KR101669032B1 - Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof - Google Patents
Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof Download PDFInfo
- Publication number
- KR101669032B1 KR101669032B1 KR1020140156822A KR20140156822A KR101669032B1 KR 101669032 B1 KR101669032 B1 KR 101669032B1 KR 1020140156822 A KR1020140156822 A KR 1020140156822A KR 20140156822 A KR20140156822 A KR 20140156822A KR 101669032 B1 KR101669032 B1 KR 101669032B1
- Authority
- KR
- South Korea
- Prior art keywords
- dna
- primer
- snp
- cabbage
- artificial sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 SNP(single nucleotide polymorphism) 위치 염기를 포함하는 서열번호 1 내지 24의 염기서열로 이루어진 폴리뉴클레오티드로부터 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발용 SNP 조성물 및 상기 SNP 폴리뉴클레오티드 증폭용 프라이머 세트에 관한 것으로, 본 발명의 SNP를 이용하면 양배추 계통 순도검정 및 조기 고정 계통의 선별을 전체 유전체 수준에서 검정할 수 있어 보다 정확하고 효율적인 결과를 얻어낼 수 있다.The present invention relates to a systematic purity assay of cabbage, comprising at least one polynucleotide selected from polynucleotides consisting of the nucleotide sequences of SEQ ID NOS: 1 to 24 comprising a single nucleotide polymorphism (SNP) locus or a complementary polynucleotide thereof, The present invention relates to a SNP composition for fixed-line selection and a primer set for amplifying the SNP polynucleotide. The SNP of the present invention can be used to test the purity of the cabbage system and the early fixing system at a whole genome level, Can be obtained.
Description
본 발명은 양배추의 계통 순도 검정과 조기 고정 계통 선발을 위한 단일염기다형성 마커 세트 및 이의 용도에 관한 것으로, 더욱 상세하게는 SNP(single nucleotide polymorphism) 위치 염기를 포함하는 서열번호 1 내지 12의 염기서열로 이루어진 폴리뉴클레오티드로부터 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발용 SNP 조성물, 상기 SNP 또는 이의 cDNA를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발용 마이크로어레이, 양배추 시료에서 게놈 DNA를 분리하고 상기 SNP 위치 염기인 다형성 부위의 유전자형을 결정하는 단계를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법, 상기 SNP 폴리뉴클레오티드 증폭용 프라이머 세트 및 상기 프라이머 세트 및 증폭 반응을 수행하기 위한 시약을 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발을 위한 키트에 관한 것이다.The present invention relates to a single nucleotide polymorphism marker set for cabbage system purity assay and early immobilization system selection, and more particularly to a single nucleotide polymorphism marker set having a nucleotide sequence of SEQ ID NOS: 1 to 12 comprising a single nucleotide polymorphism (SNP) And a complementary polynucleotide thereof, and a systematic purity of the cabbage and early fixation of the cabbage including the SNP composition or the cDNA thereof. Isolating genomic DNA from a cabbage sample and determining a genotype of a polymorphic site that is a base for the SNP, a method for selecting a systematic purity and an early fixed system for cabbage, a method for selecting a primer set for amplifying the SNP polynucleotide And the primer three And a reagent for carrying out an amplification reaction. The present invention also relates to a kit for selecting a systematic purity of cabbage and an early fixed system selection.
양배추류는 약 76백만톤의 생산량, 150억 달러의 경제적 가치(2010년 기준)를 가진 채소류 작물로서 세계 최대 재배 최소 작물군에 속한다. 양배추류는 양배추, 케일, 브로콜리, 콜라비, 콜리플라워(꽃양배추) 등과 같이 형태학적으로 다양한 아종을 가지고 있어 형태학 연구의 모델 작물이기도 하다. 특히, 영양학적 관점에서, 양배추류는 단백질, 카로테노이드 뿐만 아니라 항암 효과가 있는 글루코시놀레이트를 다량 함유하고 있다. 이러한 양배추류의 경제적 부가가치를 더 높이기 위하여, 육종가(breeder)는 높은 생산량, 병충 및 환경 스트레스에 저항성을 가진, 또는 유용물질을 많이 함유한 양배추류를 만들기 위해 끊임없이 노력해 왔다.Cabbage is a vegetable crop with an output of about 76 million tons and an economic value of $ 15 billion (2010). It is among the world's largest cultivated crops. Cabbage is a model crop of morphological research with morphologically diverse subspecies such as cabbage, kale, broccoli, cola bean, cauliflower (cauliflower). In particular, from a nutritional point of view, cabbage contains a large amount of protein, carotenoid as well as glucosinolate with anticancer effect. To further increase the economic value of these cabbages, breeders have been endeavoring to produce cabbages that are resistant to high yields, pest and environmental stresses, or contain many useful substances.
양배추의 새로운 품종을 개발하기 위해서는 우수한 계통의 개발이 중요하며, F1 품종의 양친이 되는 계통은 원종이라하며, 이 원종들의 순도는 개발되는 F1 품종의 순도로 이어져 F1품종의 품질에 그대로 연계된다. 원종계통 육성을 위해 교배를 통해 좋은 형질을 도입하고 지속적인 자배(selfing)를 통해 고정을 시키며, 이 고정 과정은 보통 8-10년 이상 소요되고, 육종가들은 양배추의 표현형에 의존하여 고정여부를 판별한다. 표현형에 의존한 고정여부 판별방법은 많은 시간 및 노동이 필요할 뿐만 아니라 재현성이 떨어지는 단점이 있었다. 또한 형태학적 판별은 명확한 유전적 특성(genetic attribute)을 반영하지 못한다.In order to develop new varieties of cabbage, it is important to develop an excellent lineage. The parent line of the F1 breed is called the progeny, and the purity of these progeny leads to the purity of the developed F1 breed, which is directly related to the quality of the F1 breed. In order to nurture the genera, introduction of good traits through crossing and permanent self-fixation, the fixation process usually takes 8-10 years, and breeders depend on the phenotype of cabbage to determine whether they are fixed . There is a disadvantage in that the method of determining whether or not a phenotype depends on phenotype is not only time consuming and labor-consuming but also low in reproducibility. Morphological discrimination also does not reflect genetic attributes.
본 발명에서는 이러한 단점을 극복하기 위하여, 계통의 순도 및 고정 정도를 판별하고 고정된 계통을 조기 선발하기 위한 양배추의 분자표지 마커를 개발코자 하였다.In order to overcome these disadvantages, the present invention has developed a molecular marker marker for cabbage in order to determine the purity and fixation degree of the system and early selection of the fixed system.
한편, 한국등록특허 제0652501호에는 '금싸라기 계통 참외의 에프1 종자 순도검정방법'이 개시되어 있고, 한국등록특허 제1014238호에는 '수박 F1 종자 순도 검정 방법'이 개시되어 있으나, 본 발명의 양배추의 계통 순도 검정과 조기 고정 계통 선발을 위한 단일염기다형성 마커 세트 및 이의 용도에 대해서는 기재된 바가 없다.Korean Patent No. 0652501 discloses a method for assaying the purity of F-1 seeds of the melon family, and Korean Patent No. 1014238 discloses a method for assaying the watermelon F1 seed purity. However, There is no description of a single base polymorphism marker set and its use for the systematic purity assay and early immobilization system selection.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 23 계통의 양배추류의 기 서열들을 사용하여 전체 유전체 수준의 단일염기다형성(SNP) 마커를 발굴하고, 다형성이 많이 나타나는 구간을 분석하여, 이 구간에서 23 계통 중 6 계통 이상에서 다형성을 보이는 SNP 분자 마커로 필터링하였다. 그 후, 잘 고정되지 않는 유전자좌를 중심으로 각 염색체별로 SNP를 선별하고 각각의 프라이머 세트를 제작한 뒤, 고정이 완벽하게 되지 않은 6 계통에서 개체를 무작위로 선발하여 유전형 분석을 실시하고, 유전형 분석 결과 고정이 잘 안 되는 부위로 나타난 SNP를 염색체별로 선발하여 총 24개의 마커 세트를 개발함으로써, 본 발명을 완성하였다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and the present inventors have found that SNP markers of a total genome level can be identified using sequences of 23 lines of cabbage species, and the polymorphism- , And SNP molecular markers that showed polymorphism in more than 6 out of 23 lines in this section. Then, SNPs were selected for each chromosome centered on loci that were not immobilized, and primer sets were prepared. Genetic analysis was performed by randomly selecting individuals in six strains in which the primers were not completely fixed, The present invention has been accomplished by selecting 24 chromosomes of SNPs with a total of 24 marker sets.
상기 과제를 해결하기 위해, 본 발명은 SNP(single nucleotide polymorphism) 위치 염기를 포함하는 서열번호 1 내지 24의 염기서열로 이루어진 폴리뉴클레오티드로부터 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발용 SNP 조성물을 제공한다.In order to solve the above problems, the present invention provides a polynucleotide comprising at least one polynucleotide selected from polynucleotides consisting of the nucleotide sequences of SEQ ID NOS: 1 to 24 comprising a single nucleotide polymorphism (SNP) position base or a complementary polynucleotide thereof. A systematic purity of cabbage, and an SNP composition for selecting an early immobilization system.
또한, 본 발명은 상기 SNP 또는 이의 cDNA를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발용 마이크로어레이를 제공한다.In addition, the present invention provides a microarray for systematic purity verification and early establishment of cabbage comprising the SNP or cDNA thereof.
또한, 본 발명은 양배추 시료에서 게놈 DNA를 분리하여 각 SNP 위치 염기인 다형성 부위의 유전자형을 결정하는 단계를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법을 제공한다.Also, the present invention provides a method for selecting a genotype of a polymorphic site, which is a base for each SNP, by isolating genomic DNA from a cabbage sample.
또한, 본 발명은 상기 서열번호 1 내지 24의 염기서열로 이루어진 SNP 폴리뉴클레오티드 증폭용 프라이머 세트를 제공한다.In addition, the present invention provides a primer set for amplifying a SNP polynucleotide comprising the nucleotide sequences of SEQ ID NOS: 1 to 24.
또한, 본 발명은 상기 프라이머 세트 및 증폭 반응을 수행하기 위한 시약을 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발을 위한 키트를 제공한다.The present invention also provides a kit for the systematic purity determination of cabbage and the early fixing system selection, which comprises the primer set and the reagent for carrying out the amplification reaction.
본 발명에 따른 단일염기다형성(SNP) 마커 세트는 양배추의 계통 순도검정 및 조기 고정 계통 선발을 전체 유전체 수준에서 검정할 수 있어 보다 정확하고 효율적인 결과를 얻어낼 수 있으므로, 산업적으로 유용하게 이용될 수 있을 것이다.The single nucleotide polymorphism (SNP) marker set according to the present invention can test the systematic purity of cabbage and early fixed line selection at the entire genome level, thereby obtaining more accurate and efficient results, and thus can be industrially useful There will be.
도 1은 본 발명의 고정 계통 검정용 SNP 마커 세트 구축 모식도이다.
도 2는 6계통의 양배추 계통에 대해 본 발명의 마커 세트를 이용한 유전형 분석 결과이다.
도 3은 소포자배양체 유래 계통(9949) 30 개체에 대한 본 발명의 마커 세트를 이용한 유전형분석 결과이다.
도 4는 소포자배양체 유래 계통(9951) 27 개체에 대한 본 발명의 마커 세트를 이용한 유전형분석 결과이다.FIG. 1 is a schematic diagram showing the construction of a SNP marker set for a fixed system of the present invention.
FIG. 2 shows results of genotype analysis using the marker set of the present invention for six lines of cabbage lines.
FIG. 3 shows the results of genotyping analysis using the marker set of the present invention for 30 individuals from the micro-organism-derived strain (9949).
4 shows the result of genotype analysis using the marker set of the present invention for 27 individuals from the micro-organism-derived strain (9951).
본 발명의 목적을 달성하기 위하여, 본 발명은 SNP(single nucleotide polymorphism) 위치 염기를 포함하는 서열번호 1 내지 24의 염기서열로 이루어진 폴리뉴클레오티드로부터 선택되는 하나 이상의 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드를 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발용 SNP 조성물을 제공한다.In order to accomplish the object of the present invention, the present invention includes at least one polynucleotide selected from polynucleotides consisting of the nucleotide sequences of SEQ ID NOS: 1 to 24 comprising a single nucleotide polymorphism (SNP) base or its complementary polynucleotide A systematic purity of cabbage, and an SNP composition for selecting an early immobilization system.
상기 서열번호 1 내지 24는 상기 각각의 SNP 부위의 염기서열을 포함하는 폴리뉴클레오티드이다. 상기 서열번호 1 내지 24는 다형성 부위를 포함하는 다형성 서열이다. 다형성 서열(polymorphic sequence)이란 폴리뉴클레오티드 서열 중에 SNP를 나타내는 다형성 부위(polymorphic site)를 포함하는 서열을 말한다. 상기 폴리뉴클레오티드 서열은 DNA 또는 RNA가 될 수 있다.SEQ ID NOS: 1 to 24 are polynucleotides comprising the nucleotide sequence of each SNP site. SEQ ID NOS: 1 to 24 are polymorphic sequences comprising polymorphic sites. A polymorphic sequence refers to a sequence comprising a polymorphic site representing a SNP in a polynucleotide sequence. The polynucleotide sequence may be DNA or RNA.
본 발명의 일 구현 예에 따른 SNP 조성물에 있어서, 상기 SNP 위치 염기는 서열번호 1 부터 서열번호 24까지 모두 61번째로, 다형성 염기 정보는 표 3의 SNP 염기서열 정보에 [/]로 표시하였다.In the SNP composition according to an embodiment of the present invention, the SNP position base is 61st from SEQ ID NO: 1 to SEQ ID NO: 24, and the polymorphic base information is indicated by [/] in the SNP nucleotide sequence information of Table 3.
본 발명에 따른 양배추의 계통 순도검정 및 조기 고정 계통 선발용 SNP를 구성하는 각 단일 SNP의 폴리뉴클레오티드는 바람직하게는 10개 이상의 연속 염기이며, 더욱 바람직하게는 15개 이상의 연속 염기이며, 더더욱 바람직하게는 20개 이상의 연속 염기이며, 가장 바람직하게는 서열번호 1 내지 24의 각 서열이다.The polynucleotide of each single SNP constituting the SNP for systematic purity determination of the cabbage according to the present invention and the SNP for early immobilization system is preferably at least 10 consecutive bases, more preferably at least 15 consecutive bases, Is at least 20 contiguous bases, most preferably each sequence of SEQ ID NOS: 1-24.
본 발명은 또한, 상기 SNP의 폴리뉴클레오티드, 이에 의해 코딩되는 폴리펩티드 또는 이의 cDNA를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발용 마이크로어레이를 제공한다. 바람직하게는, 상기 폴리뉴클레오티드는 아미노-실란, 폴리-L-라이신 또는 알데히드의 활성기가 코팅된 기판에 고정될 수 있으나, 이에 제한되지는 않는다. 바람직하게는, 상기 기판은 실리콘 웨이퍼, 유리, 석영, 금속 또는 플라스틱일 수 있으나, 이에 제한되지는 않는다. 상기 폴리뉴클레오티드를 기판에 고정화시키는 방법으로는 피에조일렉트릭(piezoelectric) 방식을 이용한 마이크로피펫팅(micropipetting) 법, 핀(pin) 형태의 스폿터(spotter)를 이용한 방법 등을 사용할 수 있다.The present invention also provides a microarray for systematic purity verification and early establishment of cabbage comprising a polynucleotide of the SNP, a polypeptide encoded thereby, or a cDNA thereof. Preferably, the polynucleotide may be immobilized on a substrate coated with an activator of amino-silane, poly-L-lysine or aldehyde, but is not limited thereto. Preferably, the substrate may be a silicon wafer, glass, quartz, metal or plastic, but is not limited thereto. As a method for immobilizing the polynucleotide on a substrate, a micropipetting method using a piezo electric method, a method using a pin-type spotter can be used.
본 발명에 따른 마이크로어레이는 본 발명에 따른 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드, 그에 의해 코딩되는 폴리펩티드 또는 그의 cDNA를 이용하여 본 분야의 당업자에게 알려져 있는 통상적인 방법에 의해 제조될 수 있다.The microarray according to the present invention can be produced by a conventional method known to those skilled in the art using a polynucleotide according to the present invention or a complementary polynucleotide thereof, a polypeptide encoded thereby, or cDNA thereof.
본 발명은 또한,The present invention also relates to
양배추 시료에서 게놈 DNA를 분리하는 단계; 및Isolating the genomic DNA from the cabbage sample; And
본 발명의 서열번호 1 내지 24의 염기서열로 이루어진 폴리뉴클레오티드의 각 SNP(single nucleotide polymorphism) 위치 염기인 다형성 부위의 유전자형을 결정하는 단계를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법을 제공한다.Determining the genotype of a polymorphic site which is a base of each SNP (single nucleotide polymorphism) of a polynucleotide consisting of the nucleotide sequence of SEQ ID NOS: 1 to 24 of the present invention, and a method of selecting a systematic purity of the cabbage and selecting an early- do.
본 발명의 방법에 있어서, 양배추 시료로부터 게놈 DNA를 분리하는 방법은 당업계에 알려진 통상적인 방법을 통하여 이루어질 수 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 정제하거나 PCR과 같은 증폭 방법을 사용하여 특정한 영역을 특이적으로 증폭하고 이를 분리함으로써 이루어질 수 있다. 본 발명에 있어서, DNA란 DNA 뿐만 아니라 mRNA로부터 합성되는 cDNA도 포함한다. 피검체로부터 핵산을 얻는 단계는 예를 들면, PCR 증폭법, 리가제 연쇄 반응(LCR), 전사증폭(transcription amplification), 자가유지 서열복제 및 핵산에 근거한 서열 증폭 (NASBA)이 사용될 수 있으나, 이에 제한되지는 않는다.In the method of the present invention, a method of isolating genomic DNA from a cabbage sample can be performed by a conventional method known in the art. For example, DNA can be directly purified from tissues or cells or amplified by specific amplification of specific regions using amplification methods such as PCR and separation thereof. In the present invention, DNA includes not only DNA but also cDNA synthesized from mRNA. For example, PCR amplification, LCR, transcription amplification, self-sustained sequence replication and nucleic acid-based sequence amplification (NASBA) can be used to obtain the nucleic acid from the subject, But is not limited to.
분리된 DNA의 염기서열의 결정은 당업계에 알려진 다양한 방법에 의하여 이루어질 수 있다. 예를 들면, 디데옥시법에 의한 직접적인 핵산의 뉴클레오티드 서열의 결정을 통하여 이루어지거나, SNP 부위의 서열을 포함하는 프로브 또는 그에 상보적인 프로브를 상기 DNA와 혼성화시키고 그로부터 얻어지는 혼성화 정도를 측정함으로써 다형성 부위의 뉴클레오티드 서열을 결정하는 방법 등이 이용될 수 있으나, 이에 제한되지는 않는다. 상기 혼성화의 정도는 예를 들면, 검출가능한 표지를 표적 DNA에 표지하여, 혼성화된 표적 DNA 만을 특이적으로 검출함으로써 이루어질 수 있으며, 그외 전기적 신호 검출방법 등이 사용될 수 있으나, 이에 제한되지는 않는다. 본 발명에 따른 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법은 바람직하게는, 상기 양배추 시료로부터 분리한 핵산 시료를 본 발명에 따른 SNP를 포함하는 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드, 또는 이와 혼성화하는 폴리뉴클레오티드와 혼성화시킨 후 혼성화 결과를 검출하는 단계를 포함할 수 있다.Determination of the base sequence of the isolated DNA can be performed by various methods known in the art. For example, a probe comprising a sequence at the SNP site or a complementary probe thereof is hybridized with the DNA, and the degree of hybridization obtained is determined through determination of the nucleotide sequence of the direct nucleic acid by the dideoxy method, A method for determining the nucleotide sequence, and the like can be used, but the present invention is not limited thereto. The degree of hybridization can be determined, for example, by marking a detectable label on the target DNA and specifically detecting only the hybridized target DNA, and other electrical signal detection methods can be used, but the present invention is not limited thereto. The systematic purity verification and early establishment system selection method of cabbage according to the present invention is preferably a method wherein the nucleic acid sample separated from the cabbage sample is used as a polynucleotide comprising a SNP according to the present invention or a complementary polynucleotide thereof or And then detecting hybridization results after hybridization with the polynucleotide.
또한, 본 발명은 본 발명의 서열번호 1 내지 24의 염기서열로 이루어진 SNP(single nucleotide polymorphism) 폴리뉴클레오티드 증폭용 프라이머 세트를 제공한다.In addition, the present invention provides a primer set for amplifying SNP (polynucleotide polynomial) SNP consisting of the nucleotide sequences of SEQ ID NOS: 1 to 24 of the present invention.
본 발명의 프라이머 세트는 서열번호 25 내지 120의 총 24개 세트의 올리고뉴클레오티드 프라이머 세트로 이루어진 군으로부터 선택되는 하나 이상의 프라이머 세트를 포함하며, 상기 각 프라이머 세트는 ASP1, ASP2, LSP 및 STA의 4개의 프라이머가 하나의 세트를 이루며, 예를 들면, 순서대로 서열번호 25부터 28까지는 서열번호 1의 SNP 폴리뉴클레오티드를 증폭하기 위한 프라이머 세트이며, 서열번호 29부터 32까지는 서열번호 2의 SNP 폴리뉴클레오티드를 증폭하기 위한 프라이머 세트이며, 서열번호 113부터 116까지는 서열번호 23의 SNP 폴리뉴클레오티드를 증폭하기 위한 프라이머 세트이며, 서열번호 117부터 120까지는 서열번호 24의 SNP 폴리뉴클레오티드를 증폭하기 위한 프라이머 세트이다. 본 발명의 STA(SNPtype assay specific target amplification primer)와 LSP(SNPtype assay locus specific primer)는 목표 염기서열(표 3) 증폭을 위해 사용되는 프라이머 세트이며, LSP와 ASP(SNPtype assay allele specific primer)는 SNP 위치 염기를 확인하기 위해 사용되는 프라이머 세트이다. ASP 프라이머의 3' 말단 최종 염기가 SNP 위치 염기를 나타내는데, 본 발명의 ASP1은 TO1000 참조서열에 대한 프라이머이며, ASP2는 타 품종의 유전체 서열에 대한 프라이머이다(표 4).The primer set of the present invention comprises at least one set of primers selected from the group consisting of a total of 24 sets of oligonucleotide primers of SEQ ID NOS: 25 to 120, each set of ASP1, ASP2, LSP and STA SEQ ID Nos. 25 to 28 are primer sets for amplifying the SNP polynucleotides of SEQ ID No. 1, and SNP polynucleotides of SEQ ID Nos. 2 to 29 are amplified for the amplification of the SNP polynucleotides of SEQ ID Nos. SEQ ID NOS: 113 to 116 are primer sets for amplifying the SNP polynucleotides of SEQ ID NO: 23, and SEQ ID NOs: 117 to 120 are primer sets for amplifying the SNP polynucleotide of SEQ ID NO: 24. The SNP type assay specific target amplification primer (STA) and the LSP (SNPtype assay locus specific primer) of the present invention are primer sets used for amplification of target sequence (Table 3). LSP and ASP (SNPtype assay allele specific primer) Location A primer set used to identify bases. ASP 3 of the ASP primer The final base represents the SNP locus, ASP1 of the present invention is the primer for the TO1000 reference sequence and ASP2 is the primer for the genomic sequence of the other varieties (Table 4).
본 발명에 있어서, "프라이머"는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로서 작용할 수 있다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 한다. 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity) 뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다.In the present invention, a "primer" refers to a single strand oligonucleotide sequence complementary to a nucleic acid strand to be copied, and may serve as a starting point for synthesis of a primer extension product. The length and sequence of the primer should allow the synthesis of the extension product to begin. The specific length and sequence of the primer will depend on the primer usage conditions such as temperature and ionic strength, as well as the complexity of the desired DNA or RNA target.
본 발명은 또한, 본 발명의 프라이머 세트 및 증폭 반응을 수행하기 위한 시약을 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발을 위한 키트를 제공한다. 본 발명의 키트에서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 버퍼 등을 포함할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 안내서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.The present invention also provides kits for systematic purity verification of cabbage and early fixation system selection, including a primer set of the present invention and a reagent for carrying out an amplification reaction. In the kit of the present invention, the reagent for carrying out the amplification reaction may include DNA polymerase, dNTPs, buffer and the like. In addition, the kit of the present invention may further include a user guide describing optimal reaction performing conditions. The manual is a printed document that explains how to use the kit, for example, how to prepare PCR buffer, the reaction conditions presented, and so on. The brochure includes instructions on the surface of the package including the brochure or leaflet in the form of a brochure, a label attached to the kit, and a kit. In addition, the brochure includes information that is disclosed or provided through an electronic medium such as the Internet.
또한, 본 발명은In addition,
양배추 시료에서 게놈 DNA를 분리하는 단계;Isolating the genomic DNA from the cabbage sample;
상기 분리된 게놈 DNA를 주형으로 하고, 본 발명의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 본 발명의 서열번호 1 내지 24의 염기서열로 이루어진 SNP(single nucleotide polymorphism) 폴리뉴클레오티드를 증폭하는 단계; 및Amplifying a single nucleotide polymorphism (SNP) polynucleotide comprising the nucleotide sequence of SEQ ID NOS: 1 to 24 of the present invention by using the separated genomic DNA as a template and performing an amplification reaction using the oligonucleotide primer set of the present invention ; And
상기 증폭 산물을 검출하는 단계를 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법을 제공한다.And a step of detecting the amplification product, and a method of selecting a systematic purity of cabbage and a method of selecting an early fixed system.
본 발명의 방법에 있어서, 양배추 시료로부터 게놈 DNA를 분리하는 방법은 당업계에 알려진 통상적인 방법을 통하여 이루어질 수 있으며, 그 방법은 전술한 바와 같다. 상기 분리된 양배추 게놈 DNA를 주형으로 하고, 본 발명의 일 실시예에 따른 하나 이상의 올리고뉴클레오티드 프라이머 세트를 프라이머로 이용하여 증폭 반응을 수행하여 표적 서열을 증폭할 수 있다. 표적 핵산을 증폭하는 방법은 중합효소연쇄반응(PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭 시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ 복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 이 중에서, PCR이란 중합효소를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져 있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.In the method of the present invention, the method of isolating the genomic DNA from the cabbage sample can be performed by a conventional method known in the art, and the method is as described above. The target sequence may be amplified by performing amplification reaction using the separated cabbage genomic DNA as a template and using one or more sets of oligonucleotide primers according to one embodiment of the present invention as primers. Methods for amplifying a target nucleic acid include polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, transcription-based amplification system, Strand displacement amplification or amplification with Q [beta] replicase, or any other suitable method for amplifying nucleic acid molecules known in the art. Among them, PCR is a method of amplifying a target nucleic acid from a pair of primers that specifically bind to a target nucleic acid using a polymerase. Such PCR methods are well known in the art, and commercially available kits may be used.
본 발명의 방법에 있어서, 상기 증폭된 표적 서열은 검출가능한 표지 물질로 표지될 수 있다. 일 구현 예에서, 상기 표지 물질은 형광, 인광 또는 방사성을 발하는 물질일 수 있으나, 이에 제한되지 않는다. 바람직하게는, 상기 표지 물질은 Cy-5 또는 Cy-3이다. 표적 서열의 증폭시 프라이머의 5'-말단에 Cy-5 또는 Cy-3를 표지하여 PCR을 수행하면 표적 서열이 검출가능한 형광 표지 물질로 표지될 수 있다. 또한, 방사성 물질을 이용한 표지는 PCR 수행시 32P 또는 35S 등과 같은 방사성 동위원소를 PCR 반응액에 첨가하면 증폭 산물이 합성되면서 방사성이 증폭 산물에 혼입되어 증폭 산물이 방사성으로 표지될 수 있다. 표적 서열을 증폭하기 위해 이용된 하나 이상의 올리고뉴클레오티드 프라이머 세트는 상기에 기재된 바와 같다.In the method of the present invention, the amplified target sequence may be labeled with a detectable labeling substance. In one embodiment, the labeling material can be, but is not limited to, a fluorescent, phosphorescent or radioactive substance. Preferably, the labeling substance is Cy-5 or Cy-3. When the target sequence is amplified, PCR is carried out by labeling the 5'-end of the primer with Cy-5 or Cy-3, and the target sequence may be labeled with a detectable fluorescent labeling substance. When the radioactive isotope such as 32 P or 35 S is added to the PCR reaction solution, the amplification product may be synthesized and the radioactive substance may be incorporated into the amplification product and the amplification product may be labeled as radioactive. The set of one or more oligonucleotide primers used to amplify the target sequence is as described above.
