KR101739069B1 - 이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법 - Google Patents

이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법 Download PDF

Info

Publication number
KR101739069B1
KR101739069B1 KR1020167020757A KR20167020757A KR101739069B1 KR 101739069 B1 KR101739069 B1 KR 101739069B1 KR 1020167020757 A KR1020167020757 A KR 1020167020757A KR 20167020757 A KR20167020757 A KR 20167020757A KR 101739069 B1 KR101739069 B1 KR 101739069B1
Authority
KR
South Korea
Prior art keywords
charge
ion beam
ratio
aperture ratio
ion
Prior art date
Application number
KR1020167020757A
Other languages
English (en)
Other versions
KR20160114610A (ko
Inventor
데이비드 팀버레이크
마크 알. 아마토
나탄 로스
Original Assignee
베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. filed Critical 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크.
Publication of KR20160114610A publication Critical patent/KR20160114610A/ko
Application granted granted Critical
Publication of KR101739069B1 publication Critical patent/KR101739069B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0213Avoiding deleterious effects due to interactions between particles and tube elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

이온 주입 시스템이 제공되며, 여기에서 적어도 2개의 상이한 크기의 개구들을 갖는 획정 개구 플레이트가 적어도 2개의 전하 수집기들과 함께 사용된다. 개구 폭의 차이 때문에, 2개의 전하 수집기들이 상이한 양의 이온들을 수신하며, 여기에서 양은 연관된 개구 폭에 비례한다. 제 1 전하 수집기에 의해 수집되는 전하 대 제 2 전하 수집기에 의해 수집되는 전하의 비율을 모니터링함으로써, 부식의 양이 모니터링되고 선택적으로 보상될 수 있다. 이에 더하여, 이온 빔을 사용하여 작업물들을 프로세싱하는 방법이 추가로 제공된다.

