegeben. Nach Abkühlung wurden die Lösungen 1 /10 verdünnt und mittels 0,1 μηι Filtern (Pall) gefiltert. Die Kalibrierlösungen wurden zu 1 , 10 und 50 mg I-1 (Merck) angesetzt. Die Bestimmung der Metallkonzentrationen wurde mittels eines Agilent 700 ICP-OES durchgeführt. Bestimmung der spezifischen Oberfläche The determination of the composition of the calcined catalysts was carried out by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). 50 mg of catalyst were dissolved in 50 ml of 1 molar phosphoric acid (VWR, pA) at 60 ° C. To dissolve any brownstone formed, 50 mg Na 2 S0 3 (Sigma Aldrich, pA) was added to the solution. After cooling, the solutions were diluted 1/10 and filtered by 0.1 μηι filters (Pall). The calibration solutions were prepared at 1, 10 and 50 mg I -1 (Merck). Determination of metal concentrations was performed using an Agilent 700 ICP-OES. Determination of the specific surface
Die Bestimmung der spezifischen Oberflächen der Katalysatoren (SBET) wurde mittels N2-BET Analyse an einer NOVA 4000e (Quantachrome) durchgeführt. Hierzu wurden 100 mg Katalysator für 3 Stunden bei 120°C entgast und anschließend Adsorptions- und Desorptionsiso- therme im p/p0-Bereich von 0,007 bis 1 aufgenommen. Zur Bestimmung der BET-Oberfläche wurden die Datenpunkte im p/p0-Bereich von 0,007 bis 0,28 herangezogen. The specific surface area of the catalysts (SBET) was determined by N 2 -BET analysis on a NOVA 4000e (Quantachrome). For this purpose, 100 mg of catalyst were degassed for 3 hours at 120 ° C and then absorbed adsorption and Desorptionsiso- therme in the p / p 0 range of 0.007 to 1. To determine the BET surface area, the data points in the p / p 0 range of 0.007 to 0.28 were used.
Chemisorption chemisorption
Chemisorptionsexperimente wurden an einer Autosorb 1 C (Quantachrome) vorgenommen. Vor der Messung wurden 100 mg Katalysator bei 500 °C in 10% H2 in N2 für 6 Stunden aktiviert. Die Heizrampe betrug 2 Kmin-1. Die Bestimmung der Metalloberfläche (SMET) erfolgte nach DIN 66136-2 (Ver. 2007-01 ) und wurde mittels H2-Chemisorption bei 35°C durchgeführt. Hierfür wurden 20 Adsorptionspunkte äquidistant von 40 mmHg bis 800 mmHg aufgenommen. Die Equilibrierzeit für die Adsorption betrug 2 min, die des thermischen Gleichgewichts 10 min. Zur Bestimmung der Metalloberfläche wurde eine Metallatom/H-Stöchiometrie von 1 angesetzt. Für die C02-Chemisorptionsmes- sungen zur Bestimmung der C02-Aufnahmekapazitäten (U(C02)) wurde bei ansonsten unveränderten Parametern die Equilibrierzeit für die Adsorption auf 10 min gesetzt. Vor Aufnahme der Chemisorptionsdaten wurde eine etwaige kinetische Hemmung der C02-Chemisorption unter diesen Bedingungen experimentell ausgeschlossen. Metalloberflächen und C02-Aufnahme- kapazitäten wurden gemäß der Extrapolationsmethode auf einen Druck von 0 mmHg extrapo- liert.
Synthese Chemisorption experiments were performed on an Autosorb 1C (Quantachrome). Before the measurement, 100 mg of catalyst were activated at 500 ° C in 10% H 2 in N 2 for 6 hours. The heating ramp was 2 Kmin -1 . The determination of the metal surface (SMET) was carried out according to DIN 66136-2 (Ver., 2007-01) and was carried out by means of H 2 chemisorption at 35 ° C. For this purpose, 20 adsorption points were recorded equidistant from 40 mmHg to 800 mmHg. The equilibration time for the adsorption was 2 min, the thermal equilibrium 10 min. To determine the metal surface, a metal atom / H stoichiometry of 1 was used. For the C0 2 chemisorption measurements to determine the C0 2 uptake capacities (U (C0 2 )), the equilibration time for the adsorption was set to 10 min with otherwise unchanged parameters. Before the absorption of the chemisorption data, a possible kinetic inhibition of C0 2 chemisorption under these conditions was excluded experimentally. Metal surfaces and CO 2 uptake capacities were extrapolated to a pressure of 0 mmHg according to the extrapolation method. synthesis
Die Katalysatoren wurden durch Kopräzipitation hergestellt und das atomare Verhältnis von Nickel und Aluminium auf 1 eingestellt. Zur Untersuchung der Wirkung von Eisen auf das Katalysatorverhalten wurde während der Katalysatorsynthese Eisen(lll)-nitrat zur Salzlösung aus Nickel- und Aluminiumnitrat zugegeben. Zur Untersuchung der gleichzeitigen Wirkung von Eisen und Mangan auf das Katalysatorverhalten wurde während der Katalysatorsynthese Man- gan(ll)-nitrat und Eisen(lll)-nitrat zur Salzlösung aus Nickel- und Aluminiumnitrat zugegeben. Die Reinheit aller verwendeter Chemikalien war p.a. Wasser wurde durch ein Millipore-Filter- system aufgereinigt und der Reinheitsgrad mittels Leitfähigkeitsmessungen verifiziert. Die Syn- these erfolgte in einem doppelwandigen, 3 I fassenden Rührkessel. Der mit Wasser gefüllte Doppelmantel ermöglichte über einen Thermostaten die Temperierung des Syntheseansatzes auf 30 °C, zwei Strömungsbrecher sorgten für eine verbesserte Vermischung. Zum Rühren kam ein KPG-Rührer mit 150 Umdrehungen min-1 zum Einsatz. Für die Synthese wurde im Rührkessel 1 I H20 vorgelegt und auf pH = 9±0,1 eingestellt. Die Dosierung der Mischung der gelösten Nitrate erfolgte mit 2,5 ml min-1. Zeitgleich diente die kontrollierte Zugabe des Fällungsreagenz zur Aufrechterhaltung des pH-Werts. Als Ausgangsstoffe kamen einmolare Lösungen der jeweiligen Nitrate zum Einsatz (Ni(N03)2 * 6H20, AI(N03)3 * 9H20, Fe(N03)3 * 9H20 und Mn(N03)2 * 4H20). Diese wurden, wie in Tabelle 2 dargestellt, zu einem Gesamtvolumen von 120 ml min-1 gemischt, bevor das Zutropfen in den Reaktor erfolgte. Als Fällungsreagenz diente eine volumengleiche Mischung aus den Lösungen 0.5M NaOH und 0.5 M Na2C03, zu deren Dosierung ein Titrator verwendet wurde. Unter ständigem Rühren wurde die Suspension über Nacht in der Mutterlauge gealtert, der Niederschlag anschließend abfiltriert und so lange mit H20 gewaschen, bis das Filtrat einen neutralen pH-Wert aufwies. Nach einer Trocknung bei 80 °C im Trockenschrank über Nacht wurde der getrocknete Niederschlag (Prekursor) mit einer Aufheizrate von 5 K min-1 auf 450 °C erhitzt und für 6 Stunden unter synthetischer Luft kalziniert. The catalysts were prepared by coprecipitation and the atomic ratio of nickel and aluminum was adjusted to 1. To study the effect of iron on catalyst behavior, iron (III) nitrate was added to the salt solution of nickel and aluminum nitrate during catalyst synthesis. To investigate the simultaneous effect of iron and manganese on the catalyst behavior, manganese nitrate and iron (III) nitrate were added to the salt solution of nickel and aluminum nitrate during the catalyst synthesis. The purity of all the chemicals used was pa Water was purified by a Millipore filter system and the degree of purity was verified by means of conductivity measurements. The synthesis was carried out in a double-walled, 3 l stirred tank. The double jacket, which was filled with water, controlled the temperature of the synthesis batch to 30 ° C via a thermostat, and two flow breakers provided for improved mixing. For stirring, a KPG stirrer with 150 revolutions min -1 was used. For the synthesis, 1H 2 0 was placed in the stirred tank and adjusted to pH = 9 ± 0.1. The dosage of the mixture of dissolved nitrates was 2.5 ml min -1 . At the same time, the controlled addition of the precipitating reagent was used to maintain the pH. As starting materials molar solutions of the respective nitrates were used (Ni (N0 3) 2 * 6H 2 0, AI (N0 3) 3 * 9H 2 0, Fe (N0 3) 3 * 9H 2 0 and Mn (N0 3) 2 * 4H 2 0). These were mixed as shown in Table 2 to a total volume of 120 ml min -1 before dropping into the reactor. The precipitation reagent was a mixture of 0.5M NaOH and 0.5 M Na 2 C0 3 solutions of equal volume, for the metering of which a titrator was used. With constant stirring, the suspension was aged overnight in the mother liquor, the precipitate was then filtered off and washed with H 2 0 until the filtrate had a neutral pH. After drying at 80 ° C in a drying oven overnight, the dried precipitate (precursor) was heated at a heating rate of 5 K min -1 to 450 ° C and calcined for 6 hours under synthetic air.
Aktivitäts- und Stabilitätsmessung Activity and stability measurement
Um verschiedene Katalysatoren in ihrer Aktivität bezüglich der C02-Methanisierung vergleichen zu können, wurde ein Testprogramm entwickelt, welches eine Aussage zu deren Aktivität und Stabilität liefert. Dazu wurden 25 mg Katalysator in der Siebfraktion 150 - 200 μηι mit der neunfachen Menge an SiC verdünnt und in den Reaktor eingebaut. Die nacheinander in der Reihenfolge Reduktion, Einlaufen, S-Kurve 1 , Alterung und S-Kurve 2 durchgeführten Messschritte, sind im Detail in Tabelle 1 aufgeführt.
Tabelle 1 : Parameter der Messschritte zur Ermittlung des Aktivitäts- und Stabilitätsprofils In order to be able to compare different catalysts in terms of their activity in terms of C0 2 methanation, a test program was developed which provides information on their activity and stability. For this purpose, 25 mg of catalyst in the sieve fraction 150-200 μηι were diluted with nine times the amount of SiC and incorporated into the reactor. The measurement steps carried out successively in the order of reduction, shrinkage, S-curve 1, aging and S-curve 2 are listed in detail in Table 1. Table 1: Parameters of the measurement steps for determining the activity and stability profile
Als Maß für die Aktivität wurde repräsentativ die Temperatur T75,i bestimmt, welche nötig ist, um während des Messschrittes S-Kurve 1 einen CC Umsatz von 75% zu erreichen. Hierzu wurde die Temperatur im angegebenen Bereich schrittweise um 25 °C erhöht. Je niedriger T75,i ist, desto höher ist daher die Aktivität des Katalysators. As a measure of the activity was representative temperature T 7 5, i determined, which is necessary in order to achieve a CC conversion of 75% during the measuring step S-curve 1. For this purpose, the temperature in the specified range was gradually increased by 25 ° C. Therefore, the lower T 7 5, i, the higher the activity of the catalyst.
Als Maß für die Aktivität nach der Alterung wurde repräsentativ die Temperatur T75,2 bestimmt, welche nötig ist, um während des Messschrittes S-Kurve 2 einen CC Umsatz von 75% zu erreichen. Hierzu wurde die Temperatur im angegebenen Bereich schrittweise um 25 °C erhöht. Je niedriger T75,2 ist, desto höher ist daher die Aktivität des Katalysators nach der Alterung. As a measure of the activity after the aging, the temperature T 7 5.2 was determined representative, which is necessary to achieve a CC conversion of 75% during the measuring step S-curve. 2 For this purpose, the temperature in the specified range was gradually increased by 25 ° C. The lower T 7 is 5.2, therefore, the higher the activity of the catalyst after aging.
Berechnet man die Differenz der T75,i und T75,2 aus den beiden Umsatz-Temperatur-Charakte- ristika, so erhält man ein Maß für die Stabilität des Katalysators. Auch hier gilt, je niedriger die Differenz, desto stabiler der Katalysator. Zur besseren Vergleichbarkeit wurden alle bestimmten Aktivitäten und Stabilitäten auf die des nicht promotierten Nickel-Aluminiumoxid-Katalysators (Ni) normiert. Die normierte Aktivität und Stabilität ergibt sich aus: Calculating the difference of T 75 , i and T 75 , 2 from the two conversion temperature characteristics, one obtains a measure of the stability of the catalyst. Again, the lower the difference, the more stable the catalyst. For better comparability, all specific activities and stabilities were normalized to those of the un-promoted nickel-alumina (Ni) catalyst. The normalized activity and stability results from:
Normierte Aktivität =Standardized activity
T75 2 (Ni/AlOx) T 75 2 (Ni / AlO x )
Normierte Stabilität = T?s (dot. Kat.) Normalized stability = T? S (dot cat.)
l (dot. Kat) l (dot cat)
Beide Effekte, Aktivitätssteigerung durch Promotierung mit Mangan und Stabilitätsserhöhung durch Dotierung mit Eisen lassen sich, wenn auch nicht linear, wie in Figur 1 dargestellt kombinieren, um gezielt sowohl aktivitäts- als auch stabilitätsverbesserte Katalysatoren zu synthetisieren.
