KR101840232B1 - 주사 전자 현미경 및 화상 생성 방법 - Google Patents

주사 전자 현미경 및 화상 생성 방법 Download PDF

Info

Publication number
KR101840232B1
KR101840232B1 KR1020167019382A KR20167019382A KR101840232B1 KR 101840232 B1 KR101840232 B1 KR 101840232B1 KR 1020167019382 A KR1020167019382 A KR 1020167019382A KR 20167019382 A KR20167019382 A KR 20167019382A KR 101840232 B1 KR101840232 B1 KR 101840232B1
Authority
KR
South Korea
Prior art keywords
sample
casing
diaphragm
charged particle
vacuum
Prior art date
Application number
KR1020167019382A
Other languages
English (en)
Other versions
KR20160103034A (ko
Inventor
신스케 가와니시
유우스케 오오미나미
Original Assignee
가부시키가이샤 히다치 하이테크놀로지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크놀로지즈 filed Critical 가부시키가이샤 히다치 하이테크놀로지즈
Publication of KR20160103034A publication Critical patent/KR20160103034A/ko
Application granted granted Critical
Publication of KR101840232B1 publication Critical patent/KR101840232B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0213Avoiding deleterious effects due to interactions between particles and tube elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/16Vessels
    • H01J2237/164Particle-permeable windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

대기압하에서 관찰 가능한 하전 입자선 장치에 있어서는, 하전 입자선을 투과하는 격막을 이용하여, 시료를 배치하는 대기압 공간과 하전 입자 광학계측의 진공 공간을 격리한다. 이 격막은 매우 얇기 때문에 파손되는 경우가 많다. 이 때문에, 격막의 교환 빈도가 증가하고, 교환 작업에 의한 편리성의 저하나 러닝 코스트의 증가라고 하는 문제가 발생하고 있었다. 당해 과제를 해결하기 위해서, 주사 전자 현미경은, 1차 전자선을 시료(6) 상에 조사하는 전자 광학 경통(2)과, 전자 광학 경통 내부와 직결되며, 적어도 1차 전자선의 조사중에 내부가 상기 전자 광학 경통 내부보다 저진공의 상태로 되는 케이싱(7)과, 시료(6)가 재치되는 대기압 분위기의 공간과 저진공 상태의 케이싱 내부를 격리하고 또한 상기 1차 하전 입자선을 투과하는 격막(10)을 구비하는 것을 특징으로 한다(도 1 참조).

Description

주사 전자 현미경 및 화상 생성 방법{ELECTRON SCANNING MICROSCOPE AND IMAGE GENERATION METHOD}
본 발명은, 대기 또는 대기압의 소정의 가스 분위기하에서 관찰 가능한 하전 입자선 장치에 관한 것이다.
물체의 미소한 영역을 관찰하기 위해, 주사형 전자 현미경(SEM)이나 투과형 전자 현미경(TEM) 등이 사용된다. 일반적으로, 이들 장치에서는 시료를 배치하기 위한 케이싱을 진공 배기하고, 시료 분위기를 진공 상태로 해서 시료를 촬상한다. 전자선은 대기 등의 가스 분자에 의해 산란되기 때문에, 전자선의 통과 경로는 진공으로 하는 것이 바람직한 것으로 여겨졌다. 그러나, 생물화학시료나 액체시료 등은 진공에 의해 데미지를 받거나, 또는 상태가 바뀌어 버린다. 한편, 이러한 시료를 전자 현미경으로 관찰하고자 하는 니즈(needs)는 크며, 최근, 관찰 대상시료를 대기압하에서 관찰 가능한 SEM 장치가 개발되어 있다.
특허문헌 1에는, 대기압하에서 관찰 가능한 SEM 장치가 기재되어 있다. 이 장치는, 원리적으로는 전자 광학계와 시료 사이에 전자선이 투과가능한 격막을 마련하여 진공 상태와 대기 상태를 칸막이하는 것에 의해, 격막에 시료를 접근시켜서 비접촉의 상태에서 관찰하는 점에서 환경 셀 등의 관찰 방법과 다르다. 본 방식에 있어서는, 격막에 의해 전자선이 격막에 도달하기 직전까지의 경로는 고진공 상태로 유지함으로써 전자선의 산란을 막으며, 또한 전자선의 산란이 발생하는 영역을 격막으로부터 시료 사이의 매우 짧은 거리로 한정함으로써 관찰이 가능해 지고 있다.
또한, 비특허문헌 1에는, 저진공 분위기에서 전자선을 조사하여 다이아몬드를 가공하는 방법이 기재되어 있다. 또한, 다이아몬드 기판 상의 나노 필러를 제거하는 방법에 대해서도 언급되어 있다.
일본국 특개2012-221766 공보
Jun-ichi NIITSUMA et.al., "Nanoprocessing of Diamond Using a Variable Pressure Scanning Electron Microscope", Japanese Journal of Applied Physics, 2006, vol.45, No.2, p.L71-L73
대기압하에서 관찰 가능한 하전 입자선 장치에 있어서는, 하전 입자선을 투과하는 격막을 이용하여, 시료를 배치하는 대기압 공간과 하전 입자 광학계측의 진공 공간을 격리한다. 하전 입자선을 투과하는 요건 때문에 격막의 두께는 매우 얇게 설정되어 있어서, 시료의 접촉 등에 의해 파손되는 경우가 많다.
또한, 본 발명자들의 실험에 의해, 시료가 격막에 접촉하지 않아도, 하전 입자선에 의한 관찰을 할 경우, 격막에 하전 입자선을 조사했을 때 또는 계속해서 조사했을 때에, 격막이 파손된다고 하는 현상이 있는 것이 확인되었다. 본 현상에 의해, 시료의 접촉 등에 의한 파손시 이외에도, 임의의 빈도에서 격막을 교환할 필요가 생기게 된다. 이에 따라 격막의 교환 빈도가 증가하여, 교환 작업에 의한 편리성의 저하나 러닝 코스트의 증가라고 하는 문제가 발생한다.
본 발명자들은, 하전 입자선 조사에 의한 격막의 파손에 관하여, 하전 입자선 조사에 의해 격막 상에 발생하는 컨태미네이션이 원인인 것을 찾아냈다. 즉, 격막에 컨태미네이션이 부착되면, 컨태미네이션 부착부 경계에서의 응력 집중, 또는 격막과 컨태미네이션 부분의 열팽창 계수의 차이에 의한 열응력 등에 의해 격막이 파괴될 가능성이 높아지는 것을 찾아냈다.
본 발명은, 격막 상에 발생하는 컨태미네이션을 저감함으로써, 격막의 파손 빈도를 저감하고, 러닝 코스트 억제한 편리성이 좋은 하전 입자선 장치를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해서, 본 발명의 주사 전자 현미경은, 1차 전자선을 시료 상에 조사하는 전자 광학 경통과, 전자 광학 경통 내부와 직결되며, 적어도 1차 전자선의 조사중에 내부가 상기 전자 광학 경통 내부보다 저진공의 상태로 되는 케이싱과, 시료가 재치되는 대기압 분위기의 공간과 저진공 상태의 케이싱 내부를 격리하며 또한 상기 1차 하전 입자선을 투과하는 격막을 구비하는 것을 특징으로 한다.
본 발명자들의 실험에 의하면, 격막의 진공측의 면에 접하는 케이싱의 내부 공간을 저진공 즉 가스가 남은 상태로 하면, 격막에 부착된 컨태미네이션을 분해할 수 있는 것이 판명되었다. 이 현상은, 케이싱 내부의 가스 분자에 1차 전자선이 조사되고, 이것에 의해 플라즈마화한 가스 분자가 격막에 부착된 컨태미네이션을 분해하기 때문이라고 생각된다.
본 발명에 의하면, 대기압하에서 관찰 가능한 주사 전자 현미경에 있어서, 격막 상에 부착된 컨태미네이션을 분해 또는 제거하여, 격막의 파손 확률을 저감할 수 있다. 이에 따라, 격막 교환의 빈도를 저감하여 러닝 코스트를 억제한 편리성이 좋은 주사 전자 현미경을 제공할 수 있다.
상기한 것 이외의 과제, 구성 및 효과는, 이하의 실시형태의 설명에 의해 명백해진다.
도 1은 실시예 1의 하전입자 현미경의 전체 구성도.
도 2는 도 1의 변형예의 전체 구성도.
도 3은 도 1의 변형예의 전체 구성도.
도 4는 광학 현미경을 조합시킬 경우의 구성도.
도 5는 시료대의 상세도.
도 6은 실시예 3의 하전입자 현미경의 전체 구성도.
도 7은 실시예 4의 하전입자 현미경의 전체 구성도.
도 8은 실시예 5의 하전입자 현미경의 전체 구성도.
도 9는 실시예 6의 하전입자 현미경의 전체 구성도.
도 10은 실시예 7의 하전입자 현미경의 전체 구성도.
도 11은 실시예 7의 하전입자 현미경의 변형예의 전체 구성도.
이하, 도면을 이용하여 각 실시형태에 대해 설명한다.
이하에서는, 하전 입자선 장치의 일례로서, 하전입자선 현미경에 대해 설명한다. 단, 이것은 본 발명의 단순한 일례이며, 본 발명은 이하 설명하는 실시형태에 한정되는 것이 아니다. 본 발명은, 주사 전자 현미경, 주사 이온 현미경, 주사 투과 전자 현미경, 이들과 시료가공 장치와의 복합 장치, 또는 이들을 응용한 해석·검사장치에도 적용 가능하다.
또한, 본 명세서에 있어서 「대기압」이란 대기 분위기 또는 소정의 가스 분위기로서, 대기압 또는 약간의 부압 상태의 압력환경을 의미한다. 구체적으로는 약 105Pa(대기압) 내지 103Pa 정도이다. 또한, 이 압력 범위를 「비진공」이라고 칭할 경우도 있다.
실시예 1
본 실시예에서는, 기본적인 실시형태에 대해 설명한다. 도 1에는, 본 실시예의 하전입자 현미경의 전체 구성도를 나타낸다. 또, 이하의 실시예는 주사 전자 현미경을 의도하여 설명하지만, 상기한 바와 같이 본 발명은 이것에 한정되지 않는다.
도 1에 나타나 있는 하전입자 현미경은, 주로, 하전입자광학경통(2), 하전입자광학경통(2)과 접속되어 이것을 지지하는 케이싱(진공실)(7), 대기 분위기하에 배치되는 시료 스테이지(5), 및 이들을 제어하는 제어계로 구성된다. 하전입자 현미경의 사용 시에는 하전입자광학경통(2)과 케이싱(7)의 내부는 진공 펌프(4)에 의해 진공 배기된다. 진공 펌프(4)의 기동·정지 동작도 제어계에 의해 제어된다. 도면 중, 진공 펌프(4)는 하나만 나타나 있지만, 2개 이상 있어도 된다. 하전입자광학경통(2) 및 케이싱(7)은 도면에 나타나 있지 않은 기둥 등이 베이스(270)에 의해 유지되고 있는 것으로 한다.
하전입자광학경통(2)은, 하전 입자선을 발생시키는 하전 입자원(8), 발생한 하전 입자선을 집속하여 경통 하부로 안내하고, 1차 하전 입자선으로서 시료(6)를 주사하는 광학 렌즈(1) 등의 요소에 의해 구성된다. 하전 입자원의 수명 등의 문제 때문에, 일반적으로 하전 입자원 주변의 분위기는 10-1Pa 이하의 기압(이하, 고진공이라 함)으로 되어 있다. 하전입자광학경통(2)은 케이싱(7) 내부로 돌출하도록 설치되어 있으며, 진공 밀봉 부재(123)를 개재하여 케이싱(7)에 고정되어 있다. 하전입자광학경통(2)의 단부에는, 상기 1차 하전 입자선의 조사에 의해 얻어지는 2차적 하전입자(2차 전자 또는 반사 전자)를 검출하는 검출기(3)가 배치된다. 검출기(3)에서 얻어지는 신호에 의거하여 시료의 화상을 취득한다. 검출기(3)는 하전입자광학경통(2)의 외부에 있어도 내부에 있어도 된다. 하전입자광학경통에는, 이것 이외에 다른 렌즈나 전극, 검출기를 포함해도 되고, 일부가 상기와 다르게 되어 있어도 되며, 하전입자광학경통에 포함되는 하전 입자 광학계의 구성은 이것에 한정되지 않는다.
본 실시예의 하전입자 현미경은, 제어계로서, 장치 사용자가 사용하는 컴퓨터(35), 컴퓨터(35)와 접속되어 통신을 행하는 상위 제어부(36), 상위 제어부(36)로부터 송신되는 명령에 따라서 진공 배기계나 하전 입자 광학계 등의 제어를 행하는 하위 제어부(37)를 구비한다. 컴퓨터(35)는, 장치의 조작 화면(GUI)이 표시되는 모니터와, 키보드나 마우스 등의 조작 화면에의 입력 수단을 구비한다. 상위 제어부(36), 하위 제어부(37) 및 컴퓨터(35)는, 각각 통신선(43, 44)에 의해 접속된다.
하위 제어부(37)는 진공 펌프(4), 하전 입자원(8)이나 광학 렌즈(1) 등을 제어하기 위한 제어신호를 송수신하는 부위이며, 또한 검출기(3)의 출력 신호를 디지털 화상 신호로 변환하여 상위 제어부(36)에 송신한다. 도면에서는 검출기(3)로부터의 출력 신호를 프리앰프 등의 증폭기(154)를 경유하여 하위 제어부(37)에 접속되어 있다. 만일, 증폭기가 불필요하면 없어도 된다.
상위 제어부(36)와 하위 제어부(37)로는 아날로그 회로나 디지털 회로 등이 혼재하고 있어도 되고, 또한 상위 제어부(36)와 하위 제어부(37)가 하나로 통일되어 있어도 된다. 하전입자 현미경에는, 이외에도 각 부분의 동작을 제어하는 제어부가 포함되어 있어도 된다. 상위 제어부(36)나 하위 제어부(37)는, 전용의 회로기판에 의해 하드웨어로서 구성되어 있어도 되고, 컴퓨터(35)에서 실행되는 소프트웨어로 구성되어도 된다. 하드웨어에 의해 구성할 경우에는, 처리를 실행하는 복수의 연산기를 배선 기판 위, 또는 반도체 칩 또는 패키지 내에 집적함으로써 실현할 수 있다. 소프트웨어에 의해 구성할 경우에는, 컴퓨터에 고속의 범용 CPU를 탑재하고, 원하는 연산 처리를 실행하는 프로그램을 실행함으로써 실현할 수 있다. 또, 도 1에 나타나 있는 제어계의 구성은 일례에 지나지 않으며, 제어 유닛이나 밸브, 진공 펌프 또는 통신용의 배선 등의 변형예는, 본 실시예에서 의도하는 기능을 만족시키는 한, 본 실시예의 SEM 또는 하전 입자선 장치의 범주에 속한다.
케이싱(7)에는, 일단이 진공 펌프(4)에 접속된 진공배관(16)이 접속되어, 내부를 진공 상태로 유지할 수 있다. 동시에, 케이싱 내부를 대기 개방하기 위한 리크 밸브(14)를 구비하여, 메인터넌스시 등에, 케이싱(7)의 내부를 대기 개방할 수 있다. 리크 밸브(14)는 없어도 되고, 2개 이상 있어도 된다. 또한, 케이싱(7)에 있어서의 리크 밸브(14)의 배치 장소는, 도 1에 나타나 있는 장소에 한정되지 않고, 케이싱(7) 상의 다른 위치에 배치되어 있어도 된다. 이들의 구성에 의해, 케이싱(7)의 내부의 진공도는 자유롭게 조정할 수 있다. 단, 전술한 바와 같이 하전 입자원(8)의 주위의 분위기는 고진공으로 유지할 필요가 있다. 그래서, 하전입자광학경통(2)의 내부와 케이싱(7)의 내부의 기압차를 유지하기 위한 오리피스(62)를 구비한다. 오리피스(62)는 하전입자광학경통(2) 내부 또는 바로 아래에 구비한다. 또한, 진공배관(16) 내에 배기 유량을 조정하는 유량 조정 수단을 더 구비해도 된다. 유량 조정 수단은 예를 들면 오리피스 또는 니들 밸브 등이다. 일례로서, 도면에 나타내는 것에는 하전입자광학경통(2) 바로 아래에 오리피스(62), 진공배관(16) 내에 니들 밸브(63)를 구비하는 구성을 나타낸다. 본 구성은 상기 조합에 한정되지 않으며, 예를 들면 하전입자광학경통(2) 바로 아래에 오리피스(62)를 구비한 후에, 하전입자광학경통(2) 부분과 케이싱(7) 부분 각각에 진공 펌프를 구비해도 된다. 도 2에서는, 하전입자광학경통(2)은 진공 펌프(4)로 진공 배기를 행하고, 케이싱(7) 내부를 또 한대의 제 2 진공 펌프(4a)로 진공 배기를 행하는 예를 나타내고 있다. 도 2에 나타나 있는 바와 같이, 제 2 진공 펌프(4a)는, 케이싱(7) 뿐만아니라 진공 펌프(4)의 배기부에도 접속하는 것에 의해 2단 배기의 구성으로 해도 된다. 이 경우 하전입자광학경통(2) 내부를 효율적으로 배기할 수 있다. 또 다른 예로서, 스플릿 플로(split flow) 방식 등 한대의 펌프에 의해 하전입자광학경통(2) 부분과 케이싱(7) 부분을 각각의 진공도로 설정해도 된다. 이상으로 나타나 있는 바와 같이, 하전입자광학경통(2)의 내부와 케이싱(7)의 내부를 각각으로 진공 배기하거나 또는 배기 유량 제한함으로써, 케이싱(7) 내부보다도 하전입자광학경통(2)의 진공도를 높일 수 있고, 분해능 등의 장치 성능을 양호하게 한 그대로, 케이싱(7) 내부의 격막(10) 주변을 저진공으로 할 수 있다.