본 발명의 방법에 있어서, 양배추의 계통 순도검정 및 조기 고정 계통 선발을 위한 방법은 상기 증폭 산물을 검출하는 단계를 포함하며, 상기 증폭 산물의 검출은 시퀀싱, DNA 칩, 겔 전기영동, 방사성 측정, 형광 측정 또는 인광 측정을 통해 수행될 수 있으나, 이에 제한되지 않는다. 증폭 산물을 검출하는 방법 중의 하나로서, 겔 전기영동을 수행할 수 있다. 겔 전기영동은 증폭 산물의 크기에 따라 아가로스 겔 전기영동 또는 아크릴아미드 겔 전기영동을 이용할 수 있다. 또한, 형광 측정 방법은 프라이머의 5'-말단에 Cy-5 또는 Cy-3를 표지하여 PCR을 수행하면 표적 서열이 검출가능한 형광 표지 물질로 표지되며, 이렇게 표지된 형광은 형광 측정기를 이용하여 측정할 수 있다. 또한, 방사성 측정 방법은 PCR 수행시 32P 또는 35S 등과 같은 방사성 동위원소를 PCR 반응액에 첨가하여 증폭 산물을 표지한 후, 방사성 측정기구, 예를 들면, 가이거 계수기(Geiger counter) 또는 액체 섬광 계수기(liquid scintillation counter)를 이용하여 방사성을 측정할 수 있다.
In the method of the present invention, the method for the systematic purity determination of cabbage and the selection of an early immobilization system comprises the step of detecting the amplification product, wherein the detection of the amplification product is performed by sequencing, DNA chip, gel electrophoresis, But not limited to, fluorescence measurement or phosphorescence measurement. As one method of detecting the amplification product, gel electrophoresis can be performed. Gel electrophoresis can be performed using agarose gel electrophoresis or acrylamide gel electrophoresis depending on the size of the amplification product. Also, in the fluorescence measurement method, Cy-5 or Cy-3 is labeled at the 5'-end of the primer. When PCR is carried out, the target is labeled with a fluorescent label capable of detecting the target sequence. The labeled fluorescence is measured using a fluorescence meter can do. In addition, in the case of performing the PCR, the radioactive isotope such as 32 P or 35 S is added to the PCR reaction solution to mark the amplification product, and then a radioactive measurement device such as a Geiger counter or liquid scintillation counter The radioactivity can be measured using a liquid scintillation counter.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
재료 및 방법Materials and methods
실험재료Experimental material
국내외에서 수집한 23 계통의 양배추류의 계통명 및 출처는 하기 표 1과 같다.The names and sources of the 23 cabbages collected at home and abroad are shown in Table 1 below.
SNPSNP 마커Marker 선별 및 유전형분석 Screening and genotyping
국내외에서 수집한 23 계통의 양배추류를 기반으로 10X 이상의 NGS 리드를 생산하였다. 생산된 리드는 퀄리티가 낮은 서열을 제거한 후 446Mb의 양배추류 참조서열(TO1000)에 BWA(Burrows-Wheeler Alignment tool)를 이용해 맵핑하였다. 맵핑된 리드들은 SNP 콜링(calling)의 정확도를 높이기 위해 게놈 분석 툴인 GATK(http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit)를 이용하여 이중 마스킹(duplicate masking), 국소적 재정렬(local realignment) 과정을 수행한 후 UnifiedGenotyper를 이용해 SNP(Single Nucleotide Polymorphism)와 InDel(Insertion-Deletion)을 예측하였다. 23계통에서 만들어진 SNP/InDel을 염색체의 좌(loci)를 기반으로 병합한 후 SNP/InDel 매트릭스(matrix)를 생성한 후, 각 SNP 위치좌(locus)를 대상으로 인접 60bp에서 SNP 또는 InDel이 나타나는지 유무를 조사하였다. 그 결과 인접 60bp에서 SNP 또는 InDel이 없는 부분을 SNP 마커 개발의 타겟으로 선정하고 Primer3(http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm)를 이용하여 특유의 SNP를 검출할 수 있는 프라이머를 생산하였다. 그 후 mesohexaploid 지놈의 특성을 고려하여, 생산된 프라이머를 TO1000 영역에 다시 맵핑하여 프라이머가 단일 위치좌만 증폭하는지를 평가한 후 단일 염기좌 맵핑 영역만 이용하여 HVR(hyper-variable region)을 발굴하였고, 이로부터 2-5Mb 단위로 96개의 SNP 마커를 선정하였다.Based on the 23 lines of cabbages collected at home and abroad, we have produced NGS leads of 10X or more. The produced leads were mapped using a Burrows-Wheeler Alignment tool (BWA) to a 446 Mb cabbage reference sequence (TO1000) after removing low-quality sequences. Mapped leads can be duplicated masking using the genomic analysis tool GATK (http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit) to increase the accuracy of SNP calling, After performing the local realignment process, we used UnifiedGenotyper to predict SNP (Single Nucleotide Polymorphism) and InDel (Insertion-Deletion). The SNP / InDel matrix was generated by merging the SNP / InDel of 23 lines based on the loci of the chromosomes. Then, SNP / InDel matrix was generated, and SNPs or InDels appeared at 60 bp adjacent to the locus of each SNP Respectively. As a result, SNP markers were selected as targets for SNP markers in the vicinity of 60 bp, and Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm) Was produced. Then, considering the characteristics of the mesohexaploid genome, the generated primer was mapped again to the TO1000 region to evaluate whether the primer only amplified in a single position, and then a hyper-variable region (HVR) was extracted using only a single base left mapping region. From this, 96 SNP markers were selected in 2-5 Mb units.
각 SNP를 유전형분석(genotyping) 할 수 있는 프라이머 세트를 제작하여, 고정이 완벽하게 되지 않는 6 계통에서 각 30개체씩 무작위로 선발하여 유전자형 분석을 하였다. 각 SNP의 유전자형 분석 방법은 Fluidigm 플랫폼을 이용하였다. 이 유전형분석 결과 중 고정이 잘 안되는 부위로 나타난 SNP를 각 염색체별 1-5개씩 선별하여 총 24개의 SNP 마커를 양배추류의 계통 고정 및 계통 순도를 검정할 수 있는 마커 세트로 개발하였고 이 마커 세트로 검정할 수 있는 SNP 유전자위를 양배추의 계통 고정 및 계통 순도 검정을 위한 유전자위로 개발하였다.
A primer set for genotyping each SNP was constructed and genotyped by random selection of 30 individuals in six strains that were not fully immobilized. Genotype analysis of each SNP was performed using the Fluidigm platform. A total of 24 SNP markers were selected for each of the chromosomes, and SNPs were selected as markers that can be used to test the systematic fixation and phylogeny of cabbage. The SNP gene on the chromosome of the cabbage was developed over the gene for the systematic and systematic purity assays.
실시예 1. SNP 통계치Example 1. SNP statistics
양배추류의 23 계통의 고품질의 리드(high quality read)를 맵핑한 결과 82%이상이 TO1000 참조서열에 맵핑되었다. 맵핑된 리드를 기반으로 분석한 SNP 결과는 표 2와 같으며, 평균 4,216,350개의 SNP와 437,484개의 InDel이 예측 되었다. 예측된 SNP/InDel을 기반으로 염색체 위치를 기반으로 SNP/InDel 매트릭스를 만든 결과, 총 21,587,643개의 좌(loci)에서 SNP 또는 InDel 변이가 나타나는 것을 알 수 있었다. 인접 60bp 서열에서 서열 변이가 없는 SNP를 조사하여 프라이머를 만든 결과, 121,909개의 SNP 마커 후보군이 만들어졌고, 그 중 101,639개의 SNP 마커가 단일 위치 증폭이 될 것으로 예측되었다.Mapping of high quality read of 23 lines of cabbage has resulted in more than 82% mapping to the TO1000 reference sequence. Based on the mapped leads, the SNP results are shown in Table 2, with an average of 4,216,350 SNPs and 437,484 InDels predicted. Based on the predicted SNP / InDel, SNP / InDel matrix was constructed based on the chromosomal location. As a result, SNP or InDel mutations were found in a total of 21,587,643 loci. As a result of priming with SNP without sequence mutation in the adjacent 60 bp sequence, 121,909 SNP marker candidates were generated, and 101,639 SNP markers were predicted to be single position amplification.
실시예Example 2. 2. SNPSNP 마커Marker 선정 selection
양배추류 지놈에서 서열 변이가 많이 일어나는 영역을 선정하기 위하여 각 계통의 SNP 정보를 기반으로 100K 범위에 나타나는 SNP의 빈도수(frequency)를 이용하여 two-sided hypergeometric test를 수행하였다. 그 결과, 각 계통에서 유의확률(p-value)이 0.001이하인 영역을 HVR(hyper-variable region)으로 정하고, 23계통 중 HVR이 7계통 이상에서 나타나는 영역이 cHVR(common HVR region)으로 정의하였다. 그래서, cHVR 영역의 SNP 마커를 파싱한 후 23개의 양배추류에서 4계통 이상에서 SNP 다형성을 보이는 SNP 마커만을 2-5Mb 간격으로 선정하였다. 그 후 Fluidigm으로 96개의 SNP 마커의 유전자형을 확인하여 24개의 고정 검정을 위한 SNP 마커 세트를 만들었다(표 3).Two-sided hypergeometric tests were performed using the frequencies of SNPs in the 100K range based on the SNP information of each strain in order to select regions where the sequence variation occurs frequently in the cabbage genome. As a result, a region with a significance (p-value) of 0.001 or less was defined as a hypervariable region (HVR) in each line, and a region in which the HVRs in 7 lines or more among 23 lines were defined as cHVR (common HVR region). Therefore, only SNP markers showing SNP polymorphism in more than 4 lines in 23 cabbages were selected at intervals of 2-5Mb after parsing SNP markers in cHVR region. Fluidigm was then used to identify 96 genotypes of SNP markers to create a set of SNP markers for 24 fixed assays (Table 3).
*[TO1000 서열/타 품종 서열]
* [TO1000 sequence / other sequence]
실시예Example 3. 고정 검정 결과 3. Fixed test results
고정 검정을 위한 24개의 마커 세트를 기반으로 고정여부 판별이 가능한지를 검정하기 위하여 6계통의 양배추 계통을 각각 29-30 개체씩 선정하여 유전형분석을 하였다. 계통 9913과 9914 계통은 육종가의 판단에 의해 표현형 분리가 더 이상 일어나지 않아 육종가가 고정되었다고 판단하는 계통이며, 나머지 4계통은 표현형 분리가 일어나는 아직 고정이 되는 않는 계통이다. 유전형 분석 결과 9913과 9914 계통에서는 이형접합적인 유전자위(loci, 노란색 표기)가 존재하나(도 2A 및 B), 그정도가 크기 않아 24개의 마커중 각 개체별 다른 유전자형을 보이는 개체는 각각 9개체, 2개체씩 검출되었다. 반면 나머지 4 계통에서는 24개의 마커 중 절반 이상의 마커에서 각 개체별로 다른 유전자형을 보여 고정 정도가 매우 떨어짐을 알 수 있었다(도 2C-F). 또한 육종가가 표현형 분리가 일어나지 않는 기준하에 정의한 고정은 실제 유전자형의 완전한 고정과는 다름을 알 수 있었다. 또한, 개체간의 변이가 없이 완벽하게 고정되었을 것으로 사료되는 소포자 배양체 유래 두 계통의 27-30개체의 유전자형을 개발된 마커 세트를 이용하여 검정한 결과 모든 개체들의 유전자형이 일치하는 것을 알 수가 있었다(도 3 및 4).Based on the 24 marker sets for the stationary test, the genotypic analysis was carried out by selecting 29 cabbage lines from each of the 6 lines of cabbage lines, respectively, in order to test whether they could be fixed or not. The 9913 and 9914 strains are the strains that determine that the breeder is fixed because the breeder no longer segregates the phenotype, and the remaining 4 strains are the strains that do not yet become phenotypic. In genotype analysis, loci (yellow markings) were present in 9913 and 9914 strains (FIGS. 2A and B), but there were 9 markers showing different genotypes among 24 markers, Two individuals were detected. On the other hand, in the remaining 4 lines, more than half of the 24 markers showed different genotypes for each individual, indicating that the degree of fixation was very poor (FIG. 2C-F). In addition, it was found that the fixation defined by the breeder under the criterion that the phenotype separation did not occur was different from the complete fixation of the actual genotype. In addition, the genotypes of 27-30 individuals from two microbial cultures, which were supposed to be completely immobilized without variation among individuals, were confirmed using the developed marker set, 3 and 4).
상기의 결과를 통해, 고정이 되지 않는 계통의 고정과 F1 품종 개발을 위한 원종의 증식시 본 발명의 마커 세트를 이용하면 원종의 순도를 완벽하게 높일 수 있으며, 고정에 걸리는 시간을 단축할 수 있을 것으로 사료된다.The above results show that, when the marker set of the present invention is used for the proliferation of the progeny for fixing the strains which are not fixed and for the F1 breed development, the purity of the progeny can be perfectly increased and the time for fixation can be shortened .
<110> Korea Research Institute of Bioscience and Biotechnology <120> Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof <130> PN14311 <160> 120 <170> KopatentIn 2.0 <210> 1 <211> 121 <212> DNA <213> Brassica oleracea <400> 1 tttctctcat tcctctcctc aacctatcaa cactcgtcca tttctgttcc tcagcataca 60 tattcgagag caaaacctga tatcctgaaa agttcttccc tttatccact ttagctaact 120 t 121 <210> 2 <211> 121 <212> DNA <213> Brassica oleracea <400> 2 agtataccgg tgttgctaat ttgtatttta agatgctctt tcttcaaacc tatacaaaca 60 tagttccgtt ttttattgat agaaaattgt aagcggtggc ctaaagtttt gttagtagat 120 t 121 <210> 3 <211> 121 <212> DNA <213> Brassica oleracea <400> 3 tggttgattg catgagcgac ttcggctatt agtaataacc accgcaactt tattctcctc 60 atcagcgaag caaatatcag catgcaagcc aaacataata cctctgagtc gattcatcat 120 c 121 <210> 4 <211> 121 <212> DNA <213> Brassica oleracea <400> 4 aggaggagag atgcattaag atcgactggt ggacgactaa tgtatttgta attgtgagaa 60 ctataacgga tggcttatac gctttgaaca tcgtgcttca ggtgtgttac cttttgcttt 120 c 121 <210> 5 <211> 121 <212> DNA <213> Brassica oleracea <400> 5 gaaagccctt ctccgtggac tcacgacgca gctcttgaag cacgggagaa tcaagacgac 60 tcgagctaga gcaagtgcga tgaggaagtt tgtggataag atgattactc tcgctaaaga 120 t 121 <210> 6 <211> 121 <212> DNA <213> Brassica oleracea <400> 6 atccttgcgt cctcatcttt gctggaagtt acaaaccgac ggcacgggta ggtaaggtgg 60 gcaggctccc acgagatgct agtaatccat ttcttgtggc ctctaagggg gctgccatct 120 a 121 <210> 7 <211> 121 <212> DNA <213> Brassica oleracea <400> 7 agattgttgc tgcagttcac acctatccag ttacacggcg tctcgtcaat gccgttccag 60 ttgtgcagac ggttgaatga atcttgaaat cctctgttct tcagctccaa tagaaactga 120 c 121 <210> 8 <211> 121 <212> DNA <213> Brassica oleracea <400> 8 agctggtgtc caggctgatc ctcttggaga tctaaatacc gaaacagaga gaaaacttgg 60 cgagctagtt cgggaaaagt atgacaccga gttctacatc ctgcatcgct atccttcggc 120 t 121 <210> 9 <211> 121 <212> DNA <213> Brassica oleracea <400> 9 acaatcagtc tgaaagtaat gtctatgtgg ttggcctttt acatatgatt tccagtagta 60 ctcagcttcc tcagaggttc tgtcaatata actgcaaagc aaggaaatag ttaatttatt 120 t 121 <210> 10 <211> 121 <212> DNA <213> Brassica oleracea <400> 10 ataaccacac tcatctcgtg tgtttctttc ttttgagaat gcgcctccca caacatctcg 60 gtcctttgag aatgtcatta catgttccgt gatcttgact tatttttgct acagaccttg 120 t 121 <210> 11 <211> 121 <212> DNA <213> Brassica oleracea <400> 11 gataacggtg acatgagctg attgtgtttt gttggatact aaatcgccga ggctaagaga 60 ctggagatta ttgacttggt gaatttccag agcctcattg ataattacac tgacttatca 120 t 121 <210> 12 <211> 121 <212> DNA <213> Brassica oleracea <400> 12 aacataagtg gaaacagaga ttagcacaac agaaccgttc aaatacaaga taatgaatca 60 gctaagttaa tgcaaaacaa aagattcatg tcacaaagaa accaatcaaa tatcagctaa 120 g 121 <210> 13 <211> 121 <212> DNA <213> Brassica oleracea <400> 13 agctttgcaa tcaagttatc cctactctta cctgtaatca cggcaccagt tacgcgagca 60 taaacggctc gtatcagccc acttggataa gatacagtct ttgttaaatt tagatgatga 120 g 121 <210> 14 <211> 121 <212> DNA <213> Brassica oleracea <400> 14 tacatgcaac cgcagacgag aaagagttac aagtctgaac ctcggaggat tcaaactggc 60 cggtgtgatc tctccctcca ttggtaatct ctcctttctc atatcactta atcttggaga 120 c 121 <210> 15 <211> 121 <212> DNA <213> Brassica oleracea <400> 15 agattcaaca agaagaaact ctccaggaga cgatgtaagg ctctcacatc aagacagctt 60 cttatgatgc tctataagat ttgaatgttt gtcttttcaa tgtaaggtgg ctctttgagg 120 g 121 <210> 16 <211> 121 <212> DNA <213> Brassica oleracea <400> 16 cagttcactg gctgcgtgat atatggaatg taaaaacaat ccccaagttg aaagacttct 60 ttggagagta ataaaaggag ctataccggt cagctcaaac ttggaaagga gagggctccc 120 g 121 <210> 17 <211> 121 <212> DNA <213> Brassica oleracea <400> 17 acgtacgggc tcagacaaat tgtcacgtgt tgcaatatag gaggttcaaa atatagatgc 60 cgagtcaggt ccatgcaaca atgtttcctc aaattctgta gcattatcag ctcttagttt 120 t 121 <210> 18 <211> 121 <212> DNA <213> Brassica oleracea <400> 18 taggttggag aaggagtctg gctttttctt caacatgagg tactttgaag actgtataac 60 agctggtgaa tgggacgatg tggagaagta cctttctgga ttcactaaag ctgatgacaa 120 t 121 <210> 19 <211> 121 <212> DNA <213> Brassica oleracea <400> 19 agatctcagt atcggattcg atgcttttgt ttctgctgtt caactatata aaagcttgtg 60 gagggtgttc taagtttcaa gactcttgca taatcgttct tgagccatac taatcaattt 120 c 121 <210> 20 <211> 121 <212> DNA <213> Brassica oleracea <400> 20 ttaaaaacta tatatttatt atcattgtta gcttgatgaa accacaaatt aaagaaatac 60 atatcagctg gtctcgatgt taacttaaat gttaaagcca cactaatccc ataggttgta 120 g 121 <210> 21 <211> 121 <212> DNA <213> Brassica oleracea <400> 21 aattataatg tatatggcca atacaagaag gaggaactga aaaacttgaa acatctactt 60 gttcgtcgaa aatatgacgt gataaggtat ctgctccata tttctttcac gattgaccga 120 g 121 <210> 22 <211> 121 <212> DNA <213> Brassica oleracea <400> 22 tctgcggagt tcaatacaca gatcaacata cgcacataga agaaaatgta gtgattaaag 60 gggaagacgt atcaaataaa gacctggatc tggattttta tcaggatggt attgaatgga 120 c 121 <210> 23 <211> 121 <212> DNA <213> Brassica oleracea <400> 23 tcaacggaaa aaggaagatt taaaataatt aaaaccgaaa aagatacgag gaggaagagc 60 tgagttttag ttcattagtg gtggggactt acggagtaat aaggtgcggc ggcgacgaca 120 c 121 <210> 24 <211> 121 <212> DNA <213> Brassica oleracea <400> 24 ggtatgttgc ctttggcagt ggtgaattct gtattttaga tgtcgagtag ctcgggaagt 60 ttctcaggac gcagtagctc ggcttgtagt tccacaagtg attgccaaaa caactccttt 120 g 121 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ccatttctgt tcctcagcat acac 24 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 tccatttctg ttcctcagca tacat 25 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tttcaggata tcaggttttg ctctcga 27 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 tcaacctatc aacactcgtc ca 22 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 atgctctttc ttcaaaccta tacaaacac 29 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gatgctcttt cttcaaacct atacaaacat 30 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 ggccaccgct tacaattttc tatca 25 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 tgttgctaat ttgtatttta agatgctctt t 31 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 caccgcaact ttattctcct cg 22 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ccaccgcaac tttattctcc tca 23 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ttggcttgca tgctgatatt tgct 24 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 cgacttcggc tattagtaat aacca 25 <210> 37 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 caaagcgtat aagccatccg ttatac 26 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 tcaaagcgta taagccatcc gttatag 27 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 gatcgactgg tggacgacta atgt 24 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 acctgaagca cgatgttcaa ag 22 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cgcacttgct ctagctcgg 19 <210> 42 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgcacttgct ctagctcga 19 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 acgacgcagc tcttgaagca 20 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 ttatccacaa acttcctcat cgc 23 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 catctcgtgg gagcctgt 18 <210> 46 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 atctcgtggg agcctgc 17 <210> 47 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 aaccgacggc acgggta 17 <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 gaggccacaa gaaatggatt actag 25 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gattcattca accgtctgca cag 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 gattcattca accgtctgca caa 23 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 agttacacgg cgtctcgtca 20 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 gctgaagaac agaggatttc aaga 24 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 accgaaacag agagaaaact tgga 24 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 ccgaaacaga gagaaaactt ggc 23 <210> 55 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 aactcggtgt catacttttc ccga 24 <210> 56 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ctgatcctct tggagatcta aatacc 26 <210> 57 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 cagaacctct gaggaagctg ac 22 <210> 58 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 cagaacctct gaggaagctg ag 22 <210> 59 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtggttggcc ttttacatat gatttcca 28 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 tccttgcttt gcagttatat tgaca 25 <210> 61 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 ggaacatgta atgacattct caaaggat 28 <210> 62 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 ggaacatgta atgacattct caaaggac 28 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 cttttgagaa tgcgcctccc a 21 <210> 64 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 caaaaataag tcaagatcac ggaacat 27 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 ctaaatcgcc gaggctaaga gat 23 <210> 66 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 aaatcgccga ggctaagaga c 21 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 aggctctgga aattcaccaa gtca 24 <210> 68 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 agctgattgt gttttgttgg atact 25 <210> 69 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cagaaccgtt caaatacaag ataatgaatc aa 32 <210> 70 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 agaaccgttc aaatacaaga taatgaatca g 31 <210> 71 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ctttgtgaca tgaatctttt gttttgcatt aact 34 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 gattagcaca acagaaccgt tca 23 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 ggctgatacg agccgtttg 19 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 gggctgatac gagccgttta 20 <210> 75 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 acctgtaatc acggcaccag t 21 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 caaagactgt atcttatcca agtggg 26 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 tcggaggatt caaactggca 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 tcggaggatt caaactggcc 20 <210> 79 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 attaccaatg gagggagaga tcacac 26 <210> 80 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 cgagaaagag ttacaagtct gaacc 25 <210> 81 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 ggctctcaca tcaagacagc ttt 23 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gctctcacat caagacagct tc 22 <210> 83 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 ccaccttaca ttgaaaagac aaacattcaa at 32 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tccaggagac gatgtaaggc 20 <210> 85 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 acaatcccca agttgaaaga cttcta 26 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 caatccccaa gttgaaagac ttctt 25 <210> 87 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 gagctgaccg gtatagctcc tt 22 <210> 88 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 ctgcgtgata tatggaatgt aaaaacaat 29 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 tgttgcatgg acctgactca 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 tgttgcatgg acctgactcg 20 <210> 91 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 tcacgtgttg caatatagga ggttca 26 <210> 92 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 tgctacagaa tttgaggaaa cattgt 26 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 tcgtcccatt caccagcg 18 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 catcgtccca ttcaccagct 20 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 gtctggcttt ttcttcaaca tgaggt 26 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tccagaaagg tacttctcca cat 23 <210> 97 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 caagagtctt gaaacttaga acacccta 28 <210> 98 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 agagtcttga aacttagaac accctc 26 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 cgatgctttt gtttctgctg ttcaac 26 <210> 100 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gctcaagaac gattatgcaa gagt 24 <210> 101 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 aagttaacat cgagaccagc tgatag 26 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tttaagttaa catcgagacc agctgatat 29 <210> 103 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 tcattgttag cttgatgaaa ccacaaatta aagaa 35 <210> 104 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 ggattagtgt ggctttaaca tttaagtt 28 <210> 105 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 accttatcac gtcatatttt cgacgaat 28 <210> 106 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 ccttatcacg tcatattttc gacgaac 27 <210> 107 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 gccaatacaa gaaggaggaa ctgaaaa 27 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 ggagcagata ccttatcacg tca 23 <210> 109 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 ccaggtcttt atttgatacg tcttcct 27 <210> 110 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 110 ccaggtcttt atttgatacg tcttccc 27 <210> 111 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 caacatacgc acatagaaga aaatgtagtg att 33 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 tcctgataaa aatccagatc caggt 25 <210> 113 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 ccccaccact aatgaactaa aactct 26 <210> 114 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 ccccaccact aatgaactaa aactca 26 <210> 115 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 aaaaccgaaa aagatacgag gaggaaga 28 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 ccttattact ccgtaagtcc cca 23 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 gtcgagtagc tcgggaagtc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 gtcgagtagc tcgggaagtt 20 <210> 119 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 acaagccgag ctactgcgt 19 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 ggcagtggtg aattctgtat tttaga 26 <110> Korea Research Institute of Bioscience and Biotechnology <120> Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses the <130> PN14311 <160> 120 <170> Kopatentin 2.0 <210> 1 <211> 121 <212> DNA <213> Brassica oleracea <400> 1 tttctctcat tcctctcctc aacctatcaa cactcgtcca tttctgttcc tcagcataca 60 tattcgagag caaaacctga tatcctgaaa agttcttccc tttatccact ttagctaact 120 t 121 <210> 2 <211> 121 <212> DNA <213> Brassica oleracea <400> 2 agtataccgg tgttgctaat ttgtatttta agatgctctt tcttcaaacc tatacaaaca 60 tagttccgtt ttttattgat agaaaattgt aagcggtggc ctaaagtttt gttagtagat 120 t 121 <210> 3 <211> 121 <212> DNA <213> Brassica oleracea <400> 3 tggttgattg catgagcgac ttcggctatt agtaataacc accgcaactt tattctcctc 60 atcagcgaag caaatatcag catgcaagcc aaacataata cctctgagtc gattcatcat 120 c 121 <210> 4 <211> 121 <212> DNA <213> Brassica oleracea <400> 4 aggaggagag atgcattaag atcgactggt ggacgactaa tgtatttgta attgtgagaa 60 ctataacgga tggcttatac gctttgaaca tcgtgcttca ggtgtgttac cttttgcttt 120 c 121 <210> 5 <211> 121 <212> DNA <213> Brassica oleracea <400> 5 gaaagccctt ctccgtggac tcacgacgca gctcttgaag cacgggagaa tcaagacgac 60 tcgagctaga gcaagtgcga tgaggaagtt tgtggataag atgattactc tcgctaaaga 120 t 121 <210> 6 <211> 121 <212> DNA <213> Brassica oleracea <400> 6 atccttgcgt cctcatcttt gctggaagtt acaaaccgac ggcacgggta ggtaaggtgg 60 gcaggctccc acgagatgct agtaatccat ttcttgtggc ctctaagggg gctgccatct 120 a 121 <210> 7 <211> 121 <212> DNA <213> Brassica oleracea <400> 7 agattgttgc tgcagttcac acctatccag ttacacggcg tctcgtcaat gccgttccag 60 ttgtgcagac ggttgaatga atcttgaaat cctctgttct tcagctccaa tagaaactga 120 c 121 <210> 8 <211> 121 <212> DNA <213> Brassica oleracea <400> 8 agctggtgtc caggctgatc ctcttggaga tctaaatacc gaaacagaga gaaaacttgg 60 cgagctagtt cgggaaaagt atgacaccga gttctacatc ctgcatcgct atccttcggc 120 t 121 <210> 9 <211> 121 <212> DNA <213> Brassica oleracea <400> 9 acaatcagtc tgaaagtaat gtctatgtgg ttggcctttt acatatgatt tccagtagta 60 ctcagcttcc tcagaggttc tgtcaatata actgcaaagc aaggaaatag ttaatttatt 120 t 121 <210> 10 <211> 121 <212> DNA <213> Brassica oleracea <400> 10 ataaccacac tcatctcgtg tgtttctttc ttttgagaat gcgcctccca caacatctcg 60 gtcctttgag aatgtcatta catgttccgt gatcttgact tatttttgct acagaccttg 120 t 121 <210> 11 <211> 121 <212> DNA <213> Brassica oleracea <400> 11 gataacggtg acatgagctg attgtgtttt gttggatact aaatcgccga ggctaagaga 60 ctggagatta ttgacttggt gaatttccag agcctcattg ataattacac tgacttatca 120 t 121 <210> 12 <211> 121 <212> DNA <213> Brassica oleracea <400> 12 aacataagtg gaaacagaga ttagcacaac agaaccgttc aaatacaaga taatgaatca 60 gctaagttaa tgcaaaacaa aagattcatg tcacaaagaa accaatcaaa tatcagctaa 120 g 121 <210> 13 <211> 121 <212> DNA <213> Brassica oleracea <400> 13 agctttgcaa tcaagttatc cctactctta cctgtaatca cggcaccagt tacgcgagca 60 taaacggctc gtatcagccc acttggataa gatacagtct ttgttaaatt tagatgatga 120 g 121 <210> 14 <211> 121 <212> DNA <213> Brassica oleracea <400> 14 tacatgcaac cgcagacgag aaagagttac aagtctgaac ctcggaggat tcaaactggc 60 cggtgtgatc tctccctcca ttggtaatct ctcctttctc atatcactta atcttggaga 120 c 121 <210> 15 <211> 121 <212> DNA <213> Brassica oleracea <400> 15 agattcaaca agaagaaact ctccaggaga cgatgtaagg ctctcacatc aagacagctt 60 cttatgatgc tctataagat ttgaatgttt gtcttttcaa tgtaaggtgg ctctttgagg 120 g 121 <210> 16 <211> 121 <212> DNA <213> Brassica oleracea <400> 16 cagttcactg gctgcgtgat atatggaatg taaaaacaat ccccaagttg aaagacttct 60 ttggagagta ataaaaggag ctataccggt cagctcaaac ttggaaagga gagggctccc 120 g 121 <210> 17 <211> 121 <212> DNA <213> Brassica oleracea <400> 17 acgtacgggc tcagacaaat tgtcacgtgt tgcaatatag gaggttcaaa atatagatgc 60 cgagtcaggt ccatgcaaca atgtttcctc aaattctgta gcattatcag ctcttagttt 120 t 121 <210> 18 <211> 121 <212> DNA <213> Brassica oleracea <400> 18 taggttggag aaggagtctg gctttttctt caacatgagg tactttgaag actgtataac 60 agctggtgaa tgggacgatg tggagaagta cctttctgga ttcactaaag ctgatgacaa 120 t 121 <210> 19 <211> 121 <212> DNA <213> Brassica oleracea <400> 19 agatctcagt atcggattcg atgcttttgt ttctgctgtt caactatata aaagcttgtg 60 gagggtgttc taagtttcaa gactcttgca taatcgttct tgagccatac taatcaattt 120 c 121 <210> 20 <211> 121 <212> DNA <213> Brassica oleracea <400> 20 ttaaaaacta tatatttatt atcattgtta gcttgatgaa accacaaatt aaagaaatac 60 atatcagctg gtctcgatgt taacttaaat gttaaagcca cactaatccc ataggttgta 120 g 121 <210> 21 <211> 121 <212> DNA <213> Brassica oleracea <400> 21 aattataatg tatatggcca atacaagaag gaggaactga aaaacttgaa acatctactt 60 gttcgtcgaa aatatgacgt gataaggtat ctgctccata tttctttcac gattgaccga 120 g 121 <210> 22 <211> 121 <212> DNA <213> Brassica oleracea <400> 22 tctgcggagt tcaatacaca gatcaacata cgcacataga agaaaatgta gtgattaaag 60 gggaagacgt atcaaataaa gacctggatc tggattttta tcaggatggt attgaatgga 120 c 121 <210> 23 <211> 121 <212> DNA <213> Brassica oleracea <400> 23 tcaacggaaa aaggaagatt taaaataatt aaaaccgaaa aagatacgag gaggaagagc 60 tgagttttag ttcattagtg gtggggactt acggagtaat aaggtgcggc ggcgacgaca 120 c 121 <210> 24 <211> 121 <212> DNA <213> Brassica oleracea <400> 24 ggtatgttgc ctttggcagt ggtgaattct gtattttaga tgtcgagtag ctcgggaagt 60 ttctcaggac gcagtagctc ggcttgtagt tccacaagtg attgccaaaa caactccttt 120 g 121 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ccatttctgt tcctcagcat acac 24 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 tccatttctg ttcctcagca tacat 25 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tttcaggata tcaggttttg ctctcga 27 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 tcaacctatc aacactcgtc ca 22 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 atgctctttc ttcaaaccta tacaaacac 29 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gatgctcttt cttcaaacct atacaaacat 30 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 ggccaccgct tacaattttc tatca 25 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 tgttgctaat ttgtatttta agatgctctt t 31 <210> 33 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 caccgcaact ttattctcct cg 22 <210> 34 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ccaccgcaac tttattctcc tca 23 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ttggcttgca tgctgatatt tgct 24 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 cgacttcggc tattagtaat aacca 25 <210> 37 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 caaagcgtat aagccatccg ttatac 26 <210> 38 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 tcaaagcgta taagccatcc gttatag 27 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 gatcgactgg tggacgacta atgt 24 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 acctgaagca cgatgttcaa ag 22 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 cgcacttgct ctagctcgg 19 <210> 42 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cgcacttgct ctagctcga 19 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 acgacgcagc tcttgaagca 20 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 ttatccacaa acttcctcat cgc 23 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 catctcgtgg gagcctgt 18 <210> 46 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 atctcgtggg agcctgc 17 <210> 47 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 aaccgacggc acgggta 17 <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 gaggccacaa gaaatggatt actag 25 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 gattcattca accgtctgca cag 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 gattcattca accgtctgca caa 23 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 agttacacgg cgtctcgtca 20 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 gctgaagaac agaggatttc aaga 24 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 accgaaacag agagaaaact tgga 24 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 ccgaaacaga gagaaaactt ggc 23 <210> 55 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 aactcggtgt catacttttc ccga 24 <210> 56 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ctgatcctct tggagatcta aatacc 26 <210> 57 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 cagaacctct gaggaagctg ac 22 <210> 58 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 cagaacctct gaggaagctg ag 22 <210> 59 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtggttggcc ttttacatat gatttcca 28 <210> 60 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 tccttgcttt gcagttatat tgaca 25 <210> 61 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 ggaacatgta atgacattct caaaggat 28 <210> 62 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 ggaacatgta atgacattct caaaggac 28 <210> 63 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 cttttgagaa tgcgcctccc a 21 <210> 64 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 caaaaataag tcaagatcac ggaacat 27 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 ctaaatcgcc gaggctaaga gat 23 <210> 66 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 aaatcgccga ggctaagaga c 21 <210> 67 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 aggctctgga aattcaccaa gtca 24 <210> 68 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 agctgattgt gttttgttgg atact 25 <210> 69 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 cagaaccgtt caaatacaag ataatgaatc aa 32 <210> 70 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 agaaccgttc aaatacaaga taatgaatca g 31 <210> 71 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ctttgtgaca tgaatctttt gttttgcatt aact 34 <210> 72 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 gattagcaca acagaaccgt tca 23 <210> 73 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 ggctgatacg agccgtttg 19 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 gggctgatac gagccgttta 20 <210> 75 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 acctgtaatc acggcaccag t 21 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 caaagactgt atcttatcca agtggg 26 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 tcggaggatt caaactggca 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 tcggaggatt caaactggcc 20 <210> 79 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 attaccaatg gagggagaga tcacac 26 <210> 80 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 cgagaaagag ttacaagtct gaacc 25 <210> 81 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 81 ggctctcaca tcaagacagc ttt 23 <210> 82 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 82 gctctcacat caagacagct tc 22 <210> 83 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 83 ccaccttaca ttgaaaagac aaacattcaa at 32 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 84 tccaggagac gatgtaaggc 20 <210> 85 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 85 acaatcccca agttgaaaga cttcta 26 <210> 86 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 86 caatccccaa gttgaaagac ttctt 25 <210> 87 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 87 gagctgaccg gtatagctcc tt 22 <210> 88 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 88 ctgcgtgata tatggaatgt aaaaacaat 29 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 89 tgttgcatgg acctgactca 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 90 tgttgcatgg acctgactcg 20 <210> 91 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 91 tcacgtgttg caatatagga ggttca 26 <210> 92 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 92 tgctacagaa tttgaggaaa cattgt 26 <210> 93 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 tcgtcccatt caccagcg 18 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 catcgtccca ttcaccagct 20 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 95 gtctggcttt ttcttcaaca tgaggt 26 <210> 96 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tccagaaagg tacttctcca cat 23 <210> 97 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 caagagtctt gaaacttaga acacccta 28 <210> 98 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 agagtcttga aacttagaac accctc 26 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 cgatgctttt gtttctgctg ttcaac 26 <210> 100 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 gctcaagaac gattatgcaa gagt 24 <210> 101 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 101 aagttaacat cgagaccagc tgatag 26 <210> 102 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tttaagttaa catcgagacc agctgatat 29 <210> 103 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 tcattgttag cttgatgaaa ccacaaatta aagaa 35 <210> 104 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 104 ggattagtgt ggctttaaca tttaagtt 28 <210> 105 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 accttatcac gtcatatttt cgacgaat 28 <210> 106 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 ccttatcacg tcatattttc gacgaac 27 <210> 107 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 107 gccaatacaa gaaggaggaa ctgaaaa 27 <210> 108 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 ggagcagata ccttatcacg tca 23 <210> 109 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 ccaggtcttt atttgatacg tcttcct 27 <210> 110 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 110 ccaggtcttt atttgatacg tcttccc 27 <210> 111 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 caacatacgc acatagaaga aaatgtagtg att 33 <210> 112 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 tcctgataaa aatccagatc caggt 25 <210> 113 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 113 ccccaccact aatgaactaa aactct 26 <210> 114 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 ccccaccact aatgaactaa aactca 26 <210> 115 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 aaaaccgaaa aagatacgag gaggaaga 28 <210> 116 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 116 ccttattact ccgtaagtcc cca 23 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 gtcgagtagc tcgggaagtc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 gtcgagtagc tcgggaagtt 20 <210> 119 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 119 acaagccgag ctactgcgt 19 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 ggcagtggtg aattctgtat tttaga 26
Claims (10)
제1항에 기재된 서열번호 1 내지 24의 염기서열로 이루어진 폴리뉴클레오티드의 각 SNP(single nucleotide polymorphism) 위치 염기인 다형성 부위의 유전자형을 결정하는 단계를 포함하는 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법.Isolating the genomic DNA from the cabbage sample; And
Determining the genotype of a polymorphic site that is a base of each SNP (single nucleotide polymorphism) of a polynucleotide consisting of the nucleotide sequences of SEQ ID NOS: 1 to 24 described in claim 1, and determining the systematic purity of the cabbage and the early fixed system selection method .
상기 분리된 게놈 DNA를 주형으로 하고, 제5항의 올리고뉴클레오티드 프라이머 세트를 이용하여 증폭 반응을 수행하여 제1항에 기재된 서열번호 1 내지 24의 염기서열로 이루어진 SNP(single nucleotide polymorphism) 폴리뉴클레오티드를 증폭하는 단계; 및
상기 증폭 산물을 검출하는 단계를 포함하는, 양배추의 계통 순도검정 및 조기 고정 계통 선발 방법.Isolating the genomic DNA from the cabbage sample;
Amplification reaction is carried out using the separated genomic DNA as a template and the oligonucleotide primer set of claim 5 to amplify a single nucleotide polymorphism (SNP) polynucleotide comprising the nucleotide sequence of SEQ ID NOS: 1 to 24 described in claim 1 ; And
And detecting the amplification product. 2. The method according to claim 1, wherein the amplification product is detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140156822A KR101669032B1 (en) | 2014-11-12 | 2014-11-12 | Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140156822A KR101669032B1 (en) | 2014-11-12 | 2014-11-12 | Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160056518A KR20160056518A (en) | 2016-05-20 |
KR101669032B1 true KR101669032B1 (en) | 2016-10-25 |
Family
ID=56103677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140156822A KR101669032B1 (en) | 2014-11-12 | 2014-11-12 | Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101669032B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102087024B1 (en) * | 2018-10-05 | 2020-03-10 | 충남대학교 산학협력단 | Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Brassica rapa and uses thereof |
KR102606300B1 (en) * | 2020-10-28 | 2023-11-24 | 서울대학교산학협력단 | DNA marker for discriminating genotype of Brassica rapa, Brassica oleracea and their interspecific hybrid and uses thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103131755A (en) | 2011-11-22 | 2013-06-05 | 上海市农业科学院 | Method for rapidly detecting brassica oleracea var. italic hybrid purity by using SRAP mark |
US20130316346A1 (en) | 2012-05-23 | 2013-11-28 | E I Du Pont De Nemours And Company | Brassica genomic assays |
-
2014
- 2014-11-12 KR KR1020140156822A patent/KR101669032B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103131755A (en) | 2011-11-22 | 2013-06-05 | 上海市农业科学院 | Method for rapidly detecting brassica oleracea var. italic hybrid purity by using SRAP mark |
US20130316346A1 (en) | 2012-05-23 | 2013-11-28 | E I Du Pont De Nemours And Company | Brassica genomic assays |
Non-Patent Citations (2)
Title |
---|
HRM 기술을 이용한 인도수출용 조생계 양배추 종자순도검정 마커 개발, 한국육종학회 심포지엄. 2014. 7. |
NCBI Reference Sequence: XM_009126524.1 |
Also Published As
Publication number | Publication date |
---|---|
KR20160056518A (en) | 2016-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101331740B1 (en) | SSR primer derived from Paeonia lactiflora and use thereof | |
CN110564861B (en) | Fluorescent marker composite amplification kit for human Y chromosome STR locus and InDel locus and application thereof | |
KR101769874B1 (en) | Primer set for discriminating Allium cepa intra- or inter-species and uses thereof | |
KR101669032B1 (en) | Single nucleotide polymorphism marker set for line purity checking and early fixed line selecting in Cabbage and uses thereof | |
KR101704382B1 (en) | Specific primer set for discrimination of cabbage clubroot disease-resistant cultivar and uses thereof | |
KR101961653B1 (en) | SNP molecular marker for selecting cultivars of sweet potatoes and uses thereof | |
KR101690067B1 (en) | Single nucleotide polymorphism marker set for F1 hybrid purity checking in Cabbage and uses thereof | |
KR102224472B1 (en) | Molecular marker for predicting fruit shape of pear and use thereof | |
KR20180055075A (en) | Single nucleotide polymorphism marker for selecting bacterial wilt-resistant or sensitive pepper cultivar and uses thereof | |
TWI567202B (en) | Method and kit for determination of alcohol metabolizing genes | |
KR101876273B1 (en) | Molecular marker for selecting clubroot of Chinese cabbage and selection method using the same molecular marker | |
KR102299258B1 (en) | Primer set for determining Prunus sp. and uses thereof | |
KR102458440B1 (en) | Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set | |
KR102335806B1 (en) | Molecular marker based on chloroplast genome sequence for discriminating Zizyphus jujuba 'SanJo' cultivar and uses thereof | |
KR102144673B1 (en) | KASP primer set based on SNP for discriminating Korean melon cultivar and F1 hybrid purity checking and uses thereof | |
KR101464247B1 (en) | Single nucleotide polymorphism marker for selecting fusarium wilt-resistant or sensitive cabbage cultivar and uses thereof | |
KR101357497B1 (en) | EST-SSR primer derived from Ophiopogon japonicus and use thereof | |
KR20130047122A (en) | Method and kit for detecting mycoplasma contaminated in cell culture using real-time pcr | |
KR101945953B1 (en) | Molecular marker for discriminating Phytophthora capsici resistant pepper cultivar and uses thereof | |
KR101779030B1 (en) | Molecular marker for selecting plant with enhanced zinc content and uses thereof | |
CN107022616B (en) | Quinoa binary InDel molecular marker and development method and application thereof | |
KR102309663B1 (en) | Fluidigm based SNP chip for genotype-identifying and classifying Panax ginseng cultivar or resource and uses thereof | |
KR102418879B1 (en) | KASP primer set derived on mitochondira for classifying Panax ginseng cultivar and genotype and uses thereof | |
KR102665741B1 (en) | Molecular marker for discriminating bacterial wilt-resistant pepper and uses thereof | |
CN118048481B (en) | KASP (KASP-labeled primer for detecting tomato spotted wilt resistance) and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190909 Year of fee payment: 4 |