Beispiele Both effects, increase in activity by promotion with manganese and increase in stability by doping with iron can be combined, albeit not linearly, as shown in FIG. 1, in order to purposefully synthesize both activity- and stability-improved catalysts. Examples
Tabelle 2: In der Kopräzipitation eingesetzte einmolare Metallsalz-Lösungen
Table 2: Molar metal salt solutions used in co-precipitation
Tabelle 3: Zusammensetzun der kalzinierten Katalysatoren Table 3: Composition of calcined catalysts
Tabelle 4: Charakterisierungsdaten der Katalysatoren Table 4: Characterization data of the catalysts
a normiert auf Masse des kalzinierten Katalysators
a normalized to the mass of the calcined catalyst
Tabelle 5: Ergebnisse der katalytischen Testreaktion Table 5: Results of the catalytic test reaction
Claims
Ansprüche: Claims:
Katalysator zur Methanisierung von Kohlenmonoxid und/oder Kohlendioxid, umfassend Aluminiumoxid, eine Ni-Aktivmasse sowie Fe und Mn, dadurch gekennzeichnet, dass das molare Ni/Fe-Verhältnis im Katalysator 5,0 bis 10,0, bevorzugt 5,3 bis 7,0 und besonders bevorzugt 5,4 bis 5,7 beträgt. A catalyst for the methanation of carbon monoxide and / or carbon dioxide, comprising aluminum oxide, a Ni active composition and Fe and Mn, characterized in that the molar Ni / Fe ratio in the catalyst is 5.0 to 10.0, preferably 5.3 to 7, 0 and more preferably 5.4 to 5.7.
Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass das molare Ni/Mn-Verhält- nis im Katalysator 5,0 bis 32,0, bevorzugt 9,0 bis 10,0 beträgt. Catalyst according to claim 1, characterized in that the molar Ni / Mn ratio in the catalyst is 5.0 to 32.0, preferably 9.0 to 10.0.
Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ni-Aktivmasse Kristallite mit einem Durchmesser unter 20 nm, bevorzugt unter 10 nm, aufweist. Catalyst according to one of the preceding claims, characterized in that the Ni active composition crystallites having a diameter of less than 20 nm, preferably less than 10 nm.
Katalysator nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine C02-Aufnahmekapazität bei 35°C von größer 200 μηιοΙ, vorzugsweise 200 bis 400 μηιοΙ pro Gramm Katalysator. Catalyst according to one of the preceding claims, characterized by a C0 2 uptake capacity at 35 ° C of greater than 200 μηιοΙ, preferably 200 to 400 μηιοΙ per gram of catalyst.
Verwendung eines Katalysators nach einem der vorhergehenden Ansprüche, zur Methanisierung von Kohlenmonoxid und/oder Kohlendioxid mit gasförmigen Wasserstoff. Use of a catalyst according to one of the preceding claims, for the methanation of carbon monoxide and / or carbon dioxide with gaseous hydrogen.
Verfahren zur Herstellung eines Katalysators nach Anspruch 1 , umfassend die Schritte: a) Kopräzipitation aus einer Lösung, die AI, Ni, Mn und Fe in gelöster Form enthält, um einen Niederschlag zu erhalten, A process for preparing a catalyst according to claim 1, comprising the steps of: a) co-precipitating from a solution containing Al, Ni, Mn and Fe in dissolved form to obtain a precipitate,
b) Isolieren des Niederschlags aus Schritt a), b) isolating the precipitate from step a),
c) Trocknen des isolierten Niederschlags aus Schritt b) und c) drying the isolated precipitate from step b) and
d) Kalzinieren des getrockneten Niederschlags aus Schritt c). d) calcining the dried precipitate from step c).
Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Lösung aus Schritt a) eine wässrige Lösung ist. A method according to claim 6, characterized in that the solution from step a) is an aqueous solution.
Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Niederschlag in der Lösung für mindestens 30 Minuten gealtert wird. A method according to claim 6 or 7, characterized in that the precipitate is aged in the solution for at least 30 minutes.
Verfahren nach Anspruch 6 bis 8, dadurch gekennzeichnet, dass der isolierte Niederschlag aus Schritt b) gewaschen wird.
Verfahren nach Anspruch 6 bis 9, dadurch gekennzeichnet, dass Ni, AI, Mn und Fe in gelöster Form, als ionische Verbindungen in der Lösung vorliegen und diese ionischen Verbindungen dasselbe Anion haben. A method according to claim 6 to 8, characterized in that the isolated precipitate from step b) is washed. A method according to claim 6 to 9, characterized in that Ni, Al, Mn and Fe are present in dissolved form as ionic compounds in the solution and these ionic compounds have the same anion.
Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Anion ein Nitrat, Sulfat, ein Halogenid, Chlorid, oder Acetat ist. A method according to claim 10, characterized in that the anion is a nitrate, sulfate, a halide, chloride, or acetate.
Verfahren nach einem der Ansprüche 6 bis 1 1 , dadurch gekennzeichnet, dass Mn in der Lösung aus Schritt a) in der Oxidationsstufe II vorliegt. Method according to one of claims 6 to 1 1, characterized in that Mn is present in the solution of step a) in the oxidation state II.
Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass Fe in der Lösung aus Schritt a) in der Oxidationsstufe II oder III vorliegt. Method according to one of claims 6 to 12, characterized in that Fe is present in the solution of step a) in the oxidation state II or III.
Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Kalzinieren des getrockneten Niederschlags bei einer Temperatur von 300 bis 600 °C an Luft erfolgt. A method according to claim 6, characterized in that the calcination of the dried precipitate takes place at a temperature of 300 to 600 ° C in air.
Verfahren zur Methanisierung von Kohlendioxid und/oder Kohlenmonoxid bei dem ein Gas enthaltend Kohlendioxid und/oder Kohlenmonoxid mit einem Katalysator nach Anspruch 1 in Kontakt gebracht wird. A process for the methanation of carbon dioxide and / or carbon monoxide in which a gas containing carbon dioxide and / or carbon monoxide is brought into contact with a catalyst according to claim 1.
Verfahren nach Anspruch 15, bei dem das Gas mit dem Katalysator bei einer Temperatur oberhalb von 200 °C in Kontakt gebracht wird.
The process of claim 15, wherein the gas is contacted with the catalyst at a temperature above 200 ° C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017000849.3 | 2017-01-31 | ||
DE102017000849 | 2017-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018141646A1 true WO2018141646A1 (en) | 2018-08-09 |
Family
ID=61188766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/051993 WO2018141646A1 (en) | 2017-01-31 | 2018-01-26 | Nickel methanation catalysts doped with iron and manganese |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018141646A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759061A (en) * | 2019-01-03 | 2019-05-17 | 浙江工业大学 | A kind of γ-Fe2O3FeAl oxide of crystal form and preparation method thereof |
CN113101930A (en) * | 2021-03-12 | 2021-07-13 | 中南大学 | Preparation of copper ferrite Fenton catalyst with coralline morphology and application of copper ferrite Fenton catalyst in Fenton catalytic oxidation of landfill leachate |
CN115672331A (en) * | 2021-07-23 | 2023-02-03 | 国家能源投资集团有限责任公司 | Methanation catalyst and preparation method and application thereof |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007025691A1 (en) | 2005-09-02 | 2007-03-08 | Haldor Topsøe A/S | Process and catalyst for hydrogenation of carbon oxides |
WO2008110331A1 (en) | 2007-03-13 | 2008-09-18 | Umicore Ag & Co. Kg | Metal-doped nickel oxides as catalysts for the methanation of carbon monoxide |
CN101537357A (en) | 2009-04-28 | 2009-09-23 | 中国科学院山西煤炭化学研究所 | Methanation catalyst prepared by synthetic gas and preparation method and application thereof |
CN101703933A (en) | 2009-11-06 | 2010-05-12 | 山西大学 | Bimetal methanation catalyst and preparation method thereof |
CN101745401A (en) | 2009-12-07 | 2010-06-23 | 中国科学院山西煤炭化学研究所 | Load type sulfur-tolerant methanation catalyst and preparation method and application thereof |
CN102091629A (en) | 2009-12-09 | 2011-06-15 | 中国科学院兰州化学物理研究所 | Catalyst for methanation of carbon dioxide |
CN102259003A (en) | 2011-05-31 | 2011-11-30 | 武汉科林精细化工有限公司 | Coke-oven gas methanation catalyst and preparation method thereof |
CN102463120A (en) | 2010-11-05 | 2012-05-23 | 中国石油化工股份有限公司 | Catalyst containing nickel and manganese and its preparation method and use |
CN102463119A (en) | 2010-11-05 | 2012-05-23 | 中国石油化工股份有限公司 | Methanation catalyst and preparation method thereof |
CN102513124A (en) | 2011-12-15 | 2012-06-27 | 大连凯特利催化工程技术有限公司 | Catalyst for methanating coke oven gas and preparation method thereof |
CN102527405A (en) | 2012-02-15 | 2012-07-04 | 华东理工大学 | Catalyst used in complete methanation of synthesis gas at high temperature and preparation method thereof |
CN102553610A (en) | 2010-12-30 | 2012-07-11 | 中国科学院大连化学物理研究所 | Catalyst for use in preparation of methane from synthesis gas and coproduction of petroleum product and preparation and application methods thereof |
CN102600860A (en) | 2012-02-15 | 2012-07-25 | 华东理工大学 | Catalyst suitable for complete methanation of middle-low-temperature synthetic gas and preparation method thereof |
CN102872874A (en) | 2012-09-19 | 2013-01-16 | 太原理工大学 | Loaded type nickel-based catalyst used for slurry bed methanation, and preparation method and application thereof |
CN103464163A (en) | 2013-08-27 | 2013-12-25 | 中国华能集团清洁能源技术研究院有限公司 | Method for preparing methanation catalyst by inorganic ammonium salt combustion method |
CN103480375A (en) | 2013-09-29 | 2014-01-01 | 福州大学 | Carbon monoxide methanating catalyst and preparation method thereof |
CN103706366A (en) | 2013-12-18 | 2014-04-09 | 中国海洋石油总公司 | Novel methanation catalyst and preparation method thereof |
CN103752315A (en) | 2014-01-15 | 2014-04-30 | 易高环保能源研究院有限公司 | Metal-phase carrier loaded catalyst as well as preparation method and application |
CN104028270A (en) | 2014-06-10 | 2014-09-10 | 中国华能集团清洁能源技术研究院有限公司 | Methanation catalyst and preparation method thereof |
CN104043454A (en) | 2014-06-10 | 2014-09-17 | 中国华能集团清洁能源技术研究院有限公司 | Novel nano composite methanation catalyst and preparation method thereof |
CN104209127A (en) | 2013-06-05 | 2014-12-17 | 中国石油天然气股份有限公司 | Ferronickel bimetallic methanation catalyst and preparation and application thereof |
CN104399482A (en) | 2014-11-13 | 2015-03-11 | 大连理工大学 | Iron-containing natural ore loaded nickel catalyst for methanation and preparation method thereof |
CN104399466A (en) | 2014-11-13 | 2015-03-11 | 大连理工大学 | Iron-containing natural ore loaded nickel methanation catalyst and preparation method thereof |
CN104888783A (en) | 2014-03-03 | 2015-09-09 | 中国石油化工股份有限公司 | Methanation catalyst, preparation method and application thereof |
CN106268858A (en) * | 2016-07-16 | 2017-01-04 | 中国科学院山西煤炭化学研究所 | The catalyst of a kind of high-performance hydrogenation of carbon dioxide methanation and preparation method and application |
-
2018
- 2018-01-26 WO PCT/EP2018/051993 patent/WO2018141646A1/en active Application Filing
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007025691A1 (en) | 2005-09-02 | 2007-03-08 | Haldor Topsøe A/S | Process and catalyst for hydrogenation of carbon oxides |
WO2008110331A1 (en) | 2007-03-13 | 2008-09-18 | Umicore Ag & Co. Kg | Metal-doped nickel oxides as catalysts for the methanation of carbon monoxide |
CN101537357A (en) | 2009-04-28 | 2009-09-23 | 中国科学院山西煤炭化学研究所 | Methanation catalyst prepared by synthetic gas and preparation method and application thereof |
CN101703933A (en) | 2009-11-06 | 2010-05-12 | 山西大学 | Bimetal methanation catalyst and preparation method thereof |
CN101745401A (en) | 2009-12-07 | 2010-06-23 | 中国科学院山西煤炭化学研究所 | Load type sulfur-tolerant methanation catalyst and preparation method and application thereof |
CN102091629A (en) | 2009-12-09 | 2011-06-15 | 中国科学院兰州化学物理研究所 | Catalyst for methanation of carbon dioxide |
CN102463120A (en) | 2010-11-05 | 2012-05-23 | 中国石油化工股份有限公司 | Catalyst containing nickel and manganese and its preparation method and use |
CN102463119A (en) | 2010-11-05 | 2012-05-23 | 中国石油化工股份有限公司 | Methanation catalyst and preparation method thereof |
CN102553610A (en) | 2010-12-30 | 2012-07-11 | 中国科学院大连化学物理研究所 | Catalyst for use in preparation of methane from synthesis gas and coproduction of petroleum product and preparation and application methods thereof |
CN102259003A (en) | 2011-05-31 | 2011-11-30 | 武汉科林精细化工有限公司 | Coke-oven gas methanation catalyst and preparation method thereof |
CN102513124A (en) | 2011-12-15 | 2012-06-27 | 大连凯特利催化工程技术有限公司 | Catalyst for methanating coke oven gas and preparation method thereof |
CN102600860A (en) | 2012-02-15 | 2012-07-25 | 华东理工大学 | Catalyst suitable for complete methanation of middle-low-temperature synthetic gas and preparation method thereof |
CN102527405A (en) | 2012-02-15 | 2012-07-04 | 华东理工大学 | Catalyst used in complete methanation of synthesis gas at high temperature and preparation method thereof |
CN102872874A (en) | 2012-09-19 | 2013-01-16 | 太原理工大学 | Loaded type nickel-based catalyst used for slurry bed methanation, and preparation method and application thereof |
CN104209127A (en) | 2013-06-05 | 2014-12-17 | 中国石油天然气股份有限公司 | Ferronickel bimetallic methanation catalyst and preparation and application thereof |
CN103464163A (en) | 2013-08-27 | 2013-12-25 | 中国华能集团清洁能源技术研究院有限公司 | Method for preparing methanation catalyst by inorganic ammonium salt combustion method |
CN103480375A (en) | 2013-09-29 | 2014-01-01 | 福州大学 | Carbon monoxide methanating catalyst and preparation method thereof |
CN103706366A (en) | 2013-12-18 | 2014-04-09 | 中国海洋石油总公司 | Novel methanation catalyst and preparation method thereof |
CN103752315A (en) | 2014-01-15 | 2014-04-30 | 易高环保能源研究院有限公司 | Metal-phase carrier loaded catalyst as well as preparation method and application |
CN104888783A (en) | 2014-03-03 | 2015-09-09 | 中国石油化工股份有限公司 | Methanation catalyst, preparation method and application thereof |
CN104028270A (en) | 2014-06-10 | 2014-09-10 | 中国华能集团清洁能源技术研究院有限公司 | Methanation catalyst and preparation method thereof |
CN104043454A (en) | 2014-06-10 | 2014-09-17 | 中国华能集团清洁能源技术研究院有限公司 | Novel nano composite methanation catalyst and preparation method thereof |
CN104399482A (en) | 2014-11-13 | 2015-03-11 | 大连理工大学 | Iron-containing natural ore loaded nickel catalyst for methanation and preparation method thereof |
CN104399466A (en) | 2014-11-13 | 2015-03-11 | 大连理工大学 | Iron-containing natural ore loaded nickel methanation catalyst and preparation method thereof |
CN106268858A (en) * | 2016-07-16 | 2017-01-04 | 中国科学院山西煤炭化学研究所 | The catalyst of a kind of high-performance hydrogenation of carbon dioxide methanation and preparation method and application |
Non-Patent Citations (7)
Title |
---|
ANMIN ZHAO ET AL: "Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter", JOURNAL OF NATURAL GAS CHEMISTRY., vol. 21, no. 2, 1 March 2012 (2012-03-01), US, CN, pages 170 - 177, XP055480082, ISSN: 1003-9953, DOI: 10.1016/S1003-9953(11)60350-2 * |
GAO ET AL., RSC ADVANCES, vol. 5, no. 29, 2015, pages 22759 - 22776 |
PANDEY ET AL., JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 33, 2016, pages 99 - 107 |
SUNHWAN HWANG ET AL: "Methanation of Carbon Dioxide Over Mesoporous Nickel-M-Alumina (M = Fe, Zr, Ni, Y, and Mg) Xerogel Catalysts: Effect of Second Metal", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 142, no. 7, 18 May 2012 (2012-05-18), pages 860 - 868, XP035079940, ISSN: 1572-879X, DOI: 10.1007/S10562-012-0842-0 * |
SUNHWAN HWANG ET AL: "Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 19, no. 6, 1 November 2013 (2013-11-01), KOREA, pages 2016 - 2021, XP055480070, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2013.03.015 * |
WAN AZELEE WAN ABU BAKAR ET AL: "Nickel Oxide Based Supported Catalysts for the In-situ Reactions of Methanation and Desulfurization in the Removal of Sour Gases from Simulated Natural Gas", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 128, no. 1-2, 11 November 2008 (2008-11-11), pages 127 - 136, XP019671959, ISSN: 1572-879X * |
ZHAO ET AL., JOURNAL OF NATURAL GAS CHEMISTRY, vol. 21, no. 2, 2012, pages 170 - 177 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759061A (en) * | 2019-01-03 | 2019-05-17 | 浙江工业大学 | A kind of γ-Fe2O3FeAl oxide of crystal form and preparation method thereof |
CN109759061B (en) * | 2019-01-03 | 2021-08-10 | 浙江工业大学 | Gamma-Fe2O3Crystalline FeAl oxide and preparation method thereof |
CN113101930A (en) * | 2021-03-12 | 2021-07-13 | 中南大学 | Preparation of copper ferrite Fenton catalyst with coralline morphology and application of copper ferrite Fenton catalyst in Fenton catalytic oxidation of landfill leachate |
CN115672331A (en) * | 2021-07-23 | 2023-02-03 | 国家能源投资集团有限责任公司 | Methanation catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3576871B1 (en) | Manganese doped nickel based catalysts for the methanation of carbon monoxide and carbon dioxide | |
DE69908032T2 (en) | Spinel type oxide compound and process for producing the same | |
DE3310540C2 (en) | Catalyst and its use for the production of primary alcohols | |
DE69004628T2 (en) | Hydrocarbon steam reforming catalyst. | |
DE3485888T2 (en) | SYNTHETIC EXPANDED LAYER MINERALS AND METHOD FOR THEIR PRODUCTION. | |
EP0011150B1 (en) | Manufacture of methanol by hydrogenation of carbon oxides and a method for producing a catalyst for this hydrogenation | |
DE69721944T2 (en) | Catalyst for dimethyl ether, process for producing catalysts and process for producing dimethyl ether | |
EP3116826B1 (en) | Yttrium containing catalyst for high-temperature carbondioxide hydrogenation, and/or reforming and process for high-temperature carbondioxide hydrogenation and/or reforming | |
EP2049249B1 (en) | Catalyst for low-temperature conversion and process for the low-temperature conversion of carbon monoxide and water into carbon dioxide and hydrogen | |
DE69920379T2 (en) | Palladium-ceria supported catalyst and process for producing methanol | |
DE10393935T5 (en) | Iron-based Fischer-Tropsch catalysts and methods of preparation and use | |
DE19739773A1 (en) | Process and catalyst for steam reforming of methanol | |
DE10392447T5 (en) | Ceria-based misch metal oxide structure, including the method of preparation and use | |
DD157669A5 (en) | CATALYST AND METHOD FOR THE PRODUCTION THEREOF | |
DE102007020154A1 (en) | Process for producing chlorine by gas phase oxidation | |
WO2018141646A1 (en) | Nickel methanation catalysts doped with iron and manganese | |
DE69513792T2 (en) | Activated and stabilized copper oxide and zinc oxide catalyst and process for its manufacture | |
WO1994016798A1 (en) | Catalytic decomposition process of nitrous oxide pure or contained in gaseous mixtures | |
EP0850212A1 (en) | Process for producing methanol and catalyst therefor | |
DE3686235T2 (en) | HEAT-RESISTANT COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF. | |
CN111330582A (en) | Preparation method and application of copper-based catalyst | |
WO2018141648A1 (en) | Iron-doped nickel methanation catalysts | |
JP4467675B2 (en) | Dimethyl ether synthesis catalyst and synthesis method | |
DE60108114T2 (en) | HYDROTALCIT BASED OXIDES WITH IMPROVED MECHANICAL PROPERTIES | |
WO2012025897A1 (en) | Highly active water gas shift catalyst, preparation process and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18703925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18703925 Country of ref document: EP Kind code of ref document: A1 |