케이싱 밑면에는 상기 하전입자광학경통(2)의 바로 아래로 되는 위치에 격막(10)을 구비한다. 이 격막(10)은, 하전입자광학경통(2)의 하단(下端)으로부터 방출되는 1차 하전 입자선을 투과 또는 통과시키는 것이 가능하며, 1차 하전 입자선은, 격막(10)을 지나서 최종적으로 시료대(52)에 탑재된 시료(6)에 도달한다. 격막(10)에 의해 시료 재치 공간으로부터 격리되어서 구성되는 폐공간(즉, 하전입자광학경통(2) 및 케이싱(7)의 내부)은 진공 배기 가능하다. 본 실시예에서는, 격막(10)에 의해 진공 배기되는 공간의 기밀 상태가 유지되므로, 하전입자광학경통(2)을 진공 상태로 유지할 수 있으며 또한 시료(6) 주위의 분위기를 대기압으로 유지하여 관찰할 수 있다. 또한, 하전 입자선이 조사되고 있는 상태에서도 시료가 설치된 공간이 대기 분위기이거나 또는 대기 분위기의 공간과 연통하여 있기 때문에, 관찰중, 시료(6)를 자유롭게 교환할 수 있다.
격막(10)은 베이스(9) 상에 성막 또는 증착되어 있다. 격막(10)은 카본재, 유기재, 금속재, 실리콘 나이트라이드, 실리콘 카바이드, 산화 실리콘 등이다. 베이스(9)는 예를 들면 실리콘이나 금속 부재와 같은 부재다. 격막(10)부는 복수 배치된 다창(多窓)이여도 된다. 1차 하전 입자선을 투과 또는 통과시키는 것이 가능한 격막의 두께는 수nm∼수㎛ 정도이다. 격막은 대기압과 진공을 분리하기 위한 차압하에서 파손되지 않을 것이 필요하다. 그 때문에, 격막(10)의 면적은 수십㎛로부터 크더라도 수mm 정도의 크기이다.
격막(10)을 지지하는 베이스(9)는 격막 유지 부재(155) 상에 구비되어 있다. 도면에는 나타내지 않았지만, 베이스(9)와 격막 유지 부재(155)는 진공씰이 가능한 O링이나 패킹이나 접착제나 양면 테이프 등에 의해 접착되어 있는 것으로 한다. 격막 유지 부재(155)는, 케이싱(7)의 밑면측에 진공 밀봉 부재(124)를 개재하여 탈착 가능하게 고정된다. 격막(10)은, 하전 입자선이 투과하는 요청상, 두께 수nm∼수㎛ 정도 이하로 매우 얇기 때문에, 시간 경과 열화 또는 관찰 준비의 때에 파손될 가능성이 있다. 또한, 격막(10) 및 그것을 지지하는 베이스(9)는 작으므로, 직접 핸들링하는 것이 매우 곤란하다. 그 때문에, 본 실시예와 같이, 격막(10) 및 베이스(9)를 격막 유지 부재(155)와 일체화하고, 베이스(9)를 직접이 아니라 격막 유지 부재(155)를 통하여 핸들링할 수 있도록 함으로써, 격막(10) 및 베이스(9)의 취급(특히 교환)이 매우 용이하게 된다. 즉, 격막(10)이 파손?瑛? 경우에는, 격막 유지 부재(155)마다 교환하면 된다. 가령 격막(10)을 직접 교환하지 않으면 안되는 경우에도, 격막 유지 부재(155)를 장치 외부에 꺼내고, 격막(10)과 일체화된 베이스(9)마다 장치 외부에서 교환할 수 있다.
또한, 도면에는 나타내지 않았지만, 시료(6)의 바로 아래 또는 근방에 시료를 관찰 가능한 광학 현미경을 배치해도 된다. 이 경우에는, 격막(10)이 시료 상측에 있으며, 광학 현미경은 시료 하측으로부터 관찰하게 된다. 그 때문에 이 경우에는, 시료대(52)는 광학 현미경의 광에 대하여 투명할 필요가 있다. 투명한 부재로서는, 투명 글래스, 투명 플라스틱, 투명한 결정체 등이 있다. 보다 일반적인 시료대로서 슬라이드 글래스(또는 프레파라트)나 디시(또는 샤알레) 등의 투명 시료대 등이 있다.
또한, 온도 히터나 시료 내에 전계를 발생 가능한 전압 인가부 등을 구비해도 된다. 이 경우, 시료가 가열 또는 냉각해 가는 모습이나, 시료에 전계가 인가되고 있는 모습을 관찰하는 것이 가능해 진다.
또한, 격막은 2개 이상 배치해도 된다. 예를 들면, 하전입자광학경통(2)의 내부에 격막이 있어도 된다. 혹은, 진공과 대기를 분리하는 제 1 격막의 하측에, 제 2 격막을 구비하며 제 2 격막과 시료 스테이지 사이에 시료가 내포되어 있어도 된다.
또한, 시료 전체가 내포된 상태에서 진공 장치 내부로 도입하는 것이 가능한 환경 셀을 시료로 하여도 된다. 예를 들면, 환경 셀 내부에 시료 높이 조정 기구가 구비되어, 진공과 대기를 분리하기 위한 격막에 시료를 접근시킬 경우에도 후술하는 본 발명이 적응 가능하다. 본 발명에서는 격막의 수나 종류가 무엇이든 간에, 본 실시예에서 의도하는 기능을 만족시키는 한, 본 실시예의 SEM 또는 하전 입자선 장치의 범주에 속한다.
격막에 의해 시료를 대기압 분위기에 격리해서 관찰을 행할 때, 케이싱(7)의 내부를 고진공 상태로 하여 격막(10)에 하전 입자선을 조사하면, 케이싱(7) 내부의 격막(10) 근방의 탄화수소계의 잔류 가스 분자가 중합 또는 가교되어 격막(10) 상에 고착된다. 이와 같이 격막(10)에 부착되는 이물(異物)을 총칭해서 컨태미네이션(contamination)이라고 한다. 격막(10) 상에 발생한 컨태미네이션에 의해, 1차 하전 입자선 또는 2차적 하전 입자선의 일부 또는 전부가 차폐 또는 산란되어, 하전 입자선에 의한 관찰의 방해가 된다.
또한, 격막(10)에 컨태미네이션이 부착되었을 때, 컨태미네이션 부착부 경계에서의 응력 집중, 혹은 격막과 컨태미네이션 부분의 열팽창 계수의 차이에 의한 열응력 등에 의해 격막이 파괴된다. 격막(10) 상에 컨태미네이션이 발생하거나, 또는 컨태미네이션의 발생에 의해 격막(10)이 파손되므로, 대기압 분위기하에서 관찰을 행하는 임의의 일정 기간마다 격막(10)을 교환할 필요가 생긴다. 이에 따라 격막(10) 교환 작업의 번잡함, 혹은 격막(10) 교환 작업에 기인하는 장치 가동 시간의 저하에 의한 장치 편리성의 저하라고 하는 문제가 발생한다. 거기에다가, 격막(10) 교환에 따르는 장치 러닝 코스트 증가의 문제도 발생한다.
본 발명자들은, 격막이 접하고 있는 공간의 진공도에 의해, 상기한 컨태미네이션을 저감할 수 있는 것을 발견하였다. 그래서, 본 실시예의 하전 입자선 장치에 있어서는, 케이싱(7) 내부를 저진공으로 한다. 즉, 하전입자광학경통(2)의 내부를 고진공으로 유지하면서, 케이싱(7)의 내부를 저진공으로 하고, 시료가 재치되는 공간을 대기압으로 한다. 또, 본 명세서에 있어서, 「저진공」이란 대기 분위기 혹은 소정의 가스 분위기로서, 약 0.1Pa 이상 약 1000Pa 이하의 기압 영역을 의미한다. 케이싱(7) 내부가 약 0.1Pa보다 작아지면 하전 입자선 조사에 의해 잔류 가스 분자가 플라즈마화되지 않으므로 컨태미네이션이 거의 분해되지 않으며, 컨태미네이션의 분해보다 전술한 바와 같이 컨태미네이션 부착의 속도가 커지기 때문에 실용적이지 않다. 또한 케이싱(7) 내부가 약 1000Pa보다 커지면 1차 하전 입자선이 케이싱(7) 내부에서 산란되기 때문에, 시료까지 도달하기 어려워져, 분해능이 극단적으로 낮아져 버린다. 그래서, 본 실시예에서는 컨태미네이션을 효율적으로 분해할 수 있는 기압 영역으로서 케이싱(7) 내부를 상기의 범위로 하고 있다.
종래의 대기압 분위기하에서 시료를 관찰하는 장치에서는, 격막에서 대기압 분위기의 공간과 하전입자광학경통 내부의 진공 공간을 격리하고 있었다. 하전 입자선은 격막 및 대기압 분위기의 가스 분자에 의해 산란되기 때문에, 고진공하에서 시료를 관찰할 경우에 비하여 화질이 나빠진다. 조금이라도 화질을 좋게 하기 위해서는 1차 하전 입자선이 격막에 도달할 때까지의 경로에 있어서 되도록이면 산란을 받지 않을 것이 요망되고 있었다. 따라서, 종래에는 1차 하전 입자선이 격막에 도달할 때까지의 경로의 진공도를 나쁘게 하는 것은 상정되지 않고 있었다. 또한, 일반적으로, 대물렌즈를 통과한 1차 하전 입자선은 그 후 아무런 영향도 받지 않고 시료에 도달할 것이 기대되어 있다. 이 의미에서도, 대물렌즈를 통과한 후의 경로에서 구태여 1차 하전 입자선이 산란되도록 하는 것은 종래의 장치에서는 상정되지 않고 있다. 이에 대하여, 본 실시예에서는, 대물렌즈와 격막 사이의 공간인 케이싱(7)의 내부를 상기의 범위의 진공도의 저진공 상태로 하여 1차 하전 입자선을 조사함으로써, 격막의 케이싱(7) 내부에 접하는 면에 부착된 컨태미네이션을 분해할 수 있다.
또한, 일반적으로 하전입자광학경통(2)의 내부는 고진공으로 되어 있기 때문에, 케이싱(7)의 내부와 하전입자광학경통 내부와의 차압을 유지할 필요가 있다. 따라서, 다른 표현에 의하면, 「저진공」이란 하전입자광학경통의 내부보다 기압이 높은 상태라고도 할 수 있다. 또, 하전입자광학경통 내에 복수의 다른 기압의 방(room)을 가질 경우에는, 그들의 방 중 가장 진공도가 낮은 방(일반적으로는 1차 하전 입자선이 출사되는 측)보다도, 케이싱(7) 내부쪽이 저진공이 되도록 한다. 또한, 달리 표현을 하면, 케이싱(7)은 고진공의 하전입자광학경통과 대기압의 시료실 사이에 마련되어진 저진공실이라고도 할 수 있다. 하전 입자원에서 발생한 1차 하전 입자선은 고진공인 하전입자광학경통의 내부를 통과하고, 또한 저진공 상태인 케이싱(7)의 내부를 통과한 후 격막을 투과하여, 최종적으로 대기압 분위기하에 있는 시료에 조사된다. 또, 이 저진공실은 격막의 한쪽 면에 접하는 면의 압력을 저진공으로 하기 위해 마련되어지는 것이며, 그 내부 공간의 크기는 묻지 않는다.
케이싱(7)에는, 케이싱(7) 내부에 대기 또는 임의의 가스를 도입하는 도입 포트(60)를 구비한다. 도입 포트(60)에는 니들 밸브(61)를 접속하여 대기 또는 임의의 가스를 도입하는 유량을 조정할 수 있다. 또는, 니들 밸브(61) 대신에 유입 저항이 큰 필터나 오리피스를 구비해도 된다. 이들의 유량 조정 수단에 의해 기체 도입의 유량이 적절히 제한된다. 도입 포트(60)로부터 도입된 기체에 의해, 케이싱(7) 내부의 기압을 상승시킬 수 있다.
도입 포트(60)로부터 도입한 기체에 의해, 케이싱(7) 내부를 저진공 즉 가스가 남은 상태로 하면, 그 가스 분자에 1차 전자선 혹은 2차적 전자선이 조사되어, 전자와 가스 분자로 함으로써 가스 분자가 전리하여 플라즈마화한다. 이 때, 전리한 가스 분자에 의한 스퍼터링에 의해 탄화수소계의 컨태미네이션이 분해되는 것으로 생각된다. 즉, 전자선 조사에 의해 컨태미네이션을 분해할 수 있다. 또한, 이 분해의 속도는 주위의 가스 분자의 양 즉 진공도에 의존한다. 임의의 진공도 영역에 있어서, 전술한 바와 같이 잔류 가스 분자가 중합 또는 가교하여 격막 상에 컨태미네이션으로서 부착되는 속도보다도, 컨태미네이션이 분해되는 속도의 쪽이 빠르기 때문에, 컨태미네이션의 발생을 억제할 수 있다.
격막(10) 주변을 저진공으로 함으로써 컨태미네이션이 저감되는 것은 전술한 대로이지만, 격막(10) 주변을 저진공으로 함으로써 대기압과의 압력차가 작아져, 격막에 가해지는 압력을 감소하는 효과도 예상된다. 이에 따라, 대기압에 의해 격막(10)에 생기는 응력이 작아져, 격막 파손의 빈도를 보다 저감할 수 있다. 단, 예를 들면 차압 저감 때문에 진공분위기의 기압을 0.01Pa에서 0.1Pa로 상승시켰을 경우, 대기압(100kPa이라 함)에 의해 격막에 부하되는 압력은, 0.9×10-5% 경감될 뿐이며, 차압 저감에 의한 격막 파손 방지의 효과는 작다. 즉, 격막(10) 주변을 저진공으로 하는 것 자체에 의한 차압 저감 효과보다도, 격막(10)에의 컨태미네이션 저감 효과가, 격막(10) 파손 방지에 유효하다. 따라서, 전술한 바와 같이 저진공 분위기하에서 격막에 하전 입자선 조사함으로써 컨태미네이션을 분해하는 것이 중요하게 된다.
또한, 도 3에 나타나 있는 바와 같이, 도입 포트(60)에 개폐 조작이 가능한 밸브(64)를 구비해도 된다. 이에 따라, 케이싱(7) 내부의 분위기를 고진공과 저진공의 임의의 진공도로 바꿀 수 있다. 케이싱(7) 내부의 분위기가 저진공인 경우에는, 고진공인 경우에 비하여 1차 하전 입자선이 산란되기 쉬우므로, 화질이 열화한다. 그 때문에, 케이싱(7) 내부의 진공도를 적당하게 바꾸어 가능하게 하면 된다.
예를 들면, 시료의 관찰 대상 위치를 결정하는 소위 시야 찾기 등 고화질 관찰의 필요가 없는 관찰의 때에 케이싱(7) 내부를 저진공으로 하여 격막(10)에의 컨태미네이션을 억제하면서, 화상을 촬영할 때에 케이싱(7) 내부를 고진공으로 하여 잔류 가스 분자에 의한 1차 또는 2차적 전자선의 산란을 억제하여 S/N의 양호한 고화질의 화상을 취득한다. 이에 따라, 컨태미네이션에 의한 격막(10)의 파손을 방지하면서, 고화질인 화상을 취득하는 것이 가능하게 된다. 또, 시야 찾기 모드와 촬영 모드를 구비하고, 유저가 이들의 모드를 선택하는 지시를 행하는 것이 가능한 인터페이스를 컴퓨터(35)의 디스플레이에 표시해도 된다. 유저의 지시에 따라, 제어부(36, 37)는 니들 밸브(61) 등의 유량 조정 수단을 제어하여 케이싱(7) 내부의 진공도를 조정한다. 당연히 컴퓨터(35)나 제어부를 통하지 않고, 유저 자신이 직접 유량 조정 수단을 조정함으로써 케이싱(7) 내부의 진공도를 조정해도 된다.
또 다른 예로서, 격막(10)의 컨태미네이션을 감시하는 수단을 갖고, 이것에 의해 컨태미네이션을 분해하는 타이밍을 결정해도 된다. 화상 인식 등에 의해 컨태미네이션의 발생을 감시해도 되지만, 컨태미네이션이 격막(10) 상에 퇴적할 때까지의 시간은 가속 전압이나 진공도 등의 여러가지 조건에 의해 정해져 하전 입자선 장치마다 거의 일정한 시간이 된다. 그 때문에, 대기압하에서의 관찰 시간의 누적으로부터 간접적으로 컨태미네이션의 발생을 예측할 수 있고, 이것을 컨태미네이션 분해의 타이밍으로 해도 된다. 구체적으로는, 격막(10)에 컨태미네이션이 축적되어 관찰의 방해가 될 때까지의 시간 혹은 격막(10)이 파손될 때까지의 시간을 미리 기억해 두고, 컴퓨터(35) 등에 설치한 타이머에 의해, 일정한 주기로 제어부(36, 37)는 니들 밸브(61) 등의 유량 조정 수단을 제어하여 케이싱(7) 내부의 진공도를 저진공으로 조정한다. 이에 따라, 오퍼레이터는 컨태미네이션의 발생을 걱정하는 것이 없이, 편리성 좋게 대기압하에서의 SEM 관찰을 행하는 것이 가능하게 된다.
또한, 관찰 모드와 클리닝 모드를 구비하고, 유저가 이들의 모드를 선택하는 지시를 행하는 것이 가능한 인터페이스를 컴퓨터(35)의 디스플레이에 표시해도 된다. 유저의 지시에 따라, 제어부(36, 37)는 니들 밸브(61) 등의 유량 조정 수단을 제어하여 케이싱(7) 내부의 진공도를 조정한다. 당연히 컴퓨터(35)나 제어부를 통하지 않고, 유저 자신이 직접 유량 조정 수단을 조정함으로써 케이싱(7) 내부의 진공도를 조정해도 된다.
이것에 의하면, 케이싱(7) 내부를 고진공으로 하여 관찰을 행하고, 격막(10)의 컨태미네이션이 많아지게 ?瑛? 때에 케이싱(7) 내부를 저진공으로 해서 전자선 조사를 행하여, 격막(10) 상의 컨태미네이션을 분해할 수 있다. 또한, 케이싱(7) 내부의 진공도를 임의로 바꾸는 것에 의하여, 컨태미네이션의 억제, 최적인 SEM 화상의 취득, 또한 컨태미네이션의 분해와 같은, 상황에 따라 적절한 조작을 행하는 것이 가능하게 된다.
이상, 컨태미네이션 저감의 일 수단으로서 진공도를 저진공으로 하는 구성을 이용하여 설명했지만, 그 밖의 컨태미네이션 저감 수단용에 의해서도 컨태미네이션의 제거가 가능해 진다. 단, 이하와 같은 문제점이 있어서, 전술한 저진공 상태에서의 하전 입자선 조사에 의한 컨태미네이션 저감에 비하여, 실용적이다고는 말할 수 없다.
예를 들면, 격막(10) 주변에 격막을 가열하기 위한 히터를 구비함으로써, 격막에의 컨태미네이션의 부착을 저감할 수 있다. 이 경우, 격막(10)은 매우 얇고, 체적에 대하여 표면적이 크기 때문에 격막 주변을 가열해도 격막부에서 방열되어, 격막 중심부를 충분히 가열하는 것이 어렵다. 혹은, 격막 상에 열원이 되는 부재를 형성했을 경우, 소모품인 격막의 가격상승에 의한 러닝 코스트의 상승이 과제가 된다. 또한, 케이싱(7) 내에 액체 질소 등으로 외부보다 냉각 가능한 냉각 부재를 마련하여 콜드 트랩으로서, 냉각한 냉각 부재에 탄화수소계의 가스를 흡착시킴으로써 격막에의 컨태미네이션 저감이 가능하다. 이 경우, 격막 근방 즉 격막(10)과 하전입자광학경통(2) 사이에 냉각 부재를 배치할 필요가 있어서, 격막(10)과 하전입자광학경통(2)의 거리를 충분히 떼어 놓을 필요가 있다. 이에 따라, 격막(10)과 하전입자광학경통(2)의 거리가 멀어져 버려, 시료(6)와 하전입자광학경통(2)의 거리가 장대화되어, 화상의 분해능의 저하 등의 문제가 생긴다. 또한, 냉각에 액체 질소를 이용할 경우, 러닝 코스트의 상승이 문제가 된다. 또한, 케이싱(7)에 플라즈마 발생 장치를 설치하고, 플라즈마에 의해 컨태미네이션의 저감·분해를 행하는 것도 생각할 수 있다. 이 경우, 플라즈마 발생 장치의 설치에 의한 장치 구성의 복잡화는 피할 수 없다.
이들로부터, 격막(10)에의 컨태미네이션 발생을 방지하는 수단으로서는, 케이싱(7) 내를 저진공으로 하는 것이 간편하고 최적이여서, 유효성이 가장 높다.
실시예 2
그런데, 대기압하에서 관찰 가능한 하전입자선 현미경에 있어서는, 격막(10)의 개구(開口) 면적에 의해 관찰 시야가 제한된다. 즉, 격막(10)은 전자선을 투과하는 요건 때문에 매우 얇지만, 그 충분히 얇은 격막에 의해 진공을 밀봉하기 때문에, 격막(10)의 면적은 매우 작게 할 필요가 있다. 예를 들면 격막(10)의 면적은 250㎛ 사방(四方)이며, 격막(10)의 면적은 대기압에 견딜 수 있도록 충분히 작게 설정된다. 이에 따라, 개구 면적의 범위 내에서 관찰을 행하게 된다. 그 때문에, 시료(6) 위의 특정 장소를 관찰하려면, 시야의 이동을 되풀이해서 관찰 대상의 부위를 찾게 된다. 이 조작은 매우 번잡하며, 대기압하에서 관찰 가능한 하전입자선 현미경의 편리성을 크게 손상하는 것이다.
이상의 과제에 대하여, 본 실시예에서는, 하전입자선 현미경에서 관찰할 때의 시야 찾기에 광학 현미경 등을 활용함으로써, 대기압 분위기하에서 관찰 가능한 하전입자선 현미경의 편리성을 향상시키는 예를 설명한다. 이하, 장치 구성 및 사용 방법에 대해 설명한다. 실시예 1과 마찬가지의 부분에 대해서는 간단을 위해 설명을 생략한다.
도 4에, 하전입자선 현미경으로 관찰을 행할 때의 시야 찾기에 광학 현미경을 사용하는 구성을 나타낸다. 본 구성에 있어서는 광학 현미경 또는 고배율의 카메라 등, 대기압 분위기하에 있어서 보다 저배율로 관찰 가능한 장치를 이용한다. 일례로서, 광학 현미경(160)을 이용하는 구성에 대해 이하 설명한다.
광학 현미경(160)은 광학 현미경 광축(160a)에 대하여 일정한 위치 관계에서 시료대(52)를 유지하는 것이 가능한 시료설치대(161)를 갖는다(도 4의 (a)). 마찬가지로, 하전입자 현미경(53)의 시료 스테이지(5)에도, 시료설치대(163)를 구비한다(도 4의 (b)). 시료설치대(163)는, 시료 스테이지(5)를 소정의 좌표위치로 했을 때, 하전 입자선 광축(54)에 대하여 시료대(52)를 일정한 위치 관계로 유지할 수 있다. 시료대(52)를 시료설치대(161)에 설치했을 때의 광학 현미경 광축(160a)과 시료대(52)의 위치 관계와, 시료대(52)를 시료설치대(162)에 설치했을 때의 전자선 광축(54)과 시료대(52)의 위치 관계는 일치하는 것으로 한다.
상기 일정한 위치 관계로 했지만, 여기에서는 일례로서, 광학 현미경 광축(160a)과 시료대(52)의 중심축(52a)이 일치하는 시료설치대(161)를 구비하는 구성을 이용하여 설명한다.
시료설치대(161)는, 핀이나 구멍 등, 시료대(52)와 쌍을 이루는 형상의 위치 결정 구조(162)를 갖고, 시료대(52)가 끼워 맞춰짐으로써, 시료대(52)의 중심축(52a)과 광학 현미경 광축(160a)을 일치시켜서 유지할 수 있다. 하전입자선 현미경(53)의 시료 스테이지(5)에 있어서도, 위치 결정 구조(164)는 위치 결정 구조(162)와 같은 형상의 구조를 가진다. 이에 따라 시료대(52)는, 시료 스테이지(5)를 소정의 위치로 했을 때에 중심축(52a)과 전자선의 광축(54)이 일치하도록 유지된다. 도면에서는 일례로서, 위치 결정 구조(162, 164)를 구멍으로 하고, 시료대(52)에 핀(52b)을 구비하는 구성으로 되어 있지만, 홈과 돌기 등 그 외의 구조를 이용해도 된다.
이상에 따라, 광학 현미경(160)으로 시료대(52)를 관찰했을 때의 관찰 시야와, 하전입자선 현미경(53)으로 시료대(52)를 관찰했을 때의 관찰 시야가 일치하게 된다. 즉, 본 구성에 있어서, 광학 현미경(160)에서의 위치 결정 구조(162)와, 하전입자선 현미경(53)에 있어서의 위치 결정 구조(164)에 대하여, 공통인 시료대(52)가 대응하는 것으로 함으로써 광학 현미경(160)과 하전입자선 현미경(53)의 동일 시야 관찰이 가능하게 된다. 이하, 관찰 순서에 따라 본 구성의 효과를 설명한다.
먼저, 광학 현미경(160)의 시료설치대(161)에 시료대(52)를 설치하고, 광학 현미경(160)으로 관찰하면서, 시료(6)의 관찰 대상 부위(6a)가 시야 중심이 되도록 손 또는 핀셋 등을 이용하여 조정하여, 시료대(52) 상에 시료(6)를 배치 혹은 고정한다(도 4의 (c)). 다음으로, 시료대(52)를 광학 현미경(160)의 시료설치대(161)로부터 제거하고, 시료대(52)를 하전입자선 현미경(53)의 시료설치대(163)에 설치한다. 그리고, 시료 스테이지(5)를 소정의 위치로 이동 후, 관찰을 시작하면 시료(6)의 관찰 대상 부위(6a)의 주변을 관찰할 수 있다(도 4의 (d)).
이상, 광학 현미경(160) 관찰하에서 시료(6)의 관찰 대상 부위(6a)의 위치를 조정함으로써, 하전입자선 현미경(53)에 있어서 번잡한 시야 찾기의 작업 없이 관찰 대상 부위(6a)를 대기압 분위기하에서 하전입자선 현미경으로 관찰할 수 있다. 이에 따라 대기압 분위기하에서 관찰 가능한 하전입자선 현미경에서의 시야 찾기 조작의 편리성이 향상된다.
또, 광학 현미경 광축(160a)과 시료대(52)의 중심축(52a)이 일치하는 시료설치대(161)를 구비하는 구성을 이용하여 설명했지만, 전술한 바와 같이 광학 현미경 광축(160a)과 시료대(52)의 중심축(52a)은 시료설치대(161)에 의해 일정한 위치 관계로 유지할 수 있으면 마찬가지의 효과가 초래되는 것은 물론이다.
다음으로, 하전입자선 현미경으로 관찰할 때의 시야 찾기에 광학 현미경 등을 활용하는 다른 예를 설명한다. 위의 예에서는, 광학 현미경(160) 관찰하에서 시료의 위치를 조정할 때에 사람의 손 또는 핀셋 등을 사용하기 때문에, 미세 조정 등 잔작업의 정확성이나 편리성이 나쁘다고 하는 과제가 있다. 그래서, 시료대(52)에 이동 기구를 설치하고, 이동 기구에 의해 시료의 위치 조정을 행하는 예를 이하에 설명한다.
도 5에, 시료대(52)에 이동 기구를 구비하는 구성을 나타낸다. 도 5의 시료대는, 시료대(52)에 광학 현미경 광축(160a) 방향에 수직한 평면(이하, XY 평면이라 함)에 시료를 이동 가능한 이동 기구(165)를 구비한다. 이동 기구(165)는, 손잡이(165a, 165b)를 구비하며, X, Y 방향으로 자유롭게 이동 가능하다. 손잡이(165a, 165b)를 조작하여 이동 기구(165)를 동작함으로써 광학 현미경(160) 관찰하에서 시료(6) 상의 임의의 부위를 관찰하고, 관찰 대상 부위(6a)를 찾아서 시야 중심으로 이동할 수 있다. 관찰 대상 부위(6a)를 광학 현미경의 시야 중심으로 맞춘 후, 상기와 마찬가지로 하전입자선 현미경(53)에 탑재하고 시료 스테이지(5)를 소정의 위치로 함으로써 관찰 대상 부위를 관찰할 수 있다. 즉, 시료대(52)보다 상측의 이동 기구(165)를 XY 방향으로 이동해도, 위치 결정 구조(162)에 의해, 광학 현미경 광축(160a)과 시료대의 중심축(52a)의 위치 관계는 변하지 않는다. 이에 따라, 광학 현미경(160)하에서의 시료 관찰 부위의 결정과 조정을 보다 간편하게 행하는 것이 가능해 지고, 대기압 분위기하에서 관찰 가능한 하전입자선 현미경에 있어서의 시야 찾기의 조작성을 대폭 향상시킬 수 있으며, 더욱더 편리성의 향상을 꾀할 수 있다.
또한, 하전입자선 현미경 관찰을 위한 위치 결정에 광학 현미경(160)을 이용하는 구성에 대해 설명했지만, 상기 구성을 이용함으로써, 색 정보를 포함하는 광학 현미경 상(像)과, 보다 고분해능 혹은 조성 정보를 포함하는 하전 입자선 화상을 용이하게 비교할 수 있다고 하는 효과도 실현된다.
실시예 3
이하에서는, 일반적인 하전 입자선 장치를 사용하여 간편하게 대기하에서 시료 관찰할 수 있는 장치 구성에 관해서 설명한다. 도 6에는, 본 실시예의 하전입자 현미경의 전체 구성도를 나타낸다. 실시예 1과 마찬가지로, 본 실시예의 하전입자 현미경도, 하전입자광학경통(2), 당해 하전입자광학경통(2)을 장치 설치면에 대하여 지지하는 케이싱(진공실)(7), 시료 스테이지(5) 등으로 구성된다. 이들의 각 요소의 동작·기능 혹은 각 요소에 부가되는 부가 요소는, 실시예 1과 거의 마찬가지이므로, 상세한 설명은 생략한다.
도 6에 나타내는 하전입자 현미경은, 케이싱(7)(이하, 제 1 케이싱)에 삽입해서 사용되는 제 2 케이싱(어태치먼트)(121)을 구비한다. 제 2 케이싱(121)은, 직방체 형상의 본체부(131)와 맞춤부(132)로 구성된다. 후술하는 바와 같이 본체부(131)의 직방체 형상의 측면 중 적어도 일 측면은 개방면(15)으로 되어 있다. 본체부(131)의 직방체 형상의 측면 중 격막 유지 부재(155)가 설치되는 면 이외의 면은, 제 2 케이싱(121)의 벽으로 구성되어 있어도 되고, 제 2 케이싱(121) 자체에는 벽이 없고 제 1 케이싱(7)에 조립된 상태에서 제 1 케이싱(7)의 측벽으로 구성되어도 된다. 제 2 케이싱(121)은 제 1 케이싱(7)의 측면 또는 내벽면 또는 하전입자광학경통에 위치가 고정된다. 본체부(131)는, 관찰 대상인 시료(6)를 격납하는 기능을 가지며, 상기의 개구부를 통해 제 1 케이싱(7) 내부에 삽입된다. 맞춤부(132)는, 제 1 케이싱(7)의 개구부가 마련되어진 측면측의 외벽면과의 맞춤면을 구성하며, 진공 밀봉 부재(126)를 개재하여 상기 측면측의 외벽면에 고정된다. 이에 따라, 제 2 케이싱(121) 전체가 제 1 케이싱(7)에 결합된다. 상기의 개구부는, 하전입자 현미경의 진공 시료실에 원래 갖추어져 있는 시료의 반입·반출용의 개구를 이용해서 제조하는 것이 가장 간편하다. 즉, 원래 열려 있는 구멍의 크기에 맞춰서 제 2 케이싱(121)을 제조하고, 구멍의 주위에 진공 밀봉 부재(126)를 장착하면, 장치의 개조가 필요 최소한으로 마쳐진다. 또한, 제 2 케이싱(121)은 제 1 케이싱(7)으로부터 제거도 가능하다.
제 2 케이싱(121)의 측면은 대기 공간과 적어도 시료의 출납이 가능한 크기의 면으로 연통한 개방면(15)이며, 제 2 케이싱(121)의 내부(도면의 점선보다 우측; 이후, 제 2 공간이라 함)에 격납되는 시료(6)는, 관찰중, 대기압 상태로 두어진다. 또, 도 6은 광축과 평행 방향의 장치 단면도이기 때문에 개방면(15)은 한 면만이 도시되어 있지만 도 6의 지면(紙面) 안쪽 방향 및 앞쪽 방향의 제 1 케이싱의 측면에 의해 진공 밀봉되어 있으면, 제 2 케이싱(121)의 개방면(15)은 한 면으로 한정되지 않는다. 제 2 케이싱(121)이 제 1 케이싱(7)에 조립된 상태에서 적어도 개방면이 한 면 이상 있으면 된다. 한편, 제 1 케이싱(7)에는 진공 펌프(4)가 접속되어 있으며, 제 1 케이싱(7)의 내벽면과 제 2 케이싱의 외벽면 및 격막(10)으로 구성되는 폐공간(이하, 제 1 공간이라 함)을 진공 배기 가능하다. 제 2 공간의 압력을 제 1 공간의 압력보다 크게 유지하도록 격막이 배치됨으로써, 본 실시예에서는, 제 2 공간을 압력적으로 격리할 수 있다. 즉, 격막(10)에 의해 제 1 공간(11)이 진공 상태로 유지되는 한편, 제 2 공간(12)은 대기압 또는 대기압과 거의 동등한 압력의 가스 분위기로 유지되므로, 장치의 동작중, 하전입자광학경통(2)이나 검출기(3)를 진공 상태로 유지할 수 있고, 또한 시료(6)를 대기압으로 유지할 수 있다. 또한, 제 2 케이싱(121)이 개방면을 가지므로, 관찰중, 시료(6)를 자유롭게 교환할 수 있다.
제 2 케이싱(121)의 윗면 측에는, 제 2 케이싱(121) 전체가 제 1 케이싱(7)에 결합되었을 경우에 상기 하전입자광학경통(2)의 바로 아래가 되는 위치에 격막(10)을 구비한다. 이 격막(10)은, 하전입자광학경통(2)의 하단으로부터 방출되는 1차 하전 입자선을 투과 또는 통과시키는 것이 가능하고, 1차 하전 입자선은, 격막(10)을 지나 최종적으로 시료(6)에 도달한다.
제 2 케이싱(121)의 내부에는 시료 스테이지(5) 등이 배치되어, 시료(6)를 자유롭게 이동할 수 있다.
본 장치에 있어서도, 실시예 1과 마찬가지로 케이싱(7) 내부(즉 제 1 공간(11))을 저진공으로 하기 위한 도입 포트(60)를 갖는다. 도입 포트(60)에 관한 구성은 실시예 1과 마찬가지이기 때문에 상세한 설명은 생략한다.
실시예 4
도 7에는, 본 실시예의 하전입자 현미경의 전체 구성도를 나타낸다. 본 실시예는 실시예 3의 변형예이다. 실시예 1, 3과 마찬가지의 부분에 대해서 상세한 설명은 생략한다.
본 실시예의 하전입자 현미경의 경우, 제 2 케이싱(121)의 적어도 일 측면을 이루는 개방면을 덮개 부재(122)로 덮을 수 있게 되어 있으며, 여러 가지의 기능이 실현될 수 있다. 이하에서는 그에 대해 설명한다.
<시료 스테이지에 관해서>
본 실시예의 하전입자 현미경은, 시료 위치를 변경함으로써 관찰 시야를 이동하는 수단으로서의 시료 스테이지(5)를 덮개 부재(122)에 구비하고 있다. 시료 스테이지(5)에는, 면내 방향으로의 XY 구동기구 및 높이 방향으로의 Z축 구동기구를 구비하고 있다. 덮개 부재(122)에는 시료 스테이지(5)를 지지하는 바닥판이 되는 지지판(107)이 장착되어 있으며, 시료 스테이지(5)는 지지판(107)에 고정되어 있다. 지지판(107)은, 덮개 부재(122)의 제 2 케이싱(121)에의 대향면을 향해서 제 2 케이싱(121)의 내부를 향해서 연장되도록 장착되어 있다. Z축 구동기구 및 XY 구동기구로부터는 각각 지축(支軸)이 연장되어 있으며, 각각 덮개 부재(122)가 가지는 조작 손잡이(108) 및 조작 손잡이(109)와 연결되어 있다. 장치 유저는, 이들 조작 손잡이(108 및 109)를 조작함으로써, 시료(6)의 제 2 케이싱(121) 내에서의 위치를 조정한다.
<시료 근방 분위기에 관해서>
본 실시예의 하전입자 현미경에 있어서는, 제 2 케이싱 내에 치환 가스를 공급하는 기능 또는 제 1 공간(11)이나 장치 외부인 외기와는 다른 기압 상태를 형성 가능한 기능을 구비하고 있다. 하전입자광학경통(2)의 하단으로부터 방출된 하전 입자선은, 고진공으로 유지된 제 1 공간을 지나, 격막(10)을 통과하고, 시료(6)에 하전 입자선이 조사된다. 대기 공간에서는 하전 입자선은 기체분자에 의해 산란되기 때문에, 평균 자유행정은 짧아진다. 즉, 격막(10)과 시료(6)의 거리가 크다면 1차 하전 입자선 또는 하전 입자선 조사에 의해 발생하는 2차 전자, 반사 전자 혹은 투과 전자 등이 시료 및 검출기(3)까지 도달하지 않게 된다. 한편, 하전 입자선의 산란 확률은, 기체분자의 질량수나 밀도에 비례한다. 따라서, 대기보다 질량수가 가벼운 가스 분자로 제 2 공간을 치환하거나, 조금만 진공 처리하는 것을 행하면, 하전 입자선의 산란 확률이 저하하여, 하전 입자선이 시료에 도달할 수 있게 된다. 또한, 제 2 공간의 전체가 아니어도, 적어도 제 2 공간 중의 하전 입자선의 통과 경로, 즉 격막(10)과 시료(6) 사이의 공간의 대기를 가스 치환 또는 진공 처리 가능하면 된다.
이상의 이유로부터, 본 실시예의 하전입자 현미경에서는, 덮개 부재(122)에 가스 공급관(100)의 설치부(가스 도입부)를 마련하고 있다. 가스 공급관(100)은 연결부(102)에 의해 가스봄베(103)와 연결되어 있으며, 이에 따라 제 2 공간(12) 내에 치환 가스가 도입된다. 가스 공급관(100)의 도중에는, 가스 제어용 밸브(101)가 배치되어 있어, 관내를 흐르는 치환 가스의 유량을 제어할 수 있다. 이를 위해, 가스 제어용 밸브(101)로부터 하위 제어부(37)로 신호선이 연장되어 있으며, 장치 유저는, 컴퓨터(35)의 모니터 상에 표시되는 조작 화면에서, 치환 가스의 유량을 제어할 수 있다. 또한, 가스 제어용 밸브(101)는 수동으로 조작해서 개폐해도 된다.
치환 가스의 종류로서는, 질소나 수증기 등, 대기보다 가벼운 가스이면 화상 S/N의 개선 효과가 보여지지만, 질량이 보다 가벼운 헬륨 가스나 수소 가스쪽이, 화상 S/N의 개선 효과가 크다.
치환 가스는 경원소 가스이기 때문에, 제 2 공간(12)의 상부에 모이기 쉬우며, 하측은 치환하기 어렵다. 그래서, 덮개 부재(122)에서 가스 공급관(100)의 설치 위치보다도 하측에 제 2 공간의 내외를 연통하는 개구를 마련한다. 예를 들면 도 8에서는 압력 조정 밸브(104)의 설치 위치에 개구를 마련한다. 이에 따라, 가스 도입부로부터 도입된 경원소 가스에 밀려서 대기 가스가 하측의 개구로부터 배출되기 때문에, 제 2 케이싱(121) 내를 효율적으로 가스로 치환할 수 있다. 또, 이 개구를 후술하는 러프배기 포트와 겸용해도 된다.
전술한 개구 대신에 압력 조정 밸브(104)를 설치해도 된다. 당해 압력 조정 밸브(104)는, 제 2 케이싱(121)의 내부압력이 1기압 이상이 되면 자동적으로 밸브가 열리는 기능을 갖는다. 이러한 기능을 가지는 압력 조정 밸브를 구비함으로써, 경원소 가스의 도입시, 내부압력이 1기압 이상이 되면 자동적으로 열려서 질소나 산소 등의 대기 가스 성분을 장치 외부로 배출하고, 경원소 가스를 장치 내부에 충만시키는 것이 가능해 진다. 또, 도시한 가스봄베 또는 진공 펌프(103)는, 하전입자 현미경에 비치되는 경우도 있으며 장치 유저가 사후적으로 장착할 경우도 있다.
또한, 헬륨 가스나 수소 가스와 같은 경원소 가스여도, 전자선 산란이 클 경우가 있다. 그 경우는, 가스봄베(103)를 진공 펌프로 하면 된다. 그리고, 조금만 진공 처리함으로써, 제 2 케이싱 내부를 극저진공 상태(즉 대기압에 가까운 압력의 분위기)로 하는 것이 가능해 진다. 즉, 격막(10)과 시료(6) 사이의 공간을 극저진공 상태로 하는 것이 가능하다. 예를 들면, 제 2 케이싱(121) 또는 덮개 부재(122)에 진공 배기 포트를 설치하여, 제 2 케이싱(121) 내를 조금만 진공 배기한다. 그 후 치환 가스를 도입해도 된다. 이 경우의 진공 배기는, 제 2 케이싱(121) 내부에 잔류하는 대기 가스 성분을 일정량 이하로 줄이면 되므로 고진공 배기를 행할 필요는 없으며, 러프배기로 충분하다.
이와 같이 본 실시예에서는, 시료가 재치된 공간을 대기압(약 105Pa)으로부터 약 103Pa까지의 임의의 진공도로 제어할 수 있다. 종래의 소위 저진공 주사 전자 현미경에서는, 전자선 칼럼과 시료실이 연통하고 있으므로, 시료실의 진공도를 낮춰서 대기압에 가까운 압력으로 하면 전자선 칼럼 내의 압력도 연동하여 변화되어 버려, 대기압(약 105Pa)∼103Pa의 압력으로 시료실을 제어하는 것은 곤란했다. 본 실시예에 의하면, 제 2 공간과 제 1 공간을 박막에 의해 격리하고 있으므로, 제 2 케이싱(121) 및 덮개 부재(122)로 둘러싸여진 제 2 공간(12) 내의 분위기의 압력 및 가스 종류는 자유롭게 제어할 수 있다. 따라서, 지금까지 제어하는 것이 어려웠던 대기압(약 105Pa)∼103Pa의 압력으로 시료실을 제어할 수 있다. 또한, 대기압(약 105Pa)에서의 관찰뿐만 아니라, 그 근방의 압력으로 연속적으로 변화시켜서 시료의 상태를 관찰하는 것이 가능해 진다.
또한, 도면에는 나타내지 않았지만, 봄베(103)부는 가스봄베와 진공 펌프를 복합적으로 접속한, 복합 가스 제어 유닛 등이여도 된다.
본 실시예에 의한 구성은 상기까지의 구성과 비교하여, 제 2 케이싱 내부의 제 2 공간(12)이 닫혀져 있다고 하는 특징을 갖는다. 그 때문에, 격막(10)과 시료(6) 사이에 가스를 도입하거나, 또는 진공 배기하는 것이 가능한 하전 입자선 장치를 제공하는 것이 가능해 진다.
본 실시예에 있어서도, 실시예 1, 3과 마찬가지로 케이싱(7) 내부를 저진공으로 하기 위한 도입 포트(60)를 갖는다. 격막에 부착되는 컨태미네이션 저감의 관점으로부터 말하면, 케이싱(7) 내부를 저진공으로 하는 것이 중요하며, 케이싱(7) 내부의 압력은 제 2 공간(12)의 압력에 의존하지 않고 일정하게 하면 된다.
또, 본 구성에 있어서, 격막(10)을 제거함으로써, 대기압 분위기하에서 관찰할 뿐만 아니라 진공 환경에서 관찰하는 소위 일반적인 SEM으로서 사용하는 것이 가능하게 된다. 즉, 격막(10)을 장착하고 있을 경우에는 제 1 공간 내부를 저진공으로 하여 격막(10)에의 컨태미네이션을 저감하면서 대기압 분위기하에서의 관찰이 가능하고, 격막(10)을 제거했을 경우에는 제 1 공간 내 및 시료(6)가 배치되는 제 2 공간(12) 내를 고진공으로 함으로써, 일반적인 하전입자선 현미경으로서, 보다 고분해능, 혹은 보다 고배율의 관찰을 할 수 있다.
<기타>
이상 설명한 바와 같이, 본 실시예에서는, 시료 스테이지(5) 및 그 조작 손잡이(108, 109), 가스 공급관(100), 압력 조정 밸브(104)가 모두 덮개 부재(122)에 집약해서 장착되어 있다. 따라서 장치 유저는, 상기 조작 손잡이(108, 109)의 조작, 시료의 교환 작업, 또는 가스 공급관(100), 압력 조정 밸브(104)의 조작을 제 1 케이싱의 동일한 면에 대하여 행할 수 있다. 따라서, 상기 구성 물건이 시료실의 다른 면에 제 각각 장착되어 있는 구성의 하전입자 현미경에 비하여 조작성이 매우 향상되어 있다.
이상 설명한 구성에 더하여, 제 2 케이싱(121)과 덮개 부재(122)의 접촉 상태를 검지하는 접촉 모니터를 설치하고, 제 2 공간이 닫혀있는지 또는 열려있는지를 감시해도 된다.
또한, 2차 전자검출기나 반사 전자검출기에 더하여, X선 검출기나 광검출기를 설치하고, EDS 분석이나 형광선의 검출을 할 수 있도록 하여도 된다. X선 검출기나 광검출기의 배치로서는, 제 1 공간(11) 또는 제 2 공간(12)의 어디에 배치되어도 된다.
이상, 본 실시예에 의해서, 실시예 1이나 2의 효과에 더하여, 대기압으로부터 치환 가스가 도입 가능하다. 또한, 제 1 공간과는 다른 압력의 분위기하에서의 시료 관찰이 가능하다. 또한, 격막을 제거하여 제 1 공간과 제 2 공간을 연통시킴으로써, 대기 또는 소정의 가스 분위기하에서의 관찰에 더하여 제 1 공간과 같은 진공 상태에서의 시료 관찰도 가능한 SEM이 실현된다.
실시예 5
본 실시예에서는, 하전 입자선 장치 외부에서 시료 격납 용기 내부의 시료 위치를 조정하기 위한 장치 구성 및 그 방법에 대해서 기재한다. 실시예 1∼4과 마찬가지로, 본 실시예의 하전입자 현미경도, 하전입자광학경통(2), 당해 하전입자광학경통(2)을 장치 설치면에 대하여 지지하는 케이싱(진공실)(7), 시료 스테이지(5) 등으로 구성된다. 이들 각 요소의 동작·기능 혹은 각 요소에 부가되는 부가 요소는, 실시예 1∼3과 거의 마찬가지이므로, 상세한 설명은 생략한다.
도 8에, 시료 격납 용기를 하전입자 현미경 장치의 내부에 배치한 상태를 나타낸다. 시료 격납 용기는, 주로, 격납 용기(200), 덮개(201), 시료(6)의 위치를 변경하기 위한 구동기구를 가지는 시료 스테이지(203), 시료 스테이지(203)를 시료 격납 용기 외부로부터 움직이기 위한 복수의 조작부(204), 하전 입자선을 통과 또는 투과시키는 격막(10), 격막(10)을 유지하는 베이스(9)로 구성된다. 시료(6)는 시료대 상에 재치되며, 이 시료대와 함께 폐공간인 격납 용기(200) 내부에 격납된다. 시료 격납 용기의 외부와 내부의 가스 종류 및 기압 상태가 분리된 상태로 유지하기 위해, 덮개(201)와 격납 용기(200) 사이에 O링이나 패킹 등의 진공 밀봉 부재(206)를 갖는다. 시료 스테이지(203)의 밑면과 격납 용기(200)의 바닥면은 도면에 나타나 있지 않은 나사 등으로 고정되는 것으로 한다.
시료(6)와 격막(10)이 비접촉하며, 격막(10)에 평행 방향으로 시료를 격막(10)과 독립해서 움직이는 것이 가능하기 때문에, 매우 넓은 범위(적어도 격막의 면적보다 큰 범위)의 시료의 관찰이 가능해 진다. 또한, 시료와 격막이 비접촉하므로, 시료 교환때마다 격막을 교환할 필요가 없어진다.
시료 격납 용기 하측(바닥면측)에는, 후술하는 하전 입자선 장치 내부의 시료 스테이지 상에 배치하기 위한 맞춤부(도시 생략)를 갖는다. 맞춤부는 볼록형이여도 오목형이여도 되고, 다른 형상이여도 된다. 맞춤부(209)를 시료 스테이지의 대응하는 부분과 계합(係合)함으로써 시료 격납 용기를 시료 스테이지 상에 고정한다.
하전입자선 현미경의 스테이지(5)는, 면내 방향으로의 XY 구동기구 및 높이 방향으로의 Z축 구동기구 등을 구비하고 있다. 지지판(107)은, 덮개 부재(122)의 대향면을 향해서 케이싱(7) 내부를 향해서 연장하도록 장착되어 있다. Z축 구동기구 및 XY 구동기구로부터는 각각 지축이 연장되어 있으며, 각각 덮개 부재(122)가 가지는 조작 손잡이(108) 및 조작 손잡이(109)와 연결되어 있다. 장치 유저는, 이들 조작 손잡이를 조작함으로써, 하전입자광학경통에 대한 시료 격납 용기의 위치를 조정하는 것이 가능하다. 여기에서 전술한 바와 같이 시료 격납 용기 내부에도 위치 조정 기구가 구비되어 있으며, 이 위치 조정 기구와 스테이지는 독립으로 가동(可動)으로 되어 있다. 시료 격납 용기 내부의 위치 조정 기구는 시료와 격막의 위치 맞춤에 이용되며, 스테이지는 하전 입자선광학경통과 시료 격납 용기의 위치 맞춤에 이용된다.
실시예 1에서 설명한 바와 같이, 격막은 대기압과 진공의 차압으로 유지되지 않으면 안되는 요구로부터 격막의 면적은 매우 작다. 본 실시예에서는, 실시예 1에 나타낸 방법과 마찬가지로, 광학 현미경에서 시료 위치를 확인하면서 시료를 격막과는 독립하여 자유롭게 이동시킬 수 있으므로, 시야 찾기의 조작을 간편하게 행할 수 있다. 특히 이 시야 찾기의 작업을, 국소 분위기를 유지한 그대로 행할 수 있으므로, 유저의 편리성은 매우 향상된다.
본 장치에 있어서도, 실시예 1과 마찬가지로 케이싱(7) 내부를 저진공으로 하기 위한 도입 포트(60)를 갖는다. 본 실시예의 경우에는, 시료 격납 용기의 내부가 국소적으로 비진공으로 되어 있으며, 시료실인 케이싱(7)의 내부는 진공 환경으로 되어 있다. 본 실시예에서는 실시예 1,3과 다르게, 격막의 하전 입자원측의 면을 저진공 환경으로 하기 위한 특별한 케이싱을 구비하고 있지 않다. 그래서, 시료 격납 용기를 케이싱(7)의 내부로 도입해서 관찰할 때에는 케이싱(7)의 내부를 저진공으로 유지한다. 이렇게 함으로써 격막(10)의 내외의 압력을 고려하면 실시예 1과 마찬가지의 상황으로 할 수 있으며, 전술의 실시예와 같이, 격막의 컨태미네이션 부착을 저감할 수 있다.
본 실시예의 경우에는, 시료 격납 용기를 사용하지 않을 경우, 소위 일반적인 SEM으로서 관찰을 행할 수 있다. 시료 격납 용기를 사용할 경우에는 케이싱(7) 내를 니들 밸브(61)에 의해 저진공 환경으로 하여 격막(10)에의 컨태미네이션을 억제하고, 시료 격납 용기를 사용하지 않을 경우에는 통상의 SEM으로서, 케이싱(7) 내를 니들 밸브(61)에 의해 저진공으로부터 고진공으로 바꾼다. 또, 본 실시예의 케이싱(7) 내부의 진공도는 저진공으로부터 고진공의 범위 내에서 자유롭게 제어하는 것이 가능하다. 일반적인 저진공 주사 전자 현미경에서는 시료실의 진공도를 저진공으로부터 고진공의 임의의 압력으로 제어할 수 있기 때문에, 본 실시예의 경우에는 새롭게 케이싱을 설치하지 않고, 종래의 주사 전자 현미경의 시료실을 이용하여, 격막의 진공 측의 면에 접하는 공간을 저진공 상태로 할 수 있다. 본 실시예에 있어서, 케이싱(7)의 내부를 저진공으로 하는 시료 격납 용기 모드와 케이싱(7)의 내부를 고진공으로 하는 SEM 모드를 구비하고, 유저가 이들 모드를 선택하는 지시를 행하는 것이 가능한 인터페이스를 컴퓨터(35)의 디스플레이에 표시해도 된다. 유저의 지시에 따라, 제어부(36, 37)는 니들 밸브(61) 등의 유량 조정 수단을 제어하여 케이싱(7) 내부의 진공도를 조정한다. 당연히 컴퓨터(35)나 제어부를 통하지 않고, 유저 자신이 직접 유량 조정 수단을 조정함으로써 케이싱(7) 내부의 진공도를 조정해도 된다.
실시예 6
본 실시예에서는, 실시예 1의 변형예인 하전입자광학경통(2)이 격막(10)에 대하여 하측에 있는 구성에 관해서 설명한다. 도 9에, 본 실시예의 하전입자 현미경의 구성도를 나타낸다. 진공 펌프나 제어계 등은 생략해서 도시한다. 또한, 진공실인 케이싱(7), 하전입자광학경통(2)은 장치 설치면에 대하여 기둥이나 지주 등에 의해 지지되어 있는 것으로 한다. 각 요소의 동작·기능 또는 각 요소에 부가되는 부가 요소는, 전술의 실시예와 거의 마찬가지이므로, 상세한 설명은 생략한다.
도 9의 (a)에 나타나 있는 바와 같이 본 장치에는, 시료(6)를 격막(10)에 접근시키는 시료 스테이지(5)가 구비되어 있다. 본 실시예의 장치 구성에서는 도면 중 시료(6) 하측의 시료면이 관찰되게 된다. 바꿔 말하면, 본 실시예의 장치 구성에서는, 장치 위쪽이 대기압 공간으로서 개방되어 있다. 이 경우, 시료 스테이지(5)에 의해, 격막과 시료와의 거리를 조정할 수 있다.
도 9의 (b)와 같이, 시료(6)를 직접 격막(10) 측에 탑재해도 된다(도면 중 화살표). 이 경우에는 반드시 시료 스테이지(5)는 필요하지는 않다. 격막과 시료(6)를 접근시키기 위해서는, 격막(10)과 시료(6)의 사이에 두께가 규정되어 성막된 박막이나 착탈 가능한 박재(箔材) 등의 접촉 방지 부재(56)를 이용한다. 이 경우에는 접촉 방지 부재(56)는 격막과 시료 사이의 거리를 조정하는 거리조정 기구에 해당한다. 접촉 방지 부재(56)를 둠으로써, 유저는 시료(6)를 안심하고 배치하는 것이 가능해 진다. 여러가지 기지(旣知)의 두께의 접촉 방지 부재(56)를 여러 개 준비해도 된다. 먼저, 두께가 t1인 접촉 방지 부재(56)를 베이스(9) 상에 배치한다. 다음으로, 시료(6)를 탑재한다. 그 후 시료를 관찰하여, 필요하면 두께가 t1보다 작은 t2인 접촉 방지 부재로 교체한다. 이에 따라, 격막(10)과 시료(6)를 접촉시켜서 파손시키지 않고 관찰을 실시하는 것이 가능해 진다.
본 장치에 있어서도, 실시예 1과 마찬가지로 케이싱(7) 내부를 저진공으로 하기 위한 도입 포트(60) 및 유량 조정 수단으로서의 니들 밸브(61)를 갖는다. 도입 포트(60), 니들 밸브(61)에 관한 구성은 실시예 1과 마찬가지이기 때문에 상세한 설명은 생략한다.
실시예 7
상기까지의 실시예에서는, 격막(10)과 시료(6)가 비접촉한 상태에서 대기하에 배치된 하전입자 현미경 관찰하는 장치 및 방법에 관하여 설명했다. 본 실시예에서는, 격막과 시료가 접촉한 상태에서 대기하 분위기 아래에 배치된 시료의 현미경 관찰하는 장치에 대해서 기재한다.
도 10에, 본 실시예에 있어서의 하전입자장치를 나타낸다. 하전입자광학경통(2) 및 케이싱(7)은 도면에 나타나 있지 않은 기둥이나 베이스에 의해 지지되어 있는 것으로 한다. 또한, 도 9에서 나타나 있는 바와 같이 하전입자광학경통이 격막(10)에 대하여 하측에 있는 구성이여도 된다. 본 구성에서는, 격막(10)에 시료(6)가 접촉하고 있는 점 이외의 구성은 실시예 1과 같다. 실시예 2나 3에서 설명한 도 6이나 도 7과 같이 일반적인 하전입자 현미경 장치에 어태치먼트를 붙인 장치 구성에 있어서 격막에 시료를 접촉시킬 경우도 본 실시예에 포함된다. 본 구성의 경우, 격막 유지 부재(155) 상에 시료(6)를 탑재한 후에, 격막 유지 부재(155)를 케이싱(7)에 접촉시켜서 제 1 공간(11)을 진공으로 한 뒤, 하전입자 현미경 관찰을 실시 가능하다. 이 때 케이싱(7)의 내부인 제 1 공간(11)은 저진공으로 한다. 또, 도 10에서는 하전입자광학경통(2)의 하부에 케이싱(7)을 설치하여 저진공실로 하고 있지만, 하전입자광학경통(2)의 내부가 복수의 방으로 나뉘어져 있어서 각각의 방에서 기압을 유지하는 것이 가능할 경우에는 가장 시료에 가까운 측의 방을 저진공 상태로 하고, 하전입자광학경통(2)의 1차 전자선의 출사구에, 직접, 시료를 유지한 격막(10) 또는 이것을 유지하는 격막 유지 부재(155)를 배치해도 된다.
이것에 의해, 격막의 시료가 접촉하는 면과는 반대의 면이 저진공 분위기에 접하는 것으로 되고, 실시예 1에서 설명한 바와 같이, 격막에의 컨태미네이션의 부착을 저감하는 것이 가능해 진다. 특히 본 실시예의 구성에서는, 시료가 격막에 직접 접촉하고 있으므로, 관찰 위치를 이동시키기 위해서 격막 유지 부재(155)의 위치를 미세 조정하는 경우가 많고, 그 때의 진동이나 충격에 의해 격막이 파손되기 쉽다. 또한, 격막이 파손되면 시료가 하전입자광학경통 내부로 비산하여, 하전 입자선 장치 자체가 고장날 우려가 있다. 따라서, 전술한 바와 같이 컨태미네이션을 저감하여 격막 상에 응력 집중을 일으키지 않는 것이 특히 중요해진다.
다음의 예로서, 도 11에 격막과 시료를 접촉시켜서 관찰하는 다른 하전입자 현미경 장치에 대해서 기재한다. 본 구성에서는 시료(6)를 대기 또는 소정의 가스 분위기하의 상태에서 내포하는 것이 가능한 용기(250)가 하전입자장치의 시료 스테이지(5) 상에 배치되어 있다. 이 경우에는, 시료(6)는 격막(10)에 접촉하고 있다. 하전입자 현미경 장치 외부에서 용기(250)의 덮개(251)에 구비된 격막(10) 상에 시료(6)를 탑재하고, 덮개(251)와 용기(250)를 도면에 나타나 있지 않은 나사 등으로 고정한다. 다음으로, 하전입자 현미경 장치 내부에 시료가 내포된 용기(250)를 도입하고, 하전입자 현미경 관찰을 실시한다. 하전 입자원(8)으로부터 방출된 하전 입자선은 몇 개의 광학 렌즈(1)을 경유한 뒤 진공 공간(11)을 통과하고, 격막(10)을 경유하여 시료(6)에 도달한다.
본 장치에 있어서도, 실시예 1과 마찬가지로 케이싱(7) 내부를 저진공으로 하기 위한 도입 포트(60)를 갖고, 시료의 관찰 시에는 케이싱(7)의 내부를 저진공 상태로 한다. 도입 포트(60)에 관한 구성은 실시예 5와 마찬가지이기 때문에 상세한 설명은 생략한다. 실시예 5와 마찬가지로, 일반적인 저진공 주사 전자 현미경에서는 시료실의 진공도를 저진공으로부터 고진공의 임의의 압력으로 제어할 수 있으므로, 본 실시예의 경우에는 새롭게 케이싱을 설치하지 않고, 종래의 주사 전자 현미경의 시료실을 이용하여, 격막의 진공측의 면에 접하는 공간을 저진공 상태로 할 수 있다.
또, 본 발명은 상기한 실시예에 한정되는 것이 아니며, 여러가지 변형예가 포함된다. 예를 들면, 상기한 실시예는 본 발명을 이해하기 쉽게 설명하기 위해 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것이 아니다. 또한, 임의의 실시예의 구성의 일부를 다른 실시예의 구성으로 대체하는 것이 가능하며, 또한, 임의의 실시예의 구성에 다른 실시예의 구성을 더하는 것도 가능하다. 또한, 각 실시예의 구성의 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것이 가능하다. 또한 상기의 각 구성, 기능, 처리부, 처리 수단 등은, 그들의 일부 또는 전부를, 예를 들면 집적 회로로 설계하는 등에 의해 하드웨어로 실현해도 된다. 또한, 상기의 각 구성, 기능 등은, 프로세서가 각각의 기능을 실현하는 프로그램을 해석하고, 실행함으로써 소프트웨어로 실현해도 된다.
각 기능을 실현하는 프로그램, 테이블, 파일 등의 정보는, 메모리나, 하드디스크, SSD(Solid State Drive) 등의 기록장치, 또는, IC 카드, SD 카드, 광디스크 등의 기록 매체에 둘 수 있다.
또한, 제어선이나 정보선은 설명상 필요하다고 생각되는 것을 나타내고 있으며, 제품상 반드시 모든 제어선이나 정보선을 나타내고 있다고는 할 수 없다. 실제로는 거의 모든 구성이 서로 접속되어 있다고 생각해도 된다.
1: 광학 렌즈, 2: 하전입자광학경통, 3: 검출기, 4: 진공 펌프, 5: 시료 스테이지, 6: 시료, 7: 케이싱, 8: 하전 입자원, 9: 베이스, 10: 격막, 11: 제 1 공간, 12: 제 2 공간, 14: 리크 밸브, 15: 개방면, 16: 진공배관, 35: 컴퓨터, 36: 상위 제어부, 37: 하위 제어부, 43,44: 통신선, 52: 시료대, 52a: 중심축, 52b: 핀, 53: 하전입자선 현미경, 54: 하전 입자선의 광축, 56: 접촉 방지 부재, 60: 도입 포트, 61: 니들 밸브, 62: 오리피스, 63: 니들 밸브, 64: 밸브, 100: 가스 공급관, 101: 가스 제어용 밸브, 102: 연결부, 103: 가스봄베 또는 진공 펌프, 104: 압력 조정 밸브, 107: 지지판, 108,109: 조작 손잡이, 121: 제 2 케이싱, 122: 덮개 부재, 123,124,126: 진공 밀봉 부재, 131: 본체부, 132: 맞춤부, 154: 신호증폭기, 155: 격막 유지 부재, 160: 광학 현미경, 160a: 광학 현미경 광축, 161: 시료설치대, 162: 위치 결정 구조, 163: 시료설치대, 164: 위치 결정 구조, 165: 이동 기구, 165a,165b: 손잡이, 200: 격납 용기, 201: 덮개, 202: 시료대, 203: 시료 스테이지, 204: 조작부, 250: 용기, 251: 덮개, 270: 베이스

Claims (13)

  1. 대기압 분위기의 공간 내에 재치(載置)된 시료에 전자선을 조사함으로써 상기 시료로부터 발생하는 신호에 의거하여 상기 시료의 화상을 취득하는 주사 전자 현미경에 있어서,
    전자원(電子源)을 포함해 1차 전자선을 상기 시료에 조사하는 전자 광학 경통과,
    상기 전자 광학 경통 내부와 직결되며, 적어도 상기 1차 전자선의 조사중에, 내부가 상기 전자 광학 경통 내부보다 저진공의 상태로 되는 케이싱과,
    상기 시료가 재치되는 상기 대기압 분위기의 공간과 상기 케이싱의 내부를 격리하며, 또한 상기 1차 전자선이 투과하는 격막을 구비하고,
    상기 1차 전자선의 상기 격막에의 조사에 의해, 상기 격막 상의 컨태미네이션(contamination)을 분해하는 것을 특징으로 하는 주사 전자 현미경.
  2. 제 1 항에 있어서,
    상기 케이싱 내부의 기압은, 적어도 상기 1차 전자선의 조사중에, 0.1Pa 이상 1000Pa 이하로 되는 것을 특징으로 하는 주사 전자 현미경.
  3. 삭제
  4. 제 1 항에 있어서,
    상기 전자 광학 경통 내부의 기압을 상기 케이싱의 내부의 기압보다도 낮게 유지하는 오리피스를 상기 전자 광학 경통의 바로 아래에 갖는 것을 특징으로 하는 주사 전자 현미경.
  5. 제 1 항에 있어서,
    상기 케이싱은, 상기 케이싱의 내부에 기체를 도입하는 포트와, 당해 기체의 유량을 제어하는 유량 조정 부재를 구비하는 것을 특징으로 하는 주사 전자 현미경.
  6. 제 1 항에 있어서,
    상기 케이싱의 내부의 기압은 변경 가능한 것을 특징으로 하는 주사 전자 현미경.
  7. 제 6 항에 있어서,
    상기 케이싱의 내부의 기압을, 상기 시료의 관찰 대상 위치를 결정하는 시야 찾기 모드일 때는 0.1Pa 이상 1000Pa 이하로 하고, 상기 시료의 화상 취득 모드일 때에는 0.1Pa 이하로 하도록 제어하는 제어부를 구비하는 것을 특징으로 하는 주사 전자 현미경.
  8. 대기압 분위기의 공간 내에 재치된 시료에 1차 전자선을 조사함으로써 상기 시료로부터 발생하는 신호에 의거하여 상기 시료의 화상을 취득하는 화상 생성 방법에 있어서,
    전자원으로부터 발생한 1차 전자선을 전자 광학 경통으로부터 출사(出射)하고,
    상기 전자 광학 경통으로부터 출사된 상기 1차 전자선을 상기 전자 광학 경통의 내부보다 저진공의 상태로 된 케이싱 내부를 통과시키고,
    상기 케이싱 내부를 통과한 상기 1차 전자선을, 상기 시료가 재치되는 상기 대기압 분위기의 공간과 상기 케이싱의 내부를 격리하는 격막을 투과시키고,
    상기 격막을 투과한 상기 1차 전자선을 상기 시료에 조사하고,
    상기 1차 전자선의 상기 격막에의 조사에 의해, 상기 격막 상의 컨태미네이션을 분해하는 것을 특징으로 하는 화상 생성 방법.
  9. 제 8 항에 있어서,
    상기 케이싱 내부의 기압은 0.1Pa 이상 1000Pa 이하인 것을 특징으로 하는 화상 생성 방법.
  10. 삭제
  11. 제 8 항에 있어서,
    상기 전자 광학 경통 내부의 기압을, 상기 케이싱의 내부의 기압보다도 낮게 하는 것을 특징으로 하는 화상 생성 방법.
  12. 제 8 항에 있어서,
    상기 케이싱의 내부의 기압은 변경 가능한 것을 특징으로 하는 화상 생성 방법.
  13. 제 12 항에 있어서,
    상기 케이싱의 내부의 기압을 0.1Pa 이상 1000Pa 이하로 한 상태에서 상기 시료의 관찰 대상 위치를 결정하는 시야 찾기를 행하고,
    그 후 상기 케이싱 내부의 기압을 0.1Pa 이하로 한 상태에서 상기 시료의 화상을 취득하는 것을 특징으로 하는 화상 생성 방법.
KR1020167019382A 2014-02-27 2015-02-10 주사 전자 현미경 및 화상 생성 방법 KR101840232B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014036137A JP6302702B2 (ja) 2014-02-27 2014-02-27 走査電子顕微鏡および画像生成方法
JPJP-P-2014-036137 2014-02-27
PCT/JP2015/053598 WO2015129446A1 (ja) 2014-02-27 2015-02-10 走査電子顕微鏡および画像生成方法

Publications (2)

Publication Number Publication Date
KR20160103034A KR20160103034A (ko) 2016-08-31
KR101840232B1 true KR101840232B1 (ko) 2018-03-20

Family

ID=54008770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167019382A KR101840232B1 (ko) 2014-02-27 2015-02-10 주사 전자 현미경 및 화상 생성 방법

Country Status (6)

Country Link
US (2) US9875877B2 (ko)
JP (1) JP6302702B2 (ko)
KR (1) KR101840232B1 (ko)
CN (1) CN105940478B (ko)
DE (1) DE112015000280B4 (ko)
WO (1) WO2015129446A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141157B2 (en) 2015-06-29 2018-11-27 Hitachi High-Technologies Corporation Method for adjusting height of sample and observation system
JP6464048B2 (ja) * 2015-06-30 2019-02-06 日本電子株式会社 電子顕微鏡
WO2017033219A1 (ja) * 2015-08-21 2017-03-02 株式会社 日立ハイテクノロジーズ 荷電粒子顕微鏡の観察支援ユニットおよびこれを用いた試料観察方法
KR101897460B1 (ko) * 2016-11-16 2018-09-12 한국표준과학연구원 교환가능한 전자현미경용 전자총 및 이를 포함하는 전자현미경
CN106645250B (zh) * 2016-11-21 2024-04-26 宁波聚瑞精密仪器有限公司 一种具备光学成像功能的扫描透射电子显微镜
US11239051B2 (en) * 2017-02-13 2022-02-01 Hitachi High-Tech Corporation Charged particle beam device
EP3615947A4 (en) * 2017-04-24 2021-01-13 Molecular Vista Inc. FORCE MICROSCOPE WITH HELIUM ATMOSPHERE
KR101954328B1 (ko) 2017-05-16 2019-03-06 (주)코셈 고분해능 주사전자현미경
DE112017007498B4 (de) * 2017-06-02 2020-11-19 Hitachi High-Tech Corporation Ladungsträgerstrahlvorrichtung
KR102027559B1 (ko) * 2018-06-29 2019-10-01 (주)코셈 고분해능 주사전자현미경
KR102344698B1 (ko) * 2019-03-25 2021-12-29 (주)코셈 주사 전자 현미경의 착탈 가능한 컬럼 유닛, 및 그 제공방법
EP4010680A4 (en) * 2019-08-06 2024-01-24 The University of Kansas APPARATUS AND METHOD FOR PREPARING AN ULTRAMICROTOME SAMPLE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289129A (ja) 2001-03-26 2002-10-04 Jeol Ltd 低真空走査電子顕微鏡
JP2010230417A (ja) * 2009-03-26 2010-10-14 Jeol Ltd 試料の検査装置及び検査方法
JP2013175377A (ja) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp 荷電粒子線装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949076A (en) * 1996-02-26 1999-09-07 Kabushiki Kaisha Toshiba Charged beam applying apparatus
AUPQ932200A0 (en) * 2000-08-11 2000-08-31 Danilatos, Gerasimos Daniel Environmental scanning electron microscope
JP5077863B2 (ja) * 2005-01-06 2012-11-21 独立行政法人物質・材料研究機構 低真空走査型電子顕微鏡を用いた炭素系材料の微細加工方法とその装置
EP2365321B1 (en) * 2006-12-19 2013-10-02 JEOL Ltd. Sample inspection apparatus, sample inspection method, and sample inspection system
US8334510B2 (en) * 2008-07-03 2012-12-18 B-Nano Ltd. Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment
KR101243422B1 (ko) * 2009-01-22 2013-03-13 가부시키가이샤 히다치 하이테크놀로지즈 전자 현미경
JP5352262B2 (ja) * 2009-02-06 2013-11-27 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2011243483A (ja) * 2010-05-20 2011-12-01 Jeol Ltd 試料保持体、検査装置、及び検査方法
JP5320418B2 (ja) * 2011-01-31 2013-10-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5699023B2 (ja) 2011-04-11 2015-04-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5825964B2 (ja) * 2011-10-05 2015-12-02 株式会社日立ハイテクノロジーズ 検査又は観察装置及び試料の検査又は観察方法
JP5936424B2 (ja) 2012-04-20 2016-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5923412B2 (ja) * 2012-08-24 2016-05-24 株式会社日立ハイテクノロジーズ 観察装置および光軸調整方法
JP5936497B2 (ja) * 2012-09-14 2016-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料観察方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289129A (ja) 2001-03-26 2002-10-04 Jeol Ltd 低真空走査電子顕微鏡
JP2010230417A (ja) * 2009-03-26 2010-10-14 Jeol Ltd 試料の検査装置及び検査方法
JP2013175377A (ja) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp 荷電粒子線装置

Also Published As

Publication number Publication date
CN105940478A (zh) 2016-09-14
WO2015129446A1 (ja) 2015-09-03
JP6302702B2 (ja) 2018-03-28
DE112015000280T5 (de) 2016-09-29
KR20160103034A (ko) 2016-08-31
US20180122617A1 (en) 2018-05-03
CN105940478B (zh) 2018-10-19
DE112015000280B4 (de) 2021-01-21
US9875877B2 (en) 2018-01-23
US10157724B2 (en) 2018-12-18
US20160343538A1 (en) 2016-11-24
JP2015162316A (ja) 2015-09-07

Similar Documents

Publication Publication Date Title
KR101840232B1 (ko) 주사 전자 현미경 및 화상 생성 방법
KR101589400B1 (ko) 시료 관찰 방법
KR101671323B1 (ko) 하전 입자선 장치 및 시료 관찰 방법
KR101675386B1 (ko) 하전 입자선 장치 및 시료 관찰 방법
JP6078637B2 (ja) 荷電粒子線装置およびフィルタ部材
JP6035602B2 (ja) 荷電粒子線装置、試料台ユニット、及び試料観察方法
US9466457B2 (en) Observation apparatus and optical axis adjustment method
KR20150016349A (ko) 하전 입자선 장치
KR102000407B1 (ko) 하전 입자 현미경의 관찰 지원 유닛 및 이것을 사용한 시료 관찰 방법
KR20150022983A (ko) 하전 입자선 장치 및 시료 관찰 방법
US10141157B2 (en) Method for adjusting height of sample and observation system
JP6118870B2 (ja) 試料観察方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right