KR101753073B1 - 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체 - Google Patents

식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체 Download PDF

Info

Publication number
KR101753073B1
KR101753073B1 KR1020140096650A KR20140096650A KR101753073B1 KR 101753073 B1 KR101753073 B1 KR 101753073B1 KR 1020140096650 A KR1020140096650 A KR 1020140096650A KR 20140096650 A KR20140096650 A KR 20140096650A KR 101753073 B1 KR101753073 B1 KR 101753073B1
Authority
KR
South Korea
Prior art keywords
enzyme
gene
plant
cys
ala
Prior art date
Application number
KR1020140096650A
Other languages
English (en)
Other versions
KR20160014426A (ko
Inventor
백경환
이경진
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020140096650A priority Critical patent/KR101753073B1/ko
Publication of KR20160014426A publication Critical patent/KR20160014426A/ko
Application granted granted Critical
Publication of KR101753073B1 publication Critical patent/KR101753073B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom

Abstract

본 발명은 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, 다기능 COMT 효소가 보유한 ASMT(N-acetylserotonin methyltransferase) 효소 활성을 통해 N-아세틸세로토닌을 멜라토닌으로 전환할 수 있는 미생물 및 멜라토닌 생산능이 증가된 식물체에 관한 것이다.

Description

식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체 {Microorganisms and plants transformed by recombinant vector comprising plant derived genes coding COMT enzyme}
본 발명은 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어 ASMT(N-acetylserotinin methyltransferase) 효소 활성이 증가된 미생물 및 식물체에 관한 것이다.
멜라토닌(N-acetyl-5-methoxytryptamine)은 인체 건강 기능성 물질로서, 체중감소, 뼈형성, 항산화활성, 항노화, 선천적면역, 및 항염증효과 등의 다양한 기능을 발휘하는 것으로 보고되어 왔다(Cipolla-Neto et al., J. Pineal Res. 56, 371, 2014; Maria & Witt-Enderby, J. Pineal Res. 56, 115, 2014; Garcia et al., J. Pineal Res. 56, 225, 2014; Hardeland, J Pineal Res. 55, 325, 2013; Calvo et al., J. Pineal res. 55, 103, 2013; Mauriz et al., J. Pineal Res. 54, 1, 2013).
동물에서 상기의 다양한 멜라토닌 기능뿐 아니라, 멜라토닌은 식물의 생장과 발육에도 매우 다양한 역할을 담당하고 있는 것으로 보고되어 왔다(Tan et al., J. Exp. Bot. 63, 577, 2012). 예를 들어, 식물에서 멜라토닌은 뿌리 및 줄기의 생장을 촉진하는 물질이며(Hernandez-Ruiz et al., J. Pineal Res. 39, 137, 2005; Arnao & Hernandez-Ruiz, J. Pineal Res. 42, 147, 2007; Sarropoulou et al., J. Pineal Res. 52, 38, 2012; Tiryaki & Keles, J. Pineal Res. 52, 332, 2012; Park & Back, J. Pineal Res. 53, 385, 2012; Byeon & Back, J. Pineal Res. 56, 408, 2014; Zhang et al., J. Pineal Res. 54, 15, 2013; Zhang et al., J. Pineal Res. 56, 39, 2013, 다양한 종류의 스트레스로부터 식물을 보호하는 기능을 하는 것으로 보고되었으며, 대표적으로 저온 스트레스(Bajwa et al., J. Pineal Res. 56, 238, 2014), 식물 동결보존(Uchendu et al., J. Pineal Res. 55, 435, 2013), 식물노화(Wang et al., J. Pineal Res. 55, 424, 2013), 식물병원균(Yin et al., J. Pineal Res. 55, 424, 2013), 건조스트레스(Wang et al., J. Pineal Res. 54, 292, 2013), 과산화작용제초제(Park et al., J. Pineal Res. 54, 258, 2013), 염스트레스(Li et al., J. Pineal Res. 53, 298, 2012), 및 고온스트레스(Tiryaki & Keles, J. Pineal Res. 52, 332, 2012)로부터 식물을 보호하는 기능이 있다.
상기의 멜라토닌의 식물내 기능 연구는 멜라토닌을 식물에 처리하여 관찰하는 약리적 효과 검정으로 연구된 결과이만, 최근 분자생물학적방법으로 멜라토닌 함량이 증대된 형질전환 식물체를 연구함으로 멜라토닌이 식물의 생장을 촉진하고, 다양한 스트레스로부터 식물을 보호한다는 연구 결과 보고하여(Park & Back, J. Pineal Res. 53, 385, 2012; Byeon & Back, J. Pineal Res. 56, 408, 2014; Park et al., J. Pineal Res. 54, 258, 2013; Li et al., J. Pineal Res. 53, 298, 2012; Kang et al., J. Pineal Res. 49, 176, 2010; Wang et al., J. Pineal Res. 56, 126, 2014)), 멜라토닌이 식물에서도 기능성 물질로 작용하고 있음을 확인하였다.
멜라토닌은 적은 분자량(232 g/mol)의 트립토판 유도체로서 특이하게 친수/친유성 특성(amphiphilic molecule)을 가지고 있어(shida et al., J.Pineal Res. 16, 198-201, 1994; Ceraulo et al., J. Pineal Res. 26, 108-112, 1999), 세포막을 자유롭게 왕래하며, 세포의 모든 기관에 존재하는 것으로 알려져 있다(Herdeland, Biofactors 35, 183-192, 2009).
다행히도, 지난 몇 년 동안 식물에서 멜라토닌 생합성에 관여하는 유전자들이 클로닝되었다(Kang et al., Planta 227, 263, 2007; Fujiwara et al., J. Biol. Chem. 285, 11308, 2010; Kang et al., J. Pineal Res. 50, 304, 2011; Kang et al., J. Pineal Res. 55, 7, 2013; Park et al., J. Pineal Res. 55, 409, 2013).
멜라토닌 생합성은 트립토판에서 출발하여 4단계 효소 작용을 거쳐 생합성되며(도 1 참조), 이 가운데 마지막 두 효소는 serotonin N-acetyltransferase(SNAT)와 N-acetylserotinin methyltransferase(ASMT)이며, 이들 두 효소가 멜라토닌 생합성에 결정적인 역할을 하는 효소로 알려져 있다(Kang et al., J. Pineal Res. 50, 304, 2011; Kang et al., J. Pineal Res. 55, 7, 2013; Park et al., J. Pineal Res. 55, 409, 2013).
한편, 식물 유래 COMT 효소(caffeic acid O-methyltransferase)의 경우, caffeic acid를 ferulic acid로 촉매하거나, 플라보노이드인 quercetin을 isorhamnetin으로 촉매하는 활성만 알려졌을 뿐이지, 멜라토닌의 합성에 관련된 어떠한 기능도 알려져 있지 않다.
Kang et al., Planta 227, 263, 2007; Fujiwara et al., J. Biol. Chem. 285, 11308, 2010; Kang et al., J. Pineal Res. 50, 304, 2011; Kang et al., J. Pineal Res. 55, 7, 2013; Park et al., J. Pineal Res. 55, 409, 2013
본 발명은 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물을 제공하는 것을 목적으로 한다.
본 발명은 상기 형질전환된 미생물을 이용하여 멜라토닌을 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 식물체를 제공하는 것을 목적으로 한다.
1. 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, ASMT(N-acetylserotonin methyltransferase) 효소 활성을 갖는 미생물.
2. 위 1에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 미생물.
3. 위 1에 있어서, 상기 미생물은 대장균인, 미생물.
4. 위 3에 있어서, 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합인, 미생물.
5. 위 3에 있어서, 상기 미생물은 서열번호 3의 뉴클레오티드 서열을 갖는 유전자가 더 도입된 것인, 미생물.
6. 위 1 내지 5 중 어느 한 항의 미생물을 N-아세틸세로토닌을 포함하는 배지 중에서 배양하는 단계; 및
상기 미생물로부터 멜라토닌을 분리하는 단계를 포함하는, 멜라토닌의 제조 방법.
7. 위 6에 있어서, 상기 배지는 세로토닌을 더 포함하는, 멜라토닌의 제조 방법.
8. 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, 개선된 멜라토닌 생성능을 갖는 식물체.
9. 위 8에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 식물체.
10. 위 8에 있어서, 상기 식물체는 단자엽 식물인, 식물체.
11. 위 8에 있어서, 상기 단자엽 식물은 보리, 평지, 옥수수, 밀, 호밀, 귀리, 잔디, 마초, 사탕수수, 기장, 라이그래스, 오챠드그래스 또는 벼인, 식물체.
12. 위 8에 있어서, 상기 식물체는 쌍자엽 식물인, 식물체.
13. 위 8에 있어서, 상기 쌍자엽 식물은 대두, 담배, 바나나 또는 목화인, 식물체.
14. 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터를 함유하는, ASMT(N-acetylserotonin methyltransferase) 효소 활성 증가용 조성물.
15. 위 14에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 조성물.
본 발명의 미생물은 ASMT 효소 활성을 나타내어, N-아세틸세로토닌으로부터 멜라토닌을 합성할 수 있다. 이에, 멜라토닌의 합성에 사용될 수 있다.
본 발명의 식물체는 ASMT 효소 활성이 개선되어, 증가된 멜라토닌 생산능을 갖는다. 이에 항산화 효능을 갖는 식품, 의약품 등으로 활용될 수 있다.
도 1은 트립토판으로부터 멜라토닌이 생성되는 과정을 개략적으로 나타낸 것이다.
도 2는 실시예 1에서 사용된 8 종의 애기장대 O-methyltransferase (OMT) 유전자 서열번호 및 유전자 특성(A)과 8종의 애기장대 OMT 유전자를 발현하는 대장균에서 N-아세틸세로토닌처리에 따른 멜라토닌 생성량 측정(B), 삽도는 3번 유전자로 형질전환된 대장균에 caffeic acid 처리에 따른 ferulic acid 함량을 나타낸 것이다.
도 3은 실시예 1에서 N-아세틸세로토닌처리에 멜라토닌을 생합성하는 3번 유전자로 형질전환된 대장균이 코딩하는 애기장대 AtCOMT 아미노산과 기클로닝된 벼 OsASMT1 유전자가 코딩하는 아미노산의 동질성 비교를 나타낸 것이다.
도 4는 실시예 2에서 클로닝된 애기장대 AtCOMT 유전자의 대장균에서의 발현을 통한 아미노말단 His6 부착 AtCOMT 효소의 정제 과정(A), 카복실말단 His6 부착 AtCOMT 효소의 정제 과정(B), 및 상기의 정제된 애기장대 AtCOMT 효소의 ASMT 효소 활성을 측정한 결과를 나타낸 것이다.
도 5는 실시예 2에서 정제된 아미노말단 His6 부착 AtCOMT 효소의 효소 농도별(A), 반응 시간별(B), 및 반응 온도별(C) ASMT 효소 활성을 비교한 결과를 나타낸 것이다.
도 6은 실시예 2에서 정제된 아미노말단 His6 부착 AtCOMT 효소의 caffeic acid 처리 농도에 따른 ASMT 효소 활성 변화(A)와 N-아세틸세로토닌처리에 따른 COMT 효소 활성 변화(B)를 비교한 결과를 나타낸 것이다.
도 7은 실시예 2에서 정제된 아미노말단 His6 부착 AtCOMT 효소의 ASMT 효소 활성의 기질 특이성(A) 및 COMT 효소 활성의 기질 특이성(B)을 비교한 결과를 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따라 클로닝하여 정제된 애기장대 AtCOMT 효소와 벼 OsCOMT 유전자가 코딩하는 효소의 동질성 비교를 나타낸 것이다.
도 9는 실시예 3에서 벼 OsCOMT 유전자의 대장균에서의 발현을 통해 얻어진 아미노말단 His6 부착 AtCOMT 효소의 정제 과정를 나타낸 것이다.
도 10은 실시예 3에서 정제된 아미노말단 His6 부착 OsCOMT 효소의 반응 온도에 따른 ASMT 활성(A), 농도에 따른 ASMT 활성(B), 및 caffeic acid 처리 농도에 따른 ASMT 효소 활성 변화 결과를 나타낸 것이다.
도 11은 실시예 3에서 정제된 아미노말단 His6 부착 OsCOMT 효소의 ASMT 효소 활성의 기질특이성 결과를 나타낸 것이다.
도 12는 실시예 1 내지 3에서 정제된 COMT 효소의 기질을 보여주는 것으로, 기존의 caffeic acid 및 quercetin 외에 N-아세틸세로토닌도 기질로 이용되고 있음을 나타낸 것이다.
도 13은 동·식물 유래의 SNAT 및 COMT 유전자 발현용 재조합 대장균 발현벡터의 모식도이다(Δ83OsSNAT: 엽록체 타깃 펩타이드가 제거된 벼 serotonin N-acetyltransferase, T7p: T7 promoter, T7t: T7 terminator, OsCOMT: 벼 COMT, OaSNAT: 양 SNAT, GST-OsASMT1: 벼 ASMT1 유전자의 glutathione S-transferase 결합 유전자).
도 14는 동·식물 유래의 SNAT 및 COMT 유전자 공동 발현에서 1 mM 세로토닌 처리 후 배양 온도별 멜라토닌 함량을 측정한 결과를 나타낸 사진이다.
도 15는 동·식물 유래의 SNAT 및 COMT 유전자 공동 발현에서 세로토닌 농도별 멜라토닌 함량을 측정한 결과를 나타낸 사진이다.
도 16은 동·식물 유래의 SNAT 및 COMT 유전자 공동 발현에서 1 mM 세로토닌 처리 후 배양 시간별 N-아세틸세로토닌함량을 측정한 결과를 나타낸 사진이다.
도 17은 동·식물 유래의 SNAT 및 COMT 유전자 공동 발현에서 1 mM 세로토닌 처리 후 배양 시간별 멜라토닌 함량을 측정한 결과를 나타낸 사진이다.
도 18은 벼 OsCOMT 유전자 과다발현 형질전환벼 제작을 위한 바이너리 벡터 모식도(A), 및 형질전환 벼에서 멜라토닌 함량 측정 결과(C)를 나타낸 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 식물 유래 COMT (caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, ASMT(N-아세틸세로토닌methyltransferase) 효소 활성을 갖는 미생물을 제공한다.
용어 "미생물"은 액체 배지 중에서 배양될 수 있는 세포일 수 있다.
상기 미생물은 원핵 세포, 진핵 세포, 또는 분리된 동물세포로 액체 배지에서 배양될 수 있는 것일 수 있다. 상기 미생물은 예를 들면, 박테리아, 곰팡이, 또는 이들의 조합일 수 있다. 박테리아는 그람 양성 박테리아, 그람 음성 박테리아, 또는 이들의 조합일 수 있다. 그람 음성 박테리아는 에세리키아 (Escherichia) 속일 수 있다. 그람 양성 박테리아는 바실러스 속, 코리네박테리움 속, 유산균 또는 이들의 조합일 수 있다. 곰팡이는 효모, 클루베로마이세스, 또는 이들의 조합일 수 있다.
상기 미생물은 천연 또는 외래 유전자가 도입된 것일 수 있다. 외래 유전자는 멜라토닌 생산에 관련된 유전자로서 예를 들면 OaSNAT(Ovis aries serotonin N-acetyltransferase을 코딩하는 서열번호 3의 뉴클레오티드 서열을 갖는 것일 수 있다. 서열번호 3의 뉴클레오티드 서열을 갖는 경우 세로토닌을 N-아세틸세로토닌으로 전환할 수 있다. 동물세포는 재조합 단백질 생산에 사용되는 것일 수 있다. 예를 들면, CHO 세포, BHK 세포, 또는 이들의 조합일 수 있다. 상기 미생물은 천연 에세리키아 속 미생물 또는 형질전환된 미생물일 수 있다.
천연 에세리키아 속 미생물은 예를 들면, 대장균일 수 있다. 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합일 수 있다.
형질전환된 에세리키아속 미생물은 서열번호 3의 뉴클레오티드 서열이 도입된 대장균일 수 있고, 구체적으로 서열번호 3의 뉴클레오티드 서열이 도입된 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue 또는 BW25113일 수 있다.
식물 유래 COMT 효소는 caffeic acid를 ferulic acid로 전환하고, quercetin을 isorhamnetin으로 전환하는 활성을 갖는 효소이나, 본 발명자는 식물 유래 COMT 효소가 N-아세틸세로토닌을 멜라토닌으로 전환하는 ASMT 효소의 활성을 나타내는 것을 발견한 것에 기인하여, 본 발명을 착안하였다. 즉, 식물 유래 COMT 효소가 ASMT 효소의 활성을 나타내는 바, 해당 효소를 코딩하는 유전자로 형질전환된 미생물은 ASMT 효소의 활성을 갖는다.
상기 식물 유래 COMT 효소는 애기장대 유래 AtCOMT (Arabidopsis thaliana COMT) 효소 또는 벼 유래 OsCOMT 효소일 수 있다. 애기장대 유래 AtCOMT 효소를 코딩하는 유전자는 서열번호 1의 뉴클레오티드 서열을 갖고, 벼 유래 OsCOMT 효소를 코딩하는 유전자는 서열번호 2의 뉴클레오티드 서열을 갖는다.
상기 서열번호 1의 뉴클레오티드 서열은 기보고된 AtCOMT(GenBank At5g54160) (Muzac et al., Arch. Biochem. Biophys. 375, 385, 2000; Nakatsubo et al., J. Wood Sci. 54, 312, 2008)의 서열을 가지고, 서열번호 2의 뉴클레오티드 서열은 기보고된 OsCOMT(GenBank AK064768)(Lin et al., J. Pestic. Sci. 31, 47, 2006)의 서열을 갖는다.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.
본 발명에서, 상기 식물 유래 COMT (caffeic acid O-methyltransferase) 효소를 코딩하는 유전자의 뉴클레오티드 서열은 재조합 벡터 내로 삽입될 수 있다. 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 재조합 벡터는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스 벡터, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다.
상기 발현벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소 (translation control element)를 가지는 것이다. 진핵세포에서 이용가능한 번역 조절 요소인 인핸서 (enhancer), 리보솜 결합 부위, 종결신호, 폴리아데닐레이션 신호 및 프로모터는 당업계에 공지되어 있다. 상기 발현벡터는 당업계에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다.
또한, 본 발명은 상기 미생물을 이용하여 멜라토닌을 제조하는 방법을 제공한다.
본 발명의 멜라토닌의 제조 방법은 전술한 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물을 N-아세틸세로토닌을 포함하는 배지 중에서 배양하는 단계 및 상기 미생물로부터 생산된 멜라토닌을 분리하는 단계를 포함한다.
전술한 바와 같이, 상기 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물은 ASMT 효소 활성을 나타내는 바, N-아세틸세로토닌을 포함하는 배지 중에서 배양하는 경우, N-아세틸세로토닌을 멜라토닌으로 전환할 수 있다.
상기 식물유래 COMT 효소를 코딩하는 유전자는 전술한 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는 것일 수 있다.
배양은 합성, 반합성, 또는 복합 배양 배지에서 이루어질 수 있다.
배양 배지로는 탄소원, 질소원, 비타민 및 미네랄로 구성된 배지를 사용할 수 있다. 예를 들어, MRS (Man-Rogosa-Sharp) 액체 배지 또는 우유가 첨가된 액체 배지를 사용할 수 있다.
배지의 탄소원으로는 전분, 포도당, 자당, 갈락토스, 과당, 글리세롤, 글루코스 또는 이들의 혼합물이 사용될 수 있다. 예를 들면, 글리세롤이 탄소원으로 사용될 수 있다. 질소원으로는 황산암모늄, 질산암모늄, 질산나트륨, 글루탐산, 카사미노산, 효모추출물, 펩톤, 트립톤, 대두박 또는 이들의 혼합물이 사용될 수 있다. 미네랄은 염화나트륨, 인산제이칼륨, 황산마그네슘 또는 이들의 혼합물이 사용될 수 있다.
배양은 통상의 대장균 배양 조건에서 수행될 수 있고, 예를 들면 15℃ 내지 45℃의 온도에서 수행될 수 있으나, 이에 제한되는 것은 아니다.
배양액 중의 배양 배지를 제거하고 농축된 균체만을 회수하거나 제거하기 위해 원심분리 또는 여과과정을 거칠 수 있으며 이러한 단계는 당업자의 필요에 따라 수행할 수 있다. 농축된 균체는 통상적인 방법에 따라 냉동하거나 냉동건조하여 그 활성을 잃지 않도록 보존할 수 있다.
또한, 본 발명은 식물 유래 COMT (caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, 멜라토닌 생산능이 증가된 식물체를 제공한다.
식물체는 기본적으로 멜라토닌 생산능을 갖는 것인데(Tan et al., J. Exp. Bot. 63, 577, 2012), 본 발명의 식물체는 ASMT 효소 활성을 갖는 식물 유래 COMT 효소를 코딩하는 유전자로 형질전환되어 보다 증대된 ASMT 효소 활성을 가지므로, 멜라토닌 생산능이 증가된다.
상기 식물 유래 COMT 효소는 애기장대 유래 AtCOMT (Arabidopsis thaliana COMT) 효소 또는 벼 유래 OsCOMT (Oryza sativa COMT) 효소일 수 있다. 애기장대 유래 AtCOMT 효소를 코딩하는 유전자는 서열번호 1의 뉴클레오티드 서열을 갖고, 벼 유래 OsCOMT 효소를 코딩하는 유전자는 서열번호 2의 뉴클레오티드 서열을 갖는다.
본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0116718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0120516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다.
본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중가닥 식물 바이러스 (예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.
본 발명의 재조합 발현벡터에서, 상기 프로모터는 형질전환에 적합한 프로모터들로서, 바람직하게는 CaMV 35S 프로모터, 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터, 히스톤 프로모터 또는 Clp 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 상부의 영역을 의미하며 전사를 개시하기 위하여 RNA 중합효소가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "항시성 (constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이며, 본 발명에서는 항시성 프로모터의 사용이 바람직할 수 있다. 따라서, 항시성 프로모터는 선택 가능성을 제한하지 않는다.
본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제 (NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 아그로박테리움 튜머파시엔스 (Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 파세올린 (phaseoline) 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 터미네이터 영역이 식물 세포에서의 유전자 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.
재조합 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트 (glyphosate) 또는 포스피노트리신 (phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신 (kanamycin), 하이그로마이신 (hygromycin), 클로람페니콜(chloramphenicol), G418, 블레오마이신 (Bleomycin)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.
본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 숙주 세포가 원핵 세포인 경우, CaCl2 방법, 하나한 방법(Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기천공 방법 등에 의해 실시될 수 있다. 또한, 숙주세포가 진핵세포인 경우에는, 유전자총-매개 형질전환 방법 (bombardment), 아그로박테리움-매개 형질전환법, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법 및 DEAE-덱스트란 처리법 등에 의해 벡터를 숙주세포 내로 주입할 수 있으나, 이에 제한되지 않는다.
아그로박테리움-매개 형질전환법에 있어서, 형질전환용 숙주인 아그로박테리움은 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens), 아그로박테리움 라이조게네스(Agrobacterium rhizogenes) 등을 사용할 수 있다.
형질전환된 식물 세포들은 당업계에 공지된 표준 기술을 사용하여 식물체로 재분화시킬 수 있다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).
상기 식물체는 특별히 한정되지 않으며, 보리, 평지, 옥수수, 밀, 호밀, 귀리, 잔디, 마초, 사탕수수, 기장, 라이그래스, 오챠드그래스 및 벼와 같은 단자엽 식물; 및 대두, 담배, 바나나 및 목화와 같은 쌍자엽 식물 모두를 포함할 수 있다. 특히, 식용 가능한 식물체를 형질전환시켜 벼 OsCOMT의 과다발현에 의한 멜라토닌, 및 메틸세로토닌 등이 합성되는 경우 식물체 자체를 직접 섭취함으로써 항암 효과, 항산화 효과 및 퇴행성 질환 방지 효과를 직접 얻을 수 있다.
또한, 본 발명은 상기 형질전환된 식물체를 포함하는 건강기능식품을 제공한다.
멜라토닌은 체중감소, 뼈형성, 항산화 활성, 항노화, 선천적 면역 및 항염증 등의 다양한 기능성이 알려져 있는데, 상기 형질전환된 식물체는 멜라토닌 생산능이 증가되어 다량의 멜라토닌을 함유하고 있으므로, 상기 기능성을 갖는 건강기능식품으로 활용될 수 있다.
또한, 본 발명은 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터를 함유하는, ASMT(N-acetylserotonin methyltransferase) 효소 활성 증가용 조성물을 제공한다.
상기 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는 유전자일 수 있다.
본 발명의 조성물은 미생물, 식물 세포 등에 형질전환되어, 해당 미생물에 ASMT 효소 활성을 부여하거나, 식물체가 개선된 ASMT 효소 활성을 갖도록 한다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
실시예
실시예 1. 애기장대 OMT 군으로부터 ASMT 활성을 갖는 유전자의 클로닝
애기장대로부터 8 종의 전장길이(full-length)의 OMT(O-methyltransferases) cDNA 유전자는 RIKEN 생물자원센터(Seki et al., Plant J. 15, 707, 1998; Seki et al., Science 296, 141, 2002))로부터 분양받아 사용하였다.
Gene no. Accession no. 서열번호 aa length GC% Chr. locus
1 At4g35160 4 45 45 4
2 At1g21100 5 45 45 1
3 At5g54160 1 45 45 5
4 At1g76790 6 42 42 1
5 At1g33030 7 41 41 1
6 At3g61990 8 45 45 3
7 At1g63140 9 43 43 1
8 At3g62000 10 43 43 3
하기 표 2에 기재한 프라이머 셋트, 그리고 분양받은 8종의 OMT cDNA를 주형으로 이용하여 전장 길이의 애기장대 OMT 유전자에 대하여 PCR 반응을 수행하였고 아가로즈 겔에서 정제한 후, 8종의 OMT PCR 반응산물을 pENTRTM/D-TOPO 벡터(Invitrogen, Carlsbad, CA, USA)로 클로닝하였다. 클로닝은 상기 회사에서 제공한 공지의 표준 방법에 의해 수행하였다.
8 종의 애기장대 OMT 유전자를 포함하는 pENTRTM/D-TOPO:OMT 벡터를 Gateway 벡터인 pDESTTM14 벡터(Invitrogen Inc., 미국)와 재조합 반응을 통해(LR clonase, Invitrogen) pDESTTM14:OMT 벡터를 제조하였다. 이들 pDESTTM14:OMT 벡터를 BL21(DE3) 대장균 (Novagen사, 미국)에 도입하여 형질전환시켰다.
8 종의 형질전환된 대장균을 항생제 암피실린(amphicillin) 50 mg/L가 들어있는 1 mL YEP 배지(10 g/L Bacto-peptone, 10 g/L Bacto-yeast, 5 g/L NaCl)에 37℃ 온도에서 배양하여, 세균배양밀도가 흡광도(OD600) 1이 될 때까지 자라게 한 후, 1 mM의 isopropyl-β-D-thiogalactopyranoside (IPTG, Sigma, St. Loius, MO, USA) 와 0.5 mM N-acetylserotonin(Sigma)을 첨가하여, 28℃에서 12시간 배양하였다. 이후 1 mL 배양액을 수확하여 11,500 ㅧ g 으로 원심분리한 후, 상등액을 멜라토닌 정량을 위해 사용하였다.
No Forward primers (5→3) 서열번호 Reverse primers (5→3) 서열번호
1 CAC CAT GTC TTC AGA TCA ACT 11 TTA AGA CCG ATA CGC GAT 19
2 CAC CAT GGG ATA CCT TTT TCA 12 TTA TTT ACA GAA TTC AAT 20
3 CAC CAT GGG TTC AAC GGC AGA 13 TTA GAG CTT CTT GAG TAA 21
4 CAC CAT GGG ACA CCT AAT TCC 14 CTA AGC CTG TTT CGT TAA 22
5 CAC CAT GGA AGA ACA AAA CCT 15 TCA CTT GTT CTT GTG GAA 23
6 CAC CAT GGA TGA TCT CCA ACA TAA 16 TTA CCT CTT GCG GCA TAT 24
7 CAC CAT GGA GAA CCA TCT TCA 17 CTA TTT GTG TAA TTC GAT 25
8 CAC CAT GGG AAA CTG CTC GAT AGC 18 TCA GAA AGA GTT AAA CAA 26
고속액체크로마토그라피를 이용하여, 대장균 배양액에서 멜라토닌을 정량하기 위해 사용한 방법은 아래와 같다. 대장균 배양액 상등액 0.5 mL을 동량의 클로로포름과 혼합하고, 3 분간 원심분리한 후, 클로로포름 층을 회수하여, 회전증발농축기에서 건조한 후, 35% 메탄올 0.5 mL로 녹였다. 이 중 10 μL를 형광검출기가 장착된 고속액체크로마토그래피(Waters, Milford, MA, USA)에서 멜라토닌을 정량 분석하였다. 사용한 컬럼은 Sunfire C18(Waters; 4.6 ㅧ 150 mm)였고, 이동상은 0.1% formic acid가 함유된 42부피% 메탄올을 27분 동안 50부피% 메탄올로 점진적으로 농도를 증대시켜 사용하였고, 27분 이후에는 50% 메탄올로 18분간 분리하였다. 유속은 분당 0.15 mL로 고정하였고, 멜라토닌 정량은 여기파장 280 nm에서 방출파장 348 nm로 측정하였고, 3 반복으로 정량 계산하였다.
ferulic acid를 정량하기 위하여, UV 검출기가 장착된 고속액체크로마토그래피(Waters, Milford, MA, USA)을 이용하였고, 사용한 컬럼은 Atlantis C18(3.9 ㅧ 150 mm; Waters) 이며, 이동상은 0.3% trifluoroacetic acid가 함유된 20부피% 메탄올을 60부피% 메탄올로 점진적으로 농도를 증대시켜 사용하였고, 유속은 0.8 mL/min으로 하였다. 검출 파장은 320 nm으로 정량하였다.
8 종의 OMT 유전자를 과다발현하는 형질전환 대장균에 0.5 mM N-acetylserotonin을 처리하고 12시간 후에 대장균 배양액의 멜라토닌 함량을 정량한 결과, 3번 유전자(서열번호 1)를 발현하는 대장균 외에는 멜라토닌이 전혀 검출되지 않았다. 3번 유전자를 발현하는 대장균에서는 배양액 mL 당 1,700 ng의 멜라토닌이 생성됨을 볼 수 있었다. 이는 벼 ASMT1 유전자가 발현하는 대장균에서 생성되는 멜라토닌 120 ng/mL 보다 14배 높게 생성되었으며, 이는 3번 유전자가 ASMT 효소 활성이 있음을 명백하게 보여 준다(도 2B). 흥미롭게도 3번 유전자는 이미 COMT 효소를 코딩하는 유전자로 잘 알려져있다(Muzac et al., Arch. Biochem. Biophys. 375, 385, 2000; Nakatsubo et al., J. Wood Sci. 54, 312, 2008).
따라서 3번 유전자를 발현하는 대장균이 COMT 효소 활성이 있는지 확인하기 위해, 3번 대장균에 N-아세틸세로토닌 대신 COMT 효소의 기질인 caffeic acid를 0.5 mM 처리 한 후 12시간 배양하여, 배양액에서 ferulic acid 함량을 측정한 결과, 45,000 ng/mL의 ferulic acid가 정량되었다. 이는 3번 유전자가 COMT 효소를 코딩하는 유전자임을 보여주며, 생성된 ferulic acid의 양이 멜라토닌 함량보다 26배나 높은 것으로 보아, 3번 유전자는 ASMT 활성보다는 COMT 활성이 높음을 알 수 있을 뿐 아니라, 3번 유전자가 ASMT와 COMT 두 개의 효소 활성을 동시에 갖고 있음을 보여준다.
3번 유전자는 COMT 유전자로 보고되었으며, 363개의 아미노산으로 구성되어 있고, OMT 유전자의 공통적인 특징인 S-adenosyl methionine 결합부위 및 COMT 효소 활성부위인 His267, Glu295, Glu327 아미노산이 잘 보존되어 있음을 알 수 있다(도 3). 그러나 기클로닝된 벼 ASMT1 효소를 코딩하는 유전자와는 아미노산 동질성이 27% 정도로, ASMT1 효소를 코딩하는 유전자와는 완전히 다른 OMT 유전자임을 확인할 수 있었다.
실시예 2. 애기장대 COMT 유전자 대장균 발현벡터의 제조, 단백질 정제 및 효소 활성 측정
대장균에서 애기장대(Arabidopsis thaliana) COMT 유전자가 멜라토닌을 생합성하는 in vivo 결과를 in vitro에서 확인하고자, 3번 유전자인 애기장대 COMT 유전자(서열번호 1)를 대장균 발현벡터에 His6 Tag 형태의 AtCOMT 단백질로 발현시키고, nickel affinity column으로 아미노말단 His6가 부착된 재조합 애기장대 AtCOMT 단백질을 정제하여 효소 활성을 측정하고자 하였다.
애기장대 AtCOMT 유전자를 대장균 발현벡터인 pET300(Invitrogen Inc., 미국)에 클로닝하기 위하여, 분양받은 3번 유전자 cDNA를 주형으로 하고, 전방향 프라이머 5'-AAA AAG CAG GCT CCA TGG GTT CAA CGG CAG-3'(서열번호 27), 역방향 프라이머 5'-AGA AAG CTG GGT TTA GAG CTT CTT GAG-3'(서열번호 28)를 이용하여 PCR 반응산물을 획득하였다. 이 PCR 반응산물을 주형으로 하고, attB recombination 서열이 포함된 전방향 프라이머 5'-GGG GAC AAG TTT GTA CAA AAA AGC AGG CT-3'(서열번호 29), 역방향 프라이머 5'-GGG GAC CAC TTT GTA CAA GAA AGC TGG GT-3'(서열번호 30)를 이용하여 PCR 반응산물을 획득하고 이를 아가로즈 겔에서 분리 정제한 후, 상기 AtCOMT PCR 산물을 pDONR221 Gateway 벡터(Invitrogen Inc., 미국)로 BP clonase 효소(Invitrogen)를 이용하여 클로닝하였다.
다음으로, LR clonase 효소를 이용하여 pDONR221:AtCOMT 벡터와 대장균 발현벡터인 pET300를 재조합시켜 pET300:AtCOMT 벡터를 제조하였고, 이를 대장균 BL21(DE3)에 도입하여 형질전환시켰다.
카르복실말단 His6가 부착된 재조합 애기장대 AtCOMT 단백질을 정제하기 위해서, AtCOMT 유전자를 pET28b(Novagen사, 미국) 대장균 발현벡터로 클로닝하였다. 이를 위해 분양받은 3번 유전자 cDNA를 주형으로 하고, 전방향 프라이머 5'-AAA AAG CAG GCT CCA TGG GTT CAA CGG CAG-3'(NcoI 제한효소부위 밑줄)(서열번호 31), 역방향 프라이머 5'-CTC GAG CTT CTT GAG TAA-3'(XhoI 제한효소부위 밑줄)(서열번호 32)를 이용하여 PCR 반응산물을 획득하였다.
생성된 AtCOMT PCR 생성물을 아가로즈 겔에서 분리 정제 한 후, T&A cloning 벡터(RBC Bioscience, New Taipei City, Taiwan)에 클로닝 한 후, 정제한 T&A:AtCOMT 플라스미드를 NcoI 와 XhoI 제한효소로 절개한 AtCOMT 유전자를 동일한 제한효소로 절개한 pET28b 벡터내로 ligation 하여, pET28b:AtCOMT를 제작하고, 이를 대장균 BL21(DE3)에 도입하여 형질전환시켰다.
His6 가 부착된 AtCOMT 단백질을 정제하고자, 형질전환 대장균(pET300:AtCOMT & pET28b:AtCOMT)을 100 mL TB 배지(12 g/L Bacto-tryptone, 24 g/L Bacto-yeast, glycerol 0.4%)에 37℃에서 흡광도(OD600)가 1이 될 때까지 배양하고, 0.5 mM IPTG(isopropyl β-D-1-thiogalactopyranoside)을 첨가 한 후, 28℃에서 5시간 배양하였다.
이후 세포 배양액을 원심 분리하고, 대장균 펠릿으로부터 AtCOMT 단백질을 정제하는 시료로 사용하였다. 대장균으로부터 Ni-NTA 컬럼(Qiagen, Tokyo, Japan)을 이용하여 정제하는 방법은 회사에서 제공하는 방법을 이용하였고, 정제한 AtCOMT 단백질은 저장용액(10 mM Tris-HCl(pH8.0), 50% glycerol)에 녹여, 영하 20℃ 냉동고에 보관하여 사용하였다. AtCOMT 효소가 ASMT 효소 활성을 가지고 있는지 조사하기 위해서 정제한 재조합 AtCOMT 효소가 첨가된 100 μL potassium phosphate(pH 7.8) 용액에 1 mM의 N-acetylserotonin, 0.5 mM의 S-adenosyl-L-methionine을 첨가하고, 37℃에서 60분 동안 반응 시키고, 마지막으로 MeOH 50 μL를 첨가해서 반응을 중지시킨 다음, 멜라토닌이 생합성 되는지를 확인함으로 검정하였다.
최종적으로 혼합물을 원심분리하고 상등액 10 μL를 실시예 1의 조건과 같은 방법으로 HPLC (Waters9265)로 분석하였다. Km 과 Vmax 등의 효소 활성 특성은 Lineweaver-Burk plots를 이용하여 계산하였다.
대장균으로부터 정제한 두 종류의 AtCOMT 효소를 SDS-PAGE 상에서 분리하고, Coomassie blue로 착색시킨 결과, 98% 정도 순수하게 정제되었음을 확인할 수 있었고(도 4A, 4B), 아미노말단 His6가 부착된 AtCOMT 효소가 카복실말단 His6 가 부착된 AtCOMT 단백질보다 발현율이 높아, 100 mL 배양액에서 더 많은 AtCOMT 단백질이 정제되었다. 이들 두 종류의 AtCOMT 단백질의 pH 농도별 ASMT 효소 활성을 조사하여 본 결과, 두 단백질 모두 pH 7.8에서 최고의 효소 활성을 보여 주었으며, 아미노말단 AtCOMT는 37 pkat/mg protein을, 카복실말단 AtCOMT는 33 pkat/mg protein 효소 활성을 나타내었다(도 4C). pH 5.4에서는 ASMT 효소 활성이 나타나지 않았고, 아미노말단 AtCOMT는 카복실말단 AtCOMT보다 pH 6.5 및 pH 8.8에서 더 높은 ASMT 효소 활성을 나타내었다.
다음으로 아미노말단 AtCOMT를 이용하여, 효소 농도, 효소 반응 시간, 효소 반응 온도에 따른 효소 특성을 추가로 조사하였다. 도 4A 및 4B에 도시한 바와 같이, ASMT 활성이 효소 농도와 효소 반응 시간에 비례하고, 가장 높은 효소 활성을 보여주는 반응 온도는 37℃였고, 25℃ 및 45℃에서도 상대적으로 높은 효소 활성을 나타내었다(도 5C).
애기장대 AtCOMT 효소가 COMT 및 ASMT 효소 활성을 보여주는 다기능 효소임에 주목하여, COMT 활성이 ASMT 활성에 의해 영향을 받는지 조사하였다. 이를 위해 다양한 caffeic acid 농도 조건에서, ASMT 효소 활성의 변화를 측정하였다.
그 결과, 도 6A에 도시한 바와 같이, caffeic acid 5 μM 농도 하에서 ASMT 활성이 21% 하락하는 현상을 보여 주었고, caffeic acid 50 μM 농도 하에서 ASMT 활성이 73% 하락하는 현상을 보여주어, 멜라토닌을 생합성하는 ASMT 활성이 caffeic acid 존재 하에서 크게 저하되는 현상을 볼 수 있었다. 반대로 COMT 활성은 1 mM 같은 고농도의 N-아세틸세로토닌처리에서도 저해받지 않음을 확인할 수 있었다(도 6B). 이러한 결과는 COMT 효소에 의한 멜라토닌 생합성이 COMT 효소의 기질인 caffeic acid에 의해 크게 조절되고 있음을 말해주지만, 식물 세포내에서 이러한 기작이 in vitro 연구 결과처럼 작동되는지는 현재로서는 알 수 없는 상황이다.
마지막으로 애기장대 AtCOMT 효소의 기질 특이성을 조사하여 본 결과, N-acetylserotonin에 대한 Km 값은 233 μM였고, Vmax는 1,800 pmol/min/mg protein 로 조사되었고, 이에 비해 caffeic acid에 대한 Km 값은 103 μM 이였고, Vmax는 564,000 pmol/min/mg protein로 조사되었다(도 7).
본 발명의 애기장대 AtCOMT 효소의 ASMT 촉매활성(Vmax/Km)은 7.7 임에 비해, 기클로닝한 벼 ASMT1 효소의 ASMT 촉매활성(Vmax/Km)은 0.016 임에 비해(Park et al., J. Pineal Res. 54, 139, 2013), 481 배 높은 효소 활성을 가지고 있음을 볼 수 있다. 이러한 결과는 본 발명의 AtCOMT 효소에 의해, 애기장대를 포함한 식물에서 멜라토닌을 생합성하는 효소로서 역할을 매우 잘 수행할 수 있음을 나타낸다. 물론, 애기장대 AtCOMT 효소의 COMT 촉매활성(Vmax/Km)은 5,475로서, 높은 COMT 활성은 기본적으로 나타낸다.
실시예 3. 벼 COMT 유전자 대장균 발현벡터의 제조, 단백질 정제 및 효소 활성 측정
애기장대 외 다른 식물 COMT 효소를 코딩하는 유전자도 멜라토닌을 생합성하는 ASMT 효소 활성을 가지는지 확인하고자, 벼로부터 COMT 유전자(서열번호 2, 유전자은행 번호 AK064768)를 일본국립농업생물과학연구소(NIAS, Tsukuba, 일본; Kikuchi et al., Science 301, 376, 2003)을 분양받았다. 벼(Oryza sativa) COMT(OsCOMT) 효소를 코딩하는 유전자는 애기장대 AtCOMT 효소를 코딩하는 유전자와 아미노산 동질성이 60% 정도이며(도 8), 페놀 기질인 caffeic acid와 플라보노이드 기질인 quercetin 등에 애기장대와 비슷한 기질 친화성을 보이는 COMT 유전자로 보고되어 있다(Lin et al., J. Pestic. Sci. 31, 47, 2006).
OsCOMT 유전자도 멜라토닌을 생합성하는 ASMT 효소 활성이 있는지 조사하고자, 일본 국립농업생물과학연구소에서 분양받은 OsCOMT cDNA 유전자를 주형으로 삼아, 전방향 프라이머 5'-AAA AAG CAG GCT CCA TGG GTT CTA CAG CCG-3'(서열번호 33), 역방향 프라이머 5'-AGA AAG CTG GGT CTA CTT TGT GAA CTC-3'(서열번호 34)를 이용하여 PCR 반응산물을 획득하였다. 이 PCR 반응산물을 주형으로 하고, attB recombination 서열이 포함된 전방향 프라이머 5'-GGG GAC AAG TTT GTA CAA AAA AGC AGG CT-3'(서열번호 35), 역방향 프라이머 5'-GGG GAC CAC TTT GTA CAA GAA AGC TGG GT-3'(서열번호 36)를 이용하여, PCR 반응산물을 획득한 후, 아가로즈 겔에서 분리 정제한 후, 상기 OsCOMT PCR 산물을 pDONR221 Gateway 벡터로 BP clonase 효소(Invitrogen)를 이용하여 클로닝하였다.
다음으로, LR clonase 효소를 이용하여 pDONR221:AtCOMT 벡터와 대장균 발현벡터인 pET300를 재조합시켜 pET300:AtCOMT 벡터를 제조하였고, 이를 대장균 BL21(DE3)에 도입하여 형질전환시켰다.
이후, 실시예 2와 동일한 방법으로 pET300:OsCOMT 발현 대장균 세포로부터, OsCOMT 단백질을 아미노말단 His6을 부착한 형태로 정제하였다(도 9).
정제한 재조합 OsCOMT 단백질을 이용하여, 효소반응 온도별 ASMT 활성을 측정한 결과, 37℃에서 가장 높은 활성을(36 pkat/mg protein)을 보여주었고, 55℃에서부터는 ASMT 효소 활성이 매우 미약하였다. 이와 같은 결과는 애기장대 AtCOMT 효소와 매우 유사함을 볼 수 있다. 벼 OsCOMT 단백질의 농도별 효소 활성이 증대되었고, caffeic acid에 의한 멜라토닌 생성 저해 또한 애기장대 AtCOMT 효소와 유사하였다(도 10).
마지막으로 벼 OsCOMT 효소의 기질 특이성을 조사하여 본 결과, N-acetylserotonin에 대한 Km 값은 243 μM이였고, Vmax는 2,400 pmol/min/mg protein로 조사되었다(도 11). 이는 애기장대 AtCOMT 효소와 매우 비슷하며, 벼 OsCOMT 효소도 애기장대 AtCOMT 효소와 같이 N-acetylserotonin을 기질로 이용하여 멜라토닌을 생합성하는 ASMT 효소 활성이 있음을 증명하고 있으며, 이는 다른 식물 유래의 COMT 효소도 동일하게 ASMT 효소 활성이 있음을 시사한다. 따라서 식물 유래 COMT 유전자는 다양한 종류의 기질을 메틸화시키는 다기능 효소로서, 기존의 알려진 caffeic acid 같은 페놀 화합물 기질, quercetin 같은 플라보노이드 화합물 외에, 본 발명의 의한 N-아세틸세로토닌같은 아민류 화합물도 기질로 이용함을 확인할 수 있었다(도 12).
실시예 4. COMT 유전자의 대장균 발현과 대장균에서 멜라토닌 생산
4-1. 벼 OsSNAT 및 OsCOMT 유전자의 클로닝 및 형질전환용 발현벡터의 제조
세로토닌의 N-acetylserotonin으로의 전환을 촉매하는 효소를 코딩하는 유전자인 serotonin N-acetyltransferase(SNAT) 유전자는 공지된 벼(Oryza sativa)에서 유래된 OsSNAT(서열번호 3, 유전자은행번호 AK059369)(Kang et al., J. Pineal Res. 55, 7, 2013) 유전자의 염기 서열을 이용하여, 중합효소 연쇄반응(polymerase chain reaction; RT-PCR)을 통해 대장균 발현벡터 pETDuet-1(Novagen사, 미국)로 클로닝하였다.
구체적으로 상기 AK059369 유전자를 주형으로 하고, OsSNAT의 엽록체 전이서열인 아미노말단 83개의 아미노산 부위를 제거한 NcoI 제한효소부위(밑줄그음)를 갖는 전방향 프라이머 5'-(AAA AAG CAG GCT CCA TGG CAC CAA TTG AAG AG)-3'(서열번호 37) 및 EcoRI 제한효소부위(밑줄그음)를 갖는 역방향 프라이머 5'-(GCG GAA TTC CTA AAA TCT GGG GTA)-3'(서열번호 38)을 사용하여 PCR 반응을 수행하였다. 상기 PCR 반응에 의한 Δ83OsSNAT 유전자 생성물을 제한효소 NcoI 및 EcoRI으로 절단하고, 겔 정제한 후, 벡터 pETDuet-1(Novagen사, 미국) 내의 동일한 제한효소 부위 내로 삽입시켜 pETDuet-Δ83OsSNAT 벡터를 제작하였다.
또한 벼 OsCOMT 유전자의 전장 cDNA(서열번호 2, 유전자은행번호 AK064768)(Lin et al., J. Pestic. Sci. 31, 47, 2006)를 주형으로, NdeI 제한효소부위(밑줄그음)를 갖는 전방향 프라이머 5'-(ACA TAT GGG TTC TAC AGC CGC)-3'(서열번호 39) 및 BglII 제한효소부위(밑줄그음)를 갖는 역방향 프라이머 5'-(GGG AGA TCT CTA CTT TGT GAA CTC GAT)-3'(서열번호 40)을 사용하여 PCR 반응을 수행였다. 상기 PCR 반응에 의한 생성물을 제한효소 NdeI 및 BglII으로 절단하고, 겔 정제한 후, 상기 제조된 pETDuet-Δ83OsSNAT 벡터내의 동일한 제한효소 부위 내로 삽입시켜 pETDuet-Δ83OsSNAT+OsCOMT 벡터를 제조하였다(도 13 참조).
4-2. 양 OaSNAT 및 OsCOMT 유전자의 클로닝 및 형질전환용 발현벡터의 제조
동물의 SNAT 효소는 식물 특히 벼의 SNAT 효소 활성보다 1000배 정도 높은 효소 활성을 가지고 있다(Kang et al., J. Pineal Res. 55, 7, 2013). 따라서 양(Ovis aries) OaSNAT를 코딩하는 유전자의 염기서열(서열번호 3, 유전자은행 번호 U29663)을 이용하여, 중합효소 연쇄반응(polymerase chain reaction; RT-PCR)을 통해 대장균 발현벡터 pETDuet-1(Novagen사, 미국)로 클로닝하였다.
구체적으로 상기 U29663 유전자를 주형으로 하고(Kang et al., J. Pineal Res. 55, 7, 2013), NcoI 제한효소부위(밑줄그음)를 갖는 전방향 프라이머 5'-(ACC ATG GGC ACG CCG AGC GTC CAC)-3'(서열번호 41) 및 EcoRI 제한효소부위(밑줄그음)를 갖는 역방향 프라이머 5'-(GCG GAA TTC TCA GCG GTC ACT GTT CCG)-3'(서열번호 42)을 사용하여 PCR 반응을 수행하였다. 상기 PCR 반응에 의한 양 OaSNAT 유전자 생성물을 제한효소 NcoI 및 EcoRI으로 절단하고, 겔 정제한 후, 벡터 pETDuet-1(Novagen사, 미국)내의 동일한 제한효소 부위 내로 삽입시켜 pETDuet-OaSNAT 벡터를 제작하였다.
또한 실시예 4-1에서 준비된 제한효소 NdeI 및 BglII으로 절단한 벼 OsCOMT 유전자를, 상기 제조된 pETDuet-OaSNAT 벡터 내의 동일한 제한효소 부위 내로 삽입시켜 pETDuet-OaSNAT+OsCOMT 벡터를 제조하였다(도 13 참조).
4-3. 양 OaSNAT 및 OsASMT1 유전자의 클로닝 및 형질전환용 발현벡터의 제조
벼 COMT 효소를 코딩하는 유전자 대신 벼 ASMT1와 양 OaSNAT 효소를 코딩하는 유전자를 동시에 발현하였을때 멜라토닌 생합성을 비교하고자 본 실험을 수행하였다. 실시예 4-2에서 제작한 pETDuet-OaSNAT 벡터에 벼 OsASMT1 유전자를 도입하기 위해, GST 유전자가 결합된 GST-OsASMT1 형태의 구조물을 제작하였다. 이는 OsASMT1 단독으로 대장균에 발현되지 않기 때문이다(Park et al., J. Pineal Res. 54, 139, 2013).
구체적으로 벼 OsASMT1 효소를 코딩하는 유전자가 pGEX-6p-1(GE Healthcare Life Sciences, Buckinghamshire, UK)으로 클로닝되어, OsASMT1 유전자가 GST 결합 형태로 발현되어 있는(GST-OsASMT1) pGEX-OsASMT1 플라스미드를 유전자를 주형으로 하고(Park et al., J. Pineal Res. 54, 139, 2013), NdeI 제한효소부위(밑줄그음)를 갖는 전방향 프라이머 5'-(ATA CAT ATG TCC CCT ATA CTA)-3'(서열번호 43) 및 XhoI 제한효소부위(밑줄그음)를 갖는 역방향 프라이머 5'-(GTG CTC GAG TCA AGG GTA AAC CTC)-3'(서열번호 44)을 사용하여 PCR 반응을 수행하였다. 상기 PCR 반응에 의한 GST-OsASMT1 유전자 생성물을 제한효소 NdeI 및 XhoI으로 절단하고, 겔 정제한 후, 벡터 pETDuet-OaSNAT 내의 동일한 제한효소 부위 내로 삽입시켜 pETDuet-OaSNAT+GST-OsASMT1 벡터를 제작하였다(도 13 참조).
4-4. 다양한 재조합 대장균을 이용한 멜라토닌(melatonin)의 생산
상기 실시예 4-1 내지 실시예 4-3에서 제조된 3종의 벡터 구조물, pETDuet-Δ83OsSNAT+OsCOMT, pETDuet-OaSNAT+OsCOMT, 및 pETDuet-OaSNAT+GST-OsASMT1을 대장균 발현 숙주인 BL21(DE3)에 도입하여 형질전환시켰다.
상기 유전자 발현용 재조합 대장균을 통상적인 암피실린(ampicillin) 함유 YEP 배지에서 배양물의 흡광도(O.D.600)가 1.0에 도달할 때까지 37℃를 포함한 다양한 온도에서 배양한 후, 발현유도인자(IPTG)를 1 mM, 및 세로토닌을 1 mM 농도로 처리하고, 시간 별로 상기 대장균 배양액을 원심 분리하여 배양액을 획득하여, 실시예 1의 방법으로 멜라토닌을 추출하여 고속액체크로마토그라피로 정량하였다.
상기 도 14에 도시된 바와 같이, 다양한 벡터 구조물 중에서 1 mM 세로토닌을 처리하였을 때, 37℃ 배양액에서 가장 높은 멜라토닌이 생산되었으나, OsASMT1을 발현시킨 벡터 구조물에서는 어느 온도에서도 멜라토닌이 검출되지 않았다(도 14C). 이는 GST-OsASMT1의 효소 활성이 매우 낮기 때문에(6.6 pmol/min/mg protein), 비록 OaSNAT 효소에 의해 N-acetylserotonin이 생성되더라도, OsASMT1 효소에 의해 멜라토닌으로 촉매되지 않기 때문인 것으로 판단된다. OsASMT1에 비해 OsCOMT 효소는 364배 높은 2,400 pmol/min/mg protein 효소 활성을 보이기 때문에, 동물 OaSNAT 효소에 의해 생성된 N-acetylserotonin을 효과적으로 메틸화시켜, 약 300 ng/mL 정도 멜라토닌을 생합성하는 것으로 나타났다(도 14B).
이와는 대조적으로, 벼 유래 OsSNAT 유전자와 OsCOMT 유전자를 동시에 발현시킨 배양액에서는 멜라토닌이 1 ng/mL 정도 생산되어, 대장균 내에서 벼 OsSNAT 효소 활성이 양 OsSNAT에 비해 매우 낮음을 in vivo 실험을 통해 재확인 할 수 있었다.
또한 세로토닌 기질처리 농도에 따른 멜라토닌 생합성량을 측정한 결과(도 15), 벼 OsSNAT와 벼 OsCOMT를 코딩하는 유전자가 공동 발현하는 대장균에서는 세로토닌 농도가 높을수록 멜라토닌 함량이 증대되었으며, 예를 들어 10 mM 세로토닌을 처리하였을 때, 7 ng/mL 정도의 멜라토닌이 생성되었다. 이와는 대조적으로, 양 OaSNAT와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서는 세로토닌 농도가 높을수록 멜라토닌 함량이 감소하였으며, 멜라토닌 생산의 최적 농도는 1 mM 세로토닌으로 조사되었다.
다음은 1 mM 세로토닌 처리 후, 시간별로 N-acetylserotonin과 멜라토닌 생성량을 정량하였다(도 15). 벼 OsSNAT 와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서는 배양시간이 길어짐에 따라 N-아세틸세로토닌 함량이 증대되었고, 배양 24시간에서 115 ng/mL 가 생산되었다. 그러나 양 OaSNAT와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서는 배양시간 12시간에 N-아세틸세로토닌 함량이 23,358 ng/mL 으로 최대 생산량을 보여 주었고, 24시간에서는 19,694 ng/mL 로 감소하기 시작하였다. 배양 시간 12시간에 N-아세틸세로토닌 함량을 비교하여 보면, 양 OaSNAT 와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서 벼 OsSNAT 와 벼 OsCOMT 유전자가 공동 발현하는 대장균보다 23배 이상의 N-아세틸세로토닌이 생산되어, 벼 OsSNAT 보다 양 OaSNAT가 더 높은 효소 활성을 나타냄을 보여주었다. 배양 시간별 멜라토닌 함량은 벼 OsSNAT 와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서 24시간에서 203 ng/mL 가 생산되었으며, 양 OaSNAT 와 벼 OsCOMT 효소를 코딩하는 유전자가 공동 발현하는 대장균에서는 1,466 ng/mL 의 멜라토닌이 생산되어, 양 OaSNAT 효소를 코딩하는 유전자가 발현되는 대장균에서 7배 이상 높은 멜라토닌 생합성량을 보여 주었다.
따라서 식물 유래 COMT 효소를 코딩하는 유전자를 N-acetylserotonin을 생합성하는 SNAT 효소를 코딩하는 유전자와 공동 발현시킴으로 인해, 대장균에서 멜라토닌을 다량 생산 할 수 있음을 보여주었다. 그러나 벼 ASMT와 SNAT 효소를 코딩하는 유전자를 공동으로 발현시키면(도 14C), 벼 ASMT 효소의 활성이 매우 낮아, 멜라토닌을 생합성하는데는 적합하지 않음을 알 수 있었다.
실시예 5. COMT 유전자 과다발현 형질전환 벼의 멜라토닌 생산
벼 OsCOMT 효소를 코딩하는 유전자를 식물 게놈에 발현시키기 위해, 실시예 3에서 제작한 pDONR221:OsCOMT 벡터와 Gateway 바이너리벡터 pIPKb002(Himmelbach et al., Plant Physiol. 145:1192-1200, 2007) 간의 LR 반응을 통해 pIPKb002:OsCOMT 유전자를 제작하였다. 상기 유전자의 상류에 기능적으로 연결된 옥수수 유비키틴 프로모터(constitutive ubiquitin promoter) 및 선별 표지로 하이그로마이신 포스포트랜스퍼라제(hygromycin phosphotransferase)를 포함한다(도 17).
상기 제작된 바이너리 벡터 pIPKb002:OsCOMT를 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) LBA4404(Cat. No. 18313-015, GibcoBRL, 미국)에 도입하여 형질전환시켰다. 상기 형질전환된 아그로박테리움 투메파시엔스 LBA4404 균주를 스펙티노마이신 50 ㎍/㎖을 포함하는 YEP 배지(1%의 Bacto-peptone, 1%의 Bacto-yeast extract 및 0.5%의 NaCl 함유)에서 28℃의 조건으로 하룻밤 동안 배양시켰다. 이 배양물을 원심분리시키고 펠릿들을 동일 부피의 아세토시링곤 100㎍/㎖을 함유하는 AA 배지(Hiei et al., Plant Mol. Biol. 35, 205-218, 1997)에 현탁시켜 형질전환된 아그로박테리움 투메파시엔스 LBA4404 현탁액을 제조하였다.
벼의 캘러스는 N6 배지에 파종된 벼(품종: 동진)의 배반으로부터 유도되었다(Rashid et al., Plant Cell Rep, 15:727-730, 1996; Hiei et al., Plant Mol, Biol. 35, 205-218, 1997). 약 3 내지 4주령의 밀집된 벼의 캘러스를 상기 세균 현탁액 중에 3분 동안 침적시킨 다음, 멸균 여과지를 현탁액에 접촉시켜 현탁액을 흡수 및 건조시킴으로써 과량의 균체를 현탁액에서 제거시켰다. 상기 공조배양된 캘러스를 세포탁심(Cefotaxim) 250 ㎍/㎖을 함유하는 멸균수로 세척시켜 잔존 세균을 제거하고, 50㎍/㎖ 하이그로마이신을 함유하는 선별 배지로 옮겨 배양한 결과 전체의 10 내지 15%의 캘러스가 생존하였다.
상기에서 생존한 하이그로마이신 저항성 캘러스들로부터 잎을 유도하기 위해, 식물생장호르몬인 벤질아미노퓨린(2mg/l)과 나프탈렌아세틱산(1mg/l)을 함유하고, 항생제인 스펙티노마이신 (50mg/l)이 함유된 무라시게스쿠그(MS)(Duchefa 사, 네들란드) 재분화 배지(regeneration medium)로 옮겨 28℃에서 3주 동안 배양시켰다.
상기 선별된 캘러스 중 4-8%의 캘러스가 신초(shoot)로 재분화되었다. 이후 뿌리 유도배지에 옮겨 완전한 식물체를 획득하였다(Lee et al., Plant Cell Physiol. 41, 743-749, 2000). 하이그로마이신 선별 배지로부터 재분화된 형질전환 세포주로부터 T0 벼 유묘를 획득하였다. OsCOMT 유전자를 과다발현하는 형질전환 벼 유묘로부터 이들 형질전환 벼에서 상기 OsCOMT 유전자가 항상 발현되는지 알고자 RT-PCR 반응을 수행하였다. T0 형질전환 유묘를 각각 TRI 시약(Molecular Research Center, Inc., 미국)을 처리하여 전체 RNA를 추출하였고, 상기 전체 RNA를 주형으로 RT-PCR을 수행하였다.
우선 cDNA를 함성하기 위하여 역전사효소(reverse transcriptase) SuperScript Ⅱ (Invitrogen Inc., 미국)를 이용하였고, 프라이머는 올리고 dT를 사용하였다. 상기 벼 조직에서 나온 역전사효소 반응산물을 주형으로 하여 OsCOMT 유전자를 PCR 반응으로 증폭하였다. 전방 프라이머는 5'-CCA CTA GTA TGG GTT CTA CAG CCG-3'(서열번호 45), 역방향 프라이머 5'-TAC GAG CTC TCC ATG AGG AC-3'(서열번호 46)를 이용하였다.
도 17B에 도시한 바와 같이, OsCOMT 유전자가 T0 세대의 유묘에서 형질전환되지 않은 대조구(WT)에 비해 다량의 OsCOMT mRNA를 생성하고 있음을 볼 수 있었다.
다음으로 OsCOMT 형질전환 벼의 유묘에서, 멜라토닌 화합물이 얼마나 합성되는지 여부를 조사하였다. 멜라토닌 정량은 고속액체크로마토그래피(HPLC)를 통하여 분석하였다. 벼 잎(0.2g)을 액체 질소에 갈고 1.5 mL 클로로포름으로 추출하였다. 현탁액을 13,500g에서 10분간 원심분리하였다. 상등액을 증발시키고 0.5mL 42% 메탄올에 녹인 후, HPLC (Waters 2695, Waters 474: Fluoresecence detector)로 분석하였다. 멜라토닌의 고속액체크로마토그라피 정량 방법은 실시예 1과 같다.
벼 OsCOMT 과다발현 벼 T0 식물체 유묘에서 멜라토닌 함량을 측정한 결과, 형질전환하지 않은 대조구 벼 유묘보다, 형질전환 벼에서는 약 17배 많은 양의 멜라토닌이 유묘에서 검출되었다(도 17 참조), 상기 결과는 벼 OsCOMT 유전자가 멜라토닌 생합성에 긍정적으로 작용함을 보여주는 것이다.
<110> University industry Liaison office of CNU <120> Microorganisms and plants transformed by recombinant vector comprising plant derived genes coding COMT enzyme <130> P2014-335 <160> 46 <170> KopatentIn 2.0 <210> 1 <211> 1092 <212> DNA <213> Arabidopsis thaliana <400> 1 atgggttcaa cggcagagac acaattaact ccggtgcaag tcaccgacga cgaagctgcc 60 ctcttcgcca tgcaactagc cagtgcttcc gttcttccga tggctttaaa atccgcctta 120 gagcttgacc ttcttgagat tatggccaag aatggttctc ccatgtctcc taccgagatc 180 gcttctaaac ttccgaccaa aaatcctgaa gctccggtca tgctcgaccg tatcctccgt 240 cttcttacgt cttactccgt cttaacctgc tccaaccgta aactttccgg tgatggcgtt 300 gaacggattt acgggcttgg tccggtttgc aagtatttga ccaagaacga agatggtgtt 360 tccattgctg ctctttgtct tatgaaccaa gacaaggttc tcatggaaag ctggtaccat 420 ttgaaggatg caattcttga tggtgggatt ccattcaaca aggcttatgg aatgagcgcg 480 ttcgagtacc acgggactga ccctagattc aacaaggtct ttaacaatgg aatgtctaac 540 cattccacaa tcaccatgaa gaagattctt gagacctata agggttttga aggattgact 600 tctttggttg atgttggtgg tggcattggt gctacactca aaatgattgt ctccaagtac 660 cctaatctta aaggcatcaa ctttgatctc ccacatgtca tcgaagatgc tccttctcat 720 cctggtattg agcatgttgg aggagatatg tttgtaagtg tccctaaagg tgatgccata 780 ttcatgaagt ggatatgtca tgactggagt gacgaacatt gcgtgaaatt cttgaagaac 840 tgctacgagt cacttccaga ggatggaaaa gtgatattag cagagtgtat acttccagag 900 acaccagact caagcctctc aaccaaacaa gtagtccatg tcgattgcat tatgttggct 960 cacaatcccg gaggcaaaga acgaaccgag aaagagtttg aggcattagc caaagcatca 1020 ggcttcaagg gcatcaaagt tgtctgcgac gcttttggtg ttaaccttat tgagttactc 1080 aagaagctct aa 1092 <210> 2 <211> 1107 <212> DNA <213> Oryza sativa <400> 2 atgggttcta cagccgccga catggccgcg gcggccgacg aggaggcgtg catgtacgcg 60 ctgcagctgg cgtcgtcgtc gatcctgccg atgacgctca agaacgccat cgagctgggc 120 ctgctcgaga cgctgcagtc cgccgccgtc gccggaggag gggggaaggc ggcgctgctg 180 acgccggcgg aggtggccga caagctgccg tccaaggcga acccggcggc ggccgacatg 240 gtggaccgca tgctccgcct gctcgcctcc tacaacgtcg tcaggtgcga gatggaggag 300 ggcgccgacg gcaagctctc ccgccgctac gccgccgcgc cggtgtgcaa gtggctgacg 360 cccaacgagg acggcgtctc catggccgcc ctcgccctca tgaaccagga caaggtcctc 420 atggagagct ggtactacct taaggacgca gtcctggacg gcggcatccc gttcaacaag 480 gcgtacggga tgacggcgtt cgagtaccac ggcacggacg cccgcttcaa ccgcgtcttc 540 aacgagggca tgaagaacca ctccgtcatc atcaccaaga agctgctcga cctctacacc 600 ggcttcgacg ccgcctccac cgtcgtcgac gtcggcggcg gcgtgggcgc cactgtggcc 660 gccgtcgtct cccgccaccc gcacatccgg gggatcaact acgacctccc ccacgtcatc 720 tccgaggcgc cgccgttccc cggggtggag cacgtcggcg gcgacatgtt cgcctccgtg 780 ccccgcggcg gcgacgccat cctgatgaag tggatcctcc acgactggag cgacgagcac 840 tgcgcgcggc tgctcaagaa ctgctacgac gcgctgccgg agcacgggaa ggtggtggtg 900 gtggagtgcg tgctgccgga gagctccgac gcgacggcga gggagcaggg ggtgttccac 960 gtcgacatga tcatgctcgc ccacaacccc ggcggcaagg agaggtacga gagggagttc 1020 agggagctcg cccgcgccgc cggattcacc ggcttcaagg ccacctacat ctacgccaac 1080 gcctgggcca tcgagttcac aaagtag 1107 <210> 3 <211> 624 <212> DNA <213> Ovis aries <400> 3 atgtccacgc cgagcgtcca ctgcctgaaa ccctcgcctt tgcacctgcc ctctgggatc 60 ccagggtccc caggccgcca gcggcgccac acgctccctg ccaacgagtt ccgctgcctc 120 accccagagg acgctgccgg cgtgtttgag attgagcgag aggccttcat ctctgtctcc 180 ggcaactgcc ccctgaatct ggacgaggtc cagcacttcc tgaccctgtg tcccgagctg 240 tccctgggct ggttcgtgga gggccgcctc gtggccttca tcatcggctc cctgtgggat 300 gaggagagac ttactcagga gtcgctggca ctgcacaggc ccaggggcca cagcgcccac 360 ctgcacgcgc tggccgtgca ccgcagcttc cggcagcaag gcaagggctc cgtcctgctc 420 tggcgctacc tgcaccacgt gggcgcccag ccagccgtgc gccgggcggt gctcatgtgc 480 gaggacgcgc tggtgccctt ttaccagagg tttggcttcc atcccgcggg cccatgtgcc 540 atcgtcgtgg gctcactgac cttcacggag atgcactgct ccctgcgggg ccacgccgcc 600 ctgcgccgga acagtgaccg ctga 624 <210> 4 <211> 1149 <212> DNA <213> Arabidopsis thaliana <400> 4 atgtcttcag atcaactaag caaattcctt gatagaaaca aaatggaaga caataaaaga 60 aaagtattag atgaagaagc gaaagcttct ctagacatat ggaagtatgt ctttgggttt 120 gcagatatag cagctgcaaa gtgtgccatt gatcttaaaa taccagaagc cattgaaaac 180 catccttctt cacagcccgt aacactagcc gaactctcct ccgccgtctc cgcctctccc 240 tcgcatctcc gccgtataat gaggtttctt gtacaccaag gaatctttaa agaaatcccc 300 acaaaagatg gtttagctac aggctacgtt aatacgccac tctctcgccg tttgatgatc 360 acaagacgtg atggaaaatc gctggctcct tttgttctct tcgaaacaac tcccgagatg 420 ctcgctccat ggttgagact tagctcagtc gtttcttcgc cggtcaacgg ttcaactcca 480 ccaccgtttg atgcagtgca cggtaaggac gtgtggtcgt tcgcgcagga taatcccttc 540 ctcagcgata tgatcaatga ggccatggct tgtgatgcaa ggcgcgtggt gccacgtgta 600 gccggagctt gtcacggctt gtttgatggc gtgactacga tggttgacgt aggaggtggt 660 acgggagaga cgatggggat gcttgtgaag gagtttcctt ggatcaaagg atttaacttt 720 gatcttcctc atgtcattga agttgctgaa gtcttggacg gtgttgagaa tgttgagggc 780 gatatgtttg attctattcc ggcttgcgac gccattttca tcaagtgggt gttacacgat 840 tggggagaca aagattgcat aaagatattg aagaattgca aagaagcggt ccctccaaat 900 atcggaaaag tgttgatagt ggaatcggtg atcggagaga ataaaaagac gatgatagtg 960 gacgaacgag atgaaaagtt agagcacgtg agattgatgc ttgatatggt gatgatggct 1020 cacacaagca caggcaaaga acggactttg aaagaatggg actttgttct taaagaagct 1080 ggctttgctc gatatgaggt tagggacatt gatgatgttc agagtcttat aatcgcgtat 1140 cggtcttaa 1149 <210> 5 <211> 1122 <212> DNA <213> Arabidopsis thaliana <400> 5 atgggatacc tttttcaaga aaccttaagc tctaacccta aaactccaat tgttgttgat 60 gatgataacg agttgggttt gatggccgtg agacttgcca acgccgccgc ctttcctatg 120 gttctcaaag ccgccctcga gcttggtgtc tttgacactc tctacgccgc agcctctcgc 180 accgactcat tcctctcacc ctatgaaata gcaagtaagc taccaactac acctcgtaac 240 cctgaagcgc cggttttgtt ggaccgcatg cttcgtctac tcgctagcta ctccatggtc 300 aagtgtggta aggccttatc cggaaagggc gagagggtct acagagccga gccgatttgc 360 aggttcttct tgaaggataa cattcaagat attggatccc ttgcttctca agtcatcgtc 420 aatttcgaca gcgtcttcct taatacctgg gcacagttga aagatgtggt gctagaagga 480 ggagatgcgt ttggtcgcgc acatggtggt atgaaactct ttgactatat gggtacagat 540 gagagattca gcaagctctt taaccagacc ggattcacaa tcgcggtcgt taagaaggcc 600 cttgaagtct atgaaggctt caaaggtgtg aaagttttag ttgatgttgg aggaggagtt 660 ggtaacactc ttggtgttgt tacttctaaa tatcccaata ttaagggtat caactttgat 720 ctaacctgtg ccttggcaca agcaccttct tatcccggtg tggagcatgt tgccggagat 780 atgtttgtgg atgtcccaac cggagatgcc atgatcttga aacgtatact tcatgattgg 840 accgacgaag attgtgtcaa gattcttaag aattgttgga aatcactacc tgaaaacggt 900 aaagtggttg ttatagaatt agtcactcct gatgaggcag agaatggtga catcaatgcg 960 aacattgcct ttgacatgga catgttaatg ttcacccaat gttctggtgg aaaagagcga 1020 tcaagagctg agtttgaagc tttagctgca gcttctggct tcacccattg caagttcgtt 1080 tgccaagctt atcactgctg gattattgaa ttctgtaaat aa 1122 <210> 6 <211> 1104 <212> DNA <213> Arabidopsis thaliana <400> 6 atgggacacc taattcctca aaccggagat gaagagaccg agcttggttt agctgcggtt 60 aggctagcta actgtgcagc cttcccaatg gttttcaaag ctgccatcga gctcggtgtc 120 atcgacactc tctacttagc tgctcgtgat gacgtcaccg gatccagttc cttcctcaca 180 ccttctgaga tagctattag gctccccaca aaacctagta accctgaagc accagctctg 240 ttggatcgta ttcttcgttt acttgctagc tactccatgg tcaagtgcca aattatcgat 300 ggtaacagag tctacaaagc agagccgatt tgtcgatatt tcttgaaaga taatgttgat 360 gaagaattag gaacacttgc ttctcaactt attgtcactc tcgataccgt cttcctcaat 420 acatggggag aattaaaaaa tgtggtacta gaaggaggag ttgcatttgg ccgtgccaat 480 ggtggtttga aactctttga ctatattagc aaagatgaga gattaagcaa actctttaac 540 cggaccggat tctctgtcgc ggttttgaaa aagatcctac aagtttatag tggtttcgaa 600 ggagttaatg tgttggttga tgtaggaggt ggagttggtg acacacttgg ttttgttact 660 tcaaagtatc caaacattaa gggtatcaat tttgatctaa cttgtgcttt aacacaagct 720 ccttcttatc ctaatgtgga acatgtagct ggagacatgt ttgttgatgt cccaaaaggt 780 gatgctatcc tcttgaaacg tatacttcat gactggactg atgaagactg tgaaaagatt 840 ctcaagaatt gttggaaagc attacctgag aatgggaaag tgattgtcat ggaagtagtt 900 actccagatg aagcagataa tcgtgatgtg atatccaaca ttgcttttga tatggatctg 960 ttgatgctca ctcaattatc tggaggtaaa gagaggtcgc gggccgagta tgtagctatg 1020 gctgctaact cgggttttcc gcgttgcaac tttgtatgca gtgcatatca tttgtgggtc 1080 attgagttaa cgaaacaggc ttag 1104 <210> 7 <211> 1059 <212> DNA <213> Arabidopsis thaliana <400> 7 atggaagaac aaaacctctc ctcgtacgca atgatcttat caagctcttc tgttcttccc 60 atggttctta agacagccat tgatcttggt ctctttgaca tattagctga atctggtcct 120 tcctctgctt ctcagatctt ttctttgttg tctaatgaga caaagaaaca tcatgattca 180 agcttggtca atcggattct gagatttctt gcgagttact ctatactcac atgctctgtt 240 tctactgaac acggtgagcc atttgcaatc tatggcttag ctcctgttgc caagtacttc 300 accaagaacc aaaatggagg tggatcgttg gctccgatgg tgaatctgtt tcaggacaag 360 gtcgtgactg atatgtggta caaccttaaa gattctgttc ttgaaggagg gcttccattc 420 aacaacactc acggttcaag cgcggttgaa ctggtaggca gtgattcaag attcagagaa 480 gtgttccaaa gctccatgaa aggtttcaat gaagtattca tagaagaatt tctaaagaac 540 tacaatggtt ttgatggtgt gaagtctttg gttgatgttg gtggtggaga tggctctctt 600 ctcagtagaa tcatctctaa gcatactcac attatcaaag ctattaactt tgatttgccc 660 actgttatca acacttcatt accttctcca ggaattgagc atgttgctgg agatatgttt 720 acaaacactc ctaaaggaga agctattttc atgaagtgga tgctccatag ctgggacgat 780 gaccattgcg tgaagatact ttccaactgt tatcagtcgt taccgtcaaa tgggaaggtg 840 attgtagtcg atatggtaat cccagagttc ccaggagaca ctctcttaga cagaagcttg 900 tttcagtttg agttgttcat gatgaacatg aacccatcag ggaaagaacg aacaaagaaa 960 gaattcgaga tcttagctcg tctcgccgga ttctctaatg tccaagttcc attcacatct 1020 ctctgtttct cagttcttga gttccacaag aacaagtga 1059 <210> 8 <211> 873 <212> DNA <213> Arabidopsis thaliana <400> 8 atgacgacgt tttcaacgag ctttcttttc cttttgttgg ttttctgctt gatcggttca 60 ctagctgccg atgatctcca acataaatcc ggtcgggacg tctgctccgg tggttctgat 120 cttagaaccc ccgatattcg tcttaaccgg ccgacagact ctgtcgtcgg aaactgcccg 180 acggaggcga gtcctttagt tatggctgac gacgagaagt acggtaacaa aatggttatc 240 agtctcactc ctcgccttta tgactatgtc ctcaacaacg ttcgtgagca tgagattttg 300 aagcaacttc gagaagaaac tgccattagt caaattcagg tgtcacctga tcaagcgcaa 360 ttgcttgcaa tgcttgtaga gattcttgga gctaaacgat gtattgaagt tggagtttac 420 acgggatatt catcactggc tgtggcgttg gttctaccag aatcagggcg tcttgttgcc 480 tgtgataaag atgctaacgc tcttgaagtt gctaagaggt actacgagct tgccggagtg 540 tctcacaagg tcactgtgaa acatggtctt gcagcagaat ctttgatgtc tatgattcag 600 aacggtgaag agtccagcta tgattttgca tttcttgatg ctgataaggc gatgtatcag 660 gagtacttcg aatcgctact tcgactcgtc agggttggtg gagtcattgt gattgataat 720 gttctttggc atggatgggt tgcggattct acggtgaatg atgagaggac catcagccta 780 agaaatttca acaaaaaatt aatggatgat caacgtgtaa gcattagtat ggtatcaatc 840 ggcgatggta tgaccatatg ccgcaagagg taa 873 <210> 9 <211> 861 <212> DNA <213> Arabidopsis thaliana <400> 9 atggagaacc atcttcaaca ttccttaacc atcattccta aaccggatct aatcaaagaa 60 gaacaacgtt atcacgaaga tacggtgagc ttgcaagcgg agaggatttt gcatgccatg 120 accttcccca tggttctcaa aactgctttg gagcttggcg ttatcgacat gatcacttct 180 gtagatgacg gcgtgtggct ctcgccttct gagatcgctc ttggtctccc aaccaagccc 240 accaatccgg aggcaccagt attgctggac cggatgctag ttttgttagc cagccactca 300 atcttgaagt accgtacggt agaaaccgga gataacattg gaagtagaaa gaccgagagg 360 gtctatgcag ctgaaccggt ttgcacgttt ttcttgaacc gcggagatgg cttgggctct 420 ctcgccactt tgttcatggt actccaaggg gaagtctgta tgaagccttg ggaacatctc 480 aaagacatga tattagaagg aaaagatgca ttcacctctg ctcatggcat gaggtttttc 540 gaactcattg gttcgaacga acaattcgct gaaatgttta accgggcaat gtcggaagct 600 tccacattga ttatgaagaa ggttttagaa gtttacaaag gattcgaaga tgtaaatact 660 ttggtggatg tgggaggagg aattggaaca atcataggtc aagtgacttc caagtatcct 720 catattaaag gcatcaattt cgatctagca tcggttttag cccatgctcc ttttaataaa 780 ggagtggagc atgtttcagg agatatgttt aaagaaattc caaaaggaga tgccatcttc 840 atgaaagtaa gtagaaaatg a 861 <210> 10 <211> 846 <212> DNA <213> Arabidopsis thaliana <400> 10 aagcagaaga tgtcgaccgg tttagctctg aatcgctgtt cagtttcggt atgtagaacg 60 gccgttactt tacttaaccg gccaactgtc tccgttgcca ggagtttgaa attcagtcgc 120 cggctaatcg gaaactgctc gatagcgccg gcggatcctt atgttgtggc ggacgacgat 180 aagtacggta acaaacaagt tatcagtctc actcctcgcc tttacgacta tgtcctctcc 240 aacgtccgcg agcctaagat tttgaggcaa cttcgggaag agacttccaa aatgcgaggt 300 agccaaatgc aggtgtcgcc tgatcaagcg cagttgcttg caatgcttgt acagatgctt 360 gcagcagaaa gatgtattga agttggagtt tacacgggat attcttcatt ggctgtggcg 420 ttagttctac cagaatcagg gtgtttagtt gcctgtgaaa gagattctaa ctctcttgaa 480 gttgctaaga ggtactacga gcttgctgga gtctctcaca aggttaatgt gaaacaaggt 540 cttgcagctg aatcattgaa atccatgatt cagaacggtg aaggagccag ctatgatttt 600 gcatttgtcg atgctgataa gaggatgtat caggactact tcgaattgct tcttcaactt 660 gtcagagttg gtggagtcat tgtgatggat aatgttcttt ggcatggacg agtttcggat 720 cctatggtga atgatgcgaa gaccatcagc attaggaatt tcaacaaaaa gttaatggat 780 gataaacgtg taagcattag tatggtaccg atcggcgatg gcatgacgat atgccgcaag 840 agatag 846 <210> 11 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 11 Cys Ala Cys Cys Ala Thr Gly Thr Cys Thr Thr Cys Ala Gly Ala Thr 1 5 10 15 Cys Ala Ala Cys Thr 20 <210> 12 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 12 Cys Ala Cys Cys Ala Thr Gly Gly Gly Ala Thr Ala Cys Cys Thr Thr 1 5 10 15 Thr Thr Thr Cys Ala 20 <210> 13 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 13 Cys Ala Cys Cys Ala Thr Gly Gly Gly Thr Thr Cys Ala Ala Cys Gly 1 5 10 15 Gly Cys Ala Gly Ala 20 <210> 14 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 14 Cys Ala Cys Cys Ala Thr Gly Gly Gly Ala Cys Ala Cys Cys Thr Ala 1 5 10 15 Ala Thr Thr Cys Cys 20 <210> 15 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 15 Cys Ala Cys Cys Ala Thr Gly Gly Ala Ala Gly Ala Ala Cys Ala Ala 1 5 10 15 Ala Ala Cys Cys Thr 20 <210> 16 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 16 Cys Ala Cys Cys Ala Thr Gly Gly Ala Thr Gly Ala Thr Cys Thr Cys 1 5 10 15 Cys Ala Ala Cys Ala Thr Ala Ala 20 <210> 17 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 17 Cys Ala Cys Cys Ala Thr Gly Gly Ala Gly Ala Ala Cys Cys Ala Thr 1 5 10 15 Cys Thr Thr Cys Ala 20 <210> 18 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 18 Cys Ala Cys Cys Ala Thr Gly Gly Gly Ala Ala Ala Cys Thr Gly Cys 1 5 10 15 Thr Cys Gly Ala Thr Ala Gly Cys 20 <210> 19 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 19 Thr Thr Ala Ala Gly Ala Cys Cys Gly Ala Thr Ala Cys Gly Cys Gly 1 5 10 15 Ala Thr <210> 20 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 20 Thr Thr Ala Thr Thr Thr Ala Cys Ala Gly Ala Ala Thr Thr Cys Ala 1 5 10 15 Ala Thr <210> 21 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 21 Thr Thr Ala Gly Ala Gly Cys Thr Thr Cys Thr Thr Gly Ala Gly Thr 1 5 10 15 Ala Ala <210> 22 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 22 Cys Thr Ala Ala Gly Cys Cys Thr Gly Thr Thr Thr Cys Gly Thr Thr 1 5 10 15 Ala Ala <210> 23 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 23 Thr Cys Ala Cys Thr Thr Gly Thr Thr Cys Thr Thr Gly Thr Gly Gly 1 5 10 15 Ala Ala <210> 24 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 24 Thr Thr Ala Cys Cys Thr Cys Thr Thr Gly Cys Gly Gly Cys Ala Thr 1 5 10 15 Ala Thr <210> 25 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 25 Cys Thr Ala Thr Thr Thr Gly Thr Gly Thr Ala Ala Thr Thr Cys Gly 1 5 10 15 Ala Thr <210> 26 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 26 Thr Cys Ala Gly Ala Ala Ala Gly Ala Gly Thr Thr Ala Ala Ala Cys 1 5 10 15 Ala Ala <210> 27 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 27 Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr Cys Cys Ala Thr 1 5 10 15 Gly Gly Gly Thr Thr Cys Ala Ala Cys Gly Gly Cys Ala Gly 20 25 30 <210> 28 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 28 Ala Gly Ala Ala Ala Gly Cys Thr Gly Gly Gly Thr Thr Thr Ala Gly 1 5 10 15 Ala Gly Cys Thr Thr Cys Thr Thr Gly Ala Gly 20 25 <210> 29 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 29 Gly Gly Gly Gly Ala Cys Ala Ala Gly Thr Thr Thr Gly Thr Ala Cys 1 5 10 15 Ala Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr 20 25 <210> 30 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 30 Gly Gly Gly Gly Ala Cys Cys Ala Cys Thr Thr Thr Gly Thr Ala Cys 1 5 10 15 Ala Ala Gly Ala Ala Ala Gly Cys Thr Gly Gly Gly Thr 20 25 <210> 31 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 31 Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr Cys Cys Ala Thr 1 5 10 15 Gly Gly Gly Thr Thr Cys Ala Ala Cys Gly Gly Cys Ala Gly 20 25 30 <210> 32 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 32 Cys Thr Cys Gly Ala Gly Cys Thr Thr Cys Thr Thr Gly Ala Gly Thr 1 5 10 15 Ala Ala <210> 33 <211> 30 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 33 Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr Cys Cys Ala Thr 1 5 10 15 Gly Gly Gly Thr Thr Cys Thr Ala Cys Ala Gly Cys Cys Gly 20 25 30 <210> 34 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 34 Ala Gly Ala Ala Ala Gly Cys Thr Gly Gly Gly Thr Cys Thr Ala Cys 1 5 10 15 Thr Thr Thr Gly Thr Gly Ala Ala Cys Thr Cys 20 25 <210> 35 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 35 Gly Gly Gly Gly Ala Cys Ala Ala Gly Thr Thr Thr Gly Thr Ala Cys 1 5 10 15 Ala Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr 20 25 <210> 36 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 36 Gly Gly Gly Gly Ala Cys Cys Ala Cys Thr Thr Thr Gly Thr Ala Cys 1 5 10 15 Ala Ala Gly Ala Ala Ala Gly Cys Thr Gly Gly Gly Thr 20 25 <210> 37 <211> 32 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 37 Ala Ala Ala Ala Ala Gly Cys Ala Gly Gly Cys Thr Cys Cys Ala Thr 1 5 10 15 Gly Gly Cys Ala Cys Cys Ala Ala Thr Thr Gly Ala Ala Gly Ala Gly 20 25 30 <210> 38 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 38 Gly Cys Gly Gly Ala Ala Thr Thr Cys Cys Thr Ala Ala Ala Ala Thr 1 5 10 15 Cys Thr Gly Gly Gly Gly Thr Ala 20 <210> 39 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 39 Ala Cys Ala Thr Ala Thr Gly Gly Gly Thr Thr Cys Thr Ala Cys Ala 1 5 10 15 Gly Cys Cys Gly Cys 20 <210> 40 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 40 Gly Gly Gly Ala Gly Ala Thr Cys Thr Cys Thr Ala Cys Thr Thr Thr 1 5 10 15 Gly Thr Gly Ala Ala Cys Thr Cys Gly Ala Thr 20 25 <210> 41 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 41 Ala Cys Cys Ala Thr Gly Gly Gly Cys Ala Cys Gly Cys Cys Gly Ala 1 5 10 15 Gly Cys Gly Thr Cys Cys Ala Cys 20 <210> 42 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 42 Gly Cys Gly Gly Ala Ala Thr Thr Cys Thr Cys Ala Gly Cys Gly Gly 1 5 10 15 Thr Cys Ala Cys Thr Gly Thr Thr Cys Cys Gly 20 25 <210> 43 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 43 Ala Thr Ala Cys Ala Thr Ala Thr Gly Thr Cys Cys Cys Cys Thr Ala 1 5 10 15 Thr Ala Cys Thr Ala 20 <210> 44 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 44 Gly Thr Gly Cys Thr Cys Gly Ala Gly Thr Cys Ala Ala Gly Gly Gly 1 5 10 15 Thr Ala Ala Ala Cys Cys Thr Cys 20 <210> 45 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 45 Cys Cys Ala Cys Thr Ala Gly Thr Ala Thr Gly Gly Gly Thr Thr Cys 1 5 10 15 Thr Ala Cys Ala Gly Cys Cys Gly 20 <210> 46 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> primer <400> 46 Thr Ala Cys Gly Ala Gly Cys Thr Cys Thr Cys Cys Ala Thr Gly Ala 1 5 10 15 Gly Gly Ala Cys 20

Claims (15)

  1. 애기장대 또는 벼 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, ASMT(N-acetylserotonin methyltransferase) 효소 활성을 갖는 미생물.
  2. 청구항 1에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 미생물.
  3. 청구항 1에 있어서, 상기 미생물은 대장균인, 미생물.
  4. 청구항 3에 있어서, 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue 또는 BW25113인, 미생물.
  5. 청구항 3에 있어서, 상기 미생물은 서열번호 3의 뉴클레오티드 서열을 갖는 유전자가 더 도입된 것인, 미생물.
  6. 청구항 1 내지 5 중 어느 한 항의 미생물을 N-아세틸세로토닌을 포함하는 배지 중에서 배양하는 단계; 및
    상기 미생물로부터 생산된 멜라토닌을 분리하는 단계를 포함하는, 멜라토닌의 제조 방법.
  7. 청구항 6에 있어서, 상기 배지는 세로토닌을 더 포함하는, 멜라토닌의 제조 방법.
  8. 애기장대 또는 벼 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어, 개선된 멜라토닌 생성능을 갖는 식물체.
  9. 청구항 8에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 식물체.
  10. 청구항 8에 있어서, 상기 식물체는 단자엽 식물인, 식물체.
  11. 청구항 10에 있어서, 상기 단자엽 식물은 보리, 평지, 옥수수, 밀, 호밀, 귀리, 잔디, 마초, 사탕수수, 기장, 라이그래스, 오챠드그래스 또는 벼인, 식물체.
  12. 청구항 8에 있어서, 상기 식물체는 쌍자엽 식물인, 식물체.
  13. 청구항 12에 있어서, 상기 쌍자엽 식물은 대두, 담배, 바나나 또는 목화인, 식물체.
  14. 애기장대 또는 벼 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터를 함유하는, ASMT(N-acetylserotonin methyltransferase) 효소 활성 증가용 조성물.
  15. 청구항 14에 있어서, 상기 유전자는 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열을 갖는, 조성물.
KR1020140096650A 2014-07-29 2014-07-29 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체 KR101753073B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140096650A KR101753073B1 (ko) 2014-07-29 2014-07-29 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140096650A KR101753073B1 (ko) 2014-07-29 2014-07-29 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체

Publications (2)

Publication Number Publication Date
KR20160014426A KR20160014426A (ko) 2016-02-11
KR101753073B1 true KR101753073B1 (ko) 2017-07-03

Family

ID=55351641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140096650A KR101753073B1 (ko) 2014-07-29 2014-07-29 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체

Country Status (1)

Country Link
KR (1) KR101753073B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672525A (zh) * 2021-06-29 2022-06-28 河北维达康生物科技有限公司 N-乙酰基-5-甲氧基色胺的生物合成方法及其应用
CN115725621A (zh) * 2022-10-09 2023-03-03 上海市农业科学院 一种多基因串联法构建生物合成褪黑素大肠杆菌工程菌的方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1: J. PINEAL RES.*
염기 서열(2008.12.04)*

Also Published As

Publication number Publication date
KR20160014426A (ko) 2016-02-11

Similar Documents

Publication Publication Date Title
US7022895B2 (en) Plant amino acid biosynthetic enzymes
WO2006132270A1 (ja) 除草剤抵抗性遺伝子
US9796984B2 (en) Protection against herbivores
HU222085B1 (hu) Kiméragének és eljárások kukorica-, szójabab- és repcemagvak lizintartalmának növelésére
KR20050046764A (ko) 개선된 프레닐퀴논 생합성을 이용한 형질전환 식물
US20060053510A1 (en) Transgenic plants incorporating traits of Zostera marina
US7135622B2 (en) Mevalonate synthesis enzymes
US20040006784A1 (en) Methods and compositions for producing plants and microorganisms that express feedback insensitive threonine dehydratase/deaminase
KR101753073B1 (ko) 식물 유래 COMT(caffeic acid O-methyltransferase) 효소를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 미생물 및 식물체
US7195887B2 (en) Rice 1-deoxy-D-xylulose 5-phosphate synthase and DNA encoding thereof
KR100905219B1 (ko) 자가 절단 2a배열을 포함하는 베타카로틴 생합성용 융합폴리뉴클레오티드 및 이를 이용한 형질전환 식물체
Back et al. Functional characterization of tobacco (Nicotiana benthamiana) serotonin N-acetyltransferases (NbSNAT1 and NbSNAT2)
JP2023514687A (ja) グリコシルトランスフェラーゼ、これらをコードするポリヌクレオチドおよび使用方法
JPWO2008117537A1 (ja) 蒸散抑制剤
WO2005080579A2 (en) Taxadiene biosynthesis
EP1151110A2 (en) Maize glutathione-s-transferase enzymes
WO2008029942A1 (fr) Utilisation du gène de l&#39;enzyme de biosynthèse de la cytokinine activée
JP2013141421A (ja) 芳香族アミノ酸含量の増大した植物およびその作製方法
JP2006501859A (ja) ファゴピリトールシンターゼ遺伝子およびその使用法
KR101825219B1 (ko) 담배 유래의 탈메틸화 관련 NtROS2a 유전자 및 이의 용도
US20040010822A1 (en) Hydroperoxyde lyases
KR20160025829A (ko) 특정 아미노산 함량을 증가시키는 산왕거미 유래의 AvMaSp 유전자 및 이의 용도
US20050034176A1 (en) Tetrahydrofolate metabolism enzymes
US7192758B2 (en) Polynucleotides encoding phosphoribosylanthranilate isomerase
US20020124276A1 (en) Vitamin B metabolism proteins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant