KR101800431B1 - 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도 - Google Patents

저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도 Download PDF

Info

Publication number
KR101800431B1
KR101800431B1 KR1020150051957A KR20150051957A KR101800431B1 KR 101800431 B1 KR101800431 B1 KR 101800431B1 KR 1020150051957 A KR1020150051957 A KR 1020150051957A KR 20150051957 A KR20150051957 A KR 20150051957A KR 101800431 B1 KR101800431 B1 KR 101800431B1
Authority
KR
South Korea
Prior art keywords
strain
tomato
low temperature
plant
plant growth
Prior art date
Application number
KR1020150051957A
Other languages
English (en)
Other versions
KR20160121994A (ko
Inventor
사동민
안무헌
홍인수
파르티반 수브라마니안
김기윤
이영욱
김재홍
이재강
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020150051957A priority Critical patent/KR101800431B1/ko
Publication of KR20160121994A publication Critical patent/KR20160121994A/ko
Application granted granted Critical
Publication of KR101800431B1 publication Critical patent/KR101800431B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • A01N63/02
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • C12R1/38

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 저온에 내성을 가지고 저온조건에서 식물 생장을 촉진시킬 수 있는 균주에 관한 것이다. 본 발명의 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주를 식물에 접종하는 경우, 저온에 내성을 가지며 저온에서 식물 생장이 촉진된다. 따라서 본 발명의 균주를 이용하면 식물의 저온에 대한 내성을 증진시키고 저온에서 식물 생장을 촉진시켜 유용한 농작물의 생산량과 생산 효율 증대에 기여할 수 있다.

Description

저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 OS261 균주 및 이의 용도{Pseudomonas frederiksbergensis OS261 Strain with Cold Resistance Promoting Plant Growth at Low Temperature and Uses Thereof}
본 발명은 저온에 내성을 가지고 저온에서 식물 생장을 촉진하는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주 및 이의 용도에 관한 것이다.
가뭄, 저온현상과 같은 환경적인 요인들은 농작물 생산에 있어서 병충해, 해충, 잡초 등과 같은 생물학적인 요인보다 더 큰 영향을 미치고 있다. 온대지역의 경우, 주기적으로 토양이 얼고 녹는 사이클을 반복하기 때문에 식물생장에 있어 온도의 영향을 더 많이 받는다. 식물생장에서 저온 스트레스를 극복하기 위해, 교배 또는 유전적 변형 등을 통한 시도가 있었다. 하지만, 저온에 대한 내성의 경우 여러 유전자가 함께 관여하고 있어서 하나의 유전자 조절에 의해 이 문제를 쉽게 해결할 수는 없었다(Fowler 및 Thomashow, 2002; Beck et al., 2004).
유용한 근권세균(rhizobacteria)은 식물과 상호작용을 하여 식물체가 스트레스 조건에서 생장하는 것을 도와주는 역할을 한다(Dimpka et al. 2009; Yang et al. 2009). 이를 이용한 기존의 연구 결과에 의하면, 다음과 같은 박테리아를 식물체에 접종함으로써 저온 스트레스를 완화시킬 수 있다는 보고가 있었다:
Brassicaceae(Chorisporabungeana), Poaceae(Triticumaestivum) 및 Vitaceae(Vitisvinifera) (Barkaetal, 2006; Dingetal, 2011; Mishraetal, 2011; Fernandezetal, .2012; Theocharisetal, .2012b)
토마토(Solanum lycopersicum)는 온대 지방에서 온실 조건 하에 생육하는 아열대 작물이다. 대부분의 토마토 모종은 15℃ 이하의 온도에 민감하며, 12℃ 이하에서는 보통 생장이 억제된다. 18℃ 이하의 낮은 온도는 토마토의 생장, 조직 형성, 개화 및 과실 성숙에 영향을 줄 수 있다.
한편, 한국등록특허 제0973168호에서는 '저온에서 식물 성장을 촉진하는 슈도모나스 코루가타돌연변이주 및 이를 이용한 식물 성장 촉진 방법'이 개시되어 있고, 한국특허등록 제0530885호에는 '슈도모나스 플로레슨스 B16 균주 및 이를 이용한 작물의 생장촉진 방법 및 세균성 시들음병 방제 방법'이 개시되어 있으나, 본 발명의 저온에서 식물의 생장을 촉진하는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) 균주에 대해서는 밝혀진 바가 없다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 저온에 내성을 가지고 저온조건에서 식물 생장을 촉진시킬 수 있는 균주를 발굴하고자 연구 노력하였다. 그 결과, 본 발명자들은 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis)속에 속하는 OS261 균주를 식물에 접종하는 경우, 저온에서 식물 생장이 촉진된다는 것을 확인함으로써, 본 발명을 완성하게 되었다.
본 발명의 목적은 저온에 내성을 가지며 저온에서 식물 생장을 촉진하는 슈도모나스 프레데릭스버겐시스 OS261 균주를 제공하는 데 있다.
본 발명의 다른 목적은 상기 균주 또는 이의 배양액을 포함하는 식물의 저온 내성 증진 및 식물 생장 촉진용 미생물제제를 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 균주 또는 이의 배양액을 포함하는 식물의 저온 내성 증진 및 식물 생장 촉진용 생물비료 및 이의 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 균주 또는 이의 배양액을 식물 또는 식물의 종자에 침지 또는 관주 처리하는 단계를 포함하는 식물의 저온에 대한 내성을 증진시키고 저온에서 식물 생장을 촉진시키는 방법을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 저온에 내성을 가지며 저온에서 식물 생장을 촉진하는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주를 제공한다. 본 발명의 슈도모나스 프레데릭스버겐시스 OS261 균주는 평균 온도가 영하로 떨어지는 겨울에 채취한 토양으로부터 분리, 동정한 것이다. 상기 균주는 2015년 1월 14일자로 농업생명공학연구원(Korean Agricultural Culture Collection, KACC)에 기탁하였다(기탁번호: KACC92040P).
저온에 내성을 가지며 저온에서 식물 생장을 촉진한다는 것은 저온 조건에서도 발아 성공률이 높으며, 식물의 생장이 일반적인 온도 조건에서와 크게 차이가 나지 않는다는 것을 의미한다.
본 명세서에서, 용어 “식물”은 성숙한 식물뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미로서 이해되며, 본 발명의 방법이 적용될 수 있는 식물체는 특별하게 한정되지 않는다. 본 발명의 방법이 적용될 수 있는 식물에는 상치, 배추, 감자 및 무를 포함하는 대부분의 쌍자엽 식물(dicotyledonous plant) 또는 벼, 보리, 바나나 등의 단자엽 식물(monocotyledonous plant)이 포함된다. 구체적으로는 본 발명의 방법은 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 및 수수를 포함하는 식량 작물류; 아라비돕시스, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 및 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 및 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 및 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 및 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 및 페레니얼라이그라스를 포함하는 사료작물류로 구성된 군으로부터 선택되는 식물체에 적용될 수 있다.
본 발명의 구체적인 예에 따르면, 본 발명의 균주를 토마토 종자에 처리한 경우, 15℃ 조건에서도 높은 발아 성공률을 나타내었으며, 12℃/10℃(낮/밤)의 조건에서도 일반 조건에서와 같이 토마토가 생장하였다.
본 발명의 다른 양태에 따르면, 본 발명의 OS261 균주 또는 이의 배양액을 유효성분으로 포함하는 식물의 저온 내성 증진 및 식물 생장 촉진용 미생물제제를 제공한다. 상기 미생물 제제는 미생물 제제는 액상 비료 형태로 제조될 수 있으며 이에 증량제를 첨가하여 가루분말의 형태로 제조되거나 이를 제형화하여 과립화시킬 수도 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 본 발명의 OS261 균주 또는 이의 배양액을 유효성분으로 포함하는 식물의 저온 내성 증진 및 식물 생장 촉진용 생물비료 및 이의 제조방법을 제공한다. 생물 비료의 경우, 상기 균주를 배양한 배양액을 이용하여 이를 액체 상태로 그대로 관주하거나 작물의 종자에 침지 또는 분무하거나 종자에 코팅하여 이용할 수 있으나, 이에 한정되는 것은 아니다. 생물비료의 제조 방법은 당업계에 공지된 임의의 방법을 이용할 수 있으며, 특정 방법에 특별히 제한되지 않는다.
본 발명의 또 다른 양태에 따르면, 본 발명의 OS261 균주 또는 이의 배양액을 식물 또는 식물의 종자에 침지 또는 관주 처리하는 단계를 포함하는 식물의 저온에 대한 내성을 증진시키고 저온에서 식물 생장을 촉진시키는 방법을 제공한다. “식물 또는 식물의 종자에 침지 또는 관주 처리”한다는 것은 균주가 식물 또는 식물의 종자에 침투해 들어갈 수 있도록 액체 상태의 균주 현탁액 또는 균주 배양액을 식물 또는 식물의 종자에 처리하는 것을 의미한다. 본 발명의 구체적인 예에 따르면, 토마토 종자를 OS261 균주의 배양액에 4시간 동안 넣은 다음, 종자를 페트리 접시에서 발아시킨 후 생육하는 방법을 사용하였다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 저온에서 식물 생장을 촉진하는 슈도모나스 프레데릭스버겐시스 OS261 균주를 제공한다.
(b) 본 발명의 균주 또는 이의 배양액을 이용하여 식물의 저온 내성 증진 및 식물 생장 촉진용 미생물제제 또는 생물비료를 제조할 수 있다.
(c) 본 발명의 균주를 이용하면 식물의 저온에 대한 내성을 증진시키고 저온에서 식물 생장을 촉진시켜 유용한 농작물의 생산량과 생산 효율 증대에 기여할 수 있다.
도 1는 OS261 균주의 계통학적 분석 결과를 보여주는 도면이다.
도 2는 OS261 균주를 접종하여 저온에서 토마토를 생육한 결과를 보여주는 사진이다.
도 3는 OS261 균주를 접종하여 저온에서 토마토를 생육하여 뿌리 길이 및 초장 길이를 분석한 결과를 보여주는 도표이다.
도 4는 OS261 균주를 접종하여 저온에서 토마토를 생육한 경우, 잎 조직의 손상여부를 분석한 도표이다. A는 건조중량, B는 과산화수소 함량, C는 전해질 누출, D는 말론디알데히드(MDA) 함량을 분석한 것이다.
도 5는 OS261 균주를 접종하여 저온에서 토마토를 생육한 경우, 저온에서 발현되는 유전자의 발현레벨 변화를 분석한 도표 및 사진이다.
도 6는 OS261 균주를 접종하여 저온에서 토마토를 생육한 경우, 뿌리에서 OS261 균주가 군집을 형성하였는지의 여부를 공초점 레이저 스캐닝 현미경관찰을 통해 관찰한 사진이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 저온에서 생존하는 박테리아의 분리
균주를 분리하기 위한 토양 샘플을 겨울에 대한민국 오창읍에 위치한 충북 농업연구원의 근권 토양으로부터 수집했다. 10 내지 15 cm의 깊이의 토양을 수집하여 5℃에 저장했다. 토양 샘플로부터 저온에서 생존하는 박테리아(psychrotrophic bacteria)를 분리해내기 위해 다음과 같은 조성의 MM(modified minimal) 배지를 이용하였다: 0.05% K2HPO4(w/v), 0.02% MgSO4.7H2O(w/v), 0.1% glucose, 0.2%(v/v), trace metal solution(0.5% H3BO3, 0.04% CuSO4.5H2O, 0.2% FeCl3.6H2O, 0.4% MnCl2. 4H2O, 0.2% NH4MoO4,0.4% ZnSO4.7H2O)(Bajerski et al. 2011).
균주를 분리하기 위해 10 g의 토양 샘플을 미리 냉각, 살균한 100 ㎖의 MM 배지에 넣은 다음 5°C에서 48시간 동안 배양하였다. 배양액에서 1 ㎖을 취하여 연속적으로 희석한 다음, 미리 냉각한 MM 배지 플레이트에 도말하고 다시 5°C에서 배양하였다. 7-28일 이내에 플레이트에서 균주의 성장을 관찰할 수 있었으며, 뚜렷하게 형성된 40개의 콜로니를 선택하여 수집하고, 계대배양한 다음 -80˚C에 저장하였다.
실시예 2: OS261 균주의 동정 및 계통학적 분석
상기 콜로니로부터 지노믹(genomic) DNA를 분리한 다음, 16S rRNA 유전자를 범용 프라이머인 27F(5'-AGAGTTTGATCMTGGCTCAG-3') 및 1492R(5'-TACGGYTACCTTGTTACGACTT-3')를 이용하여 PCR로 증폭시킨 후, 시퀀싱 분석을 하였다. 분석한 16S rRNA 시퀀스 데이터와 EzTaxon server(http://eztaxon-e.ezbiocloud.net)를 이용하여 분리균주를 동정한 결과, 기존에 보고되지 않는 신규한 균주임을 확인하여 OS261로 명명하였다. OS261 균주는 2015년 1월 14일자로 농업생명공학연구원(Korean Agricultural Culture Collection, KACC)에 기탁하였다 (기탁번호: KACC92040P).
OS261 균주의 계통학적 분석을 위해 MEGA version 5.03(Tamura et al. 2011) 및 ClustalW을 이용하였다. Jukes와 Cantor의 모델에 따라 치환을 수행하였으며, 네이버-조인팅 방법(neighbor-joining method)에 따라 클러스터링을 수행하였다. 계통 분석 결과, OS261 균주는 슈도모나스속에 속하며 슈도모나스 프레데릭스버겐시스와 가장 연관성이 높은 것으로 나타났다 (도 1).
실시예 3: 저온에서 OS261 균주의 식물생장 촉진 특징분석
5°C에서 OS261 균주의 생장 촉진 특징을 기존에 알려진 분석방법을 이용하여 분석하고자 하였다. 트립토판이 있는 상태와 없는 상태에서 균주에 의한 IAA의 생산량을 분석하였으며(Bano 및 Mussarat, 2003), NBRIP-BPB 플레이트에서 용해되지 않는 인산을 용해할 수 있는 능력을 측정하였고(Mehta 및 Nautiyal, 2001), CAS 고체배지에서 시데로포어(siderophore)의 생산량을 분석하였으며(Alexander 및 Zuberer, 1991), ACC 데아미나아제(ACC deaminase) 활성을 측정하기 위해 질소 없이 3 mM ACC를 첨가한 배지에서 균주를 배양하면서 ACC 데아미나아제에 의해 가수분해된 α-ketobutyrate를 분석하였고(Penrose 및 Glick, 2003), 배양액에서 살리실산(salicylic acid)의 생산량을 측정하였다(Mercado-Blanco et al., 2001).
분석결과, OS261 균주는 그람 음성균이었으며, 질소고정능, 인산가용화능, ACC 데아미나아제 활성, IAA 생산능, 실리실산 및 시데로포어 생상능을 가지고 있는 것으로 확인되었다.
실시예 4: 저온 조건에서 종자발아 시험
저온 조건에서 종자발아 시험을 위해 토마토 종자인 Solanum lycopersicum Mill를 이용하였다. 토마토 종자를 0.02% Tween20가 포함된 2% 차아염소산나트륨(sodium hypochlorite)으로 5분, 70% 에탄올로 1분 동안 살균한 다음, 증류수로 3분 동안 세 번 세척하였다. 멸균된 종자를 멸균 배지 또는 OS261 균주의 배양액(late log phase, 1 × 108 cfu ㎖-1)에 4시간 동안 넣은 다음, 종자를 멸균한 여과지를 포함하고 있는 각 페트리 접시에 이동시킨 후, 플레이트를 저온조건인 15℃, 암실에 놓아두었다. 10일 후, 종자의 발아비율을 계산하였다. 양성 대조군으로서 저온에서 식물생장을 촉진하는 균주로 확인된 슈도모나스 반코버런시스(Pseudomonas vancouverensis) OB155 균주(대한민국 특허출원 제 10-2015-0009019호)를 사용하였다.
분석결과, OS261 균주 배양액을 처리하지 않은 종자의 경우, 50%가 발아에 실패한 반면, OS261 균주 배양액 또는 OB155균주를 처리한 경우, 거의 모든 종자에서 발아에 성공하였다.
실시예 5: 저온조건에서 식물 생장 및 영양 축적 분석
토마토 종자의 표면을 멸균한 다음, OB155-gfp 균주 또는 OS261-gfp 균주를 처리한 후 종자를 발아시키고 30˚C/25˚C(낮/밤), 조도 -200 -2 s-1T조건의 식물생장 체임버에서 4주 동안 생육하였다. 4주후 생육조건을 12˚C /10˚C(낮/밤)의 저온 조건으로 변경한 다음, 다시 1주 동안 생육한 후, 분석을 위해 토마토를 수확하였다(Theocharis et al. 2012b).
OB155 균주 또는 OS261 균주의 gfp 형질전환을 위해 전기천공법 (eletroporation)을 이용하여 2.5 kV, 25 , 200 Ω, 5 mS 조건에서 Tn5 gusA-gfp cassette(pFAJ1820; Xi et al. 1990)를 OB155와 OS261 균주에 도입하였다. pFAJ1820 벡터는 gusA 유전자를 가지고 있어서 카나마이신(kanamycin)에 저항성을 가지며 GUS와 함께 GFP 단백질을 만드는 벡터이다. 형질전환된 균주를 선별하기 위해 상기 벡터를 도입한 균주를 카나마이신을 50 /㎖ 첨가한 nutrient agar(NA) 배지에서 배양하였다. 선별된 균주에서 형질전환 여부를 확인하기 위해 도입 백터인 pFAJ1820의 gusA 영역에 결합하는 PCR 프라이머인 YL065 (5'-GCGATGTTAATGGGCAAAAA-3')와 YL066 (5'-TCCATGCCATGTGTAAT CCT-3')를 이용하여 다음의 조건으로 PCR을 수행하였다: pre-denaturation 94℃에서 5 분, denaturation 94℃에서 30 초, annealing 59℃에서 1 분, extention 72℃에서 1 분(마지막 cycle은 72℃에서 10 분)의 조건으로 35 사이클을 증폭하였다. PCR로 검증한 OB155와 OS261 균주에서 GFP 활성을 측정하기 위해 균주를 액체배양한 후 Flow cytometer를 이용하여 측정하였다.
저온조건에서 식물 생장촉진여부를 분석하기 위해 식물의 높이, 뿌리 길이 및 바이오매스량을 측정하였다. 바이오매스 축적량을 분석하기 위해 각각의 토마토의 뿌리와 줄기를 수집한 다음, 70°C에서 48시간 동안 건조시켰다. 건조중량을 측정하였으며, 질소 축적량은 Kjeldahl 분석기를 이용하여 측정하였다. vanadate-molybdate 방법을 이용하여 인(P)을 분석하였고, Ca, Mg, Na 및 K 분석을 위해 ICP-OES(inductively coupled plasma optical emission spectrometry)를 이용하였다.
실험결과, OB261 균주와 OB155 균주를 접종한 경우, 저온 조건에서 대조군 토마토에 비해 식물의 생장이 유의성 있는 증가를 보이는 것으로 확인되었다. 즉, 식물 유묘의 초장과 뿌리 길이 및 바이오매스량 축적량이 모두 대조군에 비해 향상된 결과를 나타내었다(도 2, 3, 4).
또한 토양으로부터의 질소, 인, 칼슘, 마그테슘, 나트륨과 같은 영양분 축적에 있어서도 증가를 나타내었다(표 1).
Treatments N P Ca Mg K Na
------------------------- mg plant -1 -------------------------
Control 681.6± 4.8 165.3± 1.6 29.1± 2.3 24± 1 64.2± 1.5 14.4± 0.9
30/25℃ OB155 1098.5± 55.2 276.7± 3.2 51.7± 0.5 35.8± 2.8 102.8± 6.8 21.1± 0.8
OS261 1021.4± 14.9 308.3± 6.7 51.8± 2.8 30.8± 1.9 101.5± 7.3 19.1± 1.6
Control 243.5± 5.1 97.9± 2.4 13.8± 1.2 8.5± 0.7 25.5± 1 5.3± 0.3
12/10℃ OB155 353.9± 0.8 144.6± 1.7 20.1± 0.6 12.6± 0.7 42.5± 4.3 9.1± 1.3
OS261 328.7± 2.9 156.2± 1.1 20.3± 0.7 11.7± 0.5 36.5± 3.3 8.9± 0.8
실시예 6: 저온조건에서 잎 조직의 손상여부를 분석
저온조건에서 잎 조직의 손상여부를 분석하기 위해 활성산소인 과산화수소 함량과 잎에서의 막 투과성을 분석하였다(Theocharis et al., 2012b). 과산화수소 함량을 분석하기 위해 잎사귀를 분쇄한 샘플 500 mg을 4℃ 아세톤 1 ㎖과 섞어 균질화한 다음, 13,500 x g로 10분 동안 원심분리를 하였다. 상층액 250 ㎕에 100 ㎕의 5% 황산티타늄(titanyl sulfate)을 첨가하고, 500 ㎕의 1 N 수산화암모늄 용액을 첨가하였다. 용액을 6,000 x g로 5분 동안 원심분리하여 침전시킨 다음, 1.5 ㎖의 2 N 황산용액에 녹여주었다. 여기에 증류수를 첨가하여 최종 볼륨을 2 ㎖로 맞추었다. 415 nm에서 용액의 흡광도를 측정하였고, 표준곡선으로부터 과산화수소 함량을 계산하였다.
막투과성을 연구하기 위해 잎에서의 전해질 누출과 말론디알데히드(malondialdehyde) 함량을 분석하였다. 전해질 누출을 조사하기 위해, 6개의 완전히 생장한 잎을 채집하여 물로 세척하고 물기를 제거한 다음, 15 ㎖의 2차 증류수가 들어있는 원뿔형 관에 넣고 25℃에서 24시간 동안 배양하였다. 배양 후, 도전율계를 이용해 전도도(E1)를 측정하였다. 다시, 조직을 100℃ 수조에 30분 동안 넣어둔 다음 25℃로 냉각시킨 후 두 번째 전도도 측정을 실시하였다(E2). 증류수의 전기전도도를 측정하였으며(E0), 상대적 전해질 누출(relative electrolyte leakage, REL)을 문헌(Mishra 등, 2011. Arch Microbiol 193:497-513)에 기재된 방법에 따라 다음의 공식을 이용하여 계산하였다:
상대적 전해질 누출(%)= (E1-E0)/(E2-E0) x 100
말론디알데히드 함량을 문헌(Taulavuori et al., J Exp Bot 52(365): 2375-2380, 2001)에 기재된 방법에 따라 측정하였다. 0.4 g의 잎 조직을 막자사발을 이용해 액체 질소에서 균질화시킨 다음, 균질화된 조직 분말을 6 ㎖의 0.1% 트리클로로 아세트산(TCA)에 현탁시켰다. 혼합물을 10000 × g에서 5분 동안 원심분리한 후, 상등액을 각 튜브마다 1 ㎖씩 두 개의 튜브에 나누었다. 첫 번째 튜브에는 4 ㎖의 20%(w/v) TCA를 넣고, 두 번째 튜브에는 0.5% TBA(thiobarbituric acid)가 포함되어 있는 20%(w/v) TCA를 4 ㎖ 넣었다. 용액 혼합물을 95℃에서 30분간 가열한 다음, 얼음수조에서 냉각시킨 후, 10000 × g 에서 10분 동안 원심분리를 하였다. 상등액을 수거하여 흡광도를 440 nm, 532 nm 및 600 nm 에서 분석하였다. 말론디알데히드의 함량을 그의 흡광계수(155 mM-1cm-1)를 이용하여 계산하였다.
분석결과, OS261 균주를 접종한 경우, 전해질 누출이 대조군에 비해 감소하였으며, 과산화수소의 함량 및 말론디알데히드의 농도도 감소하였다 (도 4). 이러한 결과는 저온 조건에서 OS261 균주에 의해 잎 조직에서의 막 손상이 감소하였음을 보여주는 것이다.
실시예 7: 저온 발현 유전자 분석
저온조건에서 발현이 유도되는 유전자인 LeCBF1 및 LeCBF3의 발현변화를 분석하기 위해 실시간 PCR 분석을 수행하였다. 토마토 잎으로부터 Plant RNeasy Mini Kit(Qiagen, Germany)를 이용하여 전체 RNA를 추출한 다음, Superscript III First Strand Synthesis System(Invitrogen, Carlsbad, CA, USA)를 이용하여 cDNA를 합성하였다. SYBR Green Master Mix(Bio-Rad, USA)와 iQ5 optical system(Bio-Rad, USA)이용하여 실시간 PCR을 수행하였으며, 사용한 프라이머는 다음과 같다:
LeCBF1 F 5’-AGTCGGAGGAAGAAGAATCAGTG-3’
R 5’-TCCCATTTCAGTACATTGAGGTG-3’
LeCBF3 F 5’-GGCAATTTCATCTGAGTTGTCTG-3’
R 5’TTGATCTTCTGTCCATCCTCTCC-3’
TomLOX F 5’-TCATCACAATCCACAAAAACCC-3’
R 5’-AGGACCGCGTAAATGGTGTT-3’
EF-1-α F 5’-GAACTTGAGAAGGAGCCTAAG-3'
R 5’-CAACACCAACAGCAACAGTCT-3’
TomLOX의 경우, PCR 생성물을 0.5 μg/㎖ EtBr을 포함하는 1%(w/v) 아가로즈 젤에 로딩하여 ChemiDoc™ XRS system(Bio-Rad, USA)을 이용하여 분석하였다. 저온 조건에서의 마커 유전자인 연장인자 1-α(EF-1-α)을 내부 컨트롤로 사용하였다.
분석결과, OS261와 OB155 균주를 접종한 경우, 일반적인 온도조건에서는 큰 차이를 보이지 않았으나 저온조건에서는 대조군에 비해 LeCBF1 및 LeCBF3 유전자의 발현이 현저하게 증가하였다(도 5의 패널 A). LeCBF1의 경우, 각각 5.1배, 5.16배 발현이 증가하였으며, LeCBF3의 경우 각각 6.7배, 11.7배 발현이 증가하였다. TomLOX의 경우에도 OS261와 OB155 균주를 접종한 경우, 저온조건에서 대조군에 비해 발현이 증가하였다(도 5의 패널 B).
실시예 8: 식물체 뿌리 내 균주의 군집형성 확인
접종한 균주가 토마토 개체 내에서 군집을 형성하고 있는지를 확인하기 위해 공초점 레이저 스캐닝 현미경 관찰(Confocal laser scanning microscopy, CLSM)을 하였다. OB155-gfp 또는 OS261-gfp 균주를 접종한 토마토로부터 신선한 뿌리 샘플을 채취하여 물로 세척하고 건조시킨 후, 횡단면을 잘라 Ar 이온 레이저(gfp: excitation, 488 nm; emission filter BP 500530)를 장착한 Leica TCS SP2 confocal system(Leica Microsystems Heidelberg GmbH, Manheim, Germany)을 이용하여 관찰하였다.
관찰결과, 대조군과는 달리 균주를 접종한 토마토 뿌리 샘플에서 형광을 뛴 박테리아 세포를 관찰할 수 있었다(도 6). 대부분의 형광 박테리아 세포는 뿌리의 표면에 위치하고 있었으나, 일부는 세포간극(intercellular space)으로 이동하여 군집을 형성하고 있었다.
참고문헌
Abdel-Megeed, A., Aboul-Soud, M.A.M., Mueller, R., Rudolf, F.A., Al-Deyab, S.S. 2010. Purification and biochemical characterization of recombinant alcohol dehydrogenase from the psychrophilic bacterium Pseudomonas frederiksbergensis. J. Polym. Environ. 411 18:617-625.
Allen, A.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis 412 in warm-climate 413 plants, Trends Plant Sci. 6(1):36-42.
Andersen, S.M., Johnsen, K., Sørensen J., Nielsen, P., Jacobsen, C.S. 2000. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int. J. Syst. Evol. Microbiol. 50:1957-1964.
Barka, E.A., Nowak, J., Clement, C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72(11):7246-7252.
Beck, E.H., Heim, R., Hansen, J. 2004. Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29:449-459.
Bittel, P., Robatzek, S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol. 10(4):335-341.
Caffagni, A., Pecchioni, N., Francia, E., Pagani, D., Milc, J. 2014. Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biol. Plantarum 58(2):283-295.
Chinnusamy, V., Zhu, J., Zhu, J.K. 2006. Gene regulation during cold acclimation in plants. Methods Mol Biol. 639:39-55.
Delauney, A.J., Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215.223.
Dimkpa, C., Weinand, T., Asch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32(12):1682-1694.
Ding, S., Huang, C.L., Sheng, H.M., Song, C.L., Li, Y.B., An, L.Z. 2011. Effect of inoculation with the endophyte Clavibacter sp. strain Enf12 on chilling tolerance in Chorispora bungeana. Physiol. Plantarum 141:141.151.
Duan, M., Feng, H.L., Wang, L.Y., Li, D., Meng, Q.W. 2012. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol. 169(9): 867-877.
Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P., Clement, C., Barka, E. A., Jacquard, C., Dorey, S. 2015. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defene responses in grapevine. Mol. Plant Pathol. 16:177.187.
Felix, G., Boller, T. 2003. Molecular sensing of bacteria in plants. The highly 442 conserved RNA443 binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol. Chem. 278(8):6201-6208.
Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clement, C., Fontaine, F., Barka, EA. 2012. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol. Plant Microbe Interact. 25(4):496-504.
Foolad, M.R., Lin, G.Y. 2001 Relationship between cold tolerance during seed germination and vegetative growth in tomato: analysis of response and correlated response to selection. J. Am. Soc. Hortic. Sci. 125(6):679-683.
Fowler, S., Thomashow, M.F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell14:1675.1690.
Glick, B.R., Penrose, D.M., Li, J., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190:63.68.
Gotz, M., Gomes, N.C.M., Dratwinski, A., Costa, R., Berg, G., Peixoto, M.H.L., Smalla, K. 2006. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol. Ecol. 56:207.218.
Gu, L., Hanson, P.J., Post Dale, W.M., Kaiser, P., Yang, B., Nemani, R., Pallardy, S.G., Meyers, T. 2008. The 2007 eastern US spring freeze: Increased cold damage in a warming world. BioScience 58(3):253-262.
Gururani, M.A., Upadhyaya, C.P., Baskar, V., Venkatesh, J., Nookaraju, A., Park, S.W. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul. 32(2):245-258.
Hare, P.D., Cress, W.A., Van Staden, J. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535.553.
Imahori, Y., Takemura, M., Bai, J. 2008. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biotechnol. 49:54-60.
Janska, A., Marsik, P., Zelenkova, S., Ovesna, J. 2010. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biol. (Stuttg) 12(3):395-405.
Karabudak, T., Bor, M., Ozdemir, F., Turkan, 2014. Glycine betaine protects 473 tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase 7 and lipoxygenase gene expression. Mol. Biol. Rep. 41(3):1401-1410.
Kost, T., Stopnisek, N., Agnoli, K., Eberl, L., Weisskopf, L. 2013. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front. Microbiol. 9(4):421.
Mishra, P.K., Bisht, S.C., Ruwari, P., Selvakumar, G., Joshi, G.K., Bisht, J.K., Bhatt, J.C., Gupta, H.S. 2011. Alleviation of cold stress in inoculated wheat(Triticum aestivum L.) seedlings with psychrotolerant Pseudomonas from NW Himalayas. Arch. Microbiol. 193:497-513.
Miura, K., Furumoto, T. 2013. Cold signaling and cold response in plants. Int. J. Mol. Sci. 14:5312-5337.
Mohn, W.W., Wilson, A.E., Bicho, P., Moore, E.R. 1999. Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst. Appl. Microbiol. 22(1):68-78.
Ploeg, A van der, Heuvelink, E. 2005 Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic. Sci. Biotechnol. 80(6):652-659.
Prasad, S., Pratibha, M.S., Manasa, P., Buddhi, S., Begum, Z., Shivaji, S. 2013. Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria. Curr. Microbiol. 66(1):64-71.
Quecine, M.C., Araujo, W.L., Rossetto, P.B., Ferreira, A., Tsui, S., Lacava, P.T., Mondin, M., Azevedo, J.L., Pizzirani-Kleiner, A.A. 2012. Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl. Environ. Microbiol. (21):7511-7518.
Robertson, G.P., Grandy, A.S., 2006. Soil system management in temperate regions. 27-39
Ruelland, E., Vaultier, M.N., Zachowski, A., Hurry, V. 2009. Cold signalling and cold acclimation in plants. 35-150
Someya, N., Morohoshi, T., Ikeda, T., Tsuchiya, K., Ikeda, S. 2012. Genetic 502 diversity and ecological evaluation of fluorescent pseudomonads isolated from the leaves and roots of potato plants. Microbes Environ. 27(2):122-126.
Suzuki, N., Mittler, R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plantarum 126:45-51.
Szepesi, A., Gemes, K., Orosz, G., Peto, A., Takacs, Z., Vorak, M., Tari, I. 2011. Interaction between salicylic acid and polyamines and their possible roles in tomato hardening process. Acta. Biol. Szeged. 55:165-166.
Taulavuori, E., Hellstrom, E.K., Taulavuori, K., Laine, K. 2001. Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J. Exp. Bot. 52(365):2375-2380.
Templer, P.H. 2012. Changes in winter climate: soil frost, root injury, and fungal communities. Plant Soil 353:15-17.
Theocharis, A., Clement, C., Barka, E.A. 2012a. Physiological and molecular changes in plants grown at low temperatures. Planta 235(6):1091-1105.
Theocharis A., Bordiec, S., Fernandez, O., Paquis, S., Dhondt-Cordelier, S., Baillieul, F., Clement, C., Barka, E.A. 2012b. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant Microbe Interact. 25(2):241-249.
Thomashow, M.F. 2001. So What's New in the Field of Plant Cold Acclimation? Lots!, Plant Physiol. 125(1):893.
Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., Chen, A. 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. U.S.A. 108(4):1240-1245.
Xi, C., Lambrecht, M., Vanderleyden, J., Michiels, J. 1999. Bi-functional gfp- and gusA527 containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J. Microbiol. Methods 35:852.
Yadav, S., Yadav, S., Kaushik, R., Saxena, A.K., Arora, D.K. 2014. Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. J. Basic Microbiol. 54(5):425-37.
Yang, J., Kloepper, J.W., Ryu, C.M. 2009. Rhizosphere bacteria help plants 532 tolerate abiotic stress. Trends Plant Sci. 14(1):1-4.
Yim, W.J., Kim, K.Y., Lee, Y.W., Sundaram, S.P., Lee, Y., Sa, T.M. 2014. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria, J. Plant Physiol. 171(12):1064-1075.
Zhang, X., Shen, L., Li, F., Meng, D., Sheng, J. 2011. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J Agr. Food Chem. 59(17):9351-9357.
Zhou, J., Wang, J., Shi, K., Xia, X.J., Zhou, Y.H., Yu, J.Q. 2012. Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol Bioch. 60:141-149.
농업생명공학연구원 KACC92040P 20150226

Claims (8)

  1. 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주(기탁번호: KACC92040P).
  2. 저온 내성을 갖는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주(기탁번호: KACC92040P) 또는 이의 배양액을 포함하는 토마토의 저온 내성 증진 또는 생장 촉진용 미생물제제.
  3. 제 2 항에 있어서, 상기 토마토는, 토마토 또는 토마토 종자인 것을 특징으로 하는 미생물제제.
  4. 저온 내성을 갖는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주(기탁번호: KACC92040P) 또는 이의 배양액을 포함하는 토마토의 저온 내성 증진 또는 생장 촉진용 생물비료.
  5. 제 4 항에 있어서, 상기 토마토는, 토마토 또는 토마토 종자인 것을 특징으로 하는 생물비료.
  6. 제 1 항의 균주를 배양하는 단계를 포함하는 토마토의 저온 내성 증진 또는 생장 촉진용 생물비료를 제조하는 방법.
  7. 저온 내성을 갖는 슈도모나스 프레데릭스버겐시스(Pseudomonas frederiksbergensis) OS261 균주(기탁번호: KACC92040P) 또는 이의 배양액을 토마토 또는 토마토의 종자에 침지 또는 관주 처리하는 단계를 포함하는 토마토의 저온에 대한 내성을 증진시키거나 또는 토마토 생장을 촉진시키는 방법.
  8. 삭제
KR1020150051957A 2015-04-13 2015-04-13 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도 KR101800431B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150051957A KR101800431B1 (ko) 2015-04-13 2015-04-13 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150051957A KR101800431B1 (ko) 2015-04-13 2015-04-13 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20160121994A KR20160121994A (ko) 2016-10-21
KR101800431B1 true KR101800431B1 (ko) 2017-11-22

Family

ID=57257120

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150051957A KR101800431B1 (ko) 2015-04-13 2015-04-13 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도

Country Status (1)

Country Link
KR (1) KR101800431B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823315B2 (ja) * 2016-12-09 2021-02-03 株式会社前川製作所 エンドファイト共生ニンニク
KR102324981B1 (ko) * 2020-06-11 2021-11-12 연세대학교 원주산학협력단 식물체의 가뭄 스트레스에 대한 내성을 유도하는 신규한 슈도모나스 플루오레센스 균주 및 이의 용도
WO2023225767A1 (es) * 2022-05-26 2023-11-30 Universidad Técnica Federico Santa María Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas
CN115612638B (zh) * 2022-08-24 2023-09-12 云南大学 一株罗氏假单胞菌oor2-11菌株及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plant Physiology and Biochemistry, Vol.89, pp.18-23(Epub.2015.02.09.)*

Also Published As

Publication number Publication date
KR20160121994A (ko) 2016-10-21

Similar Documents

Publication Publication Date Title
Subramanian et al. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity
JP5714603B2 (ja) 植物の出芽および生長を増強するためのシュードモナス・アゾトフォルマンス(pseudomonasazotoformans)種の新規蛍光シュードモナス菌
CN109355233B (zh) 一种解淀粉芽孢杆菌及其应用
KR100800566B1 (ko) 크랩시엘라 옥시토카 c1036 균주 및 이를 이용한 식물의생장 촉진과 식물병 방제 및 환경 스트레스에 대한 피해감소 방법
KR20130032100A (ko) 작물의 생육촉진 및 내한성 증강효과를 갖는 신규한 바실러스 발리스모티스 bs07m 균주 및 이를 포함하는 미생물제제
KR101800431B1 (ko) 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도
BG67257B1 (bg) Бактериален щам bacillus amyloliquefaciens subsp. plantarum bs89 като средство за повишаване на продуктивността на растенията и тяхната защита срещу болести
CHEN et al. Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling
Balderas-Ruíz et al. Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): Pre and postharvest assessment
KR20180114858A (ko) 식물의 저항성을 증진시키는 바실러스 메소나에 균주 및 이의 용도
TW201923067A (zh) 含有生黑孢鏈黴菌agl225的組成物於控制植物疾病的用途
Kang et al. Gibberellin producing rhizobacteria Pseudomonas koreensis MU2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis).
KR101922428B1 (ko) 쌈채류의 생육촉진 및 쌈채류의 내고온성, 내건성을 갖도록 하는 신규 미생물 바실러스 토요넨시스 sb19, 이를 포함하는 미생물 제제 및 이를 포함하는 생물비료
Choi et al. The effects of rice seed dressing with Paenibacillus yonginensis and silicon on crop development on South Korea’s reclaimed tidal land
Ali et al. Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter
KR20130056585A (ko) 물억새 뿌리로부터 분리한 미생물을 이용한 식물 생장 촉진방법
Kim et al. Growth promotion of pepper plants by Pantoea ananatis B1-9 and its efficient endophytic colonization capacity in plant tissues
KR102411304B1 (ko) 식물의 저항성을 증진시키는 바실러스 잔톡실리 균주 및 이의 용도
CN110892805A (zh) 一种提高玉米种子萌发耐盐性生物刺激素制备及应用方法
KR100942228B1 (ko) 플라보박테리움 헤르시니움 이피비-씨313 균주를 이용한 식물병 방제제
KR20140083122A (ko) 트리코데르마 sp. OK―1 균주를 후막포자 형성 기술 및 이를 이용한 미생물제제
KR101615873B1 (ko) 신규한 알칼리지니스 피칼리스균주 및 이의 용도
CN114933982B (zh) 一种贝莱斯芽孢杆菌及其在防治甘薯茎根腐病中的应用
Kim et al. Effect of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 inoculation on seed germination and early growth of maize and sorghum-sudangrass hybrid seedling under different salinity levels
JP2019149958A (ja) 新規細菌及びそれを用いた植物の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant