KR101809282B1 - 연마 감시 방법, 연마 종점 검출 방법 및 연마 장치 - Google Patents

연마 감시 방법, 연마 종점 검출 방법 및 연마 장치 Download PDF

Info

Publication number
KR101809282B1
KR101809282B1 KR1020120086630A KR20120086630A KR101809282B1 KR 101809282 B1 KR101809282 B1 KR 101809282B1 KR 1020120086630 A KR1020120086630 A KR 1020120086630A KR 20120086630 A KR20120086630 A KR 20120086630A KR 101809282 B1 KR101809282 B1 KR 101809282B1
Authority
KR
South Korea
Prior art keywords
polishing
current sensor
eddy current
substrate
output signal
Prior art date
Application number
KR1020120086630A
Other languages
English (en)
Other versions
KR20130018604A (ko
Inventor
다로오 다까하시
Original Assignee
가부시키가이샤 에바라 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011173792A external-priority patent/JP6050571B2/ja
Priority claimed from JP2011253801A external-priority patent/JP5705093B2/ja
Application filed by 가부시키가이샤 에바라 세이사꾸쇼 filed Critical 가부시키가이샤 에바라 세이사꾸쇼
Publication of KR20130018604A publication Critical patent/KR20130018604A/ko
Application granted granted Critical
Publication of KR101809282B1 publication Critical patent/KR101809282B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • B24B49/105Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means using eddy currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은, 회전하는 연마 테이블 상의 연마면에 연마 대상의 기판을 가압해서 기판 상의 도전막을 연마하고, 연마중에 연마 테이블에 설치된 와전류 센서에 의해 도전막의 두께를 감시하는 방법이 제공된다. 이 방법은, 연마중의 와전류 센서의 출력 신호를 취득하고, 와전류 센서의 상방에 기판이 존재하지 않을 때의 상기 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출하고, 상기 출력 조정량을 사용해서 와전류 센서의 상방에 기판이 존재할 때의 상기 출력 신호를 보정하고, 상기 보정된 출력 신호에 기초하여 기판 상의 도전막의 두께를 감시한다.

Description

연마 감시 방법, 연마 종점 검출 방법 및 연마 장치{POLISHING MONITORING METHOD, POLISHING ENDPOINT DETECTING METHOD AND POLISHING APPARATUS}
본 발명은 반도체 웨이퍼 등의 기판의 표면에 형성된 도전막의 두께 변화를 연마중에 감시하는 연마 감시 방법 및 연마 장치에 관한 것이다.
또한, 본 발명은 반도체 웨이퍼 등의 연마 대상물(기판)을 연마하는 연마 장치에 사용되는 연마 종점 검출 방법에 관한 것으로, 특히 와전류 센서를 사용한 연마 종점 검출 방법에 관한 것이다. 또한, 본 발명은 상기 연마 종점 검출 방법을 실행 가능한 연마 장치에 관한 것이다.
최근, 반도체 디바이스의 고집적화·고밀도화에 수반하여, 회로의 배선이 점점 미세화되고, 다층 배선의 층수도 증가하고 있다. 회로의 미세화를 도모하면서 다층 배선을 실현하려고 하면, 하측의 층의 표면 요철을 답습하면서 단차가 더욱 커지므로, 배선층수가 증가함에 따라, 박막 형성에 있어서의 단차 형상에 대한 막 피복성(스텝 커버리지)이 나빠진다. 따라서, 다층 배선하기 위해서는, 이 스텝 커버리지를 개선하여, 알맞은 과정으로 평탄화 처리를 해야 한다. 또한 광 리소그래피의 미세화와 함께 초점 심도가 얕아지기 때문에, 반도체 디바이스 표면의 요철 단차가 초점 심도 이하로 수용되도록 반도체 디바이스 표면을 평탄화 처리할 필요가 있다.
따라서, 반도체 디바이스의 제조 공정에 있어서는, 반도체 디바이스 표면의 평탄화 기술이 점점 중요해지고 있다. 이 평탄화 기술 중, 가장 중요한 기술은, 화학적 기계 연마[CMP(Chemical Mechanical Polishing)]이다. 이 화학적 기계적 연마는, 연마 장치를 사용하여, 세리아(CeO2) 등의 지립을 포함한 연마액을 연마 패드에 공급하면서 반도체 웨이퍼 등의 기판을 연마 패드에 미끄럼 접촉시켜서 연마를 행하는 것이다.
상술한 CMP 프로세스를 행하는 연마 장치는, 연마 패드를 갖는 연마 테이블과, 반도체 웨이퍼(기판)를 보유 지지하기 위한 탑링 또는 연마 헤드 등으로 불리는 기판 보유 지지 장치를 구비하고 있다. 기판을 연마할 때는, 연마액 공급 기구로부터 연마액을 연마 패드 상에 공급하면서, 탑링에 의해 기판의 표면을 연마 패드에 가압한다. 탑링과 연마 테이블을 각각 회전시켜서 기판과 연마 패드를 상대 이동시킴으로써, 기판의 표면을 구성하는 막을 연마한다.
이러한 연마 장치는, 반도체 웨이퍼(기판)의 표면에 형성된 배리어막이나 금속막 등의 도전막을 연마하는 연마 공정에 널리 사용되고 있다. 연마 공정의 종점 검지나, 연마 중에 있어서의 연마 조건의 변경은, 도전막의 두께에 기초하여 결정되기 때문에, 연마 장치는, 일반적으로, 연마중의 도전막의 두께를 검출하는 막 두께 검출기를 구비하고 있다. 막 두께 검출기의 대표적인 장치로서 와전류 센서를 들 수 있다.
와전류 센서는, 연마 테이블 내에 배치되어 있고, 기판의 연마중에, 연마 테이블의 회전에 수반하여 와전류 센서가 기판의 하방을 통과하고 있는 사이 기판 상의 도전막에 와전류를 유기시키고, 이 와전류의 자계에 기인하는 임피던스의 변화로부터 도전막의 두께를 검출하도록 구성되어 있다.
도 39는, 반도체 웨이퍼(기판)의 연마를 개시하고나서 반도체 웨이퍼 상의 도전막이 클리어되기(없어지기)까지의 연마 시간(t)과 와전류 센서의 신호값의 관계를 도시하는 도면이다. 도 39에 도시한 바와 같이, 반도체 웨이퍼의 연마 개시 직후는 도전막이 두껍기 때문에, 와전류 센서의 출력은 높아지지만, 연마가 진행함에 따라서 도전막이 얇아지기 때문에, 와전류 센서의 신호값이 저하되어 간다. 그리고, 도전막이 클리어되면(없어지면), 와전류 센서의 신호값이 일정해진다. 이 신호값이 일정해진 시점(특이점)을 검출함으로써, 연마 종점에 도달한 것을 판단할 수 있다.
그런데, 와전류 센서의 주위 온도, 연마 패드에의 물얼룩 등의 사용 환경의 변화나, 와전류 센서 그 자체의 경시 변화 등에 의해, 와전류 센서의 출력 신호의 값이 드리프트(평행 이동)하는 경우가 있다. 이렇게 와전류 센서의 출력 신호의 값이 드리프트하면, 도 39에 도시한 바와 같이, 실선으로부터 점선과 같이 그래프 자체가 상방으로 대략 평행하게 이동한다. 이 경우에도, 특이점은 마찬가지로 평행 이동하므로, 연마 종점을 검출하는 것은 가능하다. 그러나, 도전막을 일부 남겨서 소정의 두께로 연마를 정지하거나 또는, 저압·저회전 속도 등 다른 연마 조건으로 전환하려고 하는 경우, 신호의 값(Z2)을 보아 특징점으로서 검출할 필요가 있다. 이렇게 신호의 값에 따라서 특징점을 검지하는 경우, 드리프트에 의해 와전류 센서의 출력 신호의 값과 막 두께의 대응 관계가 어긋나버리므로, 검출해야 할 연마 시간에 오차가 발생해버린다는 문제가 있다.
반도체 디바이스의 제조 공정에서는, 실리콘 웨이퍼 상에 각종 재료가 막 형상으로 반복해 형성되어, 다층 배선 구조를 형성한다. 이러한 다층 배선 구조를 형성하기 위해서, CMP(화학 기계 연마)가 사용된다. 예를 들어, 배선용 홈이 형성된 기판의 표면에 금속막을 형성하고, 그 후 CMP에 의해 홈 내에 형성된 금속막만을 남겨서 불필요한 막을 제거함으로써 금속 배선을 형성한다.
이러한 금속 배선의 형성 공정에 있어서는, 불필요한 금속막이 제거되었는지 여부(즉, 금속 잔막이 있는지 여부)를 검출하기 위해서, 와전류 센서가 널리 사용되고 있다. 그러나, 다층 배선 구조를 갖는 기판에서는, 연마되는 금속막의 하층에 존재하는 배선이 와전류 센서의 출력 신호에 영향을 미치고, 잔막의 검출을 방해하게 된다.
이러한 하층 배선의 영향을 제거하기 위해서, 종래에는 다음과 같은 방법이 채용되어 있다.
(1) 기판의 전체면에 걸쳐서 취득된 와전류 센서의 출력 신호의 평균값을 막 두께로 한다.
(2) 미리 설정된 기판면 내의 영역에서의 최소 출력 신호를 막 두께로 한다.
(3) 소정 시간내(예를 들어, 와전류 센서의 출력 신호의 이동 평균 시간내)에 와전류 센서가 기판 표면 상에 그리는 궤적이 기판의 전체 둘레에 걸쳐 거의 균 등하게 분포하도록 탑링과 연마 테이블의 회전 속도비를 조정한다.
그러나, 상술한 종래의 방법으로는, 기판의 표면 내의 영역마다 막 두께 정보를 얻는 것은 곤란하였다.
본 발명은 상술한 사정을 감안하여 이루어진 것으로, 연마 장치의 가동률을 저하시키지 않고서 와전류 센서의 교정을 행할 수 있고, 정밀도가 높은 막 두께 감시를 가능하게 하는 연마 감시 방법 및 연마 장치를 제공하는 것을 제1의 목적으로 한다.
또한, 본 발명은 연마 대상막의 하층의 금속 재료의 영향을 배제하고, 와전류 센서를 사용하여, 기판 표면 내의 각 영역에서의 막 두께 정보를 취득할 수 있고, 얻어진 막 두께 정보로부터 기판의 연마 종점을 결정하는 방법을 제공하는 것을 제2의 목적으로 한다.
또한, 본 발명은 그러한 연마 종점 검출 방법을 실행 가능한 연마 장치를 제공하는 것을 제3의 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명의 제1 형태는, 회전하는 연마 테이블 상의 연마면에 연마 대상의 기판을 가압해서 기판 상의 도전막을 연마하고, 연마중에 연마 테이블에 설치된 와전류 센서에 의해 도전막의 두께를 감시하는 연마 감시 방법이며, 연마중의 와전류 센서의 출력 신호를 취득하고, 와전류 센서의 상방에 기판이 존재하지 않을 때의 상기 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출하고, 상기 출력 조정량을 사용해서 와전류 센서의 상방에 기판이 존재할 때의 상기 출력 신호를 보정하고, 상기 보정된 출력 신호에 기초하여 기판 상의 도전막의 두께를 감시하는 것을 특징으로 한다.
본 발명에 따르면, 회전하는 연마 테이블 상의 연마면에 연마 대상의 기판을 가압해서 기판 상의 도전막을 연마하는 연마 공정을 개시하고, 이 연마중의 와전류 센서의 출력 신호를 취득한다. 그리고, 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출한다. 와전류 센서의 출력 신호는, 사용 환경의 변화나 와전류 센서 그 자체의 경시 변화 등에 의해 드리프트(평행 이동)하는 경우가 있지만, 상기 출력 조정량을 사용해서 와전류 센서의 상방에 기판이 존재할 때의 출력 신호를 보정함으로써, 드리프트량에 상당하는 만큼 출력 신호로부터 제거할 수 있다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 출력 신호는, 상기 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분 및 리액턴스 성분을 좌표로 정의했을 때에, 도전막의 두께가 작아짐에 따라서 좌표계의 원점과 상기 좌표로부터 특정되는 점과의 거리가 짧아지는 위치에 상기 좌표를 회전 및 이동시킨 좌표로서 표현되는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 상기 좌표계의 원점을 이동시킴으로써 행하는 것을 특징으로 한다.
본 발명에 따르면, 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분 및 리액턴스 성분을 나타내는 좌표계의 원점을 평행 이동시킴으로써, 드리프트량에 상당하는 만큼을 출력 신호로부터 제거할 수 있다.
본 발명의 바람직한 형태에 의하면, 상기 보정에 의해 이동한 좌표계의 원점과 상기 임피던스의 좌표로부터 특정되는 점과의 거리로부터 상기 도전막의 두께를 감시하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 센서 코일 단부와 도전막 사이의 거리가 상이한 조건 하에서, 막 두께마다, 상기 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분과 리액턴스 성분을 취득하고, 상기 저항 성분과 상기 리액턴스 성분을 직교 좌표축 상에 표시하고, 상기 도전막의 막 두께마다, 상기 저항 성분 및 상기 리액턴스 성분으로 이루어지는 좌표에 의해 특정되는 점을 연결하는 예비 측정 직선을 긋고, 상기 예비 측정 직선끼리 교차하는 교점인 기준점을 미리 구해 두는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 미리 구해 둔 상기 기준점을 이동시킴으로써 행하는 것을 특징으로 한다.
와전류 센서의 출력 신호는, 와전류 센서 그 자체의 경시 변화 등에 의해 드리프트하는 경우가 있고, 와전류 센서의 출력 신호가 드리프트하면, 기준점을 통하는 기준선과, 와전류 센서의 출력 신호와 기준점을 연결하는 선과의 각도가 변화하게 되지만, 본 발명에 따르면, 드리프트량에 상당하는 만큼만 미리 구해 둔 기준점을 이동시킴으로써, 드리프트량에 상당하는 만큼을 출력 신호로부터 제거할 수 있다.
본 발명의 바람직한 형태에 의하면, 상기 보정에 의해 이동한 기준점과 상기 임피던스의 좌표에 의해 특정되는 점을 연결하는 직선이 이루는 각도로부터 상기 도전막의 두께를 감시하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호의 N 회전 수의 평균값을 사용하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 연마면 상 또는 상방에 기판 보유 지지용 탑링이 존재하지 않는 영역으로부터의 출력 신호만을 사용해서 와전류 센서의 출력 조정량을 산출하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 연마면 상 또는 상방에 기판 보유 지지용 탑링, 연마면의 드레싱용 드레서 및 연마면의 클리닝용 애토마이저가 존재하지 않는 영역으로부터의 출력 신호만을 사용해서 와전류 센서의 출력 조정량을 산출하는 것을 특징으로 한다.
본 발명에 따르면, 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 연마면 상 또는 상방에 아무것도 존재하지 않을 때의 출력 신호만을 사용한다. 이에 의해, 와전류 센서에 영향을 미치지 않는 범위의 신호만을 사용할 수 있다.
본 발명의 제2 형태는, 회전하는 연마 테이블 상의 연마면에 연마 대상의 기판을 가압해서 기판 상의 도전막을 연마하고, 연마중에 연마 테이블에 설치된 와전류 센서에 의해 도전막의 두께를 감시하는 연마 감시 방법이며, 상기 와전류 센서의 센서 코일 단부와 도전막 사이의 거리가 상이한 조건 하에서, 막 두께마다, 상기 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분과 리액턴스 성분을 취득하고, 상기 저항 성분과 상기 리액턴스 성분을 직교 좌표축 상에 표시하고, 상기 도전막의 막 두께마다, 상기 저항 성분 및 상기 리액턴스 성분으로 이루어지는 좌표에 의해 특정되는 점을 연결하는 예비 측정 직선을 긋고, 상기 예비 측정 직선끼리 교차하는 교점인 기준점을 구하고, 연마중 또는 연마 전후의 상기 와전류 센서의 출력 신호를 사용해서 상기 기준점을 보정하고, 보정 후의 기준점과 임피던스의 좌표에 의해 특정되는 점을 연결하는 직선이 이루는 각으로부터 막의 두께를 감시하는 것을 특징으로 한다.
와전류 센서의 출력 신호는, 와전류 센서 그 자체의 경시 변화 등에 의해 드리프트 하는 경우가 있고, 와전류 센서의 출력 신호가 드리프트하면, 기준점을 통하는 기준선과, 와전류 센서의 출력 신호와 기준점을 연결하는 선과의 각도가 변화하게 되지만, 본 발명에 따르면, 드리프트량에 상당하는 만큼만 미리 구해 둔 기준점을 보정하고, 보정 후의 기준점을 통하는 기준선과, 와전류 센서의 출력 신호와 기준점을 연결하는 선과의 각도를 산출함으로써, 도전막의 막 두께를 검출할 수 있다. 이와 같이, 와전류 센서의 출력 신호의 값의 드리프트량을 검출하고, 기준점을 드리프트량에 상당하는 만큼만 시프트함으로써, 드리프트 전후의 각도를 동일한 값으로 유지할 수 있다.
본 발명의 제3 형태는, 연마면을 갖고 회전하는 연마 테이블과, 연마 대상의 기판을 상기 연마면에 가압해서 기판 상의 도전막을 연마하는 탑링과, 상기 연마 테이블 내에 설치된 와전류 센서와, 상기 와전류 센서의 출력 신호에 기초하여 도전막의 두께를 감시하는 모니터링 장치를 구비하고, 상기 모니터링 장치는, 연마중의 와전류 센서의 출력 신호를 취득하고, 와전류 센서의 상방에 기판이 존재하지 않을 때의 상기 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출하고, 상기 출력 조정량을 사용해서 와전류 센서의 상방에 기판이 존재할 때의 상기 출력 신호를 보정하고, 상기 보정된 출력 신호에 기초하여 기판 상의 도전막의 두께를 감시하는 것을 특징으로 하는 연마 장치다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 출력 신호는, 상기 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분 및 리액턴스 성분을 좌표로 정의했을 때, 도전막의 두께가 작아짐에 따라서 좌표계의 원점과 상기 좌표로부터 특정되는 점과의 거리가 짧아지는 위치에 상기 좌표를 회전 및 이동시킨 좌표로서 표현되는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 상기 좌표계의 원점을 이동시킴으로써 행하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 보정에 의해 이동한 좌표계의 원점과 상기 임피던스의 좌표로부터 특정되는 점과의 거리로부터 상기 도전막의 두께를 감시하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 센서 코일 단부와 도전막 사이의 거리가 상이한 조건 하에서, 막 두께마다, 상기 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분과 리액턴스 성분을 취득하고, 상기 저항 성분과 상기 리액턴스 성분을 직교 좌표축 상에 표시하고, 상기 도전막의 막 두께마다, 상기 저항 성분 및 상기 리액턴스 성분으로 이루어지는 좌표에 의해 특정되는 점을 연결하는 예비 측정 직선을 긋고, 상기 예비 측정 직선끼리 교차하는 교점인 기준점을 미리 구해 두는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 미리 구해 둔 상기 기준점을 이동시킴으로써 행하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 보정에 의해 이동한 기준점과 상기 임피던스의 좌표로 특정되는 점을 연결하는 직선이 이루는 각도로부터 상기 도전막의 두께를 감시하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 출력 신호의 보정은, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호의 N 회전 수의 평균값을 사용하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 연마면 상 또는 상방에 기판 보유 지지용 탑링이 존재하지 않는 영역으로부터의 출력 신호만을 사용해서 와전류 센서의 출력 조정량을 산출하는 것을 특징으로 한다.
본 발명의 바람직한 형태에 의하면, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 연마면 상 또는 상방에 기판 보유 지지용의 탑링, 연마면의 드레싱용 드레서 및 연마면의 클리닝용 애토마이저가 존재하지 않는 영역으로부터의 출력 신호만을 사용해서 와전류 센서의 출력 조정량을 산출하는 것을 특징으로 한다.
본 발명의 제4 형태는, 기판을 탑링에 의해 연마 테이블 상의 연마 패드에 누르면서, 상기 탑링과 상기 연마 테이블을 각각 회전시킴으로써 상기 기판의 막을 연마하는 기판 연마 공정의 연마 종점을 검출하는 방법이며, 상기 기판의 연마중에 와전류 센서를 상기 기판의 표면을 가로지르도록 이동시키고, 상기 와전류 센서의 임피던스의 저항 성분 X 및 유도 리액턴스 성분 Y를 취득하고, 상기 저항 성분 X 및 상기 유도 리액턴스 성분 Y로 이루어지는 좌표 X, Y를 X-Y 좌표계 상에 플롯하고, 상기 X-Y 좌표계 상에는 복수의 임피던스 에리어가 미리 정의되고 있고, 상기 복수의 임피던스 에리어는, 기준 임피던스 에리어와 적어도 하나의 오프셋 임피던스 에리어를 포함하고 있고, 상기 복수의 임피던스 에리어에 각각 속하는 복수의 좌표 X, Y를 사용하여, 상기 복수의 임피던스 에리어마다 복수의 막 두께 지표값을 산출하고, 상기 복수의 막 두께 지표값을 사용해서 상기 복수의 임피던스 에리어마다 상기 기판의 연마 종점을 결정하는 것을 특징으로 한다.
본 발명의 제5 형태는, 기판을 탑링에 의해 연마 테이블 상의 연마 패드에 누르면서, 상기 탑링과 상기 연마 테이블을 각각 회전시킴으로써 상기 기판의 막을 연마하는 기판 연마 공정의 연마 종점을 검출하는 방법이며, 상기 연마 테이블 내에 설치된 와전류 센서를 상기 기판의 표면을 가로지르도록 이동시키면서, 상기 와전류 센서의 출력 신호를 취득하고, 상기 출력 신호를 취득했을 때와 동일한 궤적으로 상기 와전류 센서를 상기 기판의 표면을 가로지르도록 이동시키면서, 상기 와전류 센서의 출력 신호를 취득하고, 상기 와전류 센서의 출력 신호로부터 막 두께 지표값을 산출하고, 상기 막 두께 지표값의 변화로부터 상기 기판의 연마 종점을 결정하는 것을 특징으로 한다.
본 발명의 제6 형태는, 기판을 탑링에 의해 연마 테이블 상의 연마 패드에 누르면서, 상기 탑링과 상기 연마 테이블을 각각 회전시킴으로써 상기 기판의 막을 연마하는 기판 연마 공정의 연마 종점을 검출하는 방법이며, 상기 연마 테이블 내에 설치된 와전류 센서를 상기 기판의 표면을 가로지르도록 이동시키고, 상기 와전류 센서의 출력 신호를 취득하고, 상기 와전류 센서의 출력 신호로부터 막 두께 프로파일을 작성하고, 상기 막 두께 프로파일에 나타나는 볼록부의 위치의 변화로부터, 상기 볼록부가 잔막 또는 막의 하층에 존재하는 금속 재료 중 어느 하나에 기인해서 나타나는지를 판단하여, 상기 잔막에 기인해서 나타나는 볼록부의 크기에 기초하여 상기 기판의 연마 종점을 결정하는 것을 특징으로 한다.
본 발명의 제7 형태는, 연마 패드를 지지하는 회전 가능한 연마 테이블과, 기판을 회전시키면서, 상기 회전하는 연마 테이블 상의 연마 패드에 상기 기판을 누르는 탑링과, 상기 연마 테이블 내에 설치되어, 상기 기판의 표면을 가로지르도록 이동하는 와전류 센서와, 상기 와전류 센서의 출력 신호로부터 상기 기판의 막 두께를 감시하는 모니터링 장치를 구비하고, 상기 모니터링 장치는, 상기 와전류 센서의 임피던스의 저항 성분 X 및 유도 리액턴스 성분 Y를 취득하고, 상기 저항 성분 X 및 상기 유도 리액턴스 성분 Y로 이루어지는 좌표 X, Y를 X-Y 좌표계 상에 플롯하고, 상기 X-Y 좌표계 상에는 복수의 임피던스 에리어가 미리 정의되고 있어, 상기 복수의 임피던스 에리어는, 기준 임피던스 에리어와 적어도 하나의 오프셋 임피던스 에리어를 포함하고 있고, 상기 복수의 임피던스 에리어에 각각 속하는 복수의 좌표 X, Y를 사용하여, 상기 복수의 임피던스 에리어마다 복수의 막 두께 지표값을 산출하고, 상기 복수의 막 두께 지표값을 사용해서 상기 복수의 임피던스 에리어마다 상기 기판의 연마 종점을 결정하는 것을 특징으로 하는 연마 장치다.
본 발명의 제8 형태는, 연마 패드를 지지하는 회전 가능한 연마 테이블과, 기판을 회전시키면서, 상기 회전하는 연마 테이블 상의 연마 패드에 상기 기판을 누르는 탑링과, 상기 연마 테이블 내에 설치되어, 상기 기판의 표면을 가로지르도록 이동하는 와전류 센서와, 상기 와전류 센서의 출력 신호로부터 상기 기판의 막 두께를 감시하는 모니터링 장치를 구비하고, 상기 모니터링 장치는, 상기 와전류 센서가 상기 기판의 표면을 가로지르도록 이동하고 있을 때, 상기 와전류 센서의 출력 신호를 취득하고, 상기 출력 신호를 취득했을 때와 동일한 궤적으로 상기 와전류 센서가 상기 기판의 표면을 가로지르도록 이동하고 있을 때, 상기 와전류 센서의 출력 신호를 취득하고, 상기 와전류 센서의 출력 신호로부터 막 두께 지표값을 산출하고, 상기 막 두께 지표값의 변화로부터 상기 기판의 연마 종점을 결정하는 것을 특징으로 하는 연마 장치다.
상술한 본 발명의 제1 내지 3의 형태에 의하면, 반도체 웨이퍼 등의 기판 상의 도전막 연마 공정 중에 있어서의 와전류 센서의 출력 신호값에 기초하여, 와전류 센서의 교정을 소프트웨어 상에서 행할 수 있다. 따라서, 연마 장치의 가동률을 저하시키지 않고서, 정밀도가 높은 막 두께 감시를 계속적으로 행할 수 있다.
상술한 본 발명의 제4 및 7의 형태에 의하면, 와전류 센서의 출력 신호가 취득될 때마다, 그 출력 신호 X, Y로 이루어지는 좌표는, 그 값을 따라서 복수의 임피던스 에리어 중 어느 하나에 할당된다. 다시 말해, 하층의 금속 재료의 영향의 정도에 기초하여, 센서 출력 신호는 복수의 임피던스 에리어 중 어느 하나에 할당된다. 이와 같이, 복수의 임피던스 에리어를 미리 설치함으로써, 센서 출력 신호(X, Y)의 편차를 분할, 즉 작게 할 수 있다. 따라서, 각 임피던스 에리어에 있어서는, 센서 출력 신호로부터 얻어지는 막 두께 지표값은, 연마 시간이 지남에 따라 서서히 작아진다. 이러한 복수의 임피던스 에리어는, 기판 표면 내의 각 영역에 대해서 설정할 수 있으므로, 기판 표면 내의 각 영역에서의 막 두께 정보를 취득할 수 있다. 따라서, 기판의 표면 내에서의 복수의 영역마다 연마 종점을 검출하는 것이 가능하게 된다.
상술한 본 발명의 제5 및 8의 형태에 의하면, 와전류 센서가 동일한 궤적으로 기판의 표면을 주사할 때의 막 두께 지표값이 취득된다. 따라서, 하층에서의 금속 재료의 존재에 관계없이, 기판의 표면상의 각 측정점에서의 막 두께 지표값은 연마 시간이 지남에 따라 감소한다. 즉, 기판 표면 내의 각 영역에서의 막 두께 정보를 취득할 수 있다. 따라서, 기판의 표면 내에서의 복수의 영역마다 연마 종점을 검출하는 것이 가능하게 된다.
상술한 본 발명의 제6 형태에 의하면, 잔막에 기인하는 볼록부에 기초하여 기판의 연마를 감시할 수 있다. 따라서, 하층의 금속 재료의 영향을 배제하고, 정확한 연마 종점을 검출하는 것이 가능하게 된다.
도 1은, 연마 장치의 전체 구성을 도시하는 모식도다.
도 2는, 연마 테이블과 와전류 센서와 웨이퍼의 관계를 도시하는 평면도다.
도 3은, 와전류 센서의 원리를 설명하기 위한 등가 회로를 도시하는 도면이다.
도 4는, 연마 시간이 지남에 따라 변화하는 X, Y를, XY 좌표계 상에 플롯함으로써 그려지는 그래프를 도시하는 도면이다.
도 5는, 도 4의 그래프 도형을 반시계 방향으로 90도 회전시키고, 또한 평행 이동시킨 그래프를 도시하는 도면이다.
도 6은, 와전류 센서를 도시하는 모식도다.
도 7은, 도 6에 도시하는 와전류 센서에 있어서의 센서 코일의 구성예를 도시한다.
도 8은, 와전류 센서의 상세한 구성을 도시하는 모식도다.
도 9a는, 와전류 센서의 제어부를 포함하는 연마 장치의 전체 구성을 도시하는 도면이다.
도 9b는, 와전류 센서 부분의 확대 단면도다.
도 10a는, 와전류 센서가 웨이퍼의 표면(피연마면)을 주사(스캔)할 때의 궤적과 와전류 센서의 출력의 관계를 도시하는 도면이다.
도 10b는, 연마 테이블의 회전과 와전류 센서의 출력의 관계를 도시하는 도면이다.
도 11은, 와전류 센서의 출력 신호의 값이 드리프트(평행 이동)했을 경우를 도시하는 도면이다.
도 12는, 와전류 센서의 출력 신호를 교정하면서 웨이퍼 상의 도전막의 막 두께 변화를 감시하는 처리 플로우의 일 형태를 도시하는 도면이다.
도 13는, 드리프트량(보정량)을 산출하는 스텝을 설명하기 위한 도면이다.
도 14는, 드리프트량(보정량)에 상당하는 만큼만 XY 좌표계의 원점 O를 평행 이동하는 스텝을 설명하기 위한 도면이다.
도 15는, 와전류 센서(50)의 출력 신호를 교정하면서 웨이퍼 상의 도전막의 막 두께 변화를 감시하는 처리 플로우의 다른 형태를 도시하는 도면이다.
도 16은, 와전류 센서의 출력 신호의 값이 드리프트(평행 이동)했을 경우를 도시하는 도면이다.
도 17은, 기준점을 보정량 만큼 시프트하는 스텝을 설명하기 위한 도면이다.
도 18은, 와전류 센서가 웨이퍼를 주사하는 궤적을 도시한 도면이다.
도 19는, 와전류 센서의 출력 신호로부터 얻어지는 막 두께 지표값이 하층의 배선의 영향을 받아서 변화하는 모습을 도시하는 도면이다.
도 20a는, 하층의 배선 구조의 영향이 없을 경우의 임피던스 곡선을 도시하는 도면이다.
도 20b는, 도 20a에 도시하는 임피던스 곡선으로부터 얻어지는 막 두께 지표값을 도시하는 도면이다.
도 21a는, 하층의 배선 구조의 영향이 있을 경우의 임피던스 곡선을 도시하는 도면이다.
도 21b는, 도 21a에 도시하는 임피던스 곡선으로부터 얻어지는 막 두께 지표값을 도시하는 도면이다.
도 22는, 도 21b에 도시하는 폭이 넓은 임피던스 곡선을 4개의 임피던스 에리어로 분할한 예를 도시하는 도면이다.
도 23은, 도 22에 도시하는 각 임피던스 에리어에 속하는 좌표 X, Y로부터 결정되는 막 두께 지표값의 변화를 도시하는 도면이다.
도 24는, 제1 내지 제3 오프셋 임피던스 에리어가, 기준 임피던스 에리어 상에 중첩된 상태를 도시하는 도면이다.
도 25는, 도 24에 도시하는 중첩된 4개의 임피던스 에리어 각각에 속하는 좌표 X, Y로부터 결정되는 막 두께 지표값의 변화를 도시하는 도면이다.
도 26은, 웨이퍼의 표면 내에 정의된 5개의 영역을 도시하는 도면이다.
도 27은, 막 두께 지표값으로서, 와전류 센서의 출력 신호 X, Y로부터 각도 θ를 산출하는 방법을 설명하기 위한 도면이다.
도 28은, 하층의 배선 구조의 존재에 기인해서 각도 θ가 변화하는 예를 도시하는 도면이다.
도 29는, 오프셋 임피던스 에리어에 대해서 산출된 각도에게 계수를 곱하는 예를 설명하는 도면이다.
도 30은, 탑링의 회전 속도가 77min-1, 연마 테이블의 회전 속도가 70min-1일 때, 와전류 센서가 그리는 웨이퍼 상의 궤적을 도시하는 도면이다.
도 31은, 와전류 센서의 동일 궤적 상의 막 두께 프로파일의 변화를 도시하는 도면이다.
도 32는, 웨이퍼 상에 존재하는 잔막과, 이 웨이퍼의 막 두께 프로파일을 도시하는 도면이다.
도 33은, 하층의 배선 구조와 잔막, 양쪽을 갖는 웨이퍼의 막 두께 프로파일을 도시하는 도면이다.
도 34는, 테이블 회전 검출기 및 탑링 회전 검출기를 도시하는 모식도다.
도 35는, 트리거 신호를 받아서 시간 계측기가 연마 테이블 및 탑링의 회전 시간을 계측하는 모습을 도시하는 타임챠트다.
도 36은, 연마 종점을 검출하는 공정을 나타내는 흐름도다.
도 37은, 도 36의 스텝 2 내지 스텝 5의 구체예를 설명하기 위한 도면이다.
도 38은, 도 1에 도시하는 탑링의 일례를 도시하는 단면도다.
도 39는, 반도체 웨이퍼(기판)의 연마를 개시하고나서 웨이퍼 상의 도전막이 클리어되기(없어지기)까지의 연마 시간(t)과 와전류 센서의 신호값과의 관계를 도시하는 도면이다.
이하, 본 발명의 실시 형태에 대해서 도 1 내지 도 38을 참조하여 상세하게 설명한다. 또한, 도 1 내지 도 38에 있어서, 동일 또는 상당하는 구성 요소에는, 동일한 부호를 부여해서 중복된 설명을 생략한다.
도 1은, 본 발명에 따른 연마 장치의 전체 구성을 도시하는 모식도다. 도 1에 도시한 바와 같이, 연마 장치는, 연마 테이블(1)과, 연마 대상의 기판인 웨이퍼(W)를 보유 지지해서 연마 테이블 상의 연마 패드에 가압하는 탑링(10)을 구비하고 있다. 연마 테이블(1)은, 테이블 축(1a)을 개재해서 그 하방에 배치되는 연마 테이블 회전 모터(도시하지 않음)에 연결되어 있고, 테이블 축(1a)의 주위로 회전 가능하게 되어 있다. 연마 테이블(1)의 상면에는 연마 패드(2)가 부착되어 있고, 연마 패드(2)의 표면이 웨이퍼(W)를 연마하는 연마면(2a)을 구성하고 있다. 연마 테이블(1)의 상방에는 연마액 공급 노즐(3)이 설치되어 있고, 이 연마액 공급 노즐(3)에 의해 연마 테이블(1) 상의 연마 패드(2)에 연마액(슬러리)이 공급되도록 되어 있다. 도 1에 도시한 바와 같이, 연마 테이블(1)의 내부에는, 와전류 센서(50)가 매설되어 있다.
탑링(10)은, 탑링 샤프트(11)에 접속되어 있고, 탑링 샤프트(11)는, 탑링 헤드(12)에 대하여 상하 이동하게 되어 있다. 탑링 샤프트(11)의 상하 이동에 의해, 탑링 헤드(12)에 대하여 탑링(10)의 전체를 상하 이동시켜 위치 결정하게 되어 있다. 탑링 샤프트(11)는, 탑링 회전 모터(도시하지 않음)의 구동에 의해 회전하게 되어 있다. 탑링 샤프트(11)의 회전에 의해, 탑링(10)이 탑링 샤프트(11)의 주위로 회전하게 되어 있다.
탑링(10)은, 그 하면에 반도체 웨이퍼 등의 웨이퍼(W)를 보유 지지할 수 있게 되어 있다. 탑링 헤드(12)는 탑링 헤드 샤프트(13)를 중심으로 해서 선회 가능하게 구성되어 있고, 하면에 웨이퍼(W)를 보유 지지한 탑링(10)은, 탑링 헤드(12)의 선회에 의해 웨이퍼(W)의 수취 위치로부터 연마 테이블(1)의 상방으로 이동 가능하게 되어 있다. 탑링(10)은, 하면에 웨이퍼(W)를 보유 지지해서 웨이퍼(W)를 연마 패드(2)의 표면(연마면)에 가압한다. 이때, 연마 테이블(1) 및 탑링(10)을 각각 회전시켜, 연마 테이블(1)의 상방에 설치된 연마액 공급 노즐(3)로부터 연마 패드(2) 상에 연마액을 공급한다. 연마액에는 지립으로서 세리아(CeO2)나 실리카(SiO2)를 포함한 연마액이 사용된다. 이와 같이, 연마액을 연마 패드(2) 상에 공급하면서, 웨이퍼(W)를 연마 패드(2)에 가압해서 웨이퍼(W)와 연마 패드(2)를 상대 이동시켜서 웨이퍼 상의 금속막 등의 도전막을 연마한다. 금속막의 구체예로서는 Cu막, W막, Ta막, Ti막 등을 들 수 있다.
도 1에 도시한 바와 같이, 연마 장치는, 연마 패드(2)를 드레싱하는 드레싱 장치(20)를 구비하고 있다. 드레싱 장치(20)는, 드레서 아암(21)과, 드레서 아암(21)의 선단에 회전 가능하게 설치된 드레서(22)와, 드레서 아암(21)의 타단부에 연결되는 요동 축(23)과, 요동 축(23)을 중심으로 드레서 아암(21)을 요동(스윙)시키는 구동 기구로서의 모터(도시하지 않음)를 구비하고 있다. 드레서(22)의 하부는 드레싱 부재(22a)에 의해 구성되고, 드레싱 부재(22a)는 원형의 드레싱면을 갖고 있으며, 드레싱면에는 경질한 입자가 전착 등에 의해 고정되어 있다. 이 경질의 입자로서는, 다이아몬드 입자나 세라믹 입자 등을 들 수 있다. 드레서 아암(21) 내에는, 도시하지 않은 모터가 내장되어 있고, 이 모터에 의해 드레서(22)가 회전하게 되어 있다. 요동 축(23)은 도시하지 않은 승강 기구에 연결되어 있고, 이 승강 기구에 의해 드레서 아암(21)이 하강함으로써 드레싱 부재(22a)가 연마 패드(2)의 연마면(2a)을 가압해서 드레싱하게 되어 있다. 드레싱 장치(20)는, 웨이퍼의 연마가 행해지지 않고 있을 때 연마 패드(2)를 드레싱할 수 있고, 또한 웨이퍼의 연마중에도 연마 패드(2)를 드레싱할 수 있게 되어 있다.
도 2는, 연마 테이블(1)과 와전류 센서(50)와 웨이퍼(W)와의 관계를 도시하는 평면도다. 도 2에 도시한 바와 같이, 와전류 센서(50)는, 탑링(1)에 보유 지지된 연마중인 웨이퍼(W)의 중심(Cw)을 통과하는 위치에 설치되어 있다. 부호 CT는 연마 테이블(1)의 회전 중심이다. 예를 들어, 와전류 센서(50)는, 웨이퍼(W)의 하방을 통과하고 있는 사이, 통과 궤적(주사선) 상에서 연속적으로 웨이퍼(W)의 도전막의 두께를 검출할 수 있게 되어 있다.
이어서, 본 발명에 따른 연마 장치가 구비하는 와전류 센서(50)에 대해서 보다 상세하게 설명한다. 와전류 센서에는, 도전막에 와전류가 발생함으로써, 발진 주파수가 변화하고, 이 주파수 변화로부터 도전막을 검출하는 주파수 타입과, 임피던스가 변화하고, 이 임피던스 변화로부터 도전막을 검출하는 임피던스 타입이 있다. 주파수 또는 임피던스로부터, 도전막의 측정 정보가 얻어진다. 와전류 센서(50)는, 도 1에 도시한 바와 같이 연마 테이블(1)의 내부의 표면 부근의 위치에 내장할 수 있고, 연마 대상의 웨이퍼에 대하여 연마 패드를 개재하여 대면하도록 위치하고, 웨이퍼 상의 도전막에 흐르는 와전류로부터 도전막의 변화를 검출할 수 있다.
임피던스 타입의 와전류 센서에서는, 신호 출력 X, Y, 위상, 합성 임피던스 Z가 후술하는 바와 같이 취출된다. 이하에, 임피던스 타입의 와전류 센서에 대해서 구체적으로 설명한다. 와전류 센서(50)는, 코일에 고주파의 교류 전류를 흐르게 해서 도전막에 와전류를 유기시키고, 이 와전류의 자계에 기인하는 임피던스의 변화로부터 도전막의 두께를 검출한다. 도 3은, 와전류 센서의 원리를 설명하기 위한 회로를 도시하는 도면이다. 교류 전원(전압 E[V])으로부터 고주파의 교류 전류(I1)를 코일(Q)에 흐르게 하면, 코일(Q)에 유기된 자력선이 도전막 내를 통과한다. 이에 의해, 센서측 회로와 도전막측 회로의 사이에 상호 인덕턴스가 발생하고, 도전막에는 와전류(I2)가 흐른다. 이 와전류(I2)는 자력선을 발생하고, 이것이 센서측 회로의 임피던스를 변화시킨다. 와전류 센서는, 이 센서측 회로의 임피던스의 변화로부터 도전막의 막 두께를 검출한다.
도 3에 도시하는 센서측 회로와 도전막측 회로에는, 각각 다음 식이 성립된다.
Figure 112012063320876-pat00001
Figure 112012063320876-pat00002
여기서, M은 상호 인덕턴스이며, R1은 코일(1)을 포함하는 센서측 회로의 등가 저항이며, L1은 코일(1)을 포함하는 센서측 회로의 자기 인덕턴스다. R2는 와전류 손에 상당하는 등가 저항이며, L2는 와전류가 흐르는 도전막의 자기 인덕턴스다.
여기서, I=Ajωt(정현파)로 두면, 상기 수학식 1, 수학식 2는 다음과 같이 나타내진다.
Figure 112012063320876-pat00003
Figure 112012063320876-pat00004
이들 수학식 3, 수학식 4로부터, 다음 식이 유도된다.
Figure 112012063320876-pat00005
따라서, 센서측 회로의 임피던스 φ는, 다음 식으로 나타내진다.
Figure 112012063320876-pat00006
여기서, φ의 실부(저항 성분), 허부(유도 리액턴스 성분)를 각각 X, Y로 두면, 상기 수학식 6은, 다음과 같아진다.
Figure 112012063320876-pat00007
도 4는, 연마 시간이 지남에 따라 변화하는 X, Y를, XY 좌표계 상에 플롯함으로써 그려지는 그래프를 나타내는 도면이다. 도 4의 좌표계는 Y축을 세로축으로 하고, X축을 가로축으로 한 좌표계다. 점(T∞)의 좌표는, 막 두께가 무한대일 때, 즉, R2가 0일 때의 X, Y의 값이며, 점(T0)의 좌표는, 기판의 도전율을 무시할 수 있는 것이라고 하면, 막 두께가 0일 때, 즉, R2가 무한대할 때의 X, Y의 값이다. X, Y의 값으로부터 위치 결정되는 점(Tn)은, 막 두께가 감소함에 따라, 원호 형상의 궤적을 그리면서 점(T0)을 향해서 진행한다. 도 4에 도시하는 기호 k는 결합 계수이며, 다음 관계식이 성립한다.
Figure 112012063320876-pat00008
도 5는, 도 4의 그래프 도형을 반시계 방향으로 90도 회전시키고, 또한 평행 이동시킨 그래프를 도시하는 도면이다. 즉, 좌표 X, Y에서 나타내지는 점을, XY 좌표계의 원점 O를 중심으로 해서 반시계 방향으로 회전시키고, 또한 회전시킨 좌표를 이동시켜, 원점 O와 좌표 X, Y의 거리가 막 두께의 감소에 따라 짧아지는 것과 같은 그래프를 생성한다. 이하, 좌표 X, Y가 그리는 원호를, 임피던스 곡선이라고 한다.
도 5에는, 도 4의 그래프를 반시계 방향으로 90° 회전시키는 경우를 나타냈지만, 회전의 각도는 물론 90°로 제한하지 않는다. 예를 들어, 모니터링하고자 하는 막 두께의 상한에 대한 Y 좌표가 막 두께 0의 점의 Y 좌표와 동등해지도록, 회전 각도를 조절하는 것이 행해진다. 도 5에 도시한 바와 같이, 막 두께가 감소함에 따라, X, Y의 값으로부터 위치 결정되는 점(Tn)은 원호 형상의 궤적을 그리면서 점(T0)을 향해서 진행한다. 이때, XY 좌표계의 원점(O)으로부터 점(Tn)까지의 거리로서 나타내지는 임피던스 Z(=(X2+Y2)1/2)는, 점(T∞)의 근방을 제외하고, 막 두께가 감소함에 따라 작아진다. 따라서, 와전류 센서(50)의 출력 신호를 모니터링 장치(55)에 보냄으로써, 모니터링 장치(55)는 도전막의 두께에 따라서 변화하는 모니터링 신호로서의 임피던스 Z를 산출한다. 그리고, 모니터링 장치(55)에 의해, 미리, 경험이나 시험에 의해 임피던스 Z와 막 두께와의 관계를 파악해 두면, 임피던스 Z를 감시함으로써, 연마중인 막 두께 변화를 알 수 있다.
이어서, 와전류 센서(50)에 대해서 보다 상세하게 설명한다. 도 6은, 와전류 센서를 도시하는 모식도다. 이 와전류 센서(50)는, 센서 코일(102)과, 이 센서 코일(102)에 접속되는 교류 전원(103)과, 센서 코일(102)을 포함하는 전기 회로(도 3의 센서측 회로)의 저항 성분 X, 유도 리액턴스 성분 Y를 검출하는 동기검파부(105)를 갖고 있다. 막 두께 검출 대상의 도전막(mf)은, 예를 들어 웨이퍼(W) 상에 형성된 구리, 알루미늄, 금, 텅스텐, 탄탈, 티타늄 등의 도전 재료로 이루어지는 박막이다. 센서 코일(102)과 도전막(mf)과의 거리(G)는, 예를 들어 0.5㎜ 내지 5.0㎜로 설정된다.
도 7은, 도 6에 도시하는 와전류 센서에 있어서의 센서 코일의 구성예를 도시한다. 센서 코일(102)은, 보빈(111)에 권회된 3층의 코일(112, 113, 114)에 의해 구성되어 있다. 중앙의 코일(112)은, 교류 전원(103)에 접속되는 여자 코일이다. 이 여자 코일(112)은, 교류 전원(103)으로부터 공급되는 교류 전류에 의해 자계를 형성하고, 웨이퍼 상의 도전막에 와전류를 발생시킨다. 여자 코일(112)의 상측(도전막측)에는, 검출 코일(113)이 배치되고, 도전막을 흐르는 와전류에 의해 발생하는 자속을 검출한다. 검출 코일(113)과 반대측에는 밸런스 코일(114)이 배치되어 있다.
코일(113, 114)은, 동일한 턴 수(1 내지 (500))의 코일에 의해 형성되는 것이 바람직한데, 코일(112)의 턴 수는 특별히 한정되지 않는다. 검출 코일(113)과 밸런스 코일(114)은 서로 역상으로 접속되어 있다. 도전막이 검출 코일(113)의 근방에 존재하면, 도전막 중에 형성되는 와전류에 의해 발생하는 자속이 검출 코일(113)과 밸런스 코일(114)로 쇄교한다. 이때, 검출 코일(113) 쪽이 도전막에 가까운 위치에 배치되어 있으므로, 양쪽 코일(113, 114)에 발생하는 유기 전압의 균형이 깨지고, 이에 의해 도전막의 와전류에 의해 형성되는 쇄교 자속을 검출할 수 있다.
도 8은, 와전류 센서의 상세한 구성을 도시하는 모식도다. 교류 전원(103)은, 수정 발진기로 이루어지는 고정 주파수의 발진기를 갖고 있어, 예를 들어 1 내지 50㎒의 고정 주파수의 교류 전류를 센서 코일(102)에 공급한다. 교류 전원(교류 신호원)(103)으로 형성된 교류 전류는, 대역 통과 필터(120)를 개재해서 센서 코일(102)에 공급된다. 센서 코일(102)의 단자로부터 출력된 신호는, 브리지 회로(121) 및 고주파 증폭기(123)를 거쳐, cos 동기검파 회로(125) 및 sin 동기검파 회로(126)로 이루어지는 동기검파부(105)에 보내진다. 여기서, 교류 전원(103)으로 형성되는 발진 신호로부터는, 위상 시프트 회로(124)에 의해 교류 전원(103)의 동상 성분(0°)과 직교 성분(90°)의 2개의 신호가 형성되고, 각각 cos동기검파 회로(125)와 sin 동기검파 회로(126)에 도입된다. 그리고, 동기검파부(105)에 의해 임피던스의 저항 성분과 유도 리액턴스 성분이 취출된다.
동기검파부(105)로부터 출력된 저항 성분과 유도 리액턴스 성분으로부터는, 저역 통과 필터(127, 128)에 의해 불필요한 고주파 성분(예를 들어 5K㎐ 이상의 고주파 성분)이 제거되어, 임피던스의 저항 성분으로서의 신호 X와 유도 리액턴스 성분으로서의 신호 Y가 각각 출력된다. 모니터링 장치(55)는, 와전류 센서(50)의 출력 신호 X, Y를, 도 5에서 설명한 처리(회전 처리, 평행 이동 처리 등)와 동일한 방법으로 처리하고, 막 두께 지표값으로서의 임피던스 Z(도 5를 참조)를 산출한다. 그리고, 이 임피던스 Z의 변화에 기초하여 막 두께의 변화를 감시한다. 또한, 와전류 센서(50)의 출력 신호 X, Y에 대한 회전 처리나 평행 처리 등의 소정의 처리는, 와전류 센서(50)로 전기적으로 행해도 좋고 또는 모니터링 장치(55)로 계산에 의해 행해도 좋다.
도 9a 및 도 9b는, 와전류 센서(50)를 구비한 연마 장치의 주요부 구성을 도시하는 도면이다. 보다 구체적으로는, 도 9a는 와전류 센서(50)의 제어부를 포함하는 전체 구성을 도시하는 도면이며, 도 9b는 와전류 센서 부분의 확대 단면도다. 도 9a에 도시한 바와 같이, 연마 장치의 연마 테이블(1)은 화살표로 나타내는 바와 같이 그 축심 둘레에 회전 가능하게 되어 있다. 연마 테이블(1) 내에는, 와전류 센서(50)에 있어서의 센서 코일(102)이 매립되어 있다. 센서 코일(102)은, 교류 전원 및 동기검파 회로를 포함하는 프리앰프 일체형의 센서 코일로 구성되어 있다. 센서 코일(102)의 접속 케이블은, 연마 테이블(1)의 테이블 축(1a) 내를 통하고, 테이블 축(1a)의 축단에 설치된 로터리 조인트(150)를 경유하여, 모니터링 장치(55)에 접속되어 있다. 모니터링 장치(55)는 제어 장치(컨트롤러)(56)에 접속되어 있다.
도 9b에 도시한 바와 같이, 연마 테이블(1)에 매립된 와전류 센서(50)의 연마 패드측의 단부면에는 4불화에틸렌 수지 등의 불소계 수지의 코팅재(152)를 가짐으로써 연마 패드를 벗길 경우에, 연마 패드와 와전류 센서가 함께 벗겨지지 않도록 할 수 있다. 또한 와전류 센서의 연마 패드측의 단부면은 연마 패드(2) 근방의 SiC 등의 재료로 구성된 연마 테이블(1)의 면(연마 패드측의 면)으로부터는 0 내지0.05㎜ 오목해진 위치에 설치되어, 연마 시에 웨이퍼에 접촉하는 것을 방지하고 있다. 이 연마 테이블면과 와전류 센서면의 위치의 차는 가능한 작은 편이 좋지만 실제의 장치에서는 0.02㎜ 전후로 설정하는 경우가 많다. 또한 이 위치 조정에는 심(박판)(151)에 의한 조정이나 나사에 의한 조정 수단이 취해진다.
이어서, 상술한 바와 같이 구성된 와전류 센서를 구비한 연마 장치에 있어서, 연마중의 웨이퍼 상의 도전막의 막 두께를 감시하는 방법에 대해서 설명한다. 도 10a는, 와전류 센서(50)가 웨이퍼(W)의 표면(피연마면)을 주사(스캔)할 때의 궤적과 와전류 센서(50)의 출력과의 관계를 도시한다. 도 10a에 도시한 바와 같이, 와전류 센서(50)는, 연마 테이블(1)의 회전에 수반하여 웨이퍼(W)의 하방을 통과하고 있는 사이, 웨이퍼(W)의 도전막(mf)에 반응해서 소정의 신호값을 출력하게 되어 있다.
도 10b는, 연마 테이블(1)의 회전과 와전류 센서(50)의 출력의 관계를 도시하는 도면이다. 도 10b에 있어서, 가로축은 연마 시간(t)이며, 세로축은 와전류 센서(50)의 출력값이다. 도 10b에 도시한 바와 같이, 와전류 센서(50)가 웨이퍼 내의 영역(A)에 있을 때에는, 웨이퍼 상의 도전막(mf)에 반응한 대략 사각형 펄스 형상의 출력이 되고, 와전류 센서(50)가 웨이퍼 외의 영역(B)에 있을 때에는, 일정 레벨의 저출력이 된다.
도 11은, 와전류 센서의 출력 신호의 값이 드리프트(평행 이동)했을 경우를 도시하는 도면이다. 와전류 센서의 주위 온도, 연마 패드에의 물얼룩 등의 사용 환경의 변화나, 와전류 센서 그 자체의 경시 변화 등에 의해, 와전류 센서(50)의 출력 신호의 값이 드리프트(평행 이동)하는 경우가 있다. 즉, 도 11에 도시한 바와 같이, 와전류 센서(50)의 출력 신호의 값은, 실선으로 나타내는 원호 형상의 곡선으로부터 점선으로 나타내는 원호 형상의 곡선과 같이 드리프트하는 경우가 있다. 이렇게 와전류 센서의 출력 신호의 값이 드리프트 하면, XY 좌표계의 원점 O로부터의 거리로서 나타내지는 임피던스 Z(이하, 거리 Z라고 함)가 변화하게 된다. 그 결과, 와전류 센서의 출력 신호의 값과 막 두께와의 대응 관계가 어긋나버린다.
따라서, 본 실시 형태에 있어서는, 모니터링 장치(55)에 의해 와전류 센서(50)의 출력 신호를 교정하고, 정확한 막 두께 변화를 감시한다.
이어서, 와전류 센서(50)의 출력 신호를 연마중에 교정하면서 웨이퍼 상의 도전막의 막 두께 변화를 감시하는 방법에 대해서 설명한다.
도 12는, 와전류 센서(50)의 출력 신호를 교정하면서 웨이퍼 상의 도전막의 막 두께 변화를 감시하는 처리 플로우의 일 형태를 도시하는 도면이다. 도 12에 도시한 바와 같이, 스텝 1에 있어서, 웨이퍼(W)를 탑링(10)에 의해 보유 지지하고, 연마 테이블(1) 및 탑링(10)을 각각 회전시켜, 웨이퍼(W)를 연마 패드(2)에 가압해서 웨이퍼 상의 도전막을 연마하는 연마 공정을 개시한다. 이때, 와전류 센서(50)는, 도 10a 및 도 10b에 도시한 바와 같이, 연마 테이블(1)의 회전에 수반하여 웨이퍼 내의 영역(A)과 웨이퍼 외의 영역(B)을 통과하는데, 스텝 2에 있어서, 모니터링 장치(55)는, 와전류 센서(50)가 웨이퍼 외의 영역(B)에 있을 때의 데이터를 취득한다. 이 경우, 연마 개시 후, 연마 테이블(1)이 1회전 이상 회전한 후에 있어서의 웨이퍼 외의 영역(B)의 데이터를 취득하고, 그 후, 연마 테이블(1)이 N 회전할 때(N은 정수)까지 데이터를 계속해서 취득한다. 그리고, 스텝 3에 있어서, N 회전수까지의 와전류 센서(50)의 웨이퍼 외의 영역(B)의 출력값의 평균값에 기초하여, 드리프트량(보정량)을 산출한다.
또한, 웨이퍼 외의 영역이란, 탑링 영역 이외, 드레서 영역 이외, 애토마이저 등의 영역 이외이며, 연마 테이블(연마 패드) 상에 아무것도 존재하지 않고 있는 영역이다.
도 13은, 드리프트량(보정량)을 산출하는 스텝을 설명하기 위한 도면이다. 도 13의 원호 형상의 곡선에 도시한 바와 같이, 와전류 센서(50)의 출력 신호의 값은, 실선으로부터 점선과 같이 드리프트하는 경우가 있지만, 이 드리프트량(보정량)을 이하의 식에 의해 산출한다.
ΔXa=X11-X1, ΔYa=Y11-Y1
여기서,X11, Y11은, 와전류 센서(50)의 웨이퍼 외의 영역(B)의 출력값의 평균값이며, X1, Y1은, 보정용 기준 신호값이다. 보정용 기준 신호값은, 도전막의 막 두께가 0이 되었을 때에 유사한 값이다.
이어서, 스텝 4에 있어서, 스텝 3에서 산출한 드리프트량(보정량)을 등록(보존)한다. 그리고, 스텝 5에 있어서, 등록된 드리프트량(보정량)에 상당하는 만큼만, XY 좌표계의 원점 O를 평행 이동한다.
도 14는, 드리프트량(보정량)에 상당하는 만큼만 XY 좌표계의 원점 O를 평행 이동하는 스텝을 설명하기 위한 도면이다. 도 14에 도시한 바와 같이, XY 좌표계의 원점 O를 실선으로부터 점선과 같이 평행 이동한다. 즉, 실선으로 나타내는 X축, Y축을 ΔXa, ΔYa 만큼 평행 이동해서 점선으로 나타내는 X축, Y축으로 한다. 그리고, 점선으로 나타내는 XY 좌표계의 원점 O로부터의 거리 Z를 산출한다. 그리고, 모니터링 장치(55)에 의해 거리 Z를 감시함으로써 연마중의 막 두께 변화를 알 수 있다.
도 15는, 와전류 센서(50)의 출력 신호를 교정하면서 웨이퍼 상의 도전막의 막 두께 변화를 감시하는 처리 플로우의 다른 형태를 도시하는 도면이다. 와전류 센서의 출력값의 드리프트는, 상술한 바와 같은 거리 Z에 기초하는 막 두께 감시 방법 이외의 다른 방법에도 영향을 준다. 예를 들어, 일본 특허 공개2005-121616호 공보의 도 13에는, 기준점(중심점)을 통하는 기준선과, 와전류 센서의 출력 신호(X 성분, Y 성분)와 기준점(중심점)을 연결하는 선과의 각도 변화로부터 연마중의 막 두께의 변화를 감시하는 방법이 나타나고 있다. 이 방법은, 센서 코일 단부와 도전성막과의 사이의 거리가 상이한 조건 하에서 취득된 임피던스의 저항 성분(X 성분)과 리액턴스 성분(Y 성분)을 직교 좌표축 상에 표시하고, 도전성막의 막 두께마다의 상기 저항 성분 및 상기 리액턴스 성분으로 이루어지는 좌표에 의해 특정되는 점을 연결하는 예비 측정 직선을 긋고, 이들 예비 측정 직선끼리 교차하는 교점인 기준점(중심점)을 구하고, 상기 임피던스의 좌표로부터 특정되는 점과 상기 기준점(중심점)을 연결하는 실전 측정 직선이 이루는 각도로부터 도전성막의 막 두께를 검출하도록 한 것이다. 이 방법은, 연마 패드의 두께의 변화에 따르지 않고, 막 두께의 변화를 고정밀도로 감시할 수 있다는 이점을 갖고 있다. 그러나, 이 방법에 있어서도, 와전류 센서의 출력값의 경시적 변화에 따라 각도가 변화하고, 와전류 센서의 출력 신호의 값과 막 두께와의 대응 관계가 어긋나버린다.
도 16은, 와전류 센서의 출력 신호의 값이 드리프트(평행 이동)했을 경우를 도시하는 도면이다. 도 16의 원호 형상의 곡선으로 도시한 바와 같이, 와전류 센서(50)의 출력 신호의 값은, 와전류 센서 그 자체의 경시 변화 등에 의해, 실선으로부터 점선과 같이 드리프트하는 경우가 있다. 이렇게 와전류 센서의 출력 신호의 값이 드리프트하면, 기준점(중심점)을 통하는 기준선과, 와전류 센서의 출력 신호(X 성분, Y 성분)와 기준점(중심점)을 연결하는 선과의 각도(Angle)가 각도 1로부터 각도 2와 같이 변화하게 된다. 여기서, 기준점이란, 센서 코일 단부와 도전성막 사이의 거리가 다른 조건 하에서 취득된 임피던스의 저항 성분(X 성분)과 리액턴스 성분(Y 성분)을 직교 좌표축 상에 표시하고, 도전성막의 막 두께마다의 상기 저항 성분 및 상기 리액턴스 성분으로 이루어지는 좌표에 의해 특정되는 점을 연결하는 예비 측정 직선끼리 교차하는 교점인 기준점이다.
따라서, 본 실시 형태에 있어서는, 도 15에 도시한 바와 같이, 스텝 1의 연마 공정의 개시부터 스텝 4의 드리프트량(보정량)의 등록까지의 공정을 행한다. 스텝 1부터 스텝 4까지의 공정은, 도 12에 도시하는 처리 플로우와 마찬가지이다. 도 15에 도시하는 처리 플로우에 있어서는, 스텝 5에 있어서, 등록된 드리프트량(보정량)에 상당하는 만큼만, 기준점을 시프트한다.
도 17은, 기준점을 보정량 만큼 시프트하는 스텝을 설명하기 위한 도면이다. 도 17에 도시한 바와 같이, 기준점을 화살표로 나타낸 바와 같이 보정량 분(ΔXa, ΔYa)만큼 시프트한다. 이어서, 스텝 6에 있어서, 보정 후의 기준점을 사용해서 임피던스 곡선의 각도(Angle)를 산출한다. 즉, 보정 후의 기준점(중심점)을 통하는 기준선과, 와전류 센서의 출력 신호(X 성분, Y 성분)와 기준점(중심점)을 연결하는 선과의 각도(Angle)를 산출함으로써, 도전막의 막 두께를 검출할 수 있다. 이와 같이, 와전류 센서의 출력 신호의 값의 드리프트량을 검출하고, 기준점을 드리프트량에 상당하는 만큼만 시프트함으로써, 드리프트 전후의 각도(Angle)를 동일한 값으로 유지할 수 있다.
도 18은, 와전류 센서(50)가 웨이퍼(W)를 주사하는 궤적을 도시한 도면이다. 연마 테이블(1)이 회전하면, 와전류 센서(50)는 웨이퍼(W)의 중심(Cw)을 통하는 궤적을 그려서 웨이퍼(W)의 표면을 주사한다. 와전류 센서(50)가 웨이퍼의 표면을 가로지를 때마다, 와전류 센서(50)는 복수의 측정점에서 웨이퍼(W)의 막 두께를 측정한다. 탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도는 통상 상이하기 때문에, 웨이퍼(W)의 표면에 있어서의 와전류 센서(50)의 궤적은, 도 18에 도시한 바와 같이, 연마 테이블(1)의 회전에 따라 주사선(SL1, SL2, SL3, …)으로 변화한다. 이 경우에도, 상술한 바와 같이, 와전류 센서(50)는, 웨이퍼(W)의 중심(Cw)을 통하는 위치에 배치되어 있으므로, 와전류 센서(50)가 그리는 궤적은, 매회 웨이퍼(W)의 중심(Cw)을 통과한다. 본 실시 형태에서는, 와전류 센서(50)에 의한 막 두께 측정의 타이밍을 조정하여, 와전류 센서(50)에 의해 웨이퍼(W)의 중심(Cw)의 막 두께를 매회 반드시 측정하도록 하고 있다. 도 18에 있어서, 기호 MPm-n은, m번째의 주사선 SLm 상의 n번째의 측정점을 나타내고 있다.
각 측정점에서 얻어진 와전류 센서(50)의 출력 신호 X, Y는, 좌표 X, Y로서 X-Y 좌표계 상에 그려진다. 와전류 센서(50)의 출력 신호 X, Y는 막 두께를 따라서 변화한다. 구체적으로는, 도 5에 도시한 바와 같이, X-Y 좌표계의 원점 O와 좌표 X, Y로부터 특정되는 점(Tn)과의 거리(임피던스) Z(=√(X2+Y2))는, 막 두께가 감소함에 따라서 작아진다. 따라서, 출력 신호 X, Y로부터 구해지는 거리 Z는, 측정된 막 두께 지표값이라고 할 수 있다.
이와 같이, 웨이퍼(W)의 막 두께는 와전류 센서(50)의 출력 신호 X, Y로부터 구할 수 있지만, 막의 하층에 존재하는 금속 재료의 영향을 받아서 와전류 센서(50)의 출력 신호가 크게 변동하는 경우가 있다. 다층 배선 구조를 갖는 웨이퍼는, 각 계층에 배선(금속 재료)을 갖는다. 이로 인해, 하층의 배선이 와전류 센서(50)의 출력 신호에 영향을 미치고, 정확한 막 두께의 측정을 방해해버린다.
도 19는, 와전류 센서(50)의 출력 신호로부터 얻어지는 막 두께 지표값 Z가 하층의 배선의 영향을 받아서 변화하는 모습을 도시하는 도면이다. 연마해야 할 막 밑에는, 복수의 배선 구조(예를 들어, 집적 회로)(200)가 형성되어 있다. 이들 배선 구조(200)는, 연마해야 할 막에 덮어져 있기 때문에, 도 19에서는 점선으로 나타내고 있다. 막 두께 지표값(Z)은, 연마 시간이 지남에 따라 전체적으로 서서히 감소한다. 그러나, 와전류 센서(50)는, 연마 대상물인 막과, 그 막의 하층의 배선 구조(200)를 감지하여, 그 결과와 전류 센서(50)의 신호값은 하층의 배선 구조(200)의 영향을 받아버린다.
도 19에 도시한 바와 같이, 연마 테이블(1)이 N회전째일 때의 와전류 센서(50)의 궤적은, 연마 테이블(1)이 N+1회전째일 때의 와전류 센서(50)의 궤적과는 상이하다. 이로 인해, 와전류 센서(50)가 감지하는 배선 구조(200)의 배치는, 연마 테이블(1)의 회전에 의해 상이하고, 결과적으로, 막 두께 지표값 Z로부터 생성되는 막 두께 프로파일(웨이퍼의 반경 방향을 따른 막 두께 분포)도 상이하다. 이와 같이, 와전류 센서(50)의 출력 신호 X, Y는, 하층의 배선 구조(200)의 영향을 받게 되어, X-Y 좌표계 상에 그려지는 임피던스 곡선은 크게 흔들린다.
도 20a는 하층의 배선 구조의 영향이 없을 경우의 임피던스 곡선을 나타내고, 도 20b은 도 20a에 나타내는 임피던스 곡선으로부터 얻어지는 막 두께 지표값 Z를 나타낸다. 하층의 배선 구조의 영향이 없을 경우, 임피던스 곡선은 시스템 노이즈에 기인하는 정도는 흔들리지만, 그 폭(dw로 나타냄)은 작다. 마찬가지로, 도 20b에 도시한 바와 같이, 막 두께 지표값 Z가 그리는 선의 폭도 작다. 도 20b의 그래프에 있어서, 세로축은 막 두께 지표값을 나타내고, 가로축은 연마 시간을 나타내고 있다. 막 두께 지표값 Z는 연마 시간이 지남에 따라 감소해 가므로, 막이 제거된 점, 즉 연마 종점을 검출하는 것은 용이하다.
이에 반해, 도 21a는 하층의 배선 구조의 영향이 있을 경우의 임피던스 곡선을 나타내고, 도 21b는 도 21a에 나타내는 임피던스 곡선으로부터 얻어지는 막 두께 지표값 Z를 나타낸다. 하층의 배선 구조의 영향이 있을 경우, 임피던스 곡선은 크게 요동하고, 그 결과, 임피던스 곡선의 폭(dw')이 커진다. 마찬가지로, 막 두께 지표값 Z가 그리는 선도 폭이 커지게 된다. 그 결과, 연마 종점을 검출하는 것이 곤란해진다.
따라서, 본 실시 형태에서는, 도 21a에 나타내는 폭이 넓은 임피던스 곡선을 그 길이 방향을 따라서 복수의 영역(이하, 임피던스 에리어라고 함)으로 분할하고, 그 분할된 임피던스 에리어마다 막 두께 지표값을 산출하여, 임피던스 에리어마다에 막 두께 지표값에 기초하여 웨이퍼의 연마를 감시한다. 도 22는, 도 21a에 나타내는 폭이 넓은 임피던스 곡선을 4개의 임피던스 에리어에 분할한 예를 나타내는 도면이다. 이하의 설명에서는, 도 20a에 나타내는 폭이 좁은 임피던스 곡선을 기준 임피던스 에리어라고 하고, 도 21a에 나타내는 폭이 넓은 임피던스 곡선을 초기 임피던스 에리어라고 하며, 도 22에 나타내는 분할된 임피던스 에리어 중, 기준 임피던스 에리어 이외의 임피던스 에리어를 오프셋 임피던스 에리어라고 한다.
4개의 임피던스 에리어, 즉, 기준 임피던스 에리어(r0), 제1 오프셋 임피던스 에리어(r1), 제2 오프셋 임피던스 에리어(r2), 제3 오프셋 임피던스 에리어(r3)는, 서로 동일한 폭을 갖고 있으며, 그 폭은, 하층의 배선 구조의 영향이 없는 조건 하에서 취득된 기준 임피던스 에리어(r0)의 폭(dw)이다. 단, 기준 임피던스 에리어(r0)의 폭과, 오프셋 임피던스 에리어(r1 내지 r3)의 폭은 다소 상이해도 좋다.
기준 임피던스 에리어(r0)는, 웨이퍼의 중심부에서 취득된 와전류 센서의 출력 신호(X, Y)만을 사용함으로써 생성된다. 와전류 센서(50)는, 연마 테이블(1)이1회전할 때마다, 반드시 웨이퍼의 중심부를 통한다. 따라서, 웨이퍼의 중심부에서 취득된 막 두께 지표값 Z는, 하층의 금속 재료(배선 구조 등)의 존재에 관계없이, 연마 시간이 지남에 따라 감소한다. 다시 말해, 웨이퍼의 중심부에서는, 하층의 금속 재료는 막 두께 지표값 Z의 시간적 변화에 영향을 주지 않는다. 따라서, 웨이퍼의 중심부에서 얻어진 센서 출력 신호(X, Y)로부터, 도 20a에 도시한 바와 같은, 폭이 좁은 임피던스 에리어를 생성할 수 있다. 이 웨이퍼의 중심부에서 얻어진 임피던스 에리어가 기준 임피던스 에리어로서 정의된다.
기준 임피던스 에리어의 폭(dw)은, 그 원호의 중심으로부터의 최소 거리와 최대 거리의 차이다. 보다 구체적으로는, 기준 임피던스 에리어가 그리는 원호의 중심을 최소 제곱법 등의 공지된 방법에 의해 구하고, 그 중심으로부터의 최소 거리와 최대 거리의 차이를 구함으로써, 기준 임피던스 에리어의 폭(dw)이 구해진다. 마찬가지로, 도 21a에 나타내는 폭이 넓은 초기 임피던스 에리어의 폭(dw')도, 계산에 의해 취득된다. 그리고, 초기 임피던스 에리어는, 기준 임피던스 에리어의 폭(dw)에 기초하여 분할된다. 분할되는 임피던스 에리어의 수는, 초기 임피던스 에리어의 폭(dw')에 의해 결정된다. 즉, 초기 임피던스 에리어의 폭(dw')을 기준 임피던스 에리어의 폭(dw)으로 나눔으로써, 분할되는 임피던스 에리어의 수가 결정된다. 도 22에 나타내는 예에서는, 기준 임피던스 에리어를 포함하는 4개의 임피던스 에리어(r0, r1, r2, r3)가 작성된다. 초기 임피던스 에리어의 폭에 따라서는, 임피던스 에리어(r1, r2, r3) 중 어느 하나는, 다소 상이한 폭을 가져도 좋다.
기준 임피던스 에리어(r0) 및 오프셋 임피던스 에리어(r1, r2, r3)는, 연마 대상이 되는 웨이퍼와 동일 구조를 갖는 웨이퍼를 연마함으로써 미리 취득된다. 통상은, 1로트에 속하는 동일 구조를 갖는 복수의 웨이퍼 중 1장을 연마함으로써, 임피던스 에리어(r0, r1, r2, r3)가 미리 작성된다.
상술한 바와 같이 해서 작성된 복수의 임피던스 에리어는 X-Y 좌표계 상에 정의된다. 그리고, 와전류 센서의 출력 신호 X, Y가 취득될 때마다, 그 출력 신호X, Y로 이루어지는 좌표는, 그 값을 따라서 4개의 임피던스 에리어(r0, r1, r2, r3) 중 어느 하나에 할당된다. 다시 말해, 하층의 배선 구조의 영향의 정도에 기초하여, 센서 출력 신호 X, Y는 임피던스 에리어(r0, r1, r2, r3) 중 어느 하나에 할당된다.
도 23은, 각 임피던스 에리어에 속하는 좌표 X, Y로부터 결정되는 막 두께 지표값 Z(원점 O부터 좌표 X, Y까지의 거리)의 변화를 도시하는 도면이다. 막 두께 지표값 Z는, 연마 시간의 경과에 따라 4개의 선을 그린다. 이들 4개의 선은, 좌표 X, Y의 위치가 속하는 4개의 임피던스 에리어(r0, r1, r2, r3)(도 22 참조)에 대응한다. 웨이퍼의 연마는, 4개의 임피던스 에리어에 대응한 4개의 막 두께 지표값 각각에 기초하여 감시되고, 각 막 두께 지표값의 변화에 기초하여 연마 종점이 결정된다.
또한, 도 24에 도시한 바와 같이, 오프셋 임피던스 에리어(r1, r2, r3)를, 기준 임피던스 에리어(r0)에 겹치도록 평행 이동해도 좋다. 각 오프셋 임피던스 에리어가 평행 이동하는 거리는, 4개의 임피던스 에리어의 원호 중심간의 거리, 즉 기준 임피던스 에리어(r0)의 폭(dw)으로부터 결정된다. 구체적으로는, 제1 오프셋 임피던스 에리어(r1)는 폭(dw)×1의 거리만큼 평행 이동되고, 제2 오프셋 임피던스 에리어(r2)는 폭(dw)×2의 거리만큼 평행 이동되며, 제3 오프셋 임피던스 에리어(r3)는 폭(dw)×3의 거리만큼 평행 이동된다. 이러한 조작에 의해, 도 24에 도시한 바와 같이, 제1 내지 제3 오프셋 임피던스 에리어(r1, r2, r3)는, 기준 임피던스 에리어(r0) 상에 중첩된다.
도 25는, 도 24에 나타내는 중첩된 4개의 임피던스 에리어 각각에 속하는 좌표 X, Y로부터 결정되는 막 두께 지표값 Z(원점 O부터 좌표 X, Y까지의 거리)의 변화를 도시하는 도면이다. 도 25로부터 알 수 있는 바와 같이, 4개의 막 두께 지표값은, 연마 시간이 지남에 따라 서로 같이 변화하고, 각 연마 시간에서의 4개의 막 두께 지표값도, 도 23에 나타내는 막 두께 지표값에 비하여, 서로 가까워진다.
웨이퍼의 연마 종점은, 각각의 임피던스 에리어마다 결정된다. 즉, 4개의 임피던스 에리어에 대응하는 4개의 막 두께 지표값이 연마중에 따로따로 감시되어, 각 막 두께 지표값이 소정의 임계값에 도달한 시점이 연마 종점으로 결정된다. 임계값은, 4개의 막 두께 지표값에 대해서 각각 설정된다. 4개의 막 두께 지표값 중 적어도 하나의 막 두께 지표값이 소정의 임계값에 도달한 시점을, 최종적인 연마 종점으로 할 수 있다. 예를 들어, 기준 임피던스 에리어에 대응하는 막 두께 지표값이 소정의 임계값에 도달한 시점, 혹은 모든 임피던스 에리어에 대응하는 막 두께 지표값이 임계값에 도달한 시점을, 연마 종점으로 할 수 있다. 또한, 적어도 2개의 막 두께 지표값이 소정의 임계값에 도달한 시점을 연마 종점으로 할 수도 있다.
제1 내지 제3 오프셋 임피던스 에리어(r1, r2, r3)는, 와전류 센서의 출력 신호가 하층의 배선 구조의 영향을 받는 영역이다. 그러나, 동일한 오프셋 임피던스 에리어 내에서는 와전류 센서의 출력 신호는 동일 정도로 하층의 배선 구조의 영향을 받기 때문에, 막 두께 지표값의 변화는, 하층의 배선 구조의 영향에 관계없이, 웨이퍼의 연마의 진척을 반영하고 있다. 따라서, 분할된 복수의 임피던스 에리어마다 웨이퍼의 연마를 감시함으로써, 연마 종점의 검출 정밀도를 향상시킬 수 있다.
상술한 복수의 임피던스 에리어는, 웨이퍼 표면 내의 복수의 영역(존) 각각에 대해서 작성할 수 있다. 따라서, 웨이퍼의 영역마다 연마 종점을 상술한 방법에 따라서 결정할 수 있다. 이들 영역은, 웨이퍼의 표면 내에 임의로 설정할 수 있다. 예를 들어, 도 26에 나타내는 예에서는, 웨이퍼(W)의 표면 내에 5개의 영역(C1,C2,C3,C4,C5)이 설정되어 있다. 이 경우에는, 5개의 영역(C1 내지 C5) 각각에 대해서 4개의 막 두께 지표값이 취득되므로, 웨이퍼의 연마 중에 20(5×4)개의 막 두께 지표값이 감시된다.
기준 임피던스 에리어를 포함하는 복수의 임피던스 에리어를 미리 설치함으로써, 센서 출력 신호(X, Y)의 편차를 분할, 즉 작게 할 수 있다. 따라서, 각 임피던스 에리어에 있어서는, 센서 출력 신호로부터 얻어지는 막 두께 지표값은, 대강 연마 시간이 지남에 따라 작아진다. 이러한 복수의 임피던스 에리어는, 웨이퍼 표면 내의 각 영역에 대해서 설정할 수 있으므로, 웨이퍼 표면 내의 각 영역에서의 막 두께 정보를 취득할 수 있다. 따라서, 웨이퍼의 표면 내에서의 복수의 영역마다 연마 종점을 검출하는 것이 가능하게 된다.
상술한 실시 형태에서는, 와전류 센서의 출력 신호 X, Y로부터 막 두께 지표값 Z(√(X2+Y2))를 산출했지만, 이하에 나타내는 다른 실시 형태와 같이, 막 두께 지표값으로서 각도를 와전류 센서의 출력 신호 X, Y로부터 산출해도 좋다. 도 27은, 막 두께 지표값으로서, 와전류 센서의 출력 신호 X, Y로부터 각도를 산출하는 방법을 설명하기 위한 도면이다. 도 27에 도시한 바와 같이, 미리 설정된 기준점(고정 점)(F)을 통하는 기준선(FL)과, 와전류 센서의 출력 신호(X 성분, Y 성분)로부터 정해지는 점(Tn)과 기준점(F)을 연결하는 선과의 각도 θ는, 점(Tn)의 이동에 따라, 즉 막 두께가 감소함에 따라, 변화한다. 따라서, 각도 θ는, 막 두께를 나타내는 지표로서 사용할 수 있다.
일반적으로, 연마되는 웨이퍼의 매수가 증가함에 따라서, 연마 패드(2)는 서서히 마모한다. 도 1에 도시한 바와 같이, 와전류 센서(50)는, 연마 테이블(1)에 매설되어 있으므로, 연마 패드(2)의 마모와 함께, 웨이퍼(W)와 와전류 센서(50)의 거리가 변화한다. 상술한 각도 θ는, 웨이퍼(W)와 와전류 센서(50)와의 거리에는 의존하지 않고, 막 두께에 의존해서 변화하는 것이 알려져 있다(일본 특허 공개2005-121616호 공보 참조).
그러나, 도 28에 도시한 바와 같이, 하층의 배선 구조의 존재에 기인해서 각도 θ가 변화하고, 막 두께를 정확하게 반영하지 않는 경우가 있다. 따라서, 도 29에 도시한 바와 같이, 기준 임피던스 에리어(r0)에 대해서 산출된 각도와, 오프셋 임피던스 에리어(r1, r2, r3)에 대해서 산출된 각도가 동등해지도록, 오프셋 임피던스 에리어(r1, r2, r3)에 대해서 산출된 각도에 계수를 곱한다. 계수는, 각각의 오프셋 임피던스 에리어(r1, r2, r3)에 대해서 미리 설정된다. 이들 계수는, 웨이퍼의 구조에 의존해서 바뀔 수 있으므로, 연마되는 웨이퍼와 동일 구조를 갖는 웨이퍼의 연마 결과로부터 결정된다. 이렇게 보정된 각도에 기초하여, 임피던스 에리어(r0, r1, r2, r3) 마다 연마 종점을 검출할 수 있다.
이어서, 본 발명의 또 다른 실시 형태에 대해서 설명한다.
도 19에 도시한 바와 같이, 연마 테이블(1)이 N회전째일 때의 와전류 센서(50)의 궤적은, 연마 테이블(1)이 N+1회전째일 때의 와전류 센서(50)의 궤적과는 상이하다. 와전류 센서(50)가 감지하는 배선 구조(200)의 위치는, 연마 테이블(1)의 회전 횟수에 따라 상이하고, 결과적으로, 와전류 센서(50)에 의해 취득되는 막 두께 프로파일은, 와전류 센서(50)의 궤적에 의존하여 바뀐다.
탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도는, 통상 상이하다. 이러한 조건에서는, 와전류 센서(50)가 웨이퍼 표면에 그리는 궤적은, 웨이퍼의 중심 주위로 회전한다. 와전류 센서(50)의 궤적은, 연마 테이블(1)이 어느 횟수만큼 회전하는 사이에, 웨이퍼의 표면 상을 일주한다. 센서 궤적이 웨이퍼의 표면 상을 일주하기 위해서 필요한 연마 테이블(1)의 회전 횟수는, 탑링(10)과 연마 테이블(1)의 회전 속도비에 의해 결정된다.
도 30은, 탑링(10)의 회전 속도가 77min-1, 연마 테이블(1)의 회전 속도가 70min-1일 때, 와전류 센서(50)가 그리는 웨이퍼(W) 상의 궤적을 도시하는 도면이다. 도 30에 도시한 바와 같이, 이 조건 하에서는, 연마 테이블(1)이 1회전할 때마다 와전류 센서(50)의 궤적이 36도 회전한다. 따라서, 연마 테이블(1)이 10회전 할 때마다, 와전류 센서(50)의 궤적은 웨이퍼(W)의 표면 상을 일주한다. 이 경우, 연마 테이블(1)이 1회째의 회전을 하고 있을 때의 센서 궤적과, 연마 테이블(1)이 11회째의 회전을 하고 있을 때의 센서 궤적은 동일하다.
도 31은, 와전류 센서(50)의 동일 궤적상의 막 두께 프로파일의 변화를 도시하는 도면이다. 막 두께 프로파일이란, 웨이퍼의 반경 방향에 따른 막 두께 분포다. 와전류 센서(50)가 동일한 궤적에서 웨이퍼의 막 두께를 측정하면, 배선 구조(200)에 기인해서 막 두께 프로파일의 동일 개소에서 볼록부가 나타난다. 와전류 센서(50)는 웨이퍼의 동일 개소를 주사하므로, 볼록부는 동일 위치에 나타난다. 따라서, 하층의 배선 구조(200)의 존재에 따르지 않고, 막 두께 프로파일은, 전체적으로, 연마 시간이 지남에 따라 서서히 작아져 간다. 즉, 웨이퍼 상의 각 막 두께 측정점에 있어서, 막 두께 지표값은 연마 시간이 지남에 따라 저하한다. 따라서, 막 두께 프로파일(막 두께 지표값)의 변화에 기초하여, 연마 종점을 결정할 수 있다.
웨이퍼에 형성된 금속막을 제거하는 것이 연마의 목적일 경우, 금속막이 웨이퍼로부터 제거된 시점에서, 막 두께 프로파일은 변화하지 않게 된다. 이것은, 와전류 센서(50)가 그 이상 금속막에 반응하지 않게 되기 때문이다. 따라서, 막 두께 프로파일이 변화하지 않게 된 시점(구체적으로는, 막 두께 지표값이 저하하지 않게 된 시점)을 연마 종점으로서 결정할 수 있다. 예를 들어, 웨이퍼 상의 동일 위치에 있어서의 현재의 막 두께 지표값과 전회의 막 두께 지표값의 차이가 소정의 값까지 저하한 시점을 연마 종점으로 할 수 있다.
막 두께 프로파일의 변화(즉, 막 두께 지표값의 변화)는, 도 26에 도시한 바와 같이 웨이퍼의 표면에 미리 정의된 복수의 영역마다 감시할 수 있다. 웨이퍼 상의 각 영역에서는, 하층의 배선 구조의 존재에 관계없이, 막 두께 지표값은 연마 시간이 지남에 따라 작아진다. 따라서, 와전류 센서(50)로부터 얻어지는 막 두께 지표값을, 웨이퍼의 각 영역에서의 연마 종점 검출에 사용할 수 있다.
탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도가 상이한 경우, 웨이퍼의 표면을 주사하는 와전류 센서(50)의 궤적은 복수 존재한다. 도 30에 나타내는 예에서는, 연마 테이블(1)이 10회전할 때마다 센서 궤적이 웨이퍼(W)의 중심 주위에 1주 하므로, 10개의 궤적이 존재한다. 이들 10개의 궤적 각각에 대해서, 도 31에 나타내는 막 두께 프로파일을 작성해도 좋다. 이 경우에도, 도 26에 나타내는 예와 같이, 웨이퍼의 표면을 5개의 영역으로 나눌 수 있다. 따라서, 이 경우에서는, 50(10×5)개의 연마 종점을 검출할 수 있다.
상술한 예는, 막의 하층에 존재하는 배선 구조가 와전류 센서(50)의 출력 신호에 영향을 주는 경우인데, 연마해야 할 막이 웨이퍼 상에 국소적으로 남은 경우에도, 막 두께 프로파일에는 볼록부가 나타난다. 이 예에 대해서, 도 32를 참조하여 설명한다. 도 32는, 웨이퍼 상에 국소적으로 존재하는 잔막과, 이 웨이퍼의 막 두께 프로파일을 도시하는 도면이다. 통상, 잔막은, 도 32에 도시한 바와 같이, 환상의 막이다. 이러한 잔막이 웨이퍼 상에 존재하면, 그 잔막에 와전류 센서(50)가 반응해서 막 두께 지표값이 커지고, 결과적으로, 도 31에 나타내는 예와 마찬가지로, 막 두께 프로파일에는 볼록부가 나타난다.
도 32에 나타내는 막 두께 프로파일은, 와전류 센서(50)의 궤적에 따르지 않고, 항상 일정한 위치에서 볼록부가 나타나는 점에서, 도 31에 나타내는 막 두께 프로파일과는 상이하다. 이것은, 잔막이 웨이퍼의 주위 방향으로 연장된 환상의 막이기 때문이다. 이 잔막의 존재를 나타내는 막 두께 프로파일의 볼록부는, 연마 테이블(1)이 회전할 때마다 동일한 개소에 나타나고, 연마 시간이 지남에 따라 서서히 작아져, 잔막이 제거되면 소멸한다.
도 33은, 하층의 배선 구조와 잔막의 양쪽을 갖는 웨이퍼의 막 두께 프로파일을 도시하는 도면이다. 하층의 배선 구조에 기인하는 막 두께 프로파일의 볼록부는, 와전류 센서(50)의 주사 궤적이 일치하지 않는 한, 다른 위치에 나타나는 데 반해, 잔막에 기인하는 막 두께 프로파일의 볼록부는, 연마 테이블(1)이 회전할 때마다 동일 위치에 나타난다. 따라서, 모니터링 장치(55)는, 막 두께 프로파일에 나타나는 볼록부의 위치로부터, 그 볼록부가 잔막 또는 하층의 배선 구조 중 어느 하나에 기인하는 것인가를 판단할 수 있다. 또한, 잔막에 기인하는 볼록부의 크기의 변화로부터 연마 종점을 결정할 수 있다. 예를 들어, 볼록부의 크기가 0이 된 시점 또는 소정의 임계값까지 작아진 시점을 연마 종점으로 할 수 있다.
하층의 배선 구조에 기인하는 볼록부와, 잔막에 기인하는 볼록부는, 다음과 같이 해서 구별할 수 있다. 막 두께 프로파일이 취득될 때마다, 그 막 두께 프로파일에 나타나는 볼록부의 수와 웨이퍼의 반경 방향에 있어서의 볼록부의 위치가 취득된다. 도 33으로부터 알 수 있는 바와 같이, 잔막에 기인하는 볼록부는, 센서 궤적에 관계없이, 연마 테이블(1)이 1회전할 때마다 매회 거의 동일 위치(유사한 위치)에서 연속적으로 나타난다. 이에 반해, 하층의 배선 구조에 기인하는 볼록부는, 일정한 주기로 거의 동일 위치(유사한 위치)에 나타난다. 따라서, 연속해서 거의 동일 위치에 나타나는 볼록부는, 잔막에 기인하는 볼록부라고 판단되고, 한편, 일정한 주기로 거의 동일 위치에 나타나는 볼록부는, 하층의 배선 구조에 기인하는 볼록부라고 판단된다.
연마 테이블(1)과 탑링(10)이 같은 회전 속도로 회전하고 있을 경우, 와전류 센서(50)는 항상 동일 궤적으로 웨이퍼를 가로지르기 때문에, 상술한 방법으로는 볼록부의 구별을 할 수 없다. 따라서, 이러한 경우에는, 각 볼록부의 피크값이 연마 시간이 지남에 따라 감소하는지 여부에 기초하여 볼록부를 구별할 수 있다. 즉, 연마 시간이 일정 시점에 달하면 볼록부의 피크값이 감소하지 않게 되는 경우에는, 그 볼록부는 하층의 배선 구조에 기인한 볼록부라고 판단할 수 있다. 한편, 연마 시간이 지남에 따라 볼록부의 피크값이(서서히라도) 감소하는 경우에는, 그 볼록부는 잔막에 기인한 볼록부라고 판단할 수 있다.
상술한 바와 같이, 와전류 센서(50)의 주사 궤적의 수는, 탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도의 비에 의해 결정된다. 다시 말해, 탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도를 설정함으로써, 연마 테이블(1)이 원하는 횟수만큼 회전할 때마다, 와전류 센서(50)를 같은 궤적으로 웨이퍼를 주사시킬 수 있다. 그러나, 탑링(10) 및 연마 테이블(1)은, 반드시 설정 회전 속도로 회전한다고는 할 수 없다. 즉, 설정 회전 속도와 실제 회전 속도 사이에는 오차가 있다. 이 오차는 작은 것인데, 그 오차에 기인하여 와전류 센서(50)는 예정된 궤적으로 웨이퍼를 주사하지 않는다. 결과적으로, 도 31에 도시한 바와 같은, 볼록부가 동일 위치에 나타나는 막 두께 프로파일을 얻을 수 없다.
따라서, 본 실시 형태에서는, 탑링(10) 및 연마 테이블(1)이 각각 1회전하는 실시간을 측정하고, 그 실측 시간으로부터 탑링(10)의 회전 속도와 연마 테이블(1)의 회전 속도를 산출한다. 도 34는, 연마 테이블(1)이 1회전하는 시간을 측정하는 테이블 회전 검출기(210)와, 탑링(10)이 1회전하는 시간을 측정하는 탑링 회전 검출기(220)를 도시하는 모식도다. 테이블 회전 검출기(210)는, 연마 테이블(1)의 외주면에 고정된 센서 타깃(211)과, 이 센서 타깃(211)을 감지하는 센서(212)와, 센서(212)에 접속된 시간 계측기(213)를 구비하고 있다.
센서 타깃(211)은, 연마 테이블(1)과 함께 회전하는 한편, 센서(212)의 위치는 고정되어 있다. 센서(212)는, 센서 타깃(211)에 근접해서 배치되어 있고, 연마 테이블(1)이 1회전할 때마다 센서 타깃(211)을 감지하게 되어 있다. 센서(212)가 센서 타깃(211)을 감지하면, 트리거 신호가 센서(212)로부터 시간 계측기(213)에 보내진다. 시간 계측기(213)는, 트리거 신호를 수신하고나서, 다음 트리거 신호를 수신할 때까지의 시간을 계측한다. 이 계측된 시간은, 연마 테이블(1)이 1회전하는 시간이다.
탑링 회전 검출기(220)는, 탑링(10)에 고정된 센서 타깃(221)과, 이 센서 타깃(221)을 감지하는 센서(222)와, 센서(222)에 접속된 시간 계측기(223)를 구비하고 있다. 센서(222)는, 탑링 헤드(12)(도 1 참조)에 고정되어 있다. 탑링 회전 검출기(220)의 동작은, 상술한 테이블 회전 검출기(210)의 동작과 동일하므로, 그 설명을 생략한다.
도 35는, 트리거 신호를 받아서 각 시간 계측기가 1회전당 실시간을 계측하는 모습을 나타내는 타임챠트다. 트리거 신호를 받으면, 시간 계측기(213, 223)는시간의 계측을 개시하고, 다음 트리거 신호를 받으면, 시간 계측기(213, 223)는 시간의 계측을 정지함과 동시에, 다시 시간의 계측을 개시한다. 트리거 신호는, 연마 테이블(1)이 1회전할 때마다 시간 계측기(213)에 입력되므로, 트리거 신호와 다음 트리거 신호 사이의 시간 간격이 연마 테이블(1)의 실제 회전 시간이다. 마찬가지로, 트리거 신호는, 탑링(10)이 1회전할 때마다 시간 계측기(223)에 입력되므로, 트리거 신호와 다음 트리거 신호 사이의 시간 간격이 탑링(10)의 실제 회전 시간이다.
연마 테이블(1)의 회전 속도(min-1) 및 탑링(10)의 회전 속도(min-1)는, 각각의 실측 회전 시간으로부터 산출할 수 있다. 이와 같이, 연마 테이블(1)의 실제 회전 속도 및 탑링(10)의 실제 회전 속도를 취득함으로써, 탑링(10)과 연마 테이블(1)의 회전 속도비를 정확하게 조정할 수 있다. 따라서, 와전류 센서(50)는, 연마 테이블(1)이 소정의 횟수만큼 회전할 때마다, 정확하게 동일한 궤적을 그려서 웨이퍼의 표면을 주사할 수 있다. 또한, 탑링 회전 검출기(220) 또는 테이블 회전 검출기(210) 중 어느 하나를 생략해도 좋다. 이 경우, 탑링(10) 또는 연마 테이블(1)의 실제 회전 속도를 측정할 수 없으므로, 그 대신에 설정 회전 속도가 사용된다.
이어서, 연마 종점을 검출하는 프로세스에 대해서, 도 36을 참조하여 설명한다. 도 36은, 연마 종점을 검출하는 공정을 나타내는 흐름도다. 웨이퍼의 연마가 개시되면, 와전류 센서(50)는, 연마 테이블(1)이 회전할 때마다 웨이퍼의 표면을 주사하고, 임피던스의 저항 성분으로서의 신호 X와 유도 리액턴스 성분으로서의 신호 Y를 출력한다. 모니터링 장치(55)는, 출력 신호 X, Y로 이루어지는 막 두께 데이터를 와전류 센서(50)로부터 수취한다(스텝 1).
모니터링 장치(55)는, 시간 계측기(213, 223)로부터 연마 테이블(1)의 회전 시간 및 탑링(10)의 회전 시간의 측정값을 수취하고(스텝 2), 상술한 바와 같이 탑링(10)의 실제의 회전 속도 및 연마 테이블(1)의 실제의 회전 속도를 산출한다. 또한, 모니터링 장치(55)는, 탑링(10)과 연마 테이블(1)의 회전 속도비로부터, 와전류 센서(50)가 같은 궤적을 그리기 위해서 필요한 연마 테이블(1)의 회전 횟수를 산출한다(스텝 3).
모니터링 장치(55)는, 웨이퍼 표면에 미리 정의된 복수의 영역(도 26 참조)을 따라서 막 두께 데이터를 복수의 막 두께 데이터 군으로 분할하고(스텝 4), 또한 영역마다 막 두께 데이터 군을 와전류 센서(50)의 궤적을 따라서 복수의 막 두께 데이터에 할당해(스텝 5), 각각의 막 두께 데이터로부터 각 센서 궤적에 관한 막 두께 프로파일을 작성한다.
상기 스텝 2 내지 스텝 5의 구체예에 대해서, 도 37을 참조하여 설명한다. 도 37에 나타내는 예에서는, 탑링(10)이 1회전하는 실시간은 2000밀리 초이며, 연마 테이블(1)이 1회전하는 실시간은 1000밀리 초다. 이 경우, 탑링(10)의 회전 속도는 30min-1, 연마 테이블(1)의 회전 속도는 60min- 1으로 구해지고, 연마 테이블(1)이 1회전할 때마다 와전류 센서(50)는 2회 웨이퍼의 표면을 가로지른다. 따라서, 이 경우의 와전류 센서(50)의 궤적은 2개다. 웨이퍼의 표면에는 각자 궤적을 따라서 5개의 영역이 미리 정의되어 있다.
연마 테이블(1)이 2N-1회전째일 때에 얻어지는 막 두께 데이터는, D12N -1, D22N-1, D32N -1, D42N -1, D52N -1이며, 연마 테이블(1)이 2N 회전째일 때에 얻어지는 막 두께 데이터는, D12N, D22N, D32N, D42N, D52N이다. N은 자연수다. 이들 막 두께 데이터는, 웨이퍼 상의 5개의 영역에 각각 속하는 5개의 데이터 군, 즉 제1 데이터 군 D12N -1, D12N, 제2 데이터 군 D22N -1, D22N, 제3 데이터 군 D32N -1, D32N, 제4 데이터 군 D42N -1, D42N, 제5 데이터 군 D52N -1, D52N으로 나뉘어진다.
또한, 상기 각 데이터 군은, 동일 센서 궤적마다 할당된다. 즉, 제1 데이터 군은, 막 두께 데이터 D12N -1과 막 두께 데이터 D12N로 나뉘어지고, 제2 데이터 군은 막 두께 데이터 D22N -1과 막 두께 데이터 D22N로 나뉘어지고, 제3 데이터 군은 막 두께 데이터 D32N -1과 막 두께 데이터 D32N로 나뉘어지고, 제4 데이터 군은 막 두께 데이터 D42N -1과 막 두께 데이터 D42N로 나뉘어지고, 제5 데이터 군은 막 두께 데이터 D52N-1과 막 두께 데이터 D52N로 나뉘어진다. 그리고, 각각의 막 두께 데이터로부터 막 두께 프로파일이 생성된다.
도 36으로 되돌아가서, 모니터링 장치(55)는, 각 막 두께 프로파일로부터 얻어지는 현재의 막 두께와 전회의 막 두께와 비교하여, 막 두께 프로파일의 변화를 취득한다(스텝 6). 구체적으로는, 모니터링 장치(55)는, 현재의 막 두께와 전회의 막 두께의 차이가 설정값을 하회하는가 여부, 또는 막 두께의 감소율이 설정값을 하회하는가 여부를 판단한다. 연마 종점 검출의 정밀도를 올리기 위해서, 이들 설정값은, 시스템 노이즈의 크기에 기초하여 결정하는 것이 바람직하다. 현재의 막 두께와 전회의 막 두께의 차이가 설정값을 하회했을 때, 또는 막 두께의 감소율이 설정값을 하회했을 때, 모니터링 장치(55)는, 웨이퍼의 연마 공정이 종점에 도달했다고 판단한다(스텝 7).
연마 종점 검출의 정밀도를 더 높이기 위해서, 스텝 7의 연마 종점이 복수의 센서 궤적에 대해서 검출되었을 때, 웨이퍼의 연마 공정이 종점에 도달했다고 판단하는 것이 바람직하다. 혹은, 연마 테이블(1)이 복수회 회전하는 사이에 스텝 7의 연마 종점 검출이 복수회 행해진 경우에, 웨이퍼의 연마 공정이 종점에 도달했다고 판단하는 것이 바람직하다.
상술한 실시 형태는, 웨이퍼의 복수의 영역을 독립하여 연마 패드에 가압할 수 있는 탑링에 적용할 수 있다. 도 38은, 도 1에 도시하는 탑링의 일례를 도시하는 단면도다. 탑링(10)은, 탑링 샤프트(11)에 자유 조인트(250)를 개재해서 연결되는 탑링 본체(251)와, 탑링 본체(251)의 하부에 배치된 리테이너 링(252)을 구비하고 있다.
탑링 본체(251)의 하방에는, 웨이퍼(W)에 접촉하는 유연한 멤브레인(256)과, 멤브레인(256)을 보유 지지하는 척킹 플레이트(257)가 배치되어 있다. 멤브레인(256)과 척킹 플레이트(257)의 사이에는, 4개의 압력실(에어백)(P1, P2, P3, P4)이 설치되어 있다. 압력실(P1, P2, P3, P4)은 멤브레인(256)과 척킹 플레이트(257)에 의해 형성되어 있다. 중앙의 압력실(P1)은 원형이며, 다른 압력실(P2,P3,P4)은 환상이다. 이들 압력실(P1, P2, P3, P4)은, 동심 상에 배열되어 있다.
압력실(P1, P2, P3, P4)에는 각각 유체로(261, 262, 263, 264)를 개재해서 압력 조정부(270)에 의해 가압 공기 등의 가압 유체가 공급되고, 혹은 진공화가 되도록 되어 있다. 압력실(P1, P2, P3, P4)의 내부 압력은 서로 독립해서 변화시키는 것이 가능하고, 이에 의해, 웨이퍼(W)의 4개의 영역, 즉, 중앙부, 내측 중간부, 외측 중간부 및 주연부에 대한 가압력을 독립적으로 조정할 수 있다. 또한, 탑링(10)의 전체를 승강시킴으로써, 리테이너 링(252)을 소정의 가압력으로 연마 패드(2)에 가압할 수 있게 되어 있다.
척킹 플레이트(257)와 탑링 본체(251) 사이에는 압력실(P5)이 형성되고, 이 압력실(P5)에는 유체로(265)를 개재해서 상기 압력 조정부(270)에 의해 가압 유체가 공급되거나, 혹은 진공화가 되도록 되어 있다. 이에 의해, 척킹 플레이트(257) 및 멤브레인(256) 전체가 상하 방향으로 움직일 수 있다. 웨이퍼(W)의 주단부는 리테이너 링(252)에 둘러싸여 있어, 연마중에 웨이퍼(W)가 탑링(10)으로부터 튀어나오지 않게 되어 있다. 압력실(P3)을 구성하는, 멤브레인(256)의 부위에는 개구가 형성되어 있고, 압력실(P3)에 진공을 형성함으로써 웨이퍼(W)가 탑링(10)에 흡착 보유 지지되게 되어 있다. 또한, 이 압력실(P3)에 질소 가스나 클린에어 등을 공급함으로써, 웨이퍼(W)가 탑링(10)으로부터 릴리스 되도록 되어 있다.
모니터링 장치(55)는, 각 압력실(P1, P2, P3, P4)에 대응하는 웨이퍼 표면의 영역에서의 막 두께 지표값에 기초하여, 각 압력실(P1, P2, P3, P4)의 내부 압력의 목표값을 결정한다. 모니터링 장치(55)는 상기 압력 조정부(270)에 명령 신호를 보내고, 압력실(P1, P2, P3, P4)의 내부 압력이 상기 목표값에 일치하도록 압력 조정부(270)를 제어한다. 이와 같이, 복수의 압력실을 갖는 탑링(10)은, 연마의 진척을 따라서 웨이퍼 표면 상의 각 영역을 독립적으로 연마 패드(2)에 가압할 수 있으므로, 막을 균일하게 연마할 수 있다.
지금까지 본 발명의 실시 형태에 대해서 설명했으나, 본 발명은 상술한 실시 형태에 한정되지 않고, 그 기술적 사상의 범위 내에 있어서 여러 가지 다른 형태로 실시되어도 되는 것은 당연하다.

Claims (37)

  1. 회전하는 연마 테이블 상의 연마면에 연마 대상의 기판을 가압해서 기판 상의 도전막을 연마하고, 연마중에 연마 테이블에 설치된 와전류 센서에 의해 도전막의 두께를 감시하는 연마 감시 방법이며,
    기판 상의 도전막을 지립을 포함한 연마액으로 연마중에 와전류 센서의 출력 신호를 취득하고, 상기 기판 상의 도전막의 연마중이며 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출하고, 당해 출력 조정량을 사용해서 상기 기판 상의 도전막의 연마중이며 와전류 센서의 상방에 기판이 존재할 때의 출력 신호를 보정해서 기판 상의 도전막의 두께를 감시하는 것을 특징으로 하는, 연마 감시 방법.
  2. 제1항에 있어서, 상기 와전류 센서의 출력 신호는, 당해 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분 및 리액턴스 성분을 좌표로 정의했을 때, 도전막의 두께가 작아짐에 따라서 좌표계의 원점과 상기 좌표와의 거리가 짧아지는 위치에 상기 좌표를 회전 및 이동시킨 좌표로서 표현되는 것을 특징으로 하는, 연마 감시 방법.
  3. 제2항에 있어서, 상기 출력 신호의 보정은, 상기 좌표계의 원점을 이동시킴으로써 행하는 것을 특징으로 하는, 연마 감시 방법.
  4. 제3항에 있어서, 상기 보정에 의해 이동한 좌표계의 원점과 상기 임피던스의 좌표와의 거리로부터 상기 도전막의 두께를 감시하는 것을 특징으로 하는, 연마 감시 방법.
  5. 제1항에 있어서, 상기 출력 신호의 보정은, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호의 N 회전수의 평균값을 사용하는 것을 특징으로 하는, 연마 감시 방법.
  6. 제1항에 있어서, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 와전류 센서의 상방에 기판 보유 지지용 탑링이 존재하지 않는 영역으로부터의 출력 신호만을 사용하는 것을 특징으로 하는, 연마 감시 방법.
  7. 제6항에 있어서, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 와전류 센서의 상방에 연마면의 드레싱용 드레서가 존재하지 않는 영역으로부터의 출력 신호만을 사용하는 것을 특징으로 하는, 연마 감시 방법.
  8. 연마면을 갖고 회전하는 연마 테이블과,
    상기 연마면에 지립을 포함한 연마액을 공급하는 연마액 공급 수단과,
    연마 대상의 기판을 상기 연마면에 가압해서 기판 상의 도전막을 연마하는 탑링과,
    상기 연마 테이블 내에 설치된 와전류 센서와,
    상기 와전류 센서의 출력 신호에 기초하여 도전막의 두께를 감시하는 모니터링 장치를 구비하고,
    상기 모니터링 장치는, 기판 상의 도전막을 지립을 포함한 연마액으로 연마중에 와전류 센서의 출력 신호를 취득하고, 상기 기판 상의 도전막의 연마중이며 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호를 사용해서 와전류 센서의 출력 조정량을 산출하고, 당해 출력 조정량을 사용해서 상기 기판 상의 도전막의 연마중이며 와전류 센서의 상방에 기판이 존재할 때의 출력 신호를 보정해서 기판 상의 도전막의 두께를 감시하는 것을 특징으로 하는, 연마 장치.
  9. 제8항에 있어서, 상기 와전류 센서의 출력 신호는, 당해 와전류 센서의 코일을 포함하는 전기 회로의 임피던스의 저항 성분 및 리액턴스 성분을 좌표로 정의했을 때, 도전막의 두께가 작아짐에 따라서 좌표계의 원점과 상기 좌표와의 거리가 짧아지는 위치에 상기 좌표를 회전 및 이동시킨 좌표로서 표현되는 것을 특징으로 하는, 연마 장치.
  10. 제9항에 있어서, 상기 출력 신호의 보정은, 상기 좌표계의 원점을 이동시킴으로써 행하는 것을 특징으로 하는, 연마 장치.
  11. 제10항에 있어서, 상기 보정에 의해 이동한 좌표계의 원점과 상기 임피던스의 좌표와의 거리로부터 상기 도전막의 두께를 감시하는 것을 특징으로 하는, 연마 장치.
  12. 제8항에 있어서, 상기 출력 신호의 보정은, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호의 N 회전수의 평균값을 사용하는 것을 특징으로 하는, 연마 장치.
  13. 제8항에 있어서, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 와전류 센서의 상방에 기판 보유 지지용 탑링이 존재하지 않는 영역으로부터의 출력 신호만을 사용하는 것을 특징으로 하는, 연마 장치.
  14. 제13항에 있어서, 상기 와전류 센서의 상방에 기판이 존재하지 않을 때의 출력 신호 중, 상기 와전류 센서의 상방에 연마면의 드레싱용 드레서가 존재하지 않는 영역으로부터의 출력 신호만을 사용하는 것을 특징으로 하는, 연마 장치.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
KR1020120086630A 2011-08-09 2012-08-08 연마 감시 방법, 연마 종점 검출 방법 및 연마 장치 KR101809282B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011173792A JP6050571B2 (ja) 2011-08-09 2011-08-09 研磨監視方法および研磨装置
JPJP-P-2011-173792 2011-08-09
JPJP-P-2011-253801 2011-11-21
JP2011253801A JP5705093B2 (ja) 2011-11-21 2011-11-21 研磨終点検出方法および研磨装置

Publications (2)

Publication Number Publication Date
KR20130018604A KR20130018604A (ko) 2013-02-25
KR101809282B1 true KR101809282B1 (ko) 2017-12-14

Family

ID=47830267

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120086630A KR101809282B1 (ko) 2011-08-09 2012-08-08 연마 감시 방법, 연마 종점 검출 방법 및 연마 장치

Country Status (3)

Country Link
US (1) US20130065493A1 (ko)
KR (1) KR101809282B1 (ko)
TW (1) TWI598948B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200016720A1 (en) * 2018-07-13 2020-01-16 Ebara Corporation Polishing apparatus and polishing method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193623B2 (ja) * 2012-06-13 2017-09-06 株式会社荏原製作所 研磨方法及び研磨装置
JP5973883B2 (ja) * 2012-11-15 2016-08-23 株式会社荏原製作所 基板保持装置および研磨装置
US8992286B2 (en) * 2013-02-26 2015-03-31 Applied Materials, Inc. Weighted regression of thickness maps from spectral data
US20150044783A1 (en) * 2013-08-12 2015-02-12 Micron Technology, Inc. Methods of alleviating adverse stress effects on a wafer, and methods of forming a semiconductor device
JP6033751B2 (ja) * 2013-10-07 2016-11-30 株式会社荏原製作所 研磨方法
WO2015066058A1 (en) * 2013-10-29 2015-05-07 Applied Materials, Inc. Determination of gain for eddy current sensor
JP6030041B2 (ja) * 2013-11-01 2016-11-24 株式会社荏原製作所 研磨装置および研磨方法
KR102326730B1 (ko) * 2014-03-12 2021-11-17 가부시키가이샤 에바라 세이사꾸쇼 막 두께 측정값의 보정 방법, 막 두께 보정기 및 와전류 센서
US9911664B2 (en) * 2014-06-23 2018-03-06 Applied Materials, Inc. Substrate features for inductive monitoring of conductive trench depth
KR101653536B1 (ko) * 2015-07-07 2016-09-09 주식회사 케이씨텍 화학 기계적 연마 장치
US10160089B2 (en) * 2015-10-01 2018-12-25 Ebara Corporation Polishing apparatus
JP6475604B2 (ja) * 2015-11-24 2019-02-27 株式会社荏原製作所 研磨方法
KR101712920B1 (ko) * 2015-12-07 2017-03-08 주식회사 케이씨텍 화학 기계적 연마 장치
JP6795337B2 (ja) * 2016-06-29 2020-12-02 株式会社荏原製作所 膜厚信号処理装置、研磨装置、膜厚信号処理方法、及び、研磨方法
KR102608200B1 (ko) * 2017-01-13 2023-11-30 어플라이드 머티어리얼스, 인코포레이티드 인-시튜 모니터링으로부터의 측정들의 비저항 기반 조정
CN107825285B (zh) * 2017-04-25 2019-07-12 广州安卓机械科技有限公司 一种平面研磨机
JP7019305B2 (ja) * 2017-04-26 2022-02-15 株式会社荏原製作所 渦電流センサのキャリブレーション方法
JP7083279B2 (ja) * 2018-06-22 2022-06-10 株式会社荏原製作所 渦電流センサの軌道を特定する方法、基板の研磨の進行度を算出する方法、基板研磨装置の動作を停止する方法および基板研磨の進行度を均一化する方法、これらの方法を実行するためのプログラムならびに当該プログラムが記録された非一過性の記録媒体
JP7153490B2 (ja) * 2018-07-13 2022-10-14 株式会社荏原製作所 研磨装置およびキャリブレーション方法
KR20200063491A (ko) * 2018-11-28 2020-06-05 주식회사 케이씨텍 기판 처리 장치
JP7224202B2 (ja) 2019-02-22 2023-02-17 株式会社荏原製作所 基板研磨システム及び方法並びに基板研磨装置
JP7341022B2 (ja) * 2019-10-03 2023-09-08 株式会社荏原製作所 基板研磨装置および膜厚マップ作成方法
IT202000015790A1 (it) * 2020-06-30 2021-12-30 St Microelectronics Srl Metodo e sistema per valutare il consumo fisico di un pad di politura di un apparecchio cmp, e apparecchio cmp
CN114367919A (zh) * 2020-10-14 2022-04-19 长鑫存储技术有限公司 研磨控制方法、装置及存储介质
US11931853B2 (en) * 2021-03-05 2024-03-19 Applied Materials, Inc. Control of processing parameters for substrate polishing with angularly distributed zones using cost function
CN115464556B (zh) * 2022-09-14 2024-01-26 清华大学 一种金属膜厚测量方法和化学机械抛光设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104847A1 (en) * 2007-10-18 2009-04-23 Yoichi Kobayashi Polishing monitoring method and polishing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358225A (en) * 1964-03-27 1967-12-12 Richard S Peugeot Lift-off compensation for eddy current testers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104847A1 (en) * 2007-10-18 2009-04-23 Yoichi Kobayashi Polishing monitoring method and polishing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200016720A1 (en) * 2018-07-13 2020-01-16 Ebara Corporation Polishing apparatus and polishing method

Also Published As

Publication number Publication date
TWI598948B (zh) 2017-09-11
US20130065493A1 (en) 2013-03-14
TW201314758A (zh) 2013-04-01
KR20130018604A (ko) 2013-02-25

Similar Documents

Publication Publication Date Title
KR101809282B1 (ko) 연마 감시 방법, 연마 종점 검출 방법 및 연마 장치
TWI487596B (zh) 磨光監視方法及磨光裝置
JP6050571B2 (ja) 研磨監視方法および研磨装置
US9068814B2 (en) Polishing monitoring method, polishing apparatus and monitoring apparatus
JP4451111B2 (ja) 渦電流センサ
KR102608200B1 (ko) 인-시튜 모니터링으로부터의 측정들의 비저항 기반 조정
JP4163516B2 (ja) 光学および渦電流モニタリングによる統合終点検出システム
TWI789388B (zh) 渦電流檢測器的校準方法
US9573245B2 (en) Polishing method
US9632061B2 (en) Eddy current sensor and polishing method
JP5705093B2 (ja) 研磨終点検出方法および研磨装置
KR20180059351A (ko) 연마 장치 및 연마 방법
KR20220103048A (ko) 연마 장치, 연마 방법 및 기판의 막 두께 분포의 가시화 정보를 출력하는 방법
TWI806898B (zh) 用於晶圓上準確的感測器位置判定的振動校正
JP6263445B2 (ja) 研磨装置および研磨方法
TW202239521A (zh) 在原位電磁感應監測中對漿料組成的補償

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant