WO2023225767A1 - Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas - Google Patents

Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas Download PDF

Info

Publication number
WO2023225767A1
WO2023225767A1 PCT/CL2022/050057 CL2022050057W WO2023225767A1 WO 2023225767 A1 WO2023225767 A1 WO 2023225767A1 CL 2022050057 W CL2022050057 W CL 2022050057W WO 2023225767 A1 WO2023225767 A1 WO 2023225767A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudomonas
plants
plant
bacteria
biological product
Prior art date
Application number
PCT/CL2022/050057
Other languages
English (en)
French (fr)
Inventor
Paulina VEGA CELEDÓN
Guillermo BRAVO CORTÉS
Lisette HERNÁNDEZ GUERRERO
Constanza MACAYA RAMOS
Michael Seeger Pfeiffer
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to PCT/CL2022/050057 priority Critical patent/WO2023225767A1/es
Publication of WO2023225767A1 publication Critical patent/WO2023225767A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Definitions

  • Plant growth-promoting bacteria are a group of bacteria that can exert their role in promoting plant growth through direct mechanisms, with one or more of the following properties: nitrogen fixation, phosphate solubilization or by modifying the levels of plant hormones such as indole-3-acetic acid (IAA), cytokinins, jasmonic acid, abscisic acid, gibberellic acid (GA) and ethylene (via the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase).
  • IAA indole-3-acetic acid
  • cytokinins cytokinins
  • jasmonic acid abscisic acid
  • gibberellic acid gibberellic acid
  • ethylene via the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase.
  • BPCV can also act indirectly through protective mechanisms against plant pathogenic agents, through the production of antibiotics, siderophores and volatile organic compounds, in addition to lytic enzymes such as chitinases and by competition with pathogens and induction of systemic resistance. of the plants. In addition to these mechanisms, BPCVs also have the ability to modulate different responses to abiotic stress in plants, modifying the levels of plant hormones and the biosynthesis of various compatible osmolytes.
  • psychrotolerant and psychrophilic bacteria stand out, producing antifreeze proteins, ice-binding proteins that inhibit the growth of ice, by lowering the freezing point of the solution or by inhibiting the recrystallization of ice (Vega-Celedón et al., 2021 ).
  • the survival of these microorganisms is facilitated thanks to various mechanisms, such as an increase in unsaturated fatty acids, fatty acids containing cyclopropane and short chain, which prevents the loss of membrane fluidity, the accumulation of compatible solutes such as mannitol and trehalose, the synthesis of cryoprotectants, cold acclimation proteins such as AFPs (antifreeze proteins), CSPs (cold stress proteins) and chaperones that protect the synthesis of RNA and proteins (Orellana et al., 2018).
  • various mechanisms such as an increase in unsaturated fatty acids, fatty acids containing cyclopropane and short chain, which prevents the loss of membrane fluidity, the accumulation of compatible solutes such as mannitol and trehalose, the synthesis of cryoprotectants, cold acclimation proteins such as AFPs (antifreeze proteins), CSPs (cold stress proteins) and chaperones that protect the synthesis of RNA and proteins (Orellana
  • the invention provides 2 strains of the genus Pseudomonas, chosen for their outstanding characteristics, both in promoting plant growth and in protecting plants from cold stress. These strains can be used separately or conveniently together, forming a psychrotolerant consortium with complementary characteristics.
  • the strains selected by the inventors are psychrotolerant, given that they have the ability to survive at subzero temperatures; They also solubilize phosphates, produce IAA, present ACC deaminase activity, and ice recrystallization inhibitory activity (IRI); added to the biological control of phytopathogenic bacterial species active in ice nucleation, such as Pseudomonas syr ⁇ ngae and Pectobacterium carotovorunr, the promotion of plant growth under chilling stress and protection against freezing stress.
  • IRI ice recrystallization inhibitory activity
  • the invention then provides a new biological product, formed by at least one strain of bacteria of the genus Pseudomonas, selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. strain AMTR8 (access code RGM 3108), which present multiple characteristics of direct or indirect promotion of plant growth, and which additionally gives them resistance to cold.
  • a new biological product formed by at least one strain of bacteria of the genus Pseudomonas, selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. strain AMTR8 (access code RGM 3108), which present multiple characteristics of direct or indirect promotion of plant growth, and which additionally gives them resistance to cold.
  • this invention demonstrates a new product that can be used in traditional and organic agriculture to combat the effects of cold stress on plants.
  • Figure 1 A shows the production of IAA by the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, evaluated by HPLC.
  • the bars represent the concentration of IAA expressed in mM. This production was detected after 7 days of incubation at 25 °C in YM medium with 2.5 mM tryptophan. Each value is a mean ⁇ SD (standard deviation) of 3 independent replicates.
  • IAA indole-3-acetic acid.
  • Figure 1 B shows the rate of phosphate solubilization by the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, evaluated in Pikovskaya solid medium at room temperature and 4 °C. Bars represent the solubilization rate of insoluble phosphate after 1 week of incubation. Values greater than 1 show positive solubilization by the strains. Each value is a mean ⁇ SD of 4 independent replicates.
  • Figure 1 C illustrates the ACC deaminase activity of the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, evaluated in DF medium with the addition of ACC as the only source of carbon and nitrogen.
  • the bars represent the ACC deaminase enzymatic activity in pmol a-KB mg protein' 1 h -1 evaluated after 5 days of growth at 30 °C. Each value is a mean ⁇ SD of 3 independent replicates.
  • a-KB a-ketobutyrate
  • ACC 1-aminocyclopropane-1-carboxylic acid.
  • Figure 1 D shows the IRI activity of protein extracts from the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, exposed to -6 °C for 48 h, evaluated by absorbance at 500 nm.
  • Protein extracts were obtained after incubating strains AMCR2b and AMTR8 in TSB liquid medium at 4 °C for 10 days statically.
  • the bars represent the IRI activity, measured through the absorbance of the extracts at 500 nm. Each value is a mean ⁇ SD of 6 independent replicates.
  • JM109 Negative control (Escherichia coli JM109); IRI: Inhibition of ice recrystallization.
  • Figure 2 shows the promotion of tomato seed growth by the bacterial consortium composed of the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 under cooling stress condition.
  • the biopriming of tomato seeds was carried out with a solution of 2 x 10 8 CFU mL -1 of the consortium for 4 h.
  • the seeds were placed in Petri dishes with moist filter paper for 12 days at 4 °C in the dark.
  • Figure 2A is a representative photograph of the promotion of tomato seed growth by the bacterial consortium, with its respective negative and positive controls.
  • Figure 2B are graphs of the evaluated parameters for promoting the growth of tomato seeds, where the bars represent the percentage of germination and root length (cm).
  • CN Negative control
  • CP Nutrisac positive control (Anasac).
  • Figure 3 shows the growth promotion of tomato plants treated root and foliarly with the bacterial consortium composed of the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 under cooling stress.
  • Figure 3A is a representative photograph of tomato plants treated with the bacterial consortium of root, leaf and control forms.
  • Figure 3B-G contains graphs of the evaluated parameters of tomato growth promotion by the bacterial consortium, where the bars represent (from left to right and from top to bottom), the number of leaves, stem width (cm) , stem length (cm), chlorophyll (CCI), leaf fresh weight (g) and leaf dry weight (g).
  • Tomato seedlings were placed in Petri dishes with peat and inoculated root-wise (2 x 10 6 CFU g -1 at the base of the stem) and foliarly (sprayed with 2 x 10 8 CFU rnL- 1 ) every 2 weeks. For 1 week they were acclimatized at 25 °C and then for 2 weeks at 14 °C. The chlorophyll content was measured with the portable MC-100 Chlorophyll Meter in 3 different leaves and 3 different points on each leaf per plant. Each value is a mean ⁇ SD of 6 independent replicates. Significant differences were analyzed by one-way ANOVA followed by the LSD Fisher test. Means with different letters indicate significant differences (p ⁇ 0.05). CCI: chlorophyll content index.
  • Figure 4 shows the effect of the bacterial consortium composed of the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 on the survival of tomato plants to freezing stress.
  • Tomato plants were subjected to chilling stress (2 weeks at 14°C, 1 week at 4°C and returning to 14°C for 2 more weeks) and treated with the root-shaped bacterial consortium (2 x 10 6 CFU g -1 at the base of the stem) and foliar (sprayed with 2 x 10 8 CFU mL -1 ), and then exposed to -18 °C for 15 min and left for 12 h at 14 °C in darkness.
  • the % survival value corresponds to 6 independent replicas, which is evident in the left corner of each photograph.
  • Figure 5 shows the effect of applying different treatments of the bacterial consortium composed of the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 on the growth of avocado trees (Persea Americana Mill. cv. Hass) at field level.
  • the effect of 4 treatments was evaluated: (1) Root Application, 10 8 CFU plant -1 ; (2) Foliar Application, 10 8 CFU plant -1 ; (3) Root Application, 10 6 CFU plant -1 and (4) Foliar Application, 10 6 CFU plant -1 , plus a control without application.
  • the bars in Figure 5A represent the percentage of growth in the height of the avocado trees after 174 days of starting the trial.
  • the bars in Figure 5B represent the percentage of growth in the trunk width of the avocado trees, after 174 days of starting the trial.
  • Each value is a mean ⁇ SD of 18 independent plants.
  • Figure 6 illustrates the severity of frost damage to avocado trees (Persea Americana Mili. cv. Hass) with different treatments.
  • the bars in the figure represent the percentage of severity of damage produced by frost cycles during the different treatments with the consortium (detailed in figure 5), where each value is a mean ⁇ SD of the severity index of 3 independent blocks (6 plants per block for each treatment). Significant differences were analyzed by one-way ANOVA followed by the LSD Fisher test. Means with different letters indicate significant differences (p ⁇ 0.05).
  • Figure 7 illustrates the effect of the application of different treatments on the growth and the percentage of severity of frost damage of vinifera vine (Vitis vinifera cv. Pinot noir) at field level.
  • 3 treatments were evaluated: Control, Root Application (10 8 CFU plant -1 ) and Foliar Application (10 8 CFU plant -1 ).
  • the bars in Figure 7A represent the growth with respect to the number of shoots / number of arms of the vine plants. Significant differences were analyzed by one-way ANOVA followed by the LSD Fisher test. Means with different letters indicate significant differences (p ⁇ 0.05). Each value is a mean ⁇ SD of 15 independent plants.
  • the invention relates to a biological product, promoter of plant growth and protector of cold stress in plants, which comprises protective psychrotolerant bacteria and promoters of plant growth at low temperatures. These bacteria have the ability to promote plant growth and protect plants against cold stress. Additionally, the invention refers to methods of obtaining the bacterial consortium and its applications.
  • the invention covers a biological product for the control of cold stress in plants that comprises at least one bacterium of the genus Pseudomonas.
  • the bacteria correspond to Pseudomonas sp. AMCR2b, accession code RGM 3107, and/or Pseudomonas sp. AMTR8, access code RGM 3108, both deposited in the Chilean Collection of Microbial Genetic Resources, dated June 4, 2021.
  • the invention refers to a biological product, promoter of plant growth and protector of cold stress in plants, which comprises a strain of bacteria of the genus Pseudomonas, selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. strain AMTR8 (access code RGM 3108), both deposited in the Chilean Collection of Microbial Genetic Resources, and a carrier.
  • a biological product promoter of plant growth and protector of cold stress in plants, which comprises a strain of bacteria of the genus Pseudomonas, selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. strain AMTR8 (access code RGM 3108), both deposited in the Chilean Collection of Microbial Genetic Resources, and a carrier.
  • the carrier is culture medium, or excipients appropriate for agriculture, such as a liquid medium comprising water, and/or nutrients and/or salts, or if the strains are lyophilized or immobilized
  • the carrier is a solid medium that is choose, for example, from alginate, chitosan, carrageenan, gelatin, agar, sugars, material of plant origin or combinations of these.
  • the invention refers to a method to promote plant growth and protect plants from cold stress, which comprises administering the biological product of the invention to a plant by application in irrigation water, foliar, root, or by sprinkled on the vegetable or plant.
  • the vegetable is a species of agronomic interest, chosen for example from: tomato, eggplant, Italian squash, lettuce, chard, spinach, corn, wheat, rice, carrot, onion, pea, paprika, potato, sweet potato, peanut, canola, cotton, barley, sorghum, soybean, sunflower, prunus, pome, avocado, vine table, vinifera vine, citrus, berries and walnut.
  • the plant species is an ornamental plant, such as grass, flower-producing plants or ornamental plants, including cut flowers.
  • the plant corresponds to the harvested fruit or grain.
  • the biological product is applied to a seed, it is soaked in it, or applied as a coating, or applied in the irrigation water of the seed. In another embodiment, the biological product is applied to seedbeds, seedlings, plants, fruits, flowers or cuttings, where it can be applied in irrigation water, or by root or foliar application, or by spraying on the plant.
  • the invention refers to the use of the product to treat, prevent, control or cure diseases associated with bacteria active in ice nucleation in plants, plants being understood as seeds, seedbeds, seedlings, or plants, fruits, flowers. or cuttings.
  • bacteria are of the species Pseudomonas syr ⁇ ngae or Pectobacterium carotovorum.
  • the invention also points to the method of obtaining the biological product, promoter of plant growth and protector of cold stress in vegetables of the invention, where the method comprises mixing a strain of bacteria of the genus Pseudomonas, selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. strain AMTR8 (accession code RGM 3108), with a carrier.
  • the inventors formed a stable consortium with the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, which were isolated separately from wild flora of the Andes Mountains, Valpara ⁇ so region.
  • each of these strains was selected for their psychrotolerant capacity, given that they grow at low temperatures. It will be evident to the person skilled in the art that each strain can be used by itself or in combination with the other, since both have beneficial properties.
  • AMCR2b and AMTR8 strains have the ability to solubilize phosphates at room temperature, while only the AMCR2b strain presents this capacity at 4 °C, allowing better nutrient absorption by plants.
  • the AMTR8 strain produces the plant hormone AIA and both modulate the concentration of the plant stress hormone ethylene through ACC deaminase activity.
  • AIA ice recrystallization
  • IRI ice recrystallization
  • the 2 strains have antagonistic activity against phytopathogenic microorganisms, for example, the inventors demonstrated their biocontrol properties against bacteria active in ice nucleation such as Pseudomonas syringae and Pectobacterium carotovorum.
  • bacteria active in ice nucleation such as Pseudomonas syringae and Pectobacterium carotovorum.
  • Each of the strains is valuable in itself and has complementary capabilities, so it is highly beneficial to use them in a consortium.
  • the genomes of Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 were sequenced.
  • the bacteria Pseudomonas sp. AMCR2b presented a genome size of 5.92 Mbp with 60.42% GC, while Pseudomonas sp. AMTR8 presented a genome size of 6.42 Mbp with 60.52% GC.
  • Genome annotation was performed with RAST, obtaining 5,313 and 5,265 coding sequences for strains AMCR2b and AMTR8, respectively.
  • An average nucleotide identity (ANIm) analysis determined that both bacteria belong to the Pseudomonas fluorescens complex.
  • the strains of the invention presented an identity of less than 92% in the ANIm analysis, where Pseudomonas sp. AMCR2b is phylogenetically close to P. orientalis DSM 17489 T (91%), while Pseudomonas sp. AMTR8 presented greater phylogenetic closeness (90%) with P. kilonensis DSM 13647 T. According to the results, the strains of the invention would not correspond to the currently accepted species, so they should be named only as part of the genus Pseudomonas, or Pseudomonas sp.
  • strains of the invention can be applied and grown in any culture medium available in the art, such as Yeast Malt (YM), King B (KB), DF (Dworkin and Foster), Luria Bertani (LB), L-broth, Tryptic soy broth (TSB), Muller-Hinton (HM), Potato dextrose broth, or any other culture medium or buffer solution, additionally once grown these can be lyophilized or immobilized for application.
  • YM Yeast Malt
  • KBM King B
  • DF Dworkin and Foster
  • TAB Tryptic soy broth
  • HM Muller-Hinton
  • Potato dextrose broth or any other culture medium or buffer solution, additionally once grown these can be lyophilized or immobilized for application.
  • the novelty of the invention is the use of a biological product formed by at least one strain of Pseudomonas selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. AMTR8 strain (access code RGM 3108), where said product has multiple characteristics of direct or indirect plant growth promotion.
  • Pseudomonas selected from Pseudomonas sp. strain AMCR2b (accession code RGM 3107) and/or Pseudomonas sp. AMTR8 strain (access code RGM 3108)
  • the invention aims at a biological product that promotes plant growth and protects against cold stress in plants that comprises the described biological product.
  • the invention points to a method to promote plant growth and provide psychrotolerant properties that comprises contacting irrigation water, seeds, seedlings, seedlings, plants, fruits, flowers or cuttings with the composition of the bioproduct of the invention.
  • the vegetable can be a species of agronomic interest, chosen for example from: tomato, eggplant, Italian squash, lettuce, chard, spinach, corn, wheat, rice, carrot, onion, pea, paprika, potato, sweet potato, peanut, canola, cotton, barley, sorghum, soybeans, sunflower, prunus, pome, avocado, table vine, vinifera vine, citrus, berries and walnut.
  • the vegetable can be an ornamental plant, such as grass, flower-producing plants or ornamental plants, including cut flowers, additionally the vegetable or plant can be harvested fruit or grain.
  • Example 1 Isolation and plant growth-promoting and protective activities of the bacterial consortium
  • the strains Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8, were isolated from the rhizosphere of wild flora of the Andes Mountains, Valpara ⁇ so region.
  • Pseudomonas sp. AMRC2b and Pseudomonas sp. AMTR8 were selected from all the isolated strains for their multiple protective and plant growth promoting activities such as indole-3-acetic acid production, phosphate solubilization, antimicrobial activity against bacteria active in ice nucleation, 1-aminocyclopropane-acid activity. 1 -carboxylic deaminase, inhibitory activity of ice recrystallization and promotion of the growth of tomato plants at 24 °C, activities detailed below.
  • Phosphate solubilization was analyzed by visualizing solubilization halos in Pikovskaya medium. Bacterial cultures in TSB medium ⁇ 12 h, were adjusted to a turbidity at 600 nm equal to 1; 10 pL of each bacterial isolate were deposited in quadruplicate on a plate with Pikovskaya medium. The plates were incubated at room temperature and 4°C for 1 week. Phosphate-solubilizing bacteria can release soluble phosphate from insoluble phosphate and promote plant growth. Both the bacteria Pseudomonas sp. AMTR8 like Pseudomonas sp. AMCR2b have the ability to solubilize phosphates at room temperature, while only the AMCR2b strain had the ability to solubilize phosphates at 4 °C after 1 week of incubation ( Figure 1 B).
  • Antagonist activity against phytopathogenic bacteria was carried out using the Radial streak method.
  • YM and King B agar plates were used (KB, 20 g L“ 1 peptone, 15 mL glycerol, 1.5 g L“ 1 K 2 HPO 4 , 1.5 g L“ 1 MgSO 4 x 7H 2 O).
  • the antimicrobial activity was evaluated against the phytopathogenic bacteria Pseudomonas syr ⁇ ngae pv. syr ⁇ ngae (Pss, bacteria active in ice nucleation (INA) and cause of bacterial canker in cherry trees) and Pectobacterium carotovorum (Pe, formerly Erwinia carotovora, INA and cause of soft rot in a wide range of plants).
  • Antimicrobial activity against phytopathogenic bacteria active in ice nucleation such as Pss and Pe, which magnify cold stress in plants, was observed in both bacteria of the consortium in the YM and KB media (Table 1).
  • the AMCR2b strain inhibited the growth of both phytopathogenic bacteria ( ⁇ 50%) in both culture media, after 48 h this inhibition was sustained for Pss in KB medium, but not in YM medium. while for Pe it was also sustained in YM medium and only attenuated its growth in KB medium.
  • the AMTR8 strain inhibited the growth of both phytopathogenic bacteria in YM medium ( ⁇ 50%), while in KB medium it inhibited the growth of Pss >50%, however, it did not present Pe inhibition.
  • the AMTR8 strain presented sustained inhibition in YM medium ( ⁇ 50%), while an attenuation of Pss growth was observed in KB medium.
  • the symbols mean: no inhibition; +/-, growth attenuation; +, ⁇ 50% growth inhibition; ++, >50% growth inhibition. Each value is a mean ⁇ SD of 3 independent replicates.
  • BPCVs containing this activity have the potential to curb abiotic stress-induced ethylene production and its associated adverse effect on plants.
  • the ACC deaminase enzyme converts ACC into a-ketobutyrate (a-KB) and ammonium, so ACC deaminase activity was determined by measuring pinols a-KB mg protein' 1 h -1 , in DF medium with 3 mM of ACC as the sole source of nitrogen and glucose (2 g L' 1 ) as a carbon source (Vega-Celedón et al., 2021). Both bacteria, Pseudomonas sp. AMCR2b and Pseudomonas sp.
  • AMTR8 presented ACC deaminase activity, with values of 0.198 and 0.552 pmol a-KB mg protein' 1 h' 1 , respectively ( Figure 1 C). These ACC deaminase activity values exceed ⁇ 20 nmol a-KB mg protein' 1 h' 1 , which are reported to be sufficient to allow a bacteria to grow in ACC and act as BPCV (Penrose & Glick, 2002).
  • the IRI activity for the consortium bacteria was evaluated from protein extraction after being grown in 5 mL of TSB at 4 °C for 10 days statically, to be exposed to subzero temperatures (Vega-Celedón et al. ., 2021 ).
  • Antifreeze proteins AFP
  • IRI ice recrystallization inhibition
  • IRI activity was evaluated in the bacteria of the consortium.
  • the bacteria Pseudomonas sp. AMCR2b and Pseudomonas sp. AMTR8 were positive for this activity (Figure 1 D). Therefore, these bacteria could contribute to the adaptation and protection of plants against freezing temperatures.
  • the bacteria that make up the consortium were grown for 24 h individually in YM liquid medium at 25 °C with an agitation of 180 rpm, reaching a bacterial concentration of ⁇ 10 9 CFU rnL- 1 , subsequently they were mixed in the same concentration ratio ( 1:1), were diluted in distilled water and were applied every 2 weeks in a root manner, inoculating at the base of the plant with a final concentration in the soil of 2 x 10 6 CFU g -1 , and foliarly, soaking the plant with a concentration of 2 x 10 8 CFU mL -1 .
  • the same procedure was carried out for the negative control, but only with distilled water. 12 replicates were used for each treatment.
  • the test was maintained for 1 week at 25 °C for acclimatization and then subjected to cooling stress at 14 °C for 2 weeks with a photoperiod of 16 h light and 8 h darkness, in plant growth chambers.
  • the number of leaves, stem diameter, plant height, aerial fresh weight, aerial dry weight and chlorophyll were measured for 6 plants of each treatment. These measurements were made on the plants after the first leaves (cotyledons).
  • the dry weight was determined by previously placing the plant material in an oven at 60-70 °C for 48-96 h.
  • EXAMPLE 4 Protective effect of the growth of the bacterial consortium in tomato plants under freezing stress conditions
  • Root Application 10 8 CFU plant -1 ; (2) Foliar Application, 10 8 CFU plant -1 ; (3) Root Application, 10 6 CFU plant -1 and (4) Foliar Application, 10 6 CFU plant -1 , plus a control without application.
  • These treatments were carried out in 3 random blocks, with 6 plants in each block, 18 for each treatment.
  • the treatments were applied to the avocado trees every 14-21 days.
  • the bacteria corresponding to the bacterial consortium were grown individually for 24 h in liquid culture medium at 25 °C with an agitation of 180 rpm, reaching a bacterial concentration of ⁇ 10 9 CFU mL- 1 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Dentistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención se refiere a un producto biológico, compuesto por bacterias psicrotolerantes del género Pseudomonas, cepas AMCR2B y/o AMTR8, útiles para la promoción de crecimiento vegetal, la protección frente a estrés por frío en plantas, y el control de bacterias fitopatógenas nucleadoras de hielo. La invención incluye un método para preparar este producto biológico y usos de éste para mitigar el estrés por enfriamiento y congelamiento en plantas.

Description

CEPAS BACTERIANAS PSICROTOLERANTES AMCR2B Y/O AMTR8 DEL GÉNERO PSEUDOMONAS CON ACTIVIDADES PROMOTORAS DEL CRECIMIENTO VEGETAL Y PROTECTORAS DE ESTRÉS POR FRÍO EN PLANTAS
MEMORIA DESCRIPTIVA
ANTECEDENTES DE LA INVENCIÓN
Las bacterias promotoras del crecimiento vegetal (BPCV) son un conjunto de bacterias que pueden ejercer su rol de promoción del crecimiento de plantas a través de mecanismos directos, con una o más de las siguientes propiedades: fijación de nitrógeno, solubilización de fosfatos o modificando los niveles de las hormonas vegetales como ácido indol-3-acético (AIA), citoquininas, ácido jasmónico, ácido abscísico, ácido giberélico (AG) y etileno (a través del enzima ácido 1 -aminociclopropano-1 -carboxilico (ACC) desaminasa). Las BPCV también pueden actuar de forma indirecta a través de mecanismos de protección contra agentes patogénicos de las plantas, mediante la producción de antibióticos, sideróforos y compuestos orgánicos volátiles, además de enzimas líticas como quitinasas y por competencia con patógenos e inducción de la resistencia sistémica de las plantas. Además de estos mecanismos, las BPCV también tienen la capacidad de modular diferentes respuestas a estrés abiótico de las plantas, modificando los niveles de las hormonas vegetales y la biosíntesis de diversos osmolitos compatibles. A bajas temperaturas se destacan las bacterias psicrotolerantes y psicrófilas que producen proteínas anticongelantes, proteínas de unión a hielo que inhiben el crecimiento de hielo, mediante la disminución del punto de congelación de la solución o mediante la inhibición de la recristalización del hielo (Vega-Celedón et al., 2021 ).
La importancia agrícola de microorganismos tolerantes al frío surge debido a que los cultivos están sujetos a períodos de fríos transitorios, que son perjudiciales para los procesos microbianos mesófilos asociados a actividades promotoras del crecimiento de plantas. Las bacterias adaptadas al frío se clasifican según sus temperaturas de crecimiento. Los microorganismos psicróf ¡los crecen a 0 °C o a temperaturas bajo cero, con una temperatura de crecimiento óptima a 15 °C y un límite superior de 20 °C. Por otro lado, los psicrotolerantes pueden crecer a temperaturas cercanas a 0 °C, y también a temperaturas mesófilas con una óptima de crecimiento general de 20-30 °C, por lo tanto, pueden ser considerados como mesófilos tolerantes al frío (Orellana et al., 2018). La sobrevivencia de estos microorganismos se facilita gracias a diversos mecanismos, tales como un aumento de ácidos grasos insaturados, ácidos grasos que contienen ciclopropano y de cadena corta, lo que previene la pérdida de la fluidez de la membrana, la acumulación de solutos compatibles como manitol y trehalosa, la síntesis de crioprotectores, proteínas de aclimatación al frío como AFPs (proteínas anticongelantes), CSPs (proteínas de estrés frío) y chaperonas que protegen la síntesis de ARN y proteínas (Orellana et al., 2018).
La identificación de nuevas BPCV, que conserven su potencial de promoción del crecimiento de plantas a bajas temperaturas, es una tendencia a nivel mundial en el campo de la tecnología de la inoculación agrícola. Dentro de las estrategias empleadas está la utilización de consorcios bacterianos (conjunto de 2 o más bacterias compatibles) ya que puede aumentar la eficiencia de la producción de cultivos agrícolas, versus bacterias únicas, particularmente bajo condiciones ambientales desafiantes, debido a la explotación de sus características complementarias.
La invención, proporciona 2 cepas del género Pseudomonas, escogidas por sus sobresalientes características, tanto en promover el crecimiento vegetal, como en proteger del estrés por frío a vegetales. Estas cepas pueden emplearse por separado o convenientemente juntas, formando un consorcio psicrotolerante de características complementarias entre sí.
En el estado de la técnica, existen documentos donde se divulgan propiedades promotoras del crecimiento vegetal de otras bacterias del género Pseudomonas. Algunos ejemplos que destacan corresponden a Pseudomonas prosekii patentada para el uso como fertilizante agrícola debido a su actividad solubilizadora de fosfatos (CN 108531424 A, 2018); Pseudomonas guaríconensis, que tiene actividad ACC desaminasa (RCN104818231 , 2015) y Pseudomonas sp. DSM 21663 descrita como promotora del crecimiento vegetal (W02010/037072AI, 2010).
Respecto a la protección y la promoción del crecimiento en condiciones ambientales adversas de bajas temperaturas, el estado del arte muestra la utilización de bacterias únicas y en conjunto para este fin. Específicamente respecto al género Pseudomonas, existen patentes en las que se demuestra la capacidad de algunas cepas de proteger y promover el crecimiento vegetal en condiciones de estrés por bajas temperaturas, algunos ejemplos son P. frederiksbergensis OS261 (KR20160121994, 2016) y P. vancuoverensis OB155 (KR101575666B1 , 2015). Ninguno de los documentos encontrados presenta todas las actividades de protección y promoción del crecimiento vegetal descritas en la presente invención. Los inventores aislaron y seleccionaron las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, desde flora silvestre de la Cordillera de Los Andes de la región de Valparaíso. Las cepas seleccionadas por los inventores son psicrotolerantes, dado que presentan la capacidad de sobrevivir a temperaturas bajo cero; además solubilizan fosfatos, producen AIA, presentan actividad ACC desaminasa, actividad inhibidora de la recristalización del hielo (IRI); sumado al control biológico de especies bacterianas fitopatógenas activas en la nucleación de hielo, tales como Pseudomonas syríngae y Pectobacterium carotovorunr, la promoción del crecimiento de plantas bajo estrés por enfriamiento y protección contra el estrés por congelamiento.
La invención provee entonces de un nuevo producto biológico, formado por al menos una cepa de bacterias del género Pseudomonas, seleccionada entre Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), las que presentan múltiples características de promoción directa o indirecta del crecimiento de las plantas, y que adicionalmente les otorga resistencia al frío. Dentro del mercado de los bioproductos, no existe un producto biológico con estas características, por lo que esta invención evidencia un producto nuevo que puede ser utilizado en la agricultura tradicional y orgánica para combatir los efectos del estrés por frío en las plantas.
DESCRIPCIÓN DE LOS DIBUJOS
Las características y ventajas de la invención serán evidentes a partir de la siguiente descripción más particular de las modalidades preferidas de la invención, como se ¡lustra en las figuras.
La figura 1 A muestra la producción de AIA por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, evaluado mediante HPLC. Las barras representan la concentración de AIA expresado en mM. Esta producción fue detectada a los 7 días de incubación a 25 °C en medio YM con 2,5 mM de triptófano. Cada valor es una media ± DS (desviación estándar) de 3 réplicas independientes. AIA: ácido indol-3-acético.
La figura 1 B muestra el índice de solubilización de fosfatos por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, evaluado en medio sólido Pikovskaya a temperatura ambiente y 4 °C. Las barras representan el índice de solubilización de fosfato insoluble luego de 1 semana de incubación. Valores mayores a 1 dan cuenta de una solubilización positiva por las cepas. Cada valor es una media ± DS de 4 réplicas independientes.
La figura 1 C ¡lustra la actividad ACC desaminasa de las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, evaluado en medio DF con la adición de ACC como única fuente de carbono y nitrógeno. Las barras representan la actividad enzimática ACC desaminasa en pmol a-KB mg proteína'1 h-1 evaluada a los 5 días de crecimiento a 30 °C. Cada valor es una media ± DS de 3 réplicas independientes. a-KB: a-cetobutirato; ACC: ácido 1 -aminociclopropano-1 -carboxílico.
La figura 1 D muestra la actividad IRI de los extractos de proteínas de las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, expuestos a -6 °C por 48 h, evaluados por absorbancia a 500 nm. Los extractos de proteínas fueron obtenidos luego de incubar las cepas AMCR2b y AMTR8 en medio líquido TSB a 4 °C durante 10 días de forma estática. Se utilizó como control negativo de actividad IRI la bacteria Escherichia coli JM109, crecida en medio líquido TSB durante 1 semana a temperatura ambiente más 3 días a 4 °C. Las barras representan la actividad IRI, medida a través de la absorbancia de los extractos a 500 nm. Cada valor es una media ± DS de 6 réplicas independientes. Las diferencias significativas se analizaron por ANOVA de una vía seguido por el test LSD Fisher. Medias con letras distintas indican diferencias significativas (p<0,05). JM109: Control negativo (Escherichia coli JM109); IRI: Inhibición de la recristalización del hielo.
La figura 2 muestra la promoción del crecimiento de semillas de tomate por el consorcio bacteriano compuesto por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 en condición de estrés por enfriamiento. El biopriming de las semillas de tomate se realizó con una solución de 2 x 108 UFC mL-1 del consorcio durante 4 h. Las semillas fueron dispuestas en placas Petri con papel filtro húmedo durante 12 días a 4 °C en oscuridad. La figura 2A es una fotografía representativa de la promoción del crecimiento de semillas de tomates por el consorcio bacteriano, con sus respectivos controles negativo y positivo. La figura 2B son gráficos de los parámetros evaluados de promoción del crecimiento de semillas de tomates, donde las barras representan el porcentaje de germinación y largo de la raíz (cm). Cada valor es una media ± DS de 3 réplicas independientes, con un total de 30 semillas por tratamiento. Las diferencias significativas se analizaron por ANOVA de una vía seguido por el test LSD Fisher. Medias con letras distintas indican diferencias significativas (p<0,05). CN: Control negativo; CP: Control positivo Nutrisac (Anasac).
La figura 3 muestra la promoción del crecimiento de plantas de tomate tratadas radicular y foliarmente con el consorcio bacteriano compuesto por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 bajo estrés por enfriamiento. La figura 3A es una fotografía representativa de las plantas de tomate tratadas con el consorcio bacteriano de forma radicular, foliar y control. La figura 3B-G contiene gráficos de los parámetros evaluados de la promoción del crecimiento de tomates por el consorcio bacteriano, donde las barras representan (de izquierda a derecha y de arriba hacia abajo), el número de hojas, ancho del tallo (cm), largo del tallo (cm), clorofila (CCI), peso fresco foliar (g) y peso seco foliar (g). Plántulas de tomate fueron dispuestas en placas Petri con turba e inoculadas de forma radicular (2 x 106 UFC g-1 en la base del tallo) y foliar (rociadas con 2 x 108 UFC rnL- 1) cada 2 semanas. Durante 1 semana fueron aclimatadas a 25 °C y luego durante 2 semanas a 14 °C. El contenido de clorofila fue medida con el equipo portátil MC-100 Chlorophyll Meter en 3 hojas distintas y 3 puntos diferentes de cada hoja por planta. Cada valor es una media ± DS de 6 réplicas independientes. Las diferencias significativas se analizaron por ANOVA de una vía seguido por el test LSD Fisher. Medias con letras distintas indican diferencias significativas (p<0,05). CCI: índice de contenido de clorofila.
La figura 4 muestra el efecto del consorcio bacteriano compuesto por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 sobre la sobrevivencia de plantas de tomate a estrés por congelamiento. Plantas de tomate fueron sometidas a estrés por enfriamiento (2 semanas a 14°C, 1 semana a 4 °C y retornando a 14 °C por 2 semanas más) y tratadas con el consorcio bacteriano de forma radicular (2 x 106 UFC g-1 en la base del tallo) y foliar (rociadas con 2 x 108 UFC mL-1), para luego ser expuestas a -18 °C por 15 min y dejadas durante 12 h a 14 °C en oscuridad. El valor de % de sobrevivencia corresponde a 6 réplicas independientes que se evidencia en la esquina izquierda de cada fotografía.
La figura 5 muestra el efecto de la aplicación de distintos tratamientos del consorcio bacteriano compuesto por las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 sobre el crecimiento de paltos (Persea americana Mill. cv. Hass) a nivel de campo. Se evaluó el efecto de 4 tratamientos: (1 ) Aplicación Radicular, 108 UFC planta-1 ; (2) Aplicación Foliar, 108 UFC planta-1 ; (3) Aplicación Radicular, 106 UFC planta-1 y (4) Aplicación Foliar, 106 UFC planta-1, más un control sin aplicación. Las barras de la figura 5A representan el porcentaje de crecimiento de la altura de los paltos, posterior a 174 días de inicio del ensayo. Las barras de la figura 5B representan el porcentaje de crecimiento del ancho del tronco de los paltos, posterior a 174 días de inicio del ensayo. Cada valor es una media ± DS de 18 plantas independientes.
La figura 6 ¡lustra la severidad del daño por heladas en paltos (Persea americana Mili. cv. Hass) con distintos tratamientos. Las barras de la figura representan el porcentaje de severidad de daño producido por los ciclos de helada durante los distintos tratamientos con el consorcio (detallados en figura 5), donde cada valor es una media ± DS del índice de severidad de 3 bloques independientes (6 plantas por bloque por cada tratamiento). Las diferencias significativas se analizaron por ANOVA de una vía seguido por el test LSD Fisher. Medias con letras distintas indican diferencias significativas (p<0,05).
La figura 7 ¡lustra el efecto de la aplicación de distintos tratamientos sobre el crecimiento y el porcentaje de severidad del daño por heladas de vid vinífera (Vitis vinifera cv. Pinot noir) a nivel de campo. Se evaluaron 3 tratamientos: Control, Aplicación Radicular (108 UFC planta-1) y Aplicación Foliar (108 UFC planta-1). Las barras de la figura 7A representan el crecimiento con respecto al n° de sarmientos / n° de brazos de las plantas de vid. Las diferencias significativas se analizaron por ANOVA de una vía seguido por el test LSD Fisher. Medias con letras distintas indican diferencias significativas (p<0,05). Cada valor es una media ± DS de 15 plantas independientes. Las barras de la figura 7B representan el porcentaje de severidad de daño producido por estrés por frío con respecto al n° de sarmientos / n° de brazos de las plantas de vid con los distintos tratamientos con el consorcio detallados anteriormente, donde cada valor es una media ± DS del índice de severidad de 3 bloques independientes (5 plantas por bloque por cada tratamiento). DESCRIPCIÓN DE LA INVENCIÓN
La invención se refiere a producto biológico, promotor del crecimiento vegetal y protector del estrés por frío en vegetales, que comprende bacterias psicrotolerantes protectoras y promotoras del crecimiento vegetal a bajas temperaturas. Estas bacterias tienen la capacidad de promover el crecimiento vegetal y proteger a las plantas contra el estrés por frío. Adicionalmente, la invención se refiere a métodos de obtención del consorcio bacteriano y sus aplicaciones.
La invención abarca un producto biológico para el control del estrés por frío en plantas que comprende al menos una bacteria del género Pseudomonas. Las bacterias corresponden a Pseudomonas sp. AMCR2b, código de acceso RGM 3107, y/o Pseudomonas sp. AMTR8, código de acceso RGM 3108, ambas depositadas en la Colección Chilena de Recursos Genéticos Microbianos, con fecha del 4 de junio de 2021 .
Específicamente la invención se refiere a un producto biológico, promotor del crecimiento vegetal y protector del estrés por frío en vegetales, el que comprende una cepa de bacterias del género Pseudomonas, seleccionada entre Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), depositadas ambas en la Colección Chilena de Recursos Genéticos Microbianos, y un portador. Donde el portador es medio de cultivo, o excipientes apropiados para la agricultura, tal como un medio líquido que comprende agua, y/o nutrientes y/o sales, o si las cepas están liofilizadas o inmovilizadas, el portador es un medio sólido que se escoge, por ejemplo, entre alginato, quitosano, carragenina, gelatina, agar, azúcares, material de origen vegetal o combinaciones de éstos.
El producto biológico entre 2 x 105 UFC mL-1 a 2 x 109 UFC mL-1 de Pseudomonas sp. AMCR2b y/o Pseudomonas sp. AMTR8. Donde cada cepa está presente en una proporción de entre 0 a 100%, donde la suma de ambas se considera el 100%. Preferentemente las cepas están en una proporción de 1 :1 o 50% cada una.
En una segunda realización la invención se refiere a un método para promover el crecimiento vegetal y proteger del estrés por frío a vegetales el que comprende administrar el producto biológico de la invención a un vegetal mediante aplicación en agua de riego, foliar, radicular, o por asperjado sobre el vegetal o planta. Donde el vegetal está en estado de semilla, almácigos, plántulas, plantas frutos, flores o esquejes. En una realización, el vegetal es una especie de interés agronómica, escogida por ejemplo entre: tomate, berenjena, zapallo italiano, lechuga, acelga, espinaca, maíz, trigo, arroz, zanahoria, cebolla, arveja, pimentón, papa, camote, maní, canola, algodón, cebada, sorgo, soja, girasol, prunus, pomáceas, palto, vid de mesa, vid vinífera, cítricos, bayas y nogal.
En otra realización la especie vegetal es una planta de carácter ornamental, tal como césped, plantas productoras de flores o plantas ornamentales, incluyendo flores cortadas. En otra realización la planta corresponde al fruto o grano cosechado.
En una modalidad si el producto biológico se aplica sobre una semilla, esta se embebe en él, o se aplica como recubrimiento, o se aplica en el agua de riego de la semilla. En otra modalidad el producto biológico se aplica sobre almácigos, plántulas, plantas, frutos, flores o esquejes, donde se puede aplicar en el agua de riego, o por aplicación radicular o foliar, o por asperjado sobre el vegetal.
En una tercera realización, la invención se refiere al uso del producto para tratar, prevenir, controlar o curar enfermedades asociadas a bacterias activas en la nucleación de hielo en plantas, entendiendo por plantas las semillas, almácigos, plántulas, o plantas, frutos, flores o esquejes. Donde dichas bacterias son de las especies Pseudomonas syríngae o Pectobacterium carotovorum.
La invención también apunta al método de obtención del producto biológico, promotor del crecimiento vegetal y protector del estrés por frío en vegetales de la invención, en donde el método comprende mezclar una cepa de bacterias del género Pseudomonas, seleccionada entre Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), con un portador.
En una realización los inventores formaron un consorcio estable con las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, que se aislaron separadamente desde flora silvestre de la Cordillera de Los Andes, región de Valparaíso.
Cada una de estas cepas fue seleccionada por su capacidad psicrotolerante, dado que crecen a bajas temperaturas. Para el experto en la técnica será evidente que cada cepa se puede emplear por sí misma o en combinación con la otra, ya que ambas poseen propiedades beneficiosas.
Adicionalmente, se estableció que ambas cepas AMCR2b y AMTR8 poseen la capacidad de solubilizar fosfatos a temperatura ambiente, mientras que sólo la cepa AMCR2b presenta esta capacidad a 4 °C, permitiendo una mejor absorción de nutrientes por las plantas. La cepa AMTR8 produce la hormona vegetal AIA y ambas modulan la concentración de la hormona de estrés de las plantas, etileno, mediante la actividad ACC desaminasa. Asimismo, ambas presentan actividad de inhibición en la recristalización del hielo (IRI), aportando a la actividad anticongelante en plantas, siendo importante para la protección contra heladas. Además, las 2 cepas poseen actividad antagonista contra microorganismos fitopatógenos, por ejemplo, los inventores demostraron sus propiedades biocontroladoras contra bacterias activas en la nucleación de hielo como Pseudomonas syríngae y Pectobacterium carotovorum. Cada una de las cepas es valiosa en sí misma y poseen capacidades complementarias, por lo que es altamente beneficioso emplearlas en consorcio.
Los genomas de Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 fueron secuenciados. La bacteria Pseudomonas sp. AMCR2b presentó un tamaño de genoma de 5,92 Mbp con 60,42% GC, mientras que Pseudomonas sp. AMTR8 presentó un tamaño de genoma de 6,42 Mbp con 60,52% GC. La anotación del genoma fue realizada con RAST, obteniendo 5.313 y 5.265 secuencias codificantes para las cepas AMCR2b y AMTR8, respectivamente. Un análisis de identidad promedio de nucleótidos (ANIm) determinó que ambas bacterias pertenecen al complejo de las Pseudomonas fluorescens. Para que el análisis ANIm permita determinar la especie de la cepa analizada, se requiere una identidad de más de un 94%. Las cepas de la invención presentaron en el análisis ANIm una identidad menor a 92%, donde Pseudomonas sp. AMCR2b es cercana filogenéticamente a P. orientalis DSM 17489T (91 %), mientras que, Pseudomonas sp. AMTR8 presentó mayor cercanía filogenética (90%) con P. kilonensis DSM 13647T. De acuerdo con los resultados, las cepas de la invención no corresponderían a las especies aceptadas actualmente, por lo que se deben denominar sólo como parte del género Pseudomonas, o Pseudomonas sp. La combinación de ambas cepas o consorcio bacteriano de estas Pseudomonas ha sido probada en ensayos de laboratorio y campo, donde se ha aplicado mediante una formulación líquida en base al crecimiento de ambas bacterias. Se determinó la promoción del crecimiento de semillas de tomate en ensayos in vitro a 14 °C, incrementando la germinación y el largo de las raíces luego de 12 días de incubación en oscuridad con respecto a un control sin la aplicación.
Se observó la promoción del crecimiento de plántulas de tomate en ensayos en placas Petri con sustrato a 14 °C luego de 2 semanas con un fotoperíodo de 16 h luz y 8 h oscuridad, en cámaras de crecimiento de plantas. Tratamientos con aplicación radicular y foliar obtuvieron valores significativamente mayores de número de hojas, diámetro del tallo, altura de la planta y peso fresco aéreo; mientras que el peso seco aéreo sólo fue mayor con el tratamiento radicular. Parte del ensayo anterior se continuó sometiendo a las plántulas durante 1 semana a 4 °C y retornando a 14 °C por 2 semanas más, continuando con el mismo tratamiento radicular y foliar. Posterior a este período de estrés por enfriamiento, las plantas de tomate se expusieron a estrés por congelamiento, a -18 °C por 15 min, y luego incubadas a 14 °C en oscuridad durante 12 h. Al término del ensayo se midió el porcentaje de sobrevivencia, donde se observó un 0% de sobrevivencia del control (0/6), un 17% de sobrevivencia con el tratamiento radicular (1/6) y un 50% de sobrevivencia con el tratamiento foliar (3/6).
Las cepas de la invención se pueden aplicar y crecer en cualquier medio de cultivo disponible en la técnica, como por ejemplo el medio Yeast Malt (YM), King B (KB), DF (Dworkin and Foster), Luria Bertani (LB), L-broth, Tryptic soy broth (TSB), Muller-Hinton (HM), Potato dextrose broth, o cualquier otro medio de cultivo o solución tampón, adicionalmente una vez crecidas estas pueden ser liofilizadas o inmovilizadas para su aplicación.
La aplicación en campo con plantas de palto (región de Valparaíso, Chile) fue realizada durante 6 meses (mayo a octubre) con aplicaciones manuales del consorcio bacteriano cada 2-3 semanas. Los resultados indicaron mejorías en el aumento del ancho del tronco y la altura de la planta, además se observó una disminución del número de plantas afectadas por heladas, esto, indicado por la disminución significativa del porcentaje de severidad por el daño por heladas, al aplicar el tratamiento radicular del consorcio con la mayor concentración bacteriana evaluada (108 UFC planta-1) con respecto a un control sin tratamiento, corroborando de esta forma la protección contra el estrés por frío del consorcio bacteriano de la invención.
La aplicación en campo con plantas de vid vinífera (región de Valparaíso, Chile) fue realizada durante 2 meses (agosto a septiembre) con aplicaciones manuales del consorcio bacteriano cada 2 semanas. Los resultados indicaron mejorías significativas en el aumento n° de sarmientos verdes / n° de brazos, además se observó una tendencia a la disminución del número de plantas afectadas por heladas, esto, indicado por la disminución del porcentaje de severidad por el daño por heladas. El tratamiento radicular del consorcio (108 UFC planta-1) presentó los mejores resultados al igual que en el ensayo de paltos, corroborando de esta forma la protección contra el estrés por frío del consorcio bacteriano en otro tipo de plantas, en este caso de hoja caduca.
1 La novedad de la invención es la utilización de un producto biológico formado por al menos una cepa de Pseudomonas seleccionada de Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), donde dicho producto presenta múltiples características de promoción directa o indirecta del crecimiento de las plantas. Actualmente en el mercado de los bioproductos, no existe un producto que reúna todas estas características. Además, la tendencia actual demanda productos alimenticios con la menor utilización de agroquímicos, por lo que esta invención es una estrategia que promueve una agricultura sustentable.
En una realización, la invención apunta a un producto biológico promotor del crecimiento vegetal y protector del estrés por frío en plantas que comprende el producto biológico descrito.
En otra realización, la invención apunta a un método para promover el crecimiento vegetal y otorgar propiedades psicrotolerantes que comprende contactar agua de riego, semillas, almácigos, plántulas, plantas, frutos, flores o esquejes con la composición del bioproducto de la invención. El vegetal puede ser una especie de interés agronómico, escogida por ejemplo entre: tomate, berenjena, zapallo italiano, lechuga, acelga, espinaca, maíz, trigo, arroz, zanahoria, cebolla, arveja, pimentón, papa, camote, maní, canola, algodón, cebada, sorgo, soja, girasol, prunus, pomáceas, palto, vid de mesa, vid vinífera, cítricos, bayas y nogal.
El vegetal puede ser una planta de carácter ornamental, tal como césped, plantas productoras de flores o plantas ornamentales, incluyendo flores cortadas, adicionalmente el vegetal o planta puede ser fruto o grano cosechado.
La invención se comprenderá mejor por medio de los siguientes ejemplos, los que son meramente ilustrativos y no limitativos del alcance de la invención. Vahos cambios y modificaciones a las modalidades descritas serán evidentes para los expertos en la materia y tales cambios pueden hacerse sin apartarse del espíritu de la invención y del alcance de las reivindicaciones adjuntas.
EJEMPLOS
Ejemplo 1. Aislamiento y actividades protectoras y promotoras del crecimiento vegetal del consorcio bacteriano
Las cepas Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, se aislaron desde la rizósfera de flora silvestre de la Cordillera de Los Andes, región de Valparaíso. Las bacterias
1 Pseudomonas sp. AMRC2b y Pseudomonas sp. AMTR8 se seleccionaron de entre todas las cepas aisladas por sus múltiples actividades protectoras y promotoras del crecimiento vegetal como producción de ácido indol-3-acético, solubilización de fosfatos, actividad antimicrobiana contra bacterias activas en la nucleación de hielo, actividad ácido 1 - aminociclopropano-1 -carboxílico desaminasa, actividad inhibidora de la recristalización del hielo y la promoción del crecimiento de plantas de tomate a 24 °C, actividades que se detallan a continuación.
Para determinar la producción de AIA de las bacterias del consorcio, se evaluaron crecimientos en medio Yeast Malt (YM; 10 g L“1 glucosa, 3 g L“1 extracto de malta, 5 g L“1 peptona, 3 g L“1 extracto de levadura) con distintas concentraciones de triptófano (TRP): 0; 2,5; 5 y 10 mM. El AIA es la auxina más estudiada producida por las BPCV. La producción de AIA, evaluada por HPLC, sólo fue observada con la bacteria Pseudomonas sp. AMTR8, que presentó la capacidad de producir AIA (0,05 mM), a los 7 días de incubación en presencia de triptófano (2,5 mM) (Figura 1 A).
La solubilización de fosfatos se analizó mediante la visualización de halos de solubilización en el medio Pikovskaya. Cultivos bacterianos en medio TSB ~ 12 h, fueron ajustados a una turbidez a 600 nm igual a 1 ; 10 pL de cada aislado bacteriano fueron depositados en cuadruplicado en una placa con medio Pikovskaya. Las placas se incubaron a temperatura ambiente y 4 °C durante 1 semana. Las bacterias solubilizadoras de fosfato pueden liberar fosfato soluble del fosfato insoluble y promover el crecimiento de las plantas. Tanto la bacteria Pseudomonas sp. AMTR8 como Pseudomonas sp. AMCR2b tienen la capacidad de solubilizar fosfatos a temperatura ambiente, mientras que sólo la cepa AMCR2b presentó la capacidad de solubilizar fosfatos a 4 °C luego de 1 semana de incubación (Figura 1 B).
La actividad antagonista contra bacterias fitopatógenas se realizó mediante el Radial streak method. Se utilizaron placas con agar YM y King B (KB, 20 g L“1 peptona, 15 mL glicerol, 1 ,5 g L“1 K2HPO4, 1 ,5 g L“1 MgSO4 x 7H2O).
Se evaluó la actividad antimicrobiana contra las bacterias fitopatógenas Pseudomonas syríngae pv. syríngae (Pss, bacteria activa en la nucleación de hielo (INA) y causante de cancro bacterial en cerezos) y Pectobacterium carotovorum (Pe, anteriormente Erwinia carotovora, INA y causante de la pudrición blanda en una amplia gama de plantas). La actividad antimicrobiana contra bacterias fitopatógenas activas en la nucleación de hielo como Pss y Pe, que magnifican el estrés provocado por el frío en las plantas, fue observada en ambas bacterias del consorcio en los medios YM y KB (Tabla 1 ). Luego de 24 h de 1 incubación conjunta (bacteria benéfica + bacterias fitopatógenas) la cepa AMCR2b inhibió el crecimiento de ambas bacterias fitopatógenas (< 50%) en ambos medios de cultivo, luego de 48 h esta inhibición fue sostenida para Pss en medio KB, pero no en medio YM, mientras que para Pe también fue sostenida en medio YM y sólo atenuó su crecimiento en medio KB. Luego de 24 h de incubación conjunta la cepa AMTR8 inhibió el crecimiento de ambas bacterias fitopatógenas en medio YM (< 50%), mientras que en medio KB inhibió el crecimiento de Pss >50%, sin embargo, no presentó inhibición de Pe. Luego de 48 h, la cepa AMTR8 presentó una inhibición sostenida en medio YM (< 50%), mientras que en el medio KB se observó una atenuación del crecimiento de Pss.
Tabla 1.
INA bacteria Pss Pe
Cepa/Medio YM (24 h, 48 h) KB (24 h, 48 h) YM (24 h, 48 h) KB (24 h, 48 h)
AMCR2b +,- +,+ +,+ +,+/-
AMTR8 +,+ ++,+/- +,+
Los símbolos significan: sin inhibición; +/-, atenuación del crecimiento; +, <50% de inhibición del crecimiento; ++, >50% de inhibición del crecimiento. Cada valor es una media ± DS de 3 réplicas independientes.
Como indicamos, los principales mecanismos utilizados por las BPCV para reducir el estrés incluyen disminuir el nivel de etileno mediante la hidrólisis del ACC por la enzima ACC desaminasa, reduciendo así el nivel de etileno dentro de las plantas. Por lo tanto, las BPCV que contienen esta actividad tienen el potencial de frenar la producción de etileno inducida por el estrés abiótico y su efecto adverso asociado en las plantas. La enzima ACC desaminasa convierte el ACC en a-cetobutirato (a-KB) y amonio, por lo que la actividad ACC desaminasa se determinó mediante la medición de pinoles a-KB mg proteína'1 h-1, en medio DF con 3 mM de ACC como única fuente de nitrógeno y glucosa (2 g L'1) como fuente de carbono (Vega-Celedón et al., 2021 ). Ambas bacterias, Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8, presentaron la actividad ACC desaminasa, con valores de 0,198 y 0,552 pmol a-KB mg proteína'1 h'1, respectivamente (Figura 1 C). Estos valores de actividad ACC desaminasa superan los ~ 20 nmol a-KB mg proteína'1 h'1, que están reportados como suficientes para permitir que una bacteria crezca en ACC y actúe como BPCV (Penrose & Glick, 2002).
1 La actividad IRI para las bacterias del consorcio fue evaluada a partir de la extracción de proteínas luego de ser crecidas en 5 mL de TSB a 4 °C durante 10 días de forma estática, para ser expuestas a temperaturas bajo cero (Vega-Celedón et al., 2021 ). Las proteínas anticongelantes (AFP) actúan uniéndose a los cristales de hielo para provocar la inhibición de la recristalización del hielo (IRI), impidiendo la generación de grandes cristales de hielo. Por tanto, como parámetro de reducción del estrés por frío, se evaluó la actividad IRI en las bacterias del consorcio. Las bacterias Pseudomonas sp. AMCR2b y Pseudomonas sp. AMTR8 fueron positivas para dicha actividad (Figura 1 D). Por tanto, estas bacterias podrían contribuir a la adaptación y protección de las plantas frente a temperaturas de congelación.
EJEMPLO 2. Efecto promotor del crecimiento del consorcio bacteriano en semillas de tomate bajo estrés por enfriamiento (14 °C)
Para determinar el efecto promotor del crecimiento vegetal del consorcio bacteriano, se evaluó un ensayo de germinación in vitro de semillas de tomate (Solanum lycopersicum L. cv. San Pedro) sometido a estrés por enfriamiento (14 °C) (Vega-Celedón et al., 2021 ). Semillas de tomate fueron desinfectadas en etanol 70% por 30 s, luego con solución de hipoclorito de sodio (1 %) por 10 min, y posteriormente se lavaron 3 veces con agua destilada estéril. Luego de la desinfección se sumergieron en los diferentes tratamientos (Control negativo con agua destilada estéril, Control con bioestimulante Nutrisac y Consorcio bacteriano) durante 4 h a 20 °C. Luego 10 semillas fueron dispuestas en placas con papel filtro embebido con 1 mL de agua destilada estéril (3 réplicas por cada tratamiento). Las bacterias que componen el consorcio se crecieron por 24 h individualmente en medio líquido YM a 25 °C con una agitación de 180 rpm, alcanzando una concentración bacteriana de ~109 UFC mL-1, posteriormente se mezclaron en la misma proporción de concentración (1 :1 ) y se diluyeron en agua destilada, obteniendo una concentración bacteriana final de 2 x 108 UFC mL-1. Al término del ensayo se midió el porcentaje de germinación y el largo de la raíz. Luego de 12 días de incubación en oscuridad, se determinó la promoción del crecimiento de semillas de tomate a 14 °C, incrementando la germinación y el largo de las raíces significativamente con respecto a los controles negativo y positivo (Figura 2).
EJEMPLO 3. Efecto promotor del crecimiento del consorcio bacteriano en plantas de tomate en condición de estrés por enfriamiento (14 °C)
1 Para determinar el efecto protector y promotor del crecimiento vegetal del consorcio, se evaluó un ensayo de crecimiento de plantas de tomate (Solarium lycopersicum L. cv. San Pedro) a 14 °C tratadas independientemente de forma radicular y foliar. Semillas de tomate se germinaron durante 2 semanas en una maceta con turba como sustrato. Luego, las plántulas de tomate fueron dispuestas en placas Petri con turba. Las bacterias que componen el consorcio se crecieron por 24 h individualmente en medio líquido YM a 25 °C con una agitación de 180 rpm, alcanzando una concentración bacteriana de ~109 UFC rnL- 1, posteriormente se mezclaron en la misma proporción de concentración (1 :1 ), se diluyeron en agua destilada y fueron aplicadas cada 2 semanas de forma radicular, inoculando sobre la base de la planta con una concentración final en el suelo de 2 x 106 UFC g-1, y de forma foliar, empapando la planta con una concentración de 2 x 108 UFC mL-1. El mismo procedimiento se realizó para el control negativo, pero sólo con agua destilada. Se utilizaron 12 réplicas por cada tratamiento. El ensayo se mantuvo 1 semana a 25 °C para su aclimatación y luego se sometió a estrés por enfriamiento a 14 °C durante 2 semanas con un fotoperíodo de 16 h luz y 8 h oscuridad, en cámaras de crecimiento de plantas. Al término del ensayo de enfriamiento se midió el número de hojas, diámetro del tallo, altura de la planta, peso fresco aéreo, peso seco aéreo y la clorofila para 6 plantas de cada tratamiento. Estas mediciones se realizaron en las plantas luego de las primeras hojas (cotiledones). El peso seco fue determinado colocando previamente el material vegetal en una estufa a 60- 70 °C durante 48-96 h.
Se observó que los tratamientos con aplicación radicular y foliar de consorcio bacteriano obtuvieron valores significativamente mayores de número de hojas, diámetro del tallo, altura de la planta y peso fresco aéreo con respecto a un control sin aplicación del consorcio bacteriano, mientras que el peso seco aéreo fue mayor con el tratamiento radicular con respecto a un control sin aplicación del consorcio bacteriano (Figura 3).
EJEMPLO 4. Efecto protector del crecimiento del consorcio bacteriano en plantas de tomate en condición de estrés por congelamiento
Parte del ensayo anterior (Ejemplo 3) se continuó sometiendo a las plantas durante 1 semana a 4 °C y retornando a 14 °C por 2 semanas más, continuando con el mismo tratamiento radicular y foliar. Luego de este período, las plantas de tomate se expusieron a estrés por congelamiento. Las plantas de tomate fueron incubadas a -18 °C por 15 min y luego incubadas a 14 °C en oscuridad durante 12 h. Al término del ensayo se midió el 1 porcentaje de sobrevivencia. Se observó un 0% de sobrevivencia del control (0/6), un 17% de sobrevivencia con el tratamiento radicular (1/6) y un 50% de sobrevivencia con el tratamiento foliar (3/6) (Figura 4).
EJEMPLO 5. Efecto protector y promotor del consorcio bacteriano en plantas de palto bajo estrés por frío en condición de campo
El efecto del consorcio bacteriano sobre la tolerancia al frío y promoción del crecimiento de plantas a bajas temperaturas fue evaluado sobre plantas de palto ‘Hass’ (Persea americana Mili. cv. Hass) (planta de hoja perenne) en campo. El ensayo se realizó durante el término de otoño e inicio de primavera, en media hectárea, en la comuna de Hijuelas de la región de Valparaíso con plantas de 2 años. La concentración bacteriana utilizada en campo fue determinada en base a lo utilizado en bioinsumos comerciales, considerando 1 planta = 9 m2. Para determinar la modalidad y la concentración del consorcio bacteriano, se evaluó el efecto de 4 tratamientos: (1 ) Aplicación Radicular, 108 UFC planta-1 ; (2) Aplicación Foliar, 108 UFC planta-1 ; (3) Aplicación Radicular, 106 UFC planta-1 y (4) Aplicación Foliar, 106 UFC planta-1, más un control sin aplicación. Estos tratamientos se realizaron en modalidad de 3 bloques al azar, con 6 plantas cada bloque, 18 por cada tratamiento. Los tratamientos se aplicaron a los paltos cada 14-21 días. Las bacterias correspondientes al consorcio bacteriano fueron crecidas individualmente durante 24 h en medio de cultivo líquido a 25 °C con una agitación de 180 rpm, alcanzando una concentración bacteriana de ~109 UFC mL- 1. Posteriormente, los crecimientos de ambas bacterias se mezclaron en la misma proporción (1 :1 ) y se diluyeron con agua de riego en una mochila con aspersor manual, para luego incorporarlas a cada planta individualmente. Se evaluaron parámetros de crecimiento de altura de la planta y ancho del tronco al tiempo de 0 y 174 días, además del daño provocado por heladas.
Se determinó el crecimiento de cada planta con respecto al tiempo cero, debido a la gran variabilidad entre las plantas del campo. Los tratamientos no presentaron diferencias significativas en la altura de la planta con respecto al control, pero el tratamiento radicular con mayor inoculo (108 UFC planta-1) presentó un incremento del ~ 6% luego de 174 días, con respecto al control sin tratamiento (Figura 5A). En relación con el ancho del tronco, tampoco se observaron diferencias significativas con respecto al control sin tratamiento. Sin embargo, se observó un aumento con el tratamiento radicular de un ~ 5% con mayor inoculo (108 UFC planta-1) luego de 174 días del inicio del ensayo (Figura 5B).
1 El daño en las plantas fue visualizado la primera semana de agosto y se evidenció que el tratamiento radicular con mayor inoculo (108 UFC planta-1) presentó una disminución significativa del porcentaje de índice de severidad con respecto al tratamiento control (Figura 6). El % de índice de severidad (% IS) fue calculado según el número de hojas y brotes dañados, utilizando la siguiente escala de severidad referida a estos parámetros entre paréntesis: Sin Daño = 0 (0 hojas dañadas), Daño Leve = 1 (<10 hojas dañadas), Daño Moderado = 2 (>10 hojas dañadas) y Daño Severo = 3 (brotes dañados) y la fórmula %IS = (Z (Puntaje de severidad x N° de plantas afectadas) / (Total de plantas x Puntaje máximo)) x 100.
EJEMPLO 6. Efecto protector y promotor del consorcio bacteriano de plantas de Vitis vinífera cv. Pinot noir bajo estrés por frío en condición de campo
Para la validación del bioinsumo en otros cultivos, se evaluó su efecto sobre otro cultivo de importancia para el país como vid vinífera a nivel de campo. El ensayo se realizó durante el término de invierno y el inicio de primavera, en la comuna de Casablanca, región de Valparaíso con plantas productivas. La concentración bacteriana utilizada en campo fue de 108 UFC planta-1, según lo evaluado en plantas de palto. Se realizaron 3 tratamientos: Control, Aplicación Radicular y Aplicación Foliar. Estos tratamientos se realizaron en modalidad de 3 bloques al azar, con 5 plantas cada bloque, 15 por cada tratamiento. Los tratamientos se aplicaron a las vides cada 14 días. Las bacterias correspondientes al consorcio bacteriano fueron crecidas individualmente durante 24 h en medio de cultivo líquido a 25 °C, alcanzando una concentración bacteriana de ~109 UFC mL-1. Posteriormente, los crecimientos de ambas bacterias se mezclaron en la misma proporción (1 :1 ) y se diluyeron con agua de riego en una mochila con aspersor manual de 5 L, para luego incorporarlas a cada planta individualmente según el tratamiento correspondiente. Al término de los ensayos se midieron los números de brazos y sarmientos verdes, para luego determinar la razón comparativa n° de sarmientos verdes/n° de brazos, además se evaluó el daño provocado por heladas primaverales.
La variable evaluada n° de sarmientos verdes/n° de brazos mostró diferencias significativas respecto al control con el tratamiento radicular (LSD Fisher, p<0,05). Estos resultados se tradujeron en un aumento de este valor promedio en un 40,8% y un 83,8% para el tratamiento foliar y radicular con respecto al control, respectivamente (Figura 7A). Con respecto al daño por heladas, se observó para el parámetro % IS una disminución de un 1 16,4% y 29,7% para los tratamientos foliar y radicular con respecto al control, respectivamente. Los tratamientos no presentaron diferencias significativas con respecto al control, pero si se observó una tendencia a la disminución de este valor (Figura 7B). Se calculó el % de índice de severidad (% IS) con respecto a los datos obtenidos con el n° de sarmientos verdes/n° de brazos, según la siguiente escala de severidad referida a este valor entre paréntesis: Sin Daño = 0 (>5), Daño Leve = 1 (>3-<5), Daño Moderado = 2 (>1 -<3) y Daño Severo = 3 (<1 ) y la fórmula %IS = (Z (Puntaje de severidad x N° de plantas afectadas) / (Total de plantas x Puntaje máximo)) x 100.
BIBLIOGRAFÍA
1. Vega-Celedón, P.; Bravo, G.; Velásquez, A.; Cid, F.P.; Valenzuela, M.; Ramírez, I.; Vasconez, l.-N.; Álvarez, I.; Jorquera, M.A.; Seeger, M. Microbial diversity of psychrotolerant bacteria isolated from wild flora of Andes Mountains and Patagonia of Chile towards the selection of plant growth-promoting bacterial consortia to alleviate cold stress in plants. Microorganisms 2021 , 9, 538.
2. Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the frontiers of life: Extremophiles in Chile and their potential for bioremediation. Front. Microbiol. 2018, 9, 2309.
3. Penrose, D.M.; Glick, B. Methods for isolating and characterizing ACC deaminase- containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10-15.
Figure imgf000020_0001

Claims

PLIEGO DE REIVINDICACIONES
1 Un producto biológico, promotor del crecimiento vegetal y protector del estrés por frío en vegetales, CARACTERIZADO porque comprende una cepa de bacterias del género Pseudomonas, seleccionada entre Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), depositadas ambas en la Colección Chilena de Recursos Genéticos Microbianos, y un portador.
2.- Producto biológico de acuerdo a la reivindicación 1 CARACTERIZADO porque el portador es medio de cultivo, o excipientes apropiados para la agricultura.
3.- Producto biológico de acuerdo a la reivindicación 2 CARACTERIZADO porque comprende entre 2 x 105 UFC mL-1 a 2 x 109 UFC mL-1 de Pseudomonas sp. AMCR2b y/o Pseudomonas sp. AMTR8.
4.- Producto de acuerdo a la reivindicación 3 CARACTERIZADO porque cada cepa está presente en una proporción de entre 0 a 100%, donde la suma de ambas se considera el 100%.
5.- Producto de acuerdo a la reivindicación 2 CARACTERIZADO porque el portador es un medio líquido que comprende agua, y/o nutrientes y/o sales.
6.- Producto de acuerdo a la reivindicación 2 CARACTERIZADO porque las cepas están liofilizadas o inmovilizadas y el portador es un medio sólido que se escoge entre alginato, quitosano, carragenina, gelatina, agar, azúcares, material de origen vegetal o combinaciones de éstos.
7. Un método para promover el crecimiento vegetal y/o proteger del estrés por frío a vegetales CARACTERIZADO porque comprende administrar el producto biológico de la reivindicación 1 a un vegetal mediante aplicación en agua de riego, foliar o radicular, o asperjado sobre el vegetal.
8.- Método de la reivindicación 7 CARACTERIZADO porque el producto biológico se aplica a un vegetal en estado de semilla, almácigos, plántulas, plantas, frutos, flores o esquejes.
9.- Método de la reivindicación 8 CARACTERIZADO porque el vegetal se escoge de una de las siguientes especies agronómicas: tomate, berenjena, zapallo italiano, lechuga, acelga, espinaca, maíz, trigo, arroz, zanahoria, cebolla, arveja, pimentón, papa, camote, maní, canola, algodón, cebada, sorgo, soja, girasol, prunus, pomáceas, palto, vid de mesa, vid vinífera, cítricos, bayas y nogal.
10.- Método de la reivindicación 8 CARACTERIZADO porque si el producto biológico se aplica sobre una semilla, esta se embebe en él, o se aplica como recubrimiento, o se aplica en el agua de riego de la semilla.
1 1.- Método de la reivindicación 8 CARACTERIZADO porque si el producto biológico se aplica sobre un almácigos, plántulas, plantas, frutos, flores o esquejes se puede aplicar en el agua de riego, o por aplicación radicular, foliar o asperjado sobre el vegetal.
12. Uso de un producto biológico de acuerdo a la reivindicación 1 CARACTERIZADO porque sirve para tratar, prevenir, controlar o curar enfermedades asociadas a microorganismos fitopatógenos.
13. Uso de un producto biológico de acuerdo a la reivindicación 12 CARACTERIZADO porque sirve para tratar, prevenir, controlar o curar enfermedades asociadas a bacterias activas en la nucleación de hielo en plantas.
14. Uso de acuerdo a la reivindicación 13, CARACTERIZADO porque las enfermedades bacterianas son causadas por Pseudomonas syríngae.
15. Uso de acuerdo a la reivindicación 13, CARACTERIZADO porque las enfermedades bacterianas son causadas por Pectobacterium carotovorum.
16. Método de obtención del producto biológico, promotor del crecimiento vegetal y protector del estrés por frío en vegetales de acuerdo con la reivindicación 1 , CARACTERIZADO porque comprende mezclar una cepa de bacterias del género Pseudomonas, seleccionada entre Pseudomonas sp. cepa AMCR2b (código de acceso RGM 3107) y/o Pseudomonas sp. cepa AMTR8 (código de acceso RGM 3108), con un portador.
PCT/CL2022/050057 2022-05-26 2022-05-26 Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas WO2023225767A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050057 WO2023225767A1 (es) 2022-05-26 2022-05-26 Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050057 WO2023225767A1 (es) 2022-05-26 2022-05-26 Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas

Publications (1)

Publication Number Publication Date
WO2023225767A1 true WO2023225767A1 (es) 2023-11-30

Family

ID=88918016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050057 WO2023225767A1 (es) 2022-05-26 2022-05-26 Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas

Country Status (1)

Country Link
WO (1) WO2023225767A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121994A (ko) * 2015-04-13 2016-10-21 충북대학교 산학협력단 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도
WO2018182555A2 (en) * 2016-10-05 2018-10-04 Yedi̇tepe Sağlik Hi̇zmetleri̇ Anoni̇m Şi̇rketi̇ Microorganisms which are effective for preventing plant's cold stress
WO2022011486A1 (es) * 2020-07-14 2022-01-20 Pewman Innovation Spa Formulación microbiana para la protección de plantas y cultivos agrícolas contra condiciones ambientales y métodos de fabricación y utilización del mismo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121994A (ko) * 2015-04-13 2016-10-21 충북대학교 산학협력단 저온에서 식물의 생장을 촉진하는 내한성 슈도모나스 프레데릭스버겐시스 os261 균주 및 이의 용도
WO2018182555A2 (en) * 2016-10-05 2018-10-04 Yedi̇tepe Sağlik Hi̇zmetleri̇ Anoni̇m Şi̇rketi̇ Microorganisms which are effective for preventing plant's cold stress
WO2022011486A1 (es) * 2020-07-14 2022-01-20 Pewman Innovation Spa Formulación microbiana para la protección de plantas y cultivos agrícolas contra condiciones ambientales y métodos de fabricación y utilización del mismo

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ORELLANA-SAEZ MATIAS, PACHECO NICOLAS, COSTA JOSÉ I., MENDEZ KATTERINNE N., MIOSSEC MATTHIEU J., MENESES CLAUDIO, CASTRO-NALLAR ED: "In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential", FRONTIERS IN MICROBIOLOGY, FRONTIERS MEDIA, LAUSANNE, vol. 10, Lausanne , XP093115650, ISSN: 1664-302X, DOI: 10.3389/fmicb.2019.01154 *
SUBRAMANIAN, P. ET AL.: "Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solarium lycopersicum Mill.) under low temperatures.", PLOS ONE, vol. 11, no. 8, 2016, pages e0161592, XP055514182, DOI: 10.1371/journal.pone.0161592 *
VEGA-CELEDON, P. ET AL.: "Microbial Diversity of Psyclirotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants", MICROORGANISMS., vol. 9, no. 3, 5 March 2021 (2021-03-05), pages 538, XP093085971, DOI: 10.3390/microorganisms9030538 *
YARZABAL, L.A. ET AL.: "Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures.", POLAR BIOL, vol. 41, 2018, pages 2343 - 2354, XP036599149, DOI: 10.1007/s00300-018-2374-6 *

Similar Documents

Publication Publication Date Title
JP3428658B2 (ja) 抗菌性微生物製剤、その製造方法及び処理方法
Liu et al. Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress
ES2707807T3 (es) Nueva pseudomona fluorescente de la especie Pseudomonas azotoformans para la estimulación de la emergencia y el crecimiento de las plantas
US20200331821A1 (en) Plant inoculation method
CN111356761A (zh) 用于植物病原体的生物防治的方法和组合物
US20170088479A1 (en) Method of increasing abiotic stress resistance of a plant
JP2018525445A (ja) 無毒性植物用薬剤組成物ならびにその方法および使用
AU2002252240A1 (en) Novel biofungicide
WO2003000051A2 (en) Novel biofungicide
ES2381584T3 (es) Agente de biocontrol contra enfermedades transmitidas por el suelo
KR100868901B1 (ko) 바실러스 아밀로리쿼파시엔스 균주 및 이를 함유하는 제제
BRPI0717851B1 (pt) Método para controlar uma doença de planta
US20220132862A1 (en) Pseudomonas sp. strain, composition comprising the same, and uses thereof
US8586027B2 (en) Composition to obtain a biological fungicide and bactericide without the use of antibiotics to control plant diseases etc
KR101922428B1 (ko) 쌈채류의 생육촉진 및 쌈채류의 내고온성, 내건성을 갖도록 하는 신규 미생물 바실러스 토요넨시스 sb19, 이를 포함하는 미생물 제제 및 이를 포함하는 생물비료
KR100944136B1 (ko) 살리실산 및 유기 아민을 사용한 식물 처리법
WO2020140163A1 (es) Una formulación para la protección contra la bacteriosis del kiwi, causada por la bacteria pseudomonas syringae pv. actinidiae (psa)
WO2021119867A1 (es) Una cepa de pseudomonas protegens rgm 2331 y su uso en la elaboración de un bioestimulante con propiedades antifúngicas para la promoción del crecimiento en plantas
JP2004137239A (ja) 土壌病害防除剤および土壌病害防除方法
WO2023225767A1 (es) Cepas bacterianas psicrotolerantes amcr2b y/o amtr8 del género pseudomonas con actividades promotoras del crecimiento vegetal y protectoras de estrés por frío en plantas
KR102360511B1 (ko) 플라보박테리움 속 tch3-2 균주를 유효성분으로 함유하는 식물의 환경 스트레스 내성 증진용 미생물 제제 및 이의 용도
RU2800426C9 (ru) Штамм bacillus amyloliquefaciens p20 в качестве средства для борьбы с ризоктониозом картофеля
US20230167036A1 (en) Compositions and methods for improving plant growth and abiotic stress tolerance
JP2004131422A (ja) 土壌病害防除剤および土壌病害防除法
Khalil et al. Efficacy of some biocontrol organisms, animal manures and fungicides on controlling of potato black scurf and stem canker disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942981

Country of ref document: EP

Kind code of ref document: A1