Description

이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법{ION IMPLANTATION SYSTEM AND METHOD OF PROCESSING WORKPIECES USING ION BEAM}
본 개시의 실시예들은, 빔라인 이온 주입 시스템 내에서 이온 빔 전류를 측정하기 위해 사용되는 개구들과 같은, 획정 개구들의 부식을 검출하기 위한 방법들 및 장치에 관한 것이다.
반도체 작업물들은 보통 희망되는 전도성을 생성하기 위하여 도펀트 종으로 주입된다. 작업물 내로 도입되는 도펀트의 양이 그것의 적절한 동작에 매우 중요하다. 따라서, 이온 주입 시스템에 의해 공급되는 이온 빔 전류를 정확하게 측정하는 것을 시도하기 위한 다양한 기술들이 개발되어 왔다. 일부 실시예들에 있어서, 전하 수집기(charge collector), 예컨대 패러데이 컵이 작업물 근처에 위치된다. 이러한 방식으로, 이온 빔 전류가 주어진 시간 기간에 걸쳐 패러데이 컵에 의해 수집된 전하의 양에 기초하여 측정될 수 있다. 작업물에 대하여 위치된 전하 수집기는 오로지 이온 빔의 일 부분으로부터의 전하만을 수신할 수 있다. 다시 말해서, 전하 수집기의 고정된 위치에 기인하여, 수집되는 전하가 전체 이온 빔을 나타내지 못할 수 있다.
다른 실시예들에 있어, 전하 수집기는 이온 빔을 관통해 이동될 수 있도록 이동식(mobile)일 수 있다. 이러한 경우에 있어, 개구를 갖는 플레이트는, 전하 수집기에게 보여질 수 있는 이온 빔의 부분을 제한하기 위하여, 이온 빔의 소스와 전하 수집기 사이에 배치될 수 있다. 플레이트 및 전하 수집기가 이온 빔을 가로질러 이동됨에 따라, 총 전하가 빔 전류를 계산하기 위하여 적분(integrate)될 수 있다. 이러한 계산은, 전하 수집기가 이동되는 속도 및 개구의 크기에 기초한다. 이러한 것이 일반적으로 이온 빔 전류를 측정하기 위한 효율적인 방법이지만, 이는 측정 오류에 영향을 받기 쉬울 수 있다. 예를 들어, 시간이 흐르면서, 이온 빔이, 특히 개구 주위에서 개구의 크기를 증가시키도록 플레이트를 부식시키는 경향이 있다. 이러한 개구 크기의 증가는 더 많은 이온들이 이를 통해 전하 수집기로 이동하는 것을 허용한다. 이는, 시스템이 이온 빔 전류를 실제 전류보다 더 크게 계산하는 결과를 초래한다. 이러한 문제를 처리하기 위한 하나의 방법은, 부식의 영향이 상당해지기 전에 미리 결정된 시간 간격으로 플레이트를 교체하는 것이다. 그러나, 이는 이온 주입 시스템이 오프-라인이 될 것을 요구하며, 그럼으로써 효율성 및 스루풋(throughput)을 감소시킨다.
따라서, 이온 빔에 의해 초래되는 개구의 부식을 검출하고, 선택적으로 이를 교정하기 위한 시스템 및 방법이 유익할 것이다.
적어도 2개의 상이한 크기의 개구들을 갖는 획정 개구 플레이트가 적어도 2개의 전하 수집기들과 함께 사용된다. 개구 폭의 차이 때문에, 2개의 전하 수집기들이 상이한 양의 이온들을 수신하며, 여기에서 양은 연관된 개구 폭에 비례한다. 제 1 전하 수집기에 의해 수집되는 전하 대 제 2 전하 수집기에 의해 수집되는 전하의 비율을 모니터링함으로써, 부식의 양이 모니터링되고 선택적으로 보상될 수 있다.
일 실시예에 있어, 이온 주입 시스템이 개시된다. 이온 주입 시스템은, 이온 빔을 생성하는 이온 소스; 2개의 상이한 크기의 개구들을 갖는 획정 개구 플레이트; 2개의 전하 수집기들로서, 각각이 상이한 크기의 개구들 중 개별적인 하나 뒤에 배치되는, 2개의 전하 수집기들; 이온 빔의 일 부분을 관통해 획정 개구 플레이트를 드라이브(drive)하기 위한 구동기; 및 이온 빔의 이온 빔 전류를 모니터링하기 위해 2개의 전하 수집기들과 통신하는 제어 시스템을 포함한다. 추가적인 실시예에 있어, 제어 시스템은 이온 빔 전류에 기초하여 이온 주입 시스템에 대한 파라미터들을 설정한다. 또 다른 추가적인 실시예에 있어, 제어 시스템은, 2개의 개구들의 폭들의 비율에 기초하여 초기 개구 비율을 계산하고; 전하 수집기들에 의해 측정된 전하에 기초하여 갱신된 개구 비율을 계산하며; 갱신된 개구 비율 및 초기 개구 비율에 기초하여 보상 인자를 결정하고; 및 2개의 전하 수집기들에 의해 수집된 전하 및 보상 인자에 기초하여 이온 빔 전류를 계산한다.
제 2 실시예에 있어, 이온 빔을 사용하여 작업물들을 프로세싱하는 방법이 개시된다. 방법은, 이온 빔을 사용하여 작업물들을 주입하는 단계로서, 이온 주입의 파라미터들은 이온 빔 전류에 기초하는, 단계; 플레이트를 이온 빔의 일 부분의 전방에서 통과시키는 단계로서, 플레이트는, 이를 통해 이온들이 통과할 수 있는 2개의 상이한 크기의 개구들을 갖는, 단계; 2개의 개구들의 초기 폭들의 비율에 기초하여 초기 개구 비율을 결정하는 단계; 각기 개별적인 개구 뒤에 있는 제 1 전하 수집기 및 제 2 전하 수집기에 의해 수신되는 전하를 수집하는 단계로서, 수집된 전하는 개별적인 개구들을 통과하는 이온 빔 전류를 나타내는, 단계; 및 제 1 전하 수집기에 의해 수집된 전하 대 제 2 전하 수집기에 의해 수집된 전하의 비율에 기초하여 갱신된 개구 비율을 결정하는 단계를 포함한다. 추가적인 실시예에 있어, 방법은, 갱신된 개구 비율이 미리 결정된 양보다 더 많은 양만큼 초기 개구 비율로부터 벗어나지 않은 경우, 주입을 계속하는 단계를 더 포함한다. 또 다른 추가적인 실시예에 있어, 방법은, 갱신된 개구 비율이 미리 결정된 양보다 더 많은 양만큼 초기 개구 비율로부터 벗어나는 경우 주입을 중단하는 단계를 포함한다. 또 다른 추가적인 실시예에 있어, 방법은, 초기 개구 비율과 갱신된 개구 비율 사이의 편차에 기초하여 보상 인자를 결정하는 단계; 이온 빔 전류를 계산하기 위하여 개구들의 부식을 교정하기 위해 보상 인자를 사용하는 단계; 및 계산된 이온 빔 전류에 기초하여 주입 동안 사용되는 파라미터들을 조정하는 단계를 포함한다.
제 3 실시예에 있어, 이온 빔을 사용하여 작업물들을 프로세싱하는 방법이 개시된다. 방법은, 이온 빔을 사용하여 작업물들을 주입하는 단계로서, 이온 주입의 파라미터들은 이온 빔 전류에 기초하는, 단계; 플레이트를 이온 빔의 일 부분의 전방에서 통과시키는 단계로서, 플레이트는, 이를 통해 이온들이 통과할 수 있는 2개의 상이한 크기의 개구들을 갖는, 단계; 2개의 상이한 크기의 개구들 중 제 1 개구의 폭 대 2개의 상이한 크기의 개구들 중 제 2 개구의 폭의 비율로서 정의되는 초기 개구 비율을 결정하는 단계; 각기 개별적인 개구 뒤에 배치된 제 1 전하 수집기 및 제 2 전하 수집기에 의해 수신되는 전하를 수집하는 단계; 제 1 전하 수집기에 의해 수집된 전하 대 제 2 전하 수집기에 의해 수집된 전하의 비율에 기초하여 갱신된 개구 비율을 계산하는 단계; 갱신된 개구 비율 대 초기 개구 비율의 비교에 기초하여 2개의 상이한 크기의 개구들의 부식을 결정하는 단계; 및 결정된 부식에 기초하여 이온 주입을 수정하는 단계를 포함한다. 추가적인 일 실시예에 있어, 수정은, 결정된 부식이 미리 결정된 문턱값보다 더 큰 경우, 이온 주입을 중단하는 단계를 포함한다. 또 다른 추가적인 실시예에 있어, 수정은, 결정된 부식, 제 1 전하 수집기에 의해 수집된 전하, 및 제 2 전하 수집기에 의해 수집된 전하에 기초하여 이온 빔 전류를 계산하는 단계; 및 계산된 이온 빔 전류에 기초하여 주입 동안 사용되는 파라미터들을 조정하는 단계를 포함한다.
본 개시의 더 양호한 이해를 위하여, 본원에 참조로서 포함되는 첨부된 도면들에 대한 참조가 이루어진다.
도 1은 일 실시예에 따른 개구들을 갖는 플레이트를 도시한다.
도 2는 어떤 양의 부식 이후의 도 1의 플레이트를 도시한다.
도 3은 제 1 실시예에 따른 순서도를 도시한다.
도 4는 제 2 실시예에 따른 순서도를 도시한다.
도 5a는 제 1 오류 상태 동안의 2개의 전하 수집기들의 전하 수집을 도시하는 타이밍도를 도시한다.
도 5b는 도 5a의 실시예에서 사용되는 획정 개구 플레이트를 도시한다.
도 6은 제 2 오류 상태 동안의 2개의 전하 수집기들의 전하 수집을 도시하는 타이밍도를 도시한다.
이상에서 설명된 바와 같이, 획정 개구 플레이트(defining aperture plate)로서도 알려진 개구를 갖는 플레이트는, 궁극적으로 획정 개구 플레이트 사이에 배치된 전하 수집기에 도달하는 이온들의 양을 제한하기 위해 사용된다. 도 1은 이온 주입 시스템의 일 부분을 도시한다. 도시되지는 않았지만, 이온 주입 시스템은 이온들을 생성하는데 사용되는 이온 소스를 또한 포함한다. 이온 소스는 간접 가열식 캐소드(indirectly heated cathode; IHC) 이온 소스, 버나스(Bernas) 스타일 소스, RF 플라즈마 이온 소스, 또는 임의의 다른 공지된 이온 소스일 수 있다. 그런 다음, 이온들이 이온 소스로부터 추출되며, 빔 광학부의 세트(미도시)를 사용하여 이온 빔(110)으로 전환된다. 일부 실시예들에 있어, 결과적인 이온 빔은 리본 빔이며, 이는 그것의 높이보다 훨씬 더 큰 폭을 갖는 이온 빔이다. 다른 실시예들에 있어, 대략적으로 원형 빔일 수 있는 스팟 빔이 생성될 수 있다.
이러한 이온 빔(110)이 작업물(미도시)을 향해 보내진다. 전형적으로, 작업물 및 이온 빔(110)은, 작업물의 모든 부분들이 이온 빔(110)에 노출될 수 있도록 서로에 대해 이동된다. 리본 빔의 경우에 있어, 이온 빔(110)은 (x 차원(dimension)에서) 작업물보다 더 넓을 수 있으며, (y 차원에서) 작업물보다 더 협소할 수 있다. 이러한 경우에 있어, 작업물은, 작업물의 모든 부분들이 이온 빔에 대해 노출될 수 있도록, 이온 빔(110)에 대해 y, 또는 수직 방향으로 이동될 수 있다. 물론, 다른 실시예들에 있어, 작업물이 정지된 채로 남아 있을 수 있으며, 그 동안 이온 빔(110)이 수직 방향으로 움직인다. 다른 실시예들에 있어, 작업물 및 이온 빔(110) 둘 모두가 수직 방향으로 서로에 대해 움직일 수 있다.
이러한 이온 빔(110)의 전류를 측정하기 위하여, 획정 개구 플레이트(120)가, 이온 소스와 작업물 사이에서, 이온 빔(110)의 경로 내에서 이동될 수 있다. 획정 개구 플레이트(120)는, 이온 빔(110)의 폭의 전체를 통과하기 위하여 (x 방향에서) 수평적으로 이동될 수 있다. 이러한 방식으로, 이온 빔(110) 내의 임의의 공간적 비-균일성이 획정 개구 플레이트(120)에 의해 관찰된다.
획정 개구 플레이트(120)는 적어도 2개의 개구들(121, 122) 및 대응하는 수의 전하 수집기들(131, 132)을 포함한다. 이러한 전하 수집기들은 일 실시예에서 패러데이 컵들일 수 있지만, 다른 전하 수집기들이 사용될 수 있다. 이러한 실시예에 있어, 제 1 전하 수집기(131)는 제 1 개구(121)를 통과하는 이온들을 수신하도록 배치된다. 제 2 전하 수집기(132)는 제 2 개구(122)를 통과하는 이온들을 수신하도록 배치된다. 이상에서 언급된 바와 같이, 각기 대응하는 전하 수집기를 갖는 더 많은 수의 개구들이 사용될 수 있다.
이에 더하여, 용어 "획정 개구 플레이트"가 본 개시의 전체에 걸쳐 사용되지만, 이러한 장치가 또한 각기 개별적인 개구를 갖는 2개의 별개의 플레이트들을 사용하여 생성될 수 있다는 것이 이해되어야 한다. 이러한 실시예에 있어, 이러한 2개의 플레이트들이 서로 독립적으로 움직일 수 있거나, 또는 고정된 공간적 관계를 가질 수 있다. 따라서, 용어 "획정 개구 플레이트"는, 하나를 초과하는 물리적인 플레이트가 사용되는 실시예들을 포함하는 것으로 해석되어야 한다.
일 실시예에 있어, 제 1 전하 수집기(131)는 제 1 개구(121)를 통과하는 이온들만을 수신하도록 배치되며, 반면 제 2 전하 수집기(132)는 제 2 개구(122)를 통과하는 이온들만을 수신하도록 배치된다.
추가적으로, 제 1 개구(121)의 폭(w1)은 제 2 개구(122)의 폭(w2)과 상이하다. 2개의 개구들(121, 122)의 높이들은 동일할 수 있다. 제 1 전하 수집기(131)는 제 1 개구(121)에 의해 획정된 영역을 통과하는 이온들을 수신하며, 반면 제 2 전하 수집기(132)는 제 2 개구(122)에 의해 획정된 영역을 통과하는 이온들을 수신한다. 일부 실시예들에 있어, 빔 높이는 개구들(121, 122)의 높이보다 더 작다. 이러한 경우에 있어, 제 1 전하 수집기(131)에 의해 수집되는 전하는, 제 1 개구(121)의 폭과 곱해진 빔 높이에 비례한다. 제 2 전하 수집기(132)에 의해 수집되는 전하는, 제 2 개구(122)의 폭과 곱해진 빔 높이에 비례한다.
이러한 방식으로, 제 1 전하 수집기(131)에 의해 수신된 이온들의 수 대 제 2 전하 수집기(132)에 의해 수신된 이온들의 수의 비율은, 개별적인 개구들(121, 122)의 폭들의 비율 또는 w1/w2와 동일할 수 있다.
제어 시스템(140)은 전하 수집기들(131, 132)과 통신한다. 전하 수집기들(131, 132)에 의해 수집되는 이온들의 수를 모니터링함으로써, 제어 시스템(140)이 이온 빔 전류를 결정할 수 있다. 이러한 전류가 도우즈(dose), 도펀트 균일성, 주입 시간, 및 다른 파라미터들을 결정하는데 도움을 주기 때문에, 이러한 전류가 이온 주입의 일 측면이다. 이에 더하여, 구동기(150)가 제어 시스템(140) 및 획정 개구 플레이트(120)와 통신한다. 이러한 구동기(150)는, 이상에서 설명된 바와 같이 획정 개구 플레이트(120)를 이온 빔(110)의 경로 내로 그리고 경로 밖으로 움직이도록 역할한다. 일부 실시예들에 있어, 구동기(150)는 오로지 수평적(즉, x 방향) 운동만을 제공하지만, 다른 실시예들에 있어, 수직적 운동(즉, y 방향)이 또한 허용된다.
도 2는 이온 빔(110)에 대한 계속된 노출 이후의 도 1의 획정 개구 플레이트(120)를 도시한다. 이상에서 언급된 바와 같이, 획정 개구 플레이트는 대안적으로, 각기 개별적인 개구를 갖는 2개의 물리적인 플레이트들을 포함할 수 있다. 이온 빔(110)이 개구들(121, 122)의 높이보다 더 협소하기 때문에, 개구들의 부식은 작은 영역에 국한된다. 도 2가 그들의 중심들 근처에서 개구들(121, 122)과 충돌하는 이온 빔을 도시하지만, 이온 빔(110)은 개구들(121, 122)의 임의의 부분과 충돌할 수 있으며, 본 개시가 이러한 실시예에 의해 제한되지 않는다. 이온 빔이 각각의 개구(121, 122) 둘레의 영역에 동일하게 충돌하기 때문에, 부식은 각각의 개구(121, 122)에 대하여 거의 동일하다. 다시 말해서, 이온 빔(110)에 노출되는 각각의 개구(121, 122)의 폭이 동일한 양만큼 커진다. 예시의 목적들을 위하여, 부식이 대칭적이며, 각각의 개구(121, 122)의 각각의 면(side) 상에서 α/2로서 정의되는 것으로 가정된다. 이러한 부식 때문에, 제 1 전하 수집기(131)가 이제 더 많은 이온들을 수신한다. 예를 들어, 제 1 개구(121)의 폭이 이제 w1+α이기 때문에, 도 1에서 수신된 이온들에 비한 제 1 전하 수집기(131)가 이제 수신할 이온들의 비율은 (w1+α)/w1로서 정의될 수 있다. 유사하게, 제 2 개구(122)가 이제 w2+α의 폭을 가지며, 따라서 제 2 전하 수집기(132)가 또한 더 많은 이온들을 수신할 것이다. 도 1에서 수신된 이온들에 비하면, 제 2 전하 수집기(132)는 이제 (w2+α)/w2 배의 이온들을 수신할 것이다. 부식이 고려되지 않는 경우, 제어 시스템(140)이 계속해서 개구 폭들이 각기 w1 및 w2라고 가정할 것이기 때문에, 제어 시스템(140)은, 이온 빔이 그것이 실제 갖는 것보다 더 큰 전류를 갖는다고 믿을 것이다.
예시적인 목적들을 위하여, w1은 1/8(.125) 인치이고 w2는 1/4(.250) 인치인 것으로 가정한다. 또한, 부식이 폭의 .05 인치의 일정한 증가를 야기하는 것으로 가정한다. 이러한 예에 있어서, 제 1 전하 수집기(131)는, 부식 이전에 제 1 전하 수집기가 수신하던 것보다 (.125+.05)/.125, 또는 1.4배의 이온들을 수신할 것이다. 유사하게, 제 2 전하 수집기(132)는, 부식 이전에 제 2 전하 수집기가 수신하던 것보다 (.250+.05)/.250, 또는 1.2배의 이온들을 수신할 것이다.
이에 더하여, 제 1 전하 수집기(131)에 의해 수신되는 이온들 대 제 2 전하 수집기(132)에 의해 수신되는 이온들의 비율이 또한 변화한다. 이상에서 설명된 바와 같이, 이러한 비율은 대응하는 개구들(121, 122)의 폭들의 비율과 동일하다. 따라서, 도 1에 있어서, 제 1 전하 수집기(131)에 의해 수신되는 이온들 대 제 2 전하 수집기(132)에 의해 수신되는 이온들의 비율은 w1/w2에 의해 주어진다. 도 2에 있어서, 이러한 비율이 (w1+α)/(w2+α)로 변화한다. w1이 w2보다 더 작은 경우, 이러한 비율은 계속되는 부식에 따라 점진적으로 증가한다. 역으로, w1이 w2보다 더 큰 경우, 이러한 비율은 계속되는 부식에 따라 점진적으로 감소한다.
2개의 상이한 치수의 개구들(121, 122)의 사용이 개구들의 부식을 모니터링하고 이에 적절하게 응답하기 위한 능력을 제공한다.
도 3은 제 1 실시예에 따른 순서도를 도시한다. 이러한 순서도에 예시된 시퀀스는 제어 시스템(140)에 의해 실행될 수 있다. 이러한 제어 시스템(140)은, 마이크로프로세서와 같은 프로세싱 유닛, 및 프로세싱 유닛에 의해 실행될 명령어들을 저장하는데 사용되는 연관된 메모리 디바이스를 포함할 수 있다. 이러한 메모리 디바이스는 비-휘발성, 휘발성, 또는 이들 둘 모두일 수 있으며, 또한 데이터를 마찬가지로 저장하기 위해 사용될 수 있다. 제어 시스템(140)은 또한 다양한 입력들 및 출력들을 가질 수 있다. 예를 들어, 제어 시스템(140)은 전하 수집기들(131, 132)로부터 입력을 수신할 수 있다. 유사하게, 제어 시스템은, 획정 개구 플레이트(120)가 이동되게끔 하는 출력들을 가질 수 있다. 추가적인 입력들 및 출력들이 또한 제어 시스템(140)의 부분일 수 있다.
이러한 실시예에 있어, 박스(300)에 도시된 바와 같이, 새로운 획정 개구 플레이트(120)가 이온 주입 시스템 내에 설치된다. 다음으로, 획정 개구 플레이트(120)가, 박스(310)에 도시된 바와 같이, 이온 빔(110)의 경로 내로 이동된다. 일부 실시예들에 있어, 획정 개구 플레이트(120)는 이온 빔(110)을 가로질러 수평적으로 이동된다. 다른 실시예들에 있어, 획정 개구 플레이트(120)는 전체 이온 빔(110)을 횡단하지 않고 이온 빔의 경로 내의 고정된 위치로 이동된다. 다른 실시예들이 또한 가능하다. 그러나, 목표는, 획정 개구 플레이트(120)의 개구들(121, 122) 둘 모두가 이온 빔(110)의 경로 내에 있다는 것을 보장하는 것이다. 제어 시스템(140)은, 획정 개구 플레이트(120)를 희망되는 위치로 이동시키도록 구동기(150)를 제어한다.
그런 다음, 제어 시스템(140)은, 박스(320)에 도시된 바와 같이, 제 1 전하 수집기(131) 및 제 2 전하 수집기(132)로부터 각기 수신되는 이온들의 수에 관한 데이터를 수신한다. 그런 다음, 박스(330)에 도시된 바와 같이, 제어 시스템(140)이 이러한 값들의 비율을 초기 개구 비율로서 저장한다. 이상에서 설명된 바와 같이, 이러한 초기 개구 비율은, 어떠한 부식도 발생하기 이전의 제 1 개구(121)의 폭 대 제 2 개구(122)의 폭의 비율을 나타내야 한다.
제 2 실시예에 있어, 어떠한 초기 이온 측정도 이루어지지 않는다. 오히려, 제 1 개구(121)의 폭 대 제 2 개구(122)의 폭의 비율이 초기 개구 비율로서 정의된다. 이러한 실시예에 있어, 도 3의 박스들(310, 320, 330)이 수행되지 않으며, 박스(325)는 단순히 물리적인 개구 폭들의 비율의 계산으로 구성된다.
이러한 초기 프로세스가 완료되면, 박스(340)에 도시된 바와 같이 이온 주입 시스템이 정상적으로 동작할 수 있다. 이러한 모드에 있어서, 획정 개구 플레이트(120)는, 이상에서 설명된 바와 같이 이온 빔 전류를 측정하기 위하여 주기적으로 사용될 수 있다. 정상 동작 시, 제어 시스템(140)은 전하 수집기들(131, 132) 중 하나 또는 둘 모두로부터의 데이터를 사용하여 이온 빔 전류를 측정할 수 있다. 일 실시예에 있어, 더 큰 개구와 연관된 전하 수집기로부터의 데이터가 사용될 수 있으며, 이는 이러한 개구가 부식에 덜 민감하기 때문이다. 다른 실시예에 있어, 더 작은 개구와 연관된 전하 수집기로부터의 데이터가 사용될 수 있다.
다양한 간격들로로, 제어 시스템이, 박스(350)에 도시된 바와 같이, 부식의 결정을 수행할 수 있다. 이는 이온 빔 전류가 측정되는 동안(박스(340) 참조))에 이루어질 수 있거나, 또는 별개의 절차일 수 있다. 획정 개구 플레이트(120)는, 개구들(121, 122) 둘 모두가 이온 빔(110)에 동일하게 노출되도록 이온 빔의 경로 내에 배치된다. 제 1 전하 수집기(131)에 의해 수신되는 이온들 대 제 2 전하 수집기(132)에 의해 수신되는 이온들의 비율이 결정된다. 전하 수집기들(131, 132)은, 변화가 시간에 걸쳐 적분되는 것을 허용하기 위하여 미리 결정된 지속기간 동안 이온 빔(110)에 노출될 수 있다. 다른 실시예들에 있어, 순간적인 측정이 이루어질 수 있다. 각각의 실시예에 있어, 이러한 비율은 갱신된 개구 비율로서 지칭된다.
그런 다음, 결정 박스(360)에서, 제어 시스템(140)이 갱신된 개구 비율을 박스(330) 또는 박스(325)에서 발견된 초기 개구 비율과 비교한다. 이러한 비율들이 서로에 대하여 미리 결정된 허용오차 내에 있는 경우, 제어 시스템(140)은 부식의 양이 용인가능하다는 것을 결정하고, 박스(340)로 되돌아감으로써 정상 동작이 계속될 수 있게 한다. 제어 시스템(140)이 갱신된 개구 비율과 초기 개구 비율 사이의 편차가 너무 크다고 결정하는 경우, 박스(370)에 도시된 바와 같이 운영자에게 통지한다.
도 4는, 제어 시스템(140)이 개구들(121, 122)의 부식을 결정하고 이를 보상하는 제 2 실시예를 나타낸다. 박스들(400-440)의 초기 프로세스는 도 3에서 설명된 것들과 유사하며, 반복되지 않는다. 대안적으로, 이상에서 설명된 바와 같이, 박스들(410, 420, 430)이 제거될 수 있으며, 초기 개구 비율은, 박스(425)에 도시된 바와 같이 개구들의 상대적인 폭들에 기초하여 계산될 수 있다.
박스(450)에서, 제어 시스템(140)이 부식의 결정을 수행한다. 이는 도 3과 관련하여 이상에서 설명된 것과 동일한 방식으로 이루어질 수 있다. 그러나, 이러한 실시예에 있어, 제어 시스템(140)은, 박스(460)에 도시된 바와 같이 보상 인자를 결정한다. 일부 실시예들에 있어서, 측정치들이 시간 및/또는 위치에 대하여 미분(differentiate)될 수 있다. 다른 실시예들에 있어, 실제 측정치들이 부식을 결정하기 위해 직접적으로 사용된다. 이러한 실시예들 중 일부에 있어서, 2개의 전하 수집기들로부터 획득된 측정치들이, 이상에서 설명된 바와 같이 수집된 전하들을 평균내기 위하여 시간에 걸쳐 적분될 수 있다. 예를 들어, 초기 개구 비율 및 갱신된 개구 비율에 기초하여, 부식의 양을 결정하는 것이 가능할 수 있다. w1이 제 1 개구(121)의 초기 폭이며, w2가 제 2 개구(122)의 초기 폭이고, k는 초기 개구 비율(w1/w2)이며, α는 각각의 개구(121, 122)의 폭의 증가이고, k1은 갱신된 개구 폭((w1+α)/(w2+α))이라고 가정한다. w2의 함수로서 부식(α)은 w2(k1-k)/(1-k1)과 동일한 것으로 보여질 수 있다. 그것의 초기 폭(w2)에 대한 제 2 개구(122)의 갱신된 폭(즉, w2+α)의 비율은 (1-k)/(1-k1)인 것으로 추가적으로 보여질 수 있다. 유사하게, 그것의 초기 폭(w1)에 대한 제 1 개구(121)의 갱신된 폭(즉, w1+α)의 비율은 k1(1-k)/(k(1-k1))로서 정의될 수 있다. 물론, 이러한 계산들은 α가 개구들(121, 122) 둘 모두에 대해 일정하다는 것을 가정한다. 상이한 가정들이 이루어지는 경우, 다른 값들이 야기될 수 있다.
그것의 초기 폭에 대한 각각의 개구의 갱신된 폭의 비율이 결정되면, 전하 수집기들(131, 132)로부터 수신된 데이터를 보상 인자와 곱함으로써 개구 폭의 변화를 보상하는 것이 가능하다. 이러한 보상 인자는 부식의 효과들을 제거하기 위하여 전하 수집기들(131, 132)로부터 수신된 데이터를 조정하도록 역할한다. 이러한 방식으로, 이온 주입 시스템은, 획정 개구 플레이트(120)가 부식되기 시작한 이후에도, 계속해서 정상적으로 동작할 수 있다(박스(440)). 다시 말해서, 획정 개구 플레이트(120)가 더 이상 초기 개구 비율을 갖지 않더라도, 시스템이 계속해서 희망되는 도우즈를 전달할 수 있다. 보상 인자의 사용은, 개구들(121, 122)의 부식이 존재하는 경우에도, 제어 시스템(140)이 실제 이온 빔 전류를 계산하는 것을 가능하게 한다. 그런 다음, 이러한 계산된 실제 전류가 이온 빔 파라미터들을 제어하는데 사용된다. 이러한 보상 기술은 요구되는 예방적 유지보수 사이의 시간을 증가시키며, 또한 시간에 걸쳐 이온 빔의 훨씬 더 정확한 표현을 제공하는데 기여한다.
예를 들어, 제어 시스템(140)이, 박스(450)에서 계산된 바와 같이, 제 1 개구(121)의 폭이 부식에 기인하여 10%만큼 증가했다는 것을 결정한다고 가정한다. 이 때문에, 제 1 전하 수집기(131)는 이론적으로, 동일한 이온 빔 전류에 대하여, 획정 개구 플레이트(120)가 처음에 설치됐을 때 제 1 전하 수집기가 수신했던 이온들보다 10% 더 많은 이온들을 수신할 것이다. 따라서, 이러한 부식을 보상하기 위하여, 제 1 전하 수집기(131)로부터의 결과적인 전하 값이 1.10으로 나누어질 것이다. 이는 제 1 전하 수집기(131)의 출력을 정규화할 수 있으며, 심지어 부식이 실제 개구 폭을 변경했던 경우에도 연속되는 동작을 허용할 수 있다.
획정 개구 플레이트(120) 상의 2개의 개구들의 사용이 또한 다른 애플리케이션들을 가질 수 있다. 예를 들어, 획정 개구 플레이트(120)가 수평적인 방향으로 이온 빔(110)을 관통해 이동한다고 가정하자. 정상 동작 상태들 하에서, 이온 빔이 비교적 균일한 경우, 특정 전하 수집기(131, 132)에 의해 수집되는 전하가 시간 및 빔 위치의 함수로서 비교적 일정할 것으로 예상될 수 있다. 또한, 이러한 전하 수집기들(131, 132)의 각각에 의해 수집되는 전하의 비율이 비교적 일정하게 유지될 것임이 또한 예상될 수 있다. 따라서, 이러한 예상된 거동으로부터의 편차들이 빔 비-균일성 또는 다른 문제들을 나타낼 수 있다.
도 5a는, 제 1 오류 상태 동안의 시간의 함수로서 제 1 전하 수집기(131) 및 제 2 전하 수집기(132)에 의해 수집되는 전하를 보여주는 타이밍도를 도시한다. 이러한 실시예에 있어, 도 5b에 도시된 것과 같은 획정 개구 플레이트(120)는 일정한 속도 v로 이온 빔(110)을 관통해 이동한다. 이상에서 설명된 바와 같이, 하나의 획정 개구 플레이트 대신에, 서로에 대하여 고정된 공간적 관계를 갖는 2개의 별개의 물리적인 플레이트들이 또한 이용될 수 있다는 것을 주의해야 한다. 시간의 대부분의 지점들 동안, 제 2 전하 수집기(132)에 의해 수집되는 전하가 제 1 전하 수집기(131)에 의해 수집되는 전하의 2배이다. 이는 그들의 개별적인 개구 폭들의 차이에 기인한다. 그러나, 이러한 도면에 있어서, 제 1 전하 수집기(131)는 시간 t1에서 예상된 것보다 더 적은 양의 전하를 수신한다. 유사하게, 제 2 전하 수집기(132)는 시간 t2에서 예상된 것보다 더 적은 양의 전하를 수신했다. 이러한 시간의 차이(Δt=t2-t1)와 획정 개구 플레이트(120)의 속도 v를 곱한 것이, 이러한 2개의 이벤트들 사이의 거리 Δx를 결정한다. 이러한 거리 Δx가 획정 개구 플레이트(120) 상의 제 1 개구(121)와 제 2 개구(122) 사이의 거리와 동일한 경우, 이는 이온 빔(110) 내의 동일한 공간적 위치에서 이상에 발생한다는 것을 나타낸다. 이는, 이온 빔(110) 내의 이러한 위치에서의 해결되어야만 하는 결핍을 나타낼 수 있다. 도 5a가 이상 동안에 수집되는 전하의 감소를 도시하지만, 본 개시가 이러한 실시예에 한정되지 않는다. 다른 실시예들에 있어, 이온 빔(110) 내의 이상은, 빔 전류가 너무 큰 공간적 위치를 구성할 수 있다.
도 6은 가능한 제 2 오류 상태를 보여주는 제 2 타이밍도를 도시한다. 이러한 실시예에 있어, 도 5a와 유사하게, 개별적인 개구 폭의 차이에 기인하여, 제 2 전하 수집기(132)에 의해 수집되는 전하가 전형적으로 제 1 전하 수집기(131)에 의해 수집되는 전하의 2배이다. 그러나, 이러한 실시예에 있어, 시간 t3에서, 전하 수집기들 둘 모두가 이상을 경험한다. 도 6이 전류의 감소를 도시하지만, 이상은 또한 전류의 증가일 수도 있다. 이상이 전하 수집기들(131, 132) 둘 모두에 대해 동시에 발생했기 때문에, 이는 도 5a와 함께 설명된 바와 같은 공간적 이상이 아니다. 오히려, 이는 시간의 어느 시점에 전체 빔이 영향을 받는 시간적(temporal) 장애를 예시한다.
따라서, 2개의 개구들(121, 122) 및 2개의 전하 수집기들(131, 132)의 사용이, 제어 시스템(140)이 공간적 이온 빔 이상들과 시간적 이상들을 구별하는 것을 가능하게 한다. 이온 빔 튜닝 시스템의 성능이 또한 2개의 메트릭(metric)들, 즉 도펀트 또는 빔 균일성 및 시간에 기초하여 측정되며, 여기에서 시간 메트릭은 용인가능한 균일성을 달성하는데 소요되는 시간으로서 정의된다. 공간적 이상들과 시간적 이상들을 구별하는 것을 가능하게 함으로써, 더 적절한 교정 액션이 결정될 수 있고, 그럼으로써 이온 빔에 대하여 희망되는 균일성을 달성하는데 요구되는 시간을 감소시킬 수 있다.
다른 실시예에 있어, 획정 개구 플레이트(120)의 수평적인 속도 v가 수정될 수 있다. 구체적으로, 수평적인 속도 v 및 거리 Δx가 주파수를 정의한다. 이는, 제어 시스템(140)이 이온 빔 내의 주파수 이상들을 식별하는 것을 가능하게 할 수 있다.
2개의 상이한 크기의 개구들의 사용이, 제어 시스템(140)이 2개의 전하 수집기들에 의해 측정되는 바와 같은 전류를 모니터링하는 것을 가능하게 한다. 갱신된 개구 비율의 변화들에 기초하여, 제어 시스템(140)이 개구들(121, 122)의 부식을 결정할 수 있다. 개구들의 부식에 기초하여, 제어 시스템(140)이 주입 프로세스를 수정하거나 또는 조절할 수 있다. 예를 들어, 도 3에 도시된 일 실시예에 있어, 갱신된 개구 비율과 초기 개구 비율 사이의 편차가 너무 큰 경우, 제어 시스템(140)이 주입 프로세스를 중단하고, 운영자에게 경고한다. 다시 말해서, 개구들의 부식이 너무 큰 경우, 주입 프로세스가 정지된다. 이는 잘못된 이온 빔 전류 측정에 의해 작업물들이 영향을 받는 것을 방지한다. 다른 실시예에 있어, 제어 시스템(140)은, 갱신된 개구 비율과 초기 개구 비율의 편차가 미리 결정된 문턱값 이내인 경우, 주입 프로세스를 계속한다. 또 다른 실시예에 있어, 제어 시스템(140)은, 도 4에 도시된 바와 같이 보상 인자를 결정하기 위하여 갱신된 개구 비율과 초기 개구 비율 사이의 편차를 사용한다. 그런 다음, 이러한 보상 인자가 실제 이온 빔 전류를 계산하기 위해 사용된다. 이러한 보상 인자는, 제어 시스템(140)이, 도우즈량을 결정하며, 주입 프로세스를 적절하게 조절하고 수정하기 위하여 계산된 이온 빔 전류들을 사용하여 주입 프로세스를 계속하는 것을 가능하게 한다.
본 개시는 본원에서 설명된 특정 실시예에 의해 범위가 제한되지 않는다. 오히려, 본원에서 설명된 실시예들에 더하여, 본 개시의 다른 다양한 실시예들 및 이에 대한 수정예들이 이상의 설명 및 첨부된 도면들로부터 당업자들에게 자명해질 것이다. 따라서, 이러한 다른 실시예들 및 수정예들이 본 개시의 범위 내에 속하도록 의도된다. 추가로, 본 개시가 본원에서 특정 목적을 위한 특정 환경에서의 특정 구현예의 맥락에서 설명되었지만, 당업자들은 이의 유용함이 이에 한정되지 않으며, 본 개시가 임의의 수의 목적들을 위한 임의의 수의 환경들에서 유익하게 구현될 수 있다는 것을 인식할 것이다. 따라서, 이하에서 기술되는 청구항들은 본원에서 설명된 바와 같은 본 개시의 완전한 폭과 사상의 관점에서 해석되어야만 한다.

Claims (17)

  1. 이온 주입 시스템으로서,
    이온 빔을 생성하는 이온 소스;
    2개의 상이한 크기의 개구들을 갖는 획정 개구 플레이트(defining aperture plate);
    각기 상기 2개의 상이한 크기의 개구들의 개별적인 하나 뒤에 배치된, 2개의 전하 수집기들;
    상기 이온 빔의 일 부분을 관통해 상기 획정 개구 플레이트를 드라이브(drive)하기 위한 구동기; 및
    상기 이온 빔의 이온 빔 전류를 모니터링하기 위해 상기 2개의 전하 수집기들과 통신하는 제어 시스템을 포함하며,
    상기 제어 시스템은,
    상기 2개의 상이한 크기의 개구들의 폭들의 비율에 기초하여 초기 개구 비율을 계산하고;
    상기 2개의 전하 수집기들의 각각에 의해 측정되는 전하의 비율에 기초하여 갱신된 개구 비율을 계산하며; 및
    상기 이온 주입 시스템을 제어하기 위하여 상기 초기 개구 비율 및 상기 갱신된 개구 비율을 사용하는, 이온 주입 시스템.
  2. 청구항 1에 있어서,
    상기 제어 시스템은, 상기 이온 빔 전류에 기초하여 상기 이온 주입 시스템에 대한 파라미터들을 설정하는, 이온 주입 시스템.
  3. 청구항 2에 있어서,
    상기 제어 시스템은,
    상기 갱신된 개구 비율과 상기 초기 개구 비율에 기초하여 보상 인자를 결정하고; 및
    상기 2개의 전하 수집기들에 의해 수집되는 전하 및 상기 보상 인자에 기초하여 상기 이온 빔 전류를 계산하는, 이온 주입 시스템.
  4. 청구항 1에 있어서,
    상기 제어 시스템은, 상기 초기 개구 비율 및 상기 갱신된 개구 비율에 기초하여 상기 상이한 크기의 개구들의 부식의 양을 결정하는, 이온 주입 시스템.
  5. 청구항 4에 있어서,
    상기 주입 시스템은, 상기 부식의 양이 미리 결정된 문턱값 미만인 경우, 작업물을 주입하는, 이온 주입 시스템.
  6. 청구항 4에 있어서,
    상기 제어 시스템은, 상기 부식의 양이 미리 결정된 문턱값보다 더 큰 경우, 작업물을 주입하는 것을 중단하는, 이온 주입 시스템.
  7. 청구항 1에 있어서,
    상기 제어 시스템은 상기 2개의 전하 수집기들에 의해 측정되는 전하에 기초하여 상기 이온 빔 내의 이상(anomaly)을 결정하는, 이온 주입 시스템.
  8. 청구항 7에 있어서,
    상기 이상은 상기 이온 빔 내의 공간적 이상을 포함하는, 이온 주입 시스템.
  9. 청구항 7에 있어서,
    상기 이상은 상기 이온 빔 내의 시간적 이상을 포함하는, 이온 주입 시스템.
  10. 이온 빔을 사용하여 작업물들을 프로세싱하는 방법으로서,
    상기 이온 빔을 사용하여 작업물들을 주입하는 단계로서, 이온 주입의 파라미터들은 상기 이온 빔의 이온 빔 전류에 기초하는, 단계;
    상기 이온 빔의 일 부분의 전방에서 플레이트를 통과시키는 단계로서, 상기 플레이트는 이를 통해 이온들이 통과할 수 있는 2개의 상이한 크기의 개구들을 갖는, 단계;
    상기 2개의 상이한 크기의 개구들의 초기 폭들의 비율에 기초하여 초기 개구 비율을 결정하는 단계;
    각기 개별적인 개구 뒤에 있는 제 1 전하 수집기 및 제 2 전하 수집기에 의해 수신되는 전하를 수집하는 단계로서, 상기 제 1 전하 수집기 및 상기 제 2 전하 수집기에 의해 상기 수집되는 전하는 상기 개별적인 개구들을 통과하는 이온 빔 전류를 나타내는, 단계; 및
    상기 제 1 전하 수집기에 의해 수집되는 전하 대 상기 제 2 전하 수집기에 의해 수집되는 전하의 비율에 기초하여 갱신된 개구 비율을 결정하는 단계를 포함하는, 방법.
  11. 청구항 10에 있어서,
    상기 방법은, 상기 갱신된 개구 비율이 미리 결정된 양보다 더 많은 양만큼 상기 초기 개구 비율로부터 벗어나지 않은 경우, 상기 주입하는 단계를 계속하는 단계를 더 포함하는, 방법.
  12. 청구항 10에 있어서,
    상기 방법은, 상기 갱신된 개구 비율이 미리 결정된 양보다 더 많은 양만큼 상기 초기 개구 비율로부터 벗어나는 경우, 상기 주입하는 단계를 중단하는 단계를 더 포함하는, 방법.
  13. 청구항 10에 있어서,
    상기 방법은,
    상기 초기 개구 비율과 상기 갱신된 개구 비율 사이의 편차에 기초하여 보상 인자를 결정하는 단계;
    이온 빔 전류를 계산하기 위하여 상기 개구들의 부식에 대한 교정을 위해 상기 보상 인자를 사용하는 단계; 및
    상기 계산된 이온 빔 전류에 기초하여 상기 주입하는 단계 동안 사용되는 상기 파라미터들을 조정하는 단계를 더 포함하는, 방법.
  14. 청구항 10에 있어서,
    상기 방법은, 상기 이온 빔 내의 공간적 및 시간적 이상들을 식별하고, 상기 식별된 공간적 및 시간적 이상들에 기초하여 상기 파라미터들을 조정하는 단계를 더 포함하는, 방법.
  15. 이온 빔을 사용하여 작업물들을 프로세싱하는 방법으로서,
    상기 이온 빔을 사용하여 작업물들을 주입하는 단계;
    상기 이온 빔의 일 부분의 전방에서 플레이트를 통과시키는 단계로서, 상기 플레이트는 이를 통해 이온들이 통과할 수 있는 2개의 상이한 크기의 개구들을 갖는, 단계;
    상기 2개의 상이한 크기의 개구들의 제 1 개구의 폭 대 상기 2개의 상이한 크기의 개구들의 제 2 개구의 폭의 비율로서 정의되는 초기 개구 비율을 결정하는 단계;
    각기 개별적인 개구 뒤에 배치된 제 1 전하 수집기 및 제 2 전하 수집기에 의해 수신되는 전하를 수집하는 단계;
    상기 제 1 전하 수집기에 의해 수집되는 전하 대 상기 제 2 전하 수집기에 의해 수집되는 전하의 비율에 기초하여 갱신된 개구 비율을 계산하는 단계;
    상기 갱신된 개구 비율 및 상기 초기 개구 비율의 비교에 기초하여 상기 2개의 상이한 크기의 개구들의 부식을 결정하는 단계; 및
    상기 결정된 부식에 기초하여 상기 이온을 주입하는 단계를 수정하는 단계를 포함하는, 방법.
  16. 청구항 15에 있어서,
    상기 이온을 주입하는 단계를 수정하는 상기 단계는, 상기 결정된 부식이 미리 결정된 문턱값보다 더 큰 경우 상기 이온을 주입하는 단계를 중단하는 단계를 포함하는, 방법.
  17. 청구항 15에 있어서,
    상기 이온을 주입하는 단계를 수정하는 상기 단계는,
    상기 결정된 부식, 상기 제 1 전하 수집기에 의해 수집되는 상기 전하, 및 상기 제 2 전하 수집기에 의해 수집되는 상기 전하에 기초하여 이온 빔 전류를 계산하는 단계; 및
    상기 계산된 이온 빔 전류에 기초하여 상기 주입하는 단계 동안 사용되는 파라미터들을 조정하는 단계를 더 포함하는, 방법.
KR1020167020757A 2014-01-31 2015-01-13 이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법 KR101739069B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/169,488 2014-01-31
US14/169,488 US9299534B2 (en) 2014-01-31 2014-01-31 Method and mechanism for erosion detection of defining apertures
PCT/US2015/011115 WO2015116373A1 (en) 2014-01-31 2015-01-13 Method and mechanism for erosion detection of defining apertures

Publications (2)

Publication Number Publication Date
KR20160114610A KR20160114610A (ko) 2016-10-05
KR101739069B1 true KR101739069B1 (ko) 2017-05-23

Family

ID=53755424

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167020757A KR101739069B1 (ko) 2014-01-31 2015-01-13 이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법

Country Status (6)

Country Link
US (1) US9299534B2 (ko)
JP (1) JP2017510024A (ko)
KR (1) KR101739069B1 (ko)
CN (1) CN106415791B (ko)
TW (1) TWI574293B (ko)
WO (1) WO2015116373A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621758B (zh) * 2017-11-08 2020-04-24 上海华力微电子有限公司 一种耐腐蚀透射像传感器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181443A1 (en) 2009-07-30 2012-07-19 Varian Semiconductor Equipment Associates, Inc., mask health monitor using a faraday probe

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678951B2 (ja) * 1991-03-08 1997-11-19 日新電機株式会社 イオン注入装置
US5475231A (en) * 1993-09-21 1995-12-12 Honeywell Inc. Apparatus for monitoring ion beams with an electrically isolated aperture
JP3257205B2 (ja) * 1993-12-15 2002-02-18 日新電機株式会社 イオン注入装置
JPH0945274A (ja) * 1995-07-31 1997-02-14 Nissin Electric Co Ltd イオン注入装置のドーズ量補正装置
JPH09283074A (ja) * 1996-04-09 1997-10-31 Applied Materials Inc イオン注入装置及びイオン注入方法
US5947053A (en) * 1998-01-09 1999-09-07 International Business Machines Corporation Wear-through detector for multilayered parts and methods of using same
US6677598B1 (en) * 2003-04-29 2004-01-13 Axcelis Technologies, Inc. Beam uniformity and angular distribution measurement system
JP4562485B2 (ja) * 2004-10-13 2010-10-13 株式会社アルバック イオン注入装置
JP2007123056A (ja) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd イオン注入装置とそのイオン注入制御方法
US20080073553A1 (en) 2006-02-13 2008-03-27 Ibis Technology Corporation Ion beam profiler
JP2009009903A (ja) * 2007-06-29 2009-01-15 Toshiba Corp ビーム量測定装置及び半導体装置の製造方法
US7858955B2 (en) * 2008-06-25 2010-12-28 Axcelis Technologies, Inc. System and method of controlling broad beam uniformity
JP2011060935A (ja) * 2009-09-09 2011-03-24 Fujitsu Semiconductor Ltd 半導体装置の製造方法
US8669517B2 (en) * 2011-05-24 2014-03-11 Axcelis Technologies, Inc. Mass analysis variable exit aperture
US8378318B1 (en) * 2011-11-18 2013-02-19 Varian Semiconductor Equipment Associates, Inc. Fixed mask design improvements
JP5808706B2 (ja) * 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181443A1 (en) 2009-07-30 2012-07-19 Varian Semiconductor Equipment Associates, Inc., mask health monitor using a faraday probe

Also Published As

Publication number Publication date
WO2015116373A1 (en) 2015-08-06
KR20160114610A (ko) 2016-10-05
CN106415791A (zh) 2017-02-15
TWI574293B (zh) 2017-03-11
JP2017510024A (ja) 2017-04-06
US20150221472A1 (en) 2015-08-06
US9299534B2 (en) 2016-03-29
CN106415791B (zh) 2018-05-29
TW201532098A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
KR102226097B1 (ko) 이온주입 방법 및 이온주입 장치
EP1287544B1 (en) Method and apparatus for controlling ion implantation during vacuum fluctuation
US7663125B2 (en) Ion beam current uniformity monitor, ion implanter and related method
US7462847B2 (en) Ion implanter and ion implantation control method thereof
KR101677226B1 (ko) 이온 주입 균일성을 제어하기 위한 장치 및 기술들
JP2014529166A5 (ko)
CN103050386A (zh) 离子注入装置及离子注入方法
KR101739069B1 (ko) 이온 주입 시스템 및 이온 빔을 사용하여 작업물들을 프로세싱하는 방법
JP2018516434A (ja) 注入処理制御装置及び方法
US20210175048A1 (en) Techniques for determining and correcting for expected dose variation during implantation of photoresist-coated substrates
JP2004531066A (ja) 可変空間繰り返し度の走査線をもつイオン注入のための方法および装置
JP2018506135A (ja) 走査ビーム注入器のためのビームプロファイリング速度の向上
US20230140499A1 (en) Ion implantation method, ion implanter, and method for manufacturing semiconductor device
US20100155593A1 (en) Time-of-flight segmented faraday
US9230776B2 (en) Ion irradiation apparatus and ion irradiation method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant