KR101615946B1 - 3차원 형상 측정장치 - Google Patents

3차원 형상 측정장치 Download PDF

Info

Publication number
KR101615946B1
KR101615946B1 KR1020140060345A KR20140060345A KR101615946B1 KR 101615946 B1 KR101615946 B1 KR 101615946B1 KR 1020140060345 A KR1020140060345 A KR 1020140060345A KR 20140060345 A KR20140060345 A KR 20140060345A KR 101615946 B1 KR101615946 B1 KR 101615946B1
Authority
KR
South Korea
Prior art keywords
light source
mirror device
projector
digital mirror
imaging
Prior art date
Application number
KR1020140060345A
Other languages
English (en)
Other versions
KR20140145541A (ko
Inventor
노부아키 타바타
Original Assignee
야마하하쓰도키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 야마하하쓰도키 가부시키가이샤 filed Critical 야마하하쓰도키 가부시키가이샤
Publication of KR20140145541A publication Critical patent/KR20140145541A/ko
Application granted granted Critical
Publication of KR101615946B1 publication Critical patent/KR101615946B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/60Systems using moiré fringes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 3차원 형상 측정장치는 광원과, 광원으로부터 조사된 광을 반사시켜 검사 대상 부위의 높이 정보를 취득가능한 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 검사 대상 부위에 조사하는 디지털 미러 디바이스와, 줄무늬 패턴광이 조사된 검사 대상 부위를 촬상하는 촬상부를 구비하고, 디지털 미러 디바이스는 다이아몬드 배열이 되도록 배치된 복수의 미러에 의해 구성되어 있다.

Description

3차원 형상 측정장치{THREE-DIMENSIONAL SHAPE MEASURING APPARATUS}
본 발명은 3차원 형상 측정장치에 관한 것이고, 특히 검사 대상 부위의 높이 정보를 취득가능한 3차원 형상 측정장치에 관한 것이다.
종래, 검사 대상 부위의 높이 정보를 취득가능한 3차원 형상 측정장치가 알려져 있다. 이러한 3차원 형상 측정장치는, 예를 들면 일본 특허공개 2009-204343호 공보에 개시되어 있다.
상기 일본 특허공개 2009-204343호 공보에는 광원과, 광원으로부터 조사된 광을 반사시켜 검사 대상 부위의 높이 정보를 취득가능한 줄무늬 패턴광을 검사 대상 부위에 조사하도록 구성된 DMD(디지털 미러 디바이스)를 포함하는 줄무늬 패턴투영부를 구비한 3차원 형상 계측장치가 개시되어 있다. 또한, 이 3차원 형상 계측장치는 줄무늬 패턴 투영부에서 조사된 줄무늬 패턴광에 의해 검사 대상 부위를 촬상하는 촬상부를 구비하고 있다. 이 DMD는 복수의 미러가 배열되어 광원으로부터 조사된 광을 반사시킴으로써 줄무늬 패턴광을 검사 대상 부위에 조사하도록 구성되어 있다. 또한, DMD는 줄무늬 패턴 투영부로부터 조사되는 줄무늬 패턴광의 진행 방향으로 대략 수직하도록 배치되어 있다고 생각된다. 또한, 이 DMD의 복수의 미러의 배치 상태의 상세한 것은 불분명하다.
또한, 종래부터 격자상(바둑판 눈금 형상)으로 복수의 미러를 배치한 직사각형상의 외형을 갖는 DMD(이하, 격자상 DMD)가 알려져 있다. 격자상 DMD의 복수의 미러는 각각 대략 직사각형 형상으로 형성되고, 대략 직사각형의 대각선에 대응하는 위치에 미러를 요동시키기 위한 요동축을 갖고 있다. 이들 요동축은 서로 대략 평행하고, 또한 DMD의 변(가장자리)에 대하여 대략 45° 경사져서 있다. 또한, 광원과 DMD는 광원으로부터 조사되는 광의 진행 방향과 복수의 미러의 각각의 요동축이 대략 직교하도록 배치되어 있다. 이 때문에, 격자상 DMD를 사용한 3차원 형상 계측장치에서는 광원은 평면으로 보았을 때에 있어서 직사각형상의 외형을 갖는 DMD의 코너부에 대하여 경사 방향으로 소정의 간격을 둔 위치에 배치될 필요가 있다.
그렇지만, 상기 일본 특허공개 2009-204343호에 기재된 3차원 형상 계측장치에 종래의 격자상(바둑판 눈금 형상)의 DMD를 적용했을 경우에는 상술한 바와 같이 평면으로 보았을 때에 직사각형상의 외형을 갖는 DMD에 대하여 경사 방향으로 소정의 간격을 둔 위치에 광원을 배치할 필요가 있으므로, 평면으로 보았을 때에 광원이 직사각형상의 외형을 갖는 DMD의 설치폭으로부터 돌출되어서 배치되게 되고, 그 결과 광원과 DMD를 포함하는 줄무늬 패턴 투영부(광원 유닛)의 외형이 대형화되어 버린다고 하는 문제점이 있다.
본 발명은 상기와 같은 과제를 해결하기 위해서 이루어진 것이며, 본 발명의 하나의 목적은 광원과 디지털 미러 디바이스를 포함하는 광원 유닛의 외형이 대형화해버리는 것을 억제하는 것이 가능한 3차원 형상 측정장치를 제공하는 것이다.
본 발명의 일 국면에 의한 3차원 형상 측정장치는 광원과, 광원으로부터 조사된 광을 반사시킴으로써 검사 대상 부위의 높이 정보를 취득가능한 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 검사 대상 부위에 조사하는 디지털 미러 디바이스와, 디지털 미러 디바이스에 의해 줄무늬 패턴광이 조사된 검사 대상 부위를 촬상하는 촬상부를 구비하고, 디지털 미러 디바이스는 다이아몬드 배열이 되도록 배치된 복수의 미러에 의해 구성되어 있다.
본 발명의 일 국면에 의한 3차원 형상 측정장치에서는 상기한 바와 같이 다이아몬드 배열로 배치된 복수의 미러를 포함하는 디지털 미러 디바이스를 3차원 계측장치에 설치함으로써, 디지털 미러 디바이스의 변(가장자리)에 평행한 복수의 미러의 요동축을 갖는 다이아몬드 배열의 디지털 미러 디바이스에 대하여 광원을 배치할 경우 평면으로 보았을 때에 직사각형상의 외형을 갖는 디지털 미러 디바이스의 설치폭의 범위 내에 광원을 설치했을 경우에도 광원으로부터 조사되는 광의 진행 방향과 복수의 미러의 각각의 요동축을 대략 직교시킬 수 있다. 이것에 의해, 광원으로부터 조사된 광을 디지털 미러 디바이스에 의해 반사시켜서 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 검사 대상 부위에 투영할 수 있다. 그 결과, 격자상의 디지털 미러 디바이스를 사용했을 경우에, 평면으로 보았을 때에 직사각형상의 외형을 갖는 디지털 미러 디바이스의 코너부에 대하여 경사 방향으로 소정의 간격을 둔 위치에 광원을 배치할 경우와는 달리, 광원과 디지털 미러 디바이스를 포함하는 광원 유닛의 설치폭이 커지는 것을 억제할 수 있다. 따라서, 광원과 디지털 미러 디바이스를 포함하는 광원 유닛의 외형이 대형화해버리는 것을 억제할 수 있다.
상기 일 국면에 의한 3차원 형상 측정장치에 있어서, 바람직하게는 디지털 미러 디바이스는 다각형 형상을 갖고, 광원은 다각형 형상의 디지털 미러 디바이스의 광원에 근접하는 변에 대향하도록 구성되어 있다. 이렇게 구성하면, 디지털 미러 디바이스의 광원에 근접하는 변이 연장되는 방향으로 광원 유닛의 설치폭이 커지는 것을 억제할 수 있으므로, 광원과 디지털 미러 디바이스를 포함하는 광원 유닛의 설치폭이 커지는 것을 보다 용이하게 억제할 수 있다.
상기 일 국면에 의한 3차원 형상 측정장치에 있어서, 바람직하게는 디지털 미러 디바이스는 복수의 미러가 조정됨으로써 디지털 미러 디바이스에 대하여 대략 45° 경사진 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 조사하도록 구성되어 있다. 이렇게 구성하면, 디지털 미러 디바이스에 대하여 대략 45°이외의 각도(예를 들면, 90°경사) 경사진 줄무늬 패턴광을 조사할 경우와는 달리, 명부와 암부를 교대로 포함하는 줄무늬 패턴광의 엣지를 대략 직선상으로 할 수 있으므로, 정밀도가 좋은 줄무늬 패턴광을 발생시킬 수 있다. 그 결과, 3차원 형상 측정장치의 계측 정밀도를 향상시킬 수 있다.
이 경우, 바람직하게는 디지털 미러 디바이스 및 광원은 복수의 미러의 반사면에 대략 수직한 법선 주위로 회전가능하게 구성되어 있다. 이렇게 구성하면, 검사 대상 부위를 측면으로부터 보았을 경우의 높이 방향에 있어서의 줄무늬 패턴광의 인접하는 명부(암부)의 피치(간격)를 작게 할 수 있으므로, 3차원 형상 측정의 분해능(계측 정밀도)을 향상시킬 수 있다.
상기 디지털 미러 디바이스가 복수의 미러의 반사면에 대략 수직한 법선 주위로 회전가능한 구성에 있어서, 바람직하게는 디지털 미러 디바이스 및 광원은 법선 주위로 대략 45° 회전가능하게 구성되어 있다. 이렇게 구성하면, 투영 영역의 형상이 크게 변경되는 것을 억제하면서 검사 대상 부위를 측면으로부터 보았을 경우의 높이 방향에 있어서의 줄무늬 패턴광의 인접하는 명부(암부)의 피치(간격)를 작게 할 수 있다.
상기 디지털 미러 디바이스가 복수의 미러의 반사면에 대략 수직한 법선 주위로 회전가능한 구성에 있어서, 바람직하게는 투영 렌즈를 더 구비하고, 디지털 미러 디바이스 및 광원은 법선 주위로 회전가능하고, 또한 투영 렌즈와는 독립적으로 회전하도록 구성되어 있다. 이렇게 구성하면, 디지털 미러 디바이스 및 광원의 위치 관계를 유지하면서 디지털 미러 디바이스 및 광원을 투영 렌즈에 대하여 디지털 미러 디바이스의 미러의 법선 주위(투영 렌즈의 중심선 주위)로 회전할 수 있으므로, 검사 대상 부위를 측면으로부터 보았을 경우의 높이 방향에 있어서의 줄무늬 패턴광의 인접하는 명부(암부)의 피치(간격)를 작게 할 경우에 디지털 미러 디바이스와 투영 렌즈와 투영 영역의 위치 관계를 유지한 상태로 디지털 미러 디바이스 및 광원을 디지털 미러 디바이스의 미러의 법선 주위로 회전시킬 수 있다. 이것에 의해, 근거리의 핀트와 원거리의 핀트를 동시에 맞출 수 있는 샤임플러그(Scheimpflug) 조건을 유지할 수 있다. 그 결과, 디지털 미러 디바이스 및 광원을 회전시켜도 광학계를 조정할 필요를 없앨 수 있다.
상기 일 국면에 의한 3차원 형상 측정장치에 있어서, 바람직하게는 광원 및 디지털 미러 디바이스를 포함하고, 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터를 더 구비하고, 복수의 미러는 각각 대략 직사각형 형상으로 형성됨과 아울러, 대략 직사각형의 대각선에 대응하는 위치에 요동축을 갖고, 복수의 요동축은 서로 대략 평행하고, 또한 디지털 미러 디바이스의 광원에 대향하는 변에 대략 평행해지도록 구성되고, 광원 및 디지털 미러 디바이스는 광원으로부터 조사되는 광의 진행 방향과 미러의 요동축이 대략 직교하도록 배치되어 있다. 이렇게 구성하면, 디지털 미러 디바이스를 요동시키는 요동축이 직사각형상의 외형을 갖는 디지털 미러 디바이스의 변(가장자리)에 평행한 다이아몬드 배열의 디지털 미러 디바이스를 설치한 구성에 의해 광원으로부터 조사되는 광의 진행 방향과 복수의 미러의 각각의 요동축을 대략 직교시킬 수 있으므로, 용이하게 광원으로부터 조사된 광을 디지털 미러 디바이스에 의해 반사시켜서 줄무늬 패턴광을 검사 대상 부위에 투영할 수 있다.
이 경우, 바람직하게는 디지털 미러 디바이스 및 광원을 프로젝터 하우징부에 부착하기 위한 부착부를 더 구비하고, 디지털 미러 디바이스 및 광원은 법선 주위로 회전가능하고, 또한 투영 렌즈와는 독립적으로 회전가능하도록 부착부에 부착되어 있다. 이렇게 구성하면, 부착부에 의해 디지털 미러 디바이스 및 광원의 위치 관계를 유지하면서, 디지털 미러 디바이스 및 광원을 투영 렌즈에 대하여 디지털 미러 디바이스의 미러의 법선 주위(투영 렌즈의 중심선 주위)로 용이하게 회전시킬 수 있다.
상기 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터가 설치되는 구성에 있어서, 바람직하게는 프로젝터는 투영 렌즈를 갖고, 프로젝터는 상방에서 보아서 촬상부를 둘러싸도록 복수 배치되고, 복수의 프로젝터의 각각은 투영 영역이 촬상부의 촬상 영역을 포함하도록 적어도 투영 렌즈의 투영 배율 또는 투영 렌즈의 광축이 설정되도록 구성되어 있다. 이렇게 구성하면, 복수의 프로젝터를 배치했을 경우에서도 복수의 프로젝터의 각각으로부터 조사된 줄무늬 패턴광에 대응하는 화상을 누락없이(빠짐없이) 취득할 수 있다.
상기 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터가 설치되는 구성에 있어서, 바람직하게는 프로젝터는 투영 렌즈를 갖고, 프로젝터는 디지털 미러 디바이스의 평면으로 보았을 때에 있어서의 중심과 투영 렌즈의 광축이 어긋나도록 디지털 미러 디바이스와 투영 렌즈가 서로 상대적으로 평행 이동가능하도록 구성되어 있다. 이렇게 구성하면, 프로젝터의 투영 영역과 촬상부의 촬상 영역이 어긋나 있을 경우에도 디지털 미러 디바이스와 투영 렌즈의 상대적인 위치를 변경함으로써 프로젝터의 투영 영역에 촬상부의 촬상 영역을 포함시킬 수 있으므로, 프로젝터로부터 조사된 줄무늬 패턴광에 대응하는 화상을 용이하게 누락없이(빠짐없이) 취득할 수 있다.
상기 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터가 설치되는 구성에 있어서, 바람직하게는 촬상부는 대략 직사각형 형상의 촬상 영역에 있어서 검사 대상 부위를 촬상가능하도록 구성되고, 프로젝터는 상방으로부터 보아서 촬상부를 둘러싸도록 복수 배치되고, 복수의 프로젝터 중 촬상 영역의 변에 대하여 소정 각도로 경사진 위치에 배치되는 프로젝터의 디지털 미러 디바이스 및 광원은 복수의 미러의 반사면에 대략 수직한 법선 주위에 프로젝터가 배치되는 소정 각도로 경사진 위치에 대응하는 각도로 회전되어서 배치되어 있다. 이렇게 구성하면, 투영 렌즈의 투영 배율을 높이지 않고 프로젝터의 투영 영역에 촬상부의 촬상 영역을 포함시킬 수 있으므로, 투영 영역에 투영되는 줄무늬 패턴광의 해상도가 저하하는 것을 억제할 수 있다. 또한, 투영 렌즈의 투영 배율을 높이지 않고 프로젝터의 투영 영역에 촬상부의 촬상 영역을 포함시킬 수 있으므로, 투영 영역에 투영되는 줄무늬 패턴광의 휘도가 저하하는 것을 억제할 수 있다.
상기 촬상부가 대략 직사각형 형상인 촬상 영역에 있어서 검사 대상 부위를 촬상가능한 구성에 있어서, 바람직하게는 촬상부는 대략 직사각형 형상의 촬상 영역에 있어서 검사 대상 부위를 촬상가능하도록 구성되고, 프로젝터의 배치 위치가 촬상 영역의 단변에 대향하는 위치일 경우에는 디지털 미러 디바이스 및 광원은 촬상 영역의 장변에 대향하는 위치에 배치된 프로젝터의 디지털 미러 디바이스 및 광원에 대하여, 복수의 미러의 반사면에 대략 수직한 법선 주위로 대략 90° 회전되어서 배치되고, 프로젝터의 배치 위치가 촬상 영역의 장변에 대하여 대략 45° 경사진 위치일 경우에는 디지털 미러 디바이스 및 광원은 촬상 영역의 장변에 대향하는 위치에 배치된 프로젝터의 디지털 미러 디바이스 및 광원에 대하여 복수의 미러의 반사면에 대략 수직한 법선 주위로 대략 45°회전되어서 배치되어 있다. 이렇게 구성하면, 소정 위치의 디지털 미러 디바이스 및 광원을 촬상 영역의 장변에 대향하는 위치에 배치된 프로젝터의 디지털 미러 디바이스 및 광원에 대하여 복수의 미러의 반사면에 대략 수직한 법선 주위로 소정 각도(예를 들면, 대략 45° 또는 대략 90°) 회전시킴으로써 용이하게 투영 렌즈의 투영 배율을 높이지 않고 프로젝터의 투영 영역에 촬상부의 촬상 영역을 포함시킬 수 있다.
상기 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터가 설치되는 구성에 있어서, 바람직하게는 디지털 미러 디바이스는 프로젝터에 가까운 측보다 먼 측에서 강도가 강해지도록 줄무늬 패턴광을 검사 대상 부위에 조사하도록 구성되어 있다. 이렇게 구성하면, 투영 영역에 조사된 줄무늬 패턴광의 명도가 프로젝터에 가까운 측보다 먼 측에서 저하하는 것을 억제할 수 있으므로, 투영 영역에 있어서의 줄무늬 패턴광의 명도를 균일화할 수 있다.
상기 일 국면에 의한 3차원 형상 측정장치에 있어서, 바람직하게는 디지털 미러 디바이스는 촬상부의 촬상 영역보다 외측의 영역에서는 줄무늬 패턴광을 조사하지 않음으로써 흑색 표시를 행하도록 구성되어 있다. 이렇게 구성하면, 투영 영역으로부터 투영된 줄무늬 패턴광이 촬상 영역의 주위로서 난반사하는 것을 억제할 수 있으므로, 3차원 형상 측정장치의 계측 정밀도를 향상시킬 수 있다.
상기 디지털 미러 디바이스가 복수의 미러의 반사면에 대략 수직한 법선 주위로 회전가능한 구성에 있어서, 바람직하게는 촬상부는 촬상 영역의 위치를 변경가능하게 구성되고, 디지털 미러 디바이스는 위치 변경가능한 촬상 영역이 투영 영역에 포함되도록 법선 주위로 회전가능하게 구성되어 있다. 이렇게 구성하면, 촬상부의 촬상 영역의 위치를 변경했을 경우에서도 디지털 미러 디바이스를 회전시키는 간이한 조작에 의해 위치 변경가능한 촬상 영역을 투영 영역에 포함시킬 수 있으므로, 줄무늬 패턴광에 대응하는 화상을 용이하게 누락없이(빠짐없이) 취득할 수 있다.
본 발명에 의하면, 상기한 바와 같이 광원과 디지털 미러 디바이스를 포함하는 광원 유닛의 외형이 대형화해버리는 것을 억제할 수 있다.
도 1은 본 발명의 일실시형태에 의한 외관 검사장치를 나타내는 블록도면이다.
도 2는 본 발명의 일실시형태에 의한 외관 검사장치의 프로젝터의 배치 상태를 나타내는 도면이다.
도 3은 본 발명의 일실시형태에 의한 외관 검사장치의 프로젝터를 설명하기 위한 도면이다.
도 4는 본 발명의 일실시형태에 의한 외관 검사장치의 프로젝터를 DMD의 법선방향으로부터 본 모식도면이다.
도 5는 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 나타내는 도면이다.
도 6은 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 확대한 도면이다.
도 7은 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 회전시킨 상태를 설명하기 위한 도면이다.
도 8은 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 회전시키지 않은 상태를 나타낸 도면이다.
도 9는 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 대략 90° 회전시킨 상태를 나타낸 도면이다.
도 10은 본 발명의 일실시형태에 의한 외관 검사장치의 DMD를 대략 45° 회전시킨 상태를 나타낸 도면이다.
도 11은 본 발명의 일실시형태에 의한 외관 검사장치의 A1의 위치에 배치한 프로젝터를 나타낸 도면이다.
도 12는 본 발명의 일실시형태에 의한 외관 검사장치의 B1의 위치에 배치한 프로젝터를 나타낸 도면이다.
도 13은 본 발명의 일실시형태에 의한 외관 검사장치의 C1의 위치에 배치한 프로젝터를 나타낸 도면이다.
도 14는 본 발명의 일실시형태에 의한 외관 검사장치의 비회전 상태에 의한 DMD의 줄무늬 패턴광을 조사한 검사 대상 부위를 나타낸 도면이다.
도 15는 본 발명의 일실시형태에 의한 외관 검사장치의 회전 상태에 의한 DMD의 줄무늬 패턴광을 조사한 검사 대상 부위를 나타낸 도면이다.
도 16은 본 발명의 일실시형태에 의한 외관 검사장치의 DMD에 의해 반사된 줄무늬 패턴광의 강도를 나타낸 도면이다.
도 17은 본 발명의 일실시형태에 의한 외관 검사장치의 투영 영역에 투영되는 줄무늬 패턴광의 강도를 나타낸 도면이다.
도 18은 본 발명의 일실시형태에 의한 외관 검사장치의 촬상 영역의 주위에 줄무늬 패턴광을 투영하지 않는 상태를 나타낸 도면이다.
도 19는 본 발명의 일실시형태에 의한 외관 검사장치의 외관 검사 처리를 설명하기 위한 플로우 챠트이다.
이하, 본 발명의 실시형태를 도면에 근거해서 설명한다.
우선, 도 1∼도 18을 참조하여 본 발명의 일실시형태에 의한 외관 검사장치(100)의 구조에 대해서 설명한다. 또한, 외관 검사장치(100)는 본 발명의 「3차원 형상 측정장치」의 일례다.
도 1에 나타낸 바와 같이, 본 실시형태에 의한 외관 검사장치(100)는 기판 제조 프로세스에 있어서의 제조 중 또는 제조 후의 프린트 기판(이하, 「기판」이라고 함)(110)을 검사 대상 부위로서 촬상하고, 기판(110) 및 기판(110) 상의 전자 부품(도시 생략)에 대한 각종 검사를 행하는 장치이다. 외관 검사장치(100)는 전자 부품을 기판(110)에 실장해서 회로 기판을 제조하기 위한 기판 제조 라인의 일부를 구성하고 있다. 또한, 기판(110)은 본 발명의 「검사 대상 부위」의 일례이다.
기판 제조 프로세스의 개요로서는, 우선 배선 패턴이 형성된 기판(110) 상에 솔더 인쇄 장치(도시 생략)에 의해 소정의 패턴으로 솔더(솔더 페이스트)의 인쇄(도포)가 행해진다(솔더 인쇄 공정). 이어서, 솔더 인쇄 후의 기판(110)에 표면 실장기(도시 생략)에 의해 전자 부품이 탑재(실장)됨으로써(실장공정) 전자 부품의 단자부가 솔더 상에 배치된다. 그 후, 실장완료 기판(110)이 리플로우 로(도시 생략)에 반송되어 솔더의 용융 및 경화(냉각)가 행해짐으로써(리플루우 공정) 전자 부품의 단자부가 기판(110)의 배선에 대하여 땜납 접합된다. 이것에 의해, 전자 부품이 배선에 대하여 전기적으로 접속된 상태로 기판(110) 상에 고정되고 기판 제조가 완료된다.
외관 검사장치(100)는, 예를 들면 솔더 인쇄 공정 후의 기판 상의 솔더의 인쇄 상태의 검사나, 실장 공정 후에 있어서의 전자 부품의 실장상태의 검사, 또는 리플로우 공정 후에 있어서의 전자 부품의 실장상태의 검사 등에 사용된다. 따라서, 외관 검사장치(100)는 기판 제조 라인에 있어서 1개 또는 복수 설치된다. 솔더의 인쇄 상태로서는 설계상의 인쇄 위치에 대한 인쇄 위치 편차, 솔더의 형상, 체적 및 높이(도포량), 브릿지(단락)의 유무 등의 검사가 행해진다. 전자 부품의 실장상태로서는 전자 부품의 종류 및 배향(극성)이 적정한지의 여부, 전자 부품의 설계상의 실장위치에 대한 위치 편차의 양이 허용 범위 내인지, 단자부의 땜납 접합 상태가 정상인지의 여부 등의 검사가 행해진다. 또한, 각 공정 간에서의 공통의 검사 내용으로서 먼지나 기타 부착물 등의 이물의 검출도 행해진다.
도 1에 나타낸 바와 같이, 외관 검사장치(100)는 기판(110)을 반송하기 위한 기판 반송 컨베이어(10)와, 기판 반송 컨베이어(10)의 상방을 XY 방향(수평 방향) 및 Z 방향(상하 방향)으로 이동가능한 헤드 이동 기구(20)와, 헤드 이동 기구(20)에 의해 유지된 촬상 헤드부(30)와, 외관 검사장치(100)의 제어를 행하는 제어장치(40)를 구비하고 있다. 이하, 외관 검사장치(100)의 구체적인 구조를 설명한다.
기판 반송 컨베이어(10)는 기판(110)을 X 방향으로 반송함과 아울러, 소정의 검사 위치에서 기판(110)을 정지시켜서 유지하는 것이 가능하도록 구성되어 있다. 또한, 기판 반송 컨베이어(10)는 검사가 종료된 기판(110)을 소정의 검사 위치부터 X 방향으로 반송하여 외관 검사장치(100)로부터 기판(110)을 반출하는 것이 가능하도록 구성되어 있다.
또한, 헤드 이동 기구(20)는 기판 반송 컨베이어(10)의 상방(화살표 Z1 방향)에 설치되고, 예를 들면 볼나사축과 서보모터를 사용한 직교 3축(XYZ축) 로보트에 의해 구성되어 있다. 직교 3축 로보트의 구성 자체는 공지되어 있으므로, 상세한 설명은 생략한다. 헤드 이동 기구(20)는 촬상 헤드부(30)를 이들 X축, Y축 및 Z축을 따라 구동시키는 X축 모터, Y축 모터 및 Z축 모터를 구비하고 있다. 이들 X축 모터, Y축 모터 및 Z축 모터에 의해 헤드 이동 기구(20)는 촬상 헤드부(30)를 기판 반송 컨베이어(10)(기판(110))의 상방(화살표 Z1방향)에서 XY 방향(수평 방향) 및 Z 방향(상하 방향)으로 이동시키는 것이 가능하도록 구성되어 있다.
또한, 촬상 헤드부(30)는 촬상부(31)와 프로젝터(32)를 구비하고 있다. 이 촬상 헤드부(30)가 헤드 이동 기구(20)에 의해 기판(110)의 상방의 소정 위치로 이동됨과 아울러, 촬상부(31)나 프로젝터(32) 등을 사용함으로써 촬상 헤드부(30)가 기판(110) 및 기판(110) 상의 전자 부품 등의 외관 검사를 위한 촬상을 행하도록 구성되어 있다.
촬상부(31)는 프로젝터(32)에 의해 줄무늬 패턴광이 조사된 기판(110)(검사 대상 부위)을 촬상하도록 구성되어 있다. 촬상부(31)는 렌즈를 유지하는 경통부(31a)가 설치된 CCD 카메라 등으로 구성되어 있다. 촬상부(31)는 반송 방향(X 방향)에 대하여 횡장의 대략 직사각형(장방형) 형상의 촬상 영역(R1)(도 2 참조)에 있어서 기판(110)(검사 대상 부위)을 촬상가능하도록 구성되어 있다. 또한, 촬상부(31)는 촬상 영역(R1)에 배치된 기판(110)의 상면의 2차원 화상을 대략 수직 상방의 위치로부터 촬상하도록 구성되어 있다. 즉, 촬상부(31)의 직하의 위치를 포함하도록 촬상 영역(R1)이 설정되어 있다. 이 촬상부(31)에 의해 프로젝터(32)에 의한 조명광 하에서는 2차원 화상이 얻어진다. 또한, 촬상부(31)는 도 8∼도 10에 나타낸 바와 같이, 촬상 중심 주위로 배치 방향을 변경함으로써 촬상 영역(R1)이 반송 방향(X 방향)에 대하여 횡장의 대략 직사각형 형상이 되는 상태(횡장 상태)와 촬상 영역(R1)이 반송 방향에 대하여 종장의 대략 직사각형 형상이 되는 상태(종장 상태)를 변경가능하게 구성되어 있다.
프로젝터(32)는 도 2에 나타낸 바와 같이 상방으로부터 보아서 촬상부(31)의 주위를 둘러싸도록 복수개(8개) 배치되어 있다. 또한, 8개의 프로젝터(32)는 촬상 중심(촬상부(31))으로부터 등거리의 위치에 대략 등각도(대략 45°) 간격으로 배열되어 있다. 또한, 프로젝터(32)는 도 1에 나타낸 바와 같이 촬상부(31)의 촬상 영역(R1)을 통과하는 촬상축(200)으로부터 소정 각도로 비스듬히 경사진 위치에 형성되어 있다.
여기에서, 본 실시형태에서는 프로젝터(32)는 도 3에 나타낸 바와 같이 광원 유닛(321)과, 프로젝터 하우징부(322)와, 투영 렌즈(327)와, 제어 기판(328)을 포함하고 있다. 또한, 광원 유닛(321)에는 LED(323)와, 집광 렌즈(324)와, 미러(325)와, DMD(등록상표)(디지털 미러 디바이스)(326)가 설치되어 있다. 또한, 이 광원 유닛(321)은 프로젝터 하우징부(322)에 부착하기 위한 감합부(329)를 갖고 있다. 이 감합부(329)에 의해 광원 유닛(321)(DMD(326) 및 LED(323))은 프로젝터 하우징부(322)에 부착된다. 이 감합부(329)는 광원 유닛(321)을 프로젝터 하우징부(322)에 대하여 회동 및 이동가능하도록 구성되어 있다. 또한, DMD(326) 및 LED(323)는 법선(300) 주위로 회전가능하도록 감합부(329)에 부착되어 있다. 구체적으로는, 광원 유닛(321)은 감합부(329)에 의해 프로젝터 하우징부(322)에 대하여 독립적으로 DMD(326)의 법선(300) 주위로 대략 90° 회전가능하게 구성되어 있다. 또한, DMD(326)의 법선(300)은 평면으로 보았을 때에 있어서의 DMD(326)의 중심 근방의 요동하고 있지 않은 상태의 후술하는 복수의 미러(326a)의 반사면(326c)에 있어서의 법선을 나타내는 개념이다. 또한, 광원 유닛(321)은 DMD(326)의 중심선(500)(도 4 참조)에 대하여 좌우로 대략 45°씩 DMD(326)의 법선(300)의 주위로 회전 가능(도 4 참조)하게 구성되어 있다. 또한, 광원 유닛(321)은 감합부(329)에 의해 투영 렌즈(327)의 렌즈면이 연장되는 방향(U 방향)(도 3 참조)으로 평행 이동가능하도록 구성되어 있다. 또한, 광원 유닛(321)의 회전 및 평행 이동은 수동에 의해 행해진다. 또한, 프로젝터(32)의 각 부는 제어 기판(328)에 의해 제어되도록 구성되어 있다. 또한, LED(323)는 본 발명의 「광원」의 일례이다. 또한, 감합부(329)는 본 발명의 「부착부」의 일례이다.
LED(323)는, 예를 들면 백색 LED에 의해 구성되어 있다. LED(323)로부터 조사된 광은 집광 렌즈(324) 및 미러(325)를 통해서 DMD(326)에 조사된다.
또한, DMD(326)는 도 5 및 도 6에 나타낸 바와 같이 개별 구동가능한 복수의 미러(326a)(가동 마이크로미러)가 2개 경사상태(온 상태 및 오프 상태)를 취하는 것이 가능하게 구성되어 있다. DMD(326)는 미러(326a)의 경사 상태가 제어됨으로써 소정의 반사 방향으로 반사되는 광량을 조정하도록 구성되어 있다. 이것에 의해, DMD(326)는 소정의 반사 방향으로 임의의 계조의 광을 조사하는 것이 가능하다. 또한, DMD(326)은 LED(323)로부터 조사된 광을 반사시킴으로써 줄무늬 패턴광을 조사하도록 구성되어 있다. 이것에 의해, 프로젝터(32)는 임의의 명암 패턴의 광을 기판(110)(투영 영역(R2))에 투영하는 것이 가능하다. 프로젝터(32)는 정현파상의 광강도 분포를 갖는 등간격의 격자상 명암 패턴(줄무늬 패턴광)을 기판(110)에 투영하고, 이 명암 패턴의 위치(위상)를 시프트시킨 복수의 화상을 촬상부(31)에 촬상시킨다. 이것에 의해, 위상 시프트법에 의한 3차원 형상 계측용 화상을 얻는 것이 가능해진다. 상세한 것은 생략하지만, 얻어진 복수매(예를 들면, 4매)의 3차원 형상 계측용 화상에 있어서의 동일 부분의 화소값의 차이에 근거하여 기판(110)의 입체 형상(높이)을 산출하는 것이 가능하다.
또한, 본 실시형태에서는 DMD(326)는 다이아몬드 배열이 되도록 배치된 복수의 미러(326a)에 의해 구성되어 있다. 또한, DMD(326)는 평면으로 보았을 때에 있어서 대략 직사각형(다각형) 형상을 갖고 있다. 복수의 미러(326a)는 각각 대략 직사각형(정방형) 형상으로 형성됨과 아울러, 대략 직사각형의 대각선에 대응하는 위치에 요동축(326b)(도 6 참조)을 갖고 있다. 복수의 요동축(326b)은 서로 대략 평행해지도록 구성되어 있다. 복수의 요동축(326b)은 도 5에 나타낸 바와 같이 각각 DMD(326)의 LED(323)에 대향하는 변(가장자리)(326d)에 대략 평행해지도록 구성되어 있다. 또한, 변(326d)은 투영 영역(R2)(촬상 영역(R1))에 대하여 대략 평행하다. 또한, DMD(326)의 LED(323)에 대향하는 변(가장자리)(326d)이란 LED(323)를 변(326d)의 폭의 범위 내의 영역에 포함되는(수용되는) 변을 나타내는 개념이다. 즉, DMD(326)의 법선(300) 방향으로부터 보았을 때에 LED(323)는 DMD(326)의 설치폭으로부터 돌출되지 않는 위치에 배치되어 있다. 바꿔 말하면, LED(323)는 대략 직사각형(다각형) 형상의 DMD(326)의 LED(323)에 근접하는 변(326d)에 대향하도록 구성되어 있다. LED(323) 및 DMD(326)는 LED(323)로부터 조사되는 광의 진행 방향(S 방향)과 미러(326a)의 요동축(326b)이 대략 직교하도록 배치되어 있다. 또한, DMD(326)는 복수의 미러(326a)가 조정됨으로써 DMD(326)에 대하여 대략 45° 경사진 명부와 암부를 교대로 포함하는 줄무늬 패턴(도 5 참조) 광을 조사하도록 구성되어 있다. 또한, DMD(326)는 광원 유닛(321)을 이동시킴으로써 감합부(329)에 의해 투영 렌즈(327)에 대하여 투영 렌즈(327)의 렌즈면이 연장되는 방향(U 방향)(도 2 참조)으로 평행 이동하도록 구성되어 있다.
또한, DMD(326)는 도 7에 나타낸 바와 같이 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300)(도 3 참조) 주위로 회전가능하게 구성되어 있다. 구체적으로는, DMD(326) 및 LED(323)는 투영 렌즈(327)와는 독립적으로 법선(300) 주위로 회전가능하도록 감합부(329)에 부착되어 있다. 상세하게는 DMD(326) 및 LED(323)는 광원 유닛(321)을 회전시킴으로써 투영 렌즈(327)와는 독립적으로 법선(300) 주위로 회전가능하게 구성되어 있다. DMD(326) 및 LED(323)는 법선(300) 주위로 0°보다 크고 90°이하의 각도 범위에서 회전가능하게 구성되어 있다. 또한, DMD(326) 및 LED(323)의 회전 각도는 프로젝터(32)에 대하여 DMD(326)가 횡장 상태로 배치된 상태(도 8 및 도 12 참조)를 기준(0°)으로 하고 있다. 도 8∼도 10에 나타낸 바와 같이, DMD(326) 및 LED(323)가 광원 유닛(321)을 회전시킴으로써 법선(300) 주위로 소정 각도 회전되어 투영 영역(R2)의 형상이 변경된다. 또한, 프로젝터(32)(DMD(326) 및 LED(323))는 촬상부(31)의 횡장 상태 및 종장 상태의 양쪽의 상태의 촬상 영역(R1)을 포함하도록 투영 영역(R2)이 설정되도록 구성되어 있다. 상세하게는 도 8에 나타낸 바와 같이, DMD(326) 및 LED(323)가 법선(300) 주위로 회전되지 않을 경우에는 프로젝터(32)는 대략 사다리꼴 형상의 투영 영역(R2)을 갖는다. 또한, 도 9에 나타낸 바와 같이, DMD(326) 및 LED(323)가 광원 유닛(321)을 회전시킴으로써 법선(300) 주위로 반시계 방향으로 대략 90° 회전된 경우에는 프로젝터(32)는 투영 영역(R2)의 깊이 방향으로(프로젝터(32)로부터 조사되는 광의 진행 방향을 따라) 연장되는 대략 사다리꼴 형상의 투영 영역(R2)을 갖는다. 또한, 도 10에 나타낸 바와 같이, DMD(326) 및 LED(323)가 광원 유닛(321)을 회전시킴으로써 법선(300) 주위로 반시계 방향으로 대략 45° 회전되었을 경우에는 프로젝터(32)는 DMD(326) 및 LED(323)의 경사에 대응하고, 또한 투영 영역(R2)의 깊이 방향으로 연장되는 대략 직사각형 형상의 투영 영역(R2)을 갖는다. 또한, 도 8∼도 10의 각각 나타낸 투영 영역(R2)은 위치(B1)(도 2 참조)에 배치된 프로젝터(32)가 갖는 것이다. 또한, 도 8∼도 13 및 도 18의 촬상 영역(14)(투영 영역(R2))의 X축 및 Y축의 눈금은 촬상부(31)의 촬상 영역(R1)의 중심(원점)으로부터의 거리를 나타내고 있다.
또한, 본 실시형태에서는 도 11에 나타낸 바와 같이, 8개의 프로젝터(32) 중 횡장 상태의 촬상 영역(R1)의 단변에 대응하는 위치(도 2에 있어서의 위치(A1 및 A2))에 배치되는 2개의 프로젝터(32)의 DMD(326) 및 LED(323)는 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 대략 90° 회전시킨 상태로 배치되어 있다. 바꿔 말하면, 프로젝터(32)의 배치 위치가 촬상 영역(R1)의 단변에 대향하는 위치(A1 및 A2)일 경우에는 DMD(326) 및 LED(323)는 촬상 영역(R1)의 장변에 대향하는 위치(B1 및 B2)에 배치된 프로젝터(32)의 DMD(326) 및 LED(323)에 대하여 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 대략 90° 회전되어서 배치되어 있다. 이 경우, 위치(A1)에 배치된 프로젝터(32)는 위치(B1)에 배치되는 프로젝터(32)의 깊이 방향으로 연장되는 대략 사다리꼴 형상의 투영 영역(R2)(도 9 참조)을 시계 방향으로 대략 90° 회전시킨 투영 영역(R2)을 갖는다. 또한, 위치(A1)에 배치된 프로젝터(32)는 이 대략 사다리꼴 형상의 투영 영역(R2)에 촬상부(31)의 횡장 상태 및 종장 상태의 촬상 영역(R1)을 포함하고 있다. 또한, 위치(A2)에 배치되는 프로젝터(32)의 투영 영역(R2)은 위치(A1)에 배치되는 프로젝터(32)의 투영 영역(R2)과 촬상 영역(R1)(투영 영역(R2))의 Y축에 관해서 선대칭의 관계에 있다.
또한, 도 12에 나타낸 바와 같이, 8개의 프로젝터(32) 중 촬상 영역(R1)의 장변에 대응하는 위치(도 2에 있어서의 위치(B1 및 B2))에 배치되는 2개의 프로젝터(32)의 DMD(326) 및 LED(323)는 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 회전시키지 않은 상태로 배치되어 있다. 이 경우, 위치(B1)에 배치된 프로젝터(32)는 깊이 방향으로 연장되는 대략 사다리꼴 형상의 투영 영역(R2)을 갖는다. 또한, 위치(B1)에 배치된 프로젝터(32)는 그 대략 사다리꼴 형상의 투영 영역(R2)에 촬상부(31)의 횡장 상태 및 종장 상태의 촬상 영역(R1)을 포함하고 있다. 또한, 위치(B2)에 배치되는 프로젝터(32)의 투영 영역(R2)은 위치(B1)에 배치되는 프로젝터(32)의 투영 영역(R2)과 촬상 영역(R1)(투영 영역(R2))의 X축에 관해서 선대칭의 관계에 있다.
또한, 도 13에 나타낸 바와 같이, 8개의 프로젝터(32) 중 촬상 영역(R1)의 변에 대하여 45° 각도 경사진 위치(도 2에 있어서의 위치(C1∼C4))에 배치되는 4개의 프로젝터(32)의 DMD(326) 및 LED(323)는 복수의 미러(326a)에 대략 수직한 법선(300) 주위로 대략 45° 회전되어서 배치되어 있다. 바꿔 말하면, 프로젝터(32)의 배치 위치가 촬상 영역(R1)의 장변에 대하여 대략 45° 경사진 위치(C1∼C4)일 경우에는 DMD(326) 및 LED(323)는 촬상 영역(R1)의 장변에 대향하는 위치(B1 및 B2)에 배치된 프로젝터(32)의 DMD(326) 및 LED(323)에 대하여 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 대략 45° 회전되어서 배치되어 있다. 이 경우, 위치(C1)에 배치된 프로젝터(32)는 위치(B1)에 배치되는 프로젝터(32)의 DMD(326) 및 LED(323)의 경사에 대응하고, 또한 투영 영역(R2)의 깊이 방향으로 연장되는 대략 사다리꼴 형상의 투영 영역(R2)을 시계 방향으로 대략 45° 회전시킨 변형된 직사각형 형상의 투영 영역(R2)을 갖는다. 또한, 위치(C2)에 배치된 프로젝터(32)는 이 투영 영역(R2)에 촬상부(31)의 횡장 상태 및 종장 상태의 촬상 영역(R1)을 포함하고 있다. 또한, 위치(C2∼C4)에 배치되는 각각의 프로젝터(32)의 투영 영역(R2)은 위치(C1)에 배치되는 프로젝터(32)의 투영 영역(R2)을 촬상 영역(R1)의 원점에 관해서 대략 90°, 대략 180°, 대략 270°, 시계회전 방향으로 회전시킨 관계에 있다.
또한, 도 14 및 도 15에서는 기판(110)(검사 대상 부위)을 측면에서 본 높이 방향에 있어서의 줄무늬 패턴광의 이웃하는 명부(암부)의 피치를 나타내고 있다. 이 높이 방향의 명부(암부) 피치에 의해 3차원 계측을 행할 때의 분해능이 규정된다. 구체적으로는, DMD(326) 및 LED(323)를 법선(300) 주위로 대략 45° 회전시킨 상태(회전 상태)에서는 줄무늬 패턴광의 명부(암부)의 피치(간격)는 P1(도 15 참조)이 된다. DMD(326) 및 LED(323)를 법선(300) 주위로 회전시키지 않은 상태(비회전 상태)에서는 줄무늬 패턴광의 명부(암부)의 피치는 P2(도 14 참조)가 된다. 상세하게는 줄무늬 패턴광의 투영면(기판(110)의 표면)에 있어서의 명부(암부)의 피치(P0)는 회전 상태 및 비회전 상태 모두 동일하다. 한편, 기판(110)의 반송 방향(X 방향)에 있어서의 명부(암부)의 피치(즉, 기판(110)을 측면에서 보아서 높이 방향(Z 방향)의 명부(암부)의 피치)는 회전 상태의 경우인 쪽이 비회전 상태의 경우보다 작아진다. 즉, 회전 상태에서의 줄무늬 패턴광의 피치(P1)는 비회전 상태에서의 줄무늬 패턴광의 피치가(P2)보다 작아진다. 이것에 의해, DMD(326) 및 LED(323)가 회전 상태에 있는 위치(C1∼C4)(도 2 참조)에 배치된 프로젝터(32)에서는 비회전 상태의 프로젝터(32)와 비교하여 3차원 계측을 행할 때의 분해능이 향상되어 있다.
또한, DMD(326)는 도 16에 나타낸 바와 같이 복수의 미러(326a)의 요동(예를 들면, 복수의 미러(326a)가 요동할 때의 듀티비)이 조정됨으로써, 프로젝터(32)에 가까운 측보다 먼 측에서 강도가 강해지도록 줄무늬 패턴광을 기판(110)에 조사하도록 구성되어 있다. 이것에 의해, 도 17에 나타낸 바와 같이, 투영 영역(R2)에 조사된 줄무늬 패턴광의 명도가 프로젝터(32)에 가까운 측보다 먼 측에서 저하하는 것이 억제되어 투영 영역(R2) 전체에서 줄무늬 패턴광의 명도가 균일해져 있다.
또한, DMD(326)는 도 18에 나타낸 바와 같이 촬상부(31)의 촬상 영역(R1)보다 외측 영역(R3)에서는 줄무늬 패턴광을 조사하지 않음으로써 흑색 표시를 행하도록 구성되어 있다. 바꿔 말하면, 프로젝터(32)는 촬상부(31)의 촬상 영역(R1)과 대략 일치하는 영역에 줄무늬 패턴광을 투영하도록 구성되어 있다.
도 11∼도 13에 나타낸 바와 같이 투영 렌즈(327)는 줄무늬 패턴광이 투영되는 투영 영역(R2)의 크기(면적)를 변경가능하도록 구성되어 있다. 복수의 프로젝터(32)의 각각은 투영 영역(R2)이 촬상부(31)의 촬상 영역(R1)을 포함하도록(수용하도록) 투영 렌즈(327)의 광축(400)이 설정되도록 구성되어 있다.
또한, 도 1에 나타낸 바와 같이, 외관 검사장치(100)는 제어장치(40)에 의해 제어되도록 구성되어 있다. 제어장치(40)는 제어부(41)와, 기억부(42)와, 화상 처리부(43)와, 촬상 제어부(44)와, 투영 제어부(45)와, 모터 제어부(46)를 포함하고 있다.
제어부(41)은 논리연산을 실행하는 CPU, CPU를 제어하는 프로그램 등을 기억하는 ROM(Read Only Memory) 및 장치의 동작 중에 각종 데이터를 일시적으로 기억하는 RAM(Random Access Memory) 등으로 구성되어 있다. 제어부(41)는 ROM에 기억되어 있는 프로그램이나, 기억부(42)에 격납된 소프트웨어(프로그램)에 따라서, 화상 처리부(43), 촬상 제어부(44), 투영 제어부(45) 및 모터 제어부(46)를 통해서 외관 검사장치(100)의 각 부를 제어하도록 구성되어 있다. 그리고, 제어부(41)는 촬상부(31)나 프로젝터(32)를 사용하여 기판(110)에 대한 상술한 각종 외관 검사를 행한다.
기억부(42)는 제어부(41)에 의한 판독이 가능한 각종 데이터를 기억하는 불 휘발성의 기억장치로 이루어진다. 기억부(42)에는 촬상부(31)에 의해 촬상된 촬상 화상 데이터, 기판(110)에 실장되는 전자 부품(도시 생략)의 설계상의 위치 정보를 결정하는 기판 데이터, 기판(110)에 실장되는 전자 부품(도시 생략)의 형상을 결정하는 부품 형상 데이타베이스, 프로젝터(32)가 생성하는 투영 패턴(3차원 계측용 줄무늬(명암) 패턴)의 정보 등이 기억되어 있다. 제어부(41)는 촬상부(31)와 프로젝터(32)를 사용한 3차원 형상 계측에 의한 3차원(입체형상) 검사에 근거하여, 기판(110) 상의 솔더의 검사나 기판(110)에 실장된 전자 부품(도시 생략)의 실장상태검사, 및 완성 상태의 기판(110)의 검사 등을 행한다.
화상 처리부(43)는 촬상부(31)에 의해 촬상된 촬상 화상(촬상 신호)을 화상처리하고, 기판(110)의 전자 부품(도시 생략)이나 땜납 접합부(솔더)를 인식(화상 인식) 하는데에 적합한 화상 데이터를 생성하도록 구성되어 있다.
도 1에 나타낸 바와 같이, 촬상 제어부(44)는 제어부(41)로부터 출력되는 제어 신호에 근거하여 촬상부(31)로부터 소정의 타이밍에서 촬상 신호의 판독을 행함과 아울러, 판독된 촬상 신호를 화상 처리부(43)로 출력하도록 구성되어 있다. 투영 제어부(45)는 제어부(41)로부터 출력되는 제어 신호에 근거하여 프로젝터(32)에 의한 조명의 제어를 행한다. 프로젝터(32)를 사용한 3차원 형상 계측을 행할 경우에는 투영 제어부(45)는 기억부(42)에 기억된 투영 패턴 데이터(DMD(326)에 대하여 대략 45° 경사진 줄무늬 패턴광을 투영하기 위한 패턴 데이터)를 사용하여 위상을 시프트시킨 복수의 투영 패턴의 조명광에 의해 복수회(예를 들면, 4회)의 투영을 행하도록 프로젝터(32)를 제어한다.
모터 제어부(46)는 제어부(41)로부터 출력되는 제어 신호에 근거하여, 외관 검사장치(100)의 각 서보모터(헤드 이동 기구(20)의 X축 모터, Y축 모터 및 Z축 모터, 기판 반송 컨베이어(10)를 구동하기 위한 모터(도시 생략) 등)의 구동을 제어하도록 구성되어 있다. 또한, 모터 제어부(46)는 각 서보모터의 인코더(도시 생략)로부터의 신호에 근거하여, 촬상 헤드부(30) 및 기판(110) 등의 위치를 취득하도록 구성되어 있다.
다음에, 도 5 및 도 19를 참조하여 본 실시형태에 의한 외관 검사장치(100)의 제어부(41)에 의해 실행되는 외관 검사 처리 플로우에 대해서 설명한다. 여기에서는 위상을 2π/4씩 시프트시킨 4매 화상이 취득되는 예에 대해서 설명한다.
우선, 스텝(S1)에 있어서, 줄무늬 패턴광(정현파 줄무늬 패턴)의 위상 번호 n이 O(위상 변이 없음)으로 설정(리셋)된다.
다음에, 스텝(S2)에 있어서, DMD(326)의 투영 패턴이 설정된다. 구체적으로는, DMD(326)는 기억부(42)로부터 검색한 투영 패턴(DMD(326)에 대하여 대략 45° 경사진 줄무늬 패턴광을 투영하기 위한 투영 패턴 데이터)의 정보에 근거하여, 대략 45° 경사진 줄무늬 패턴 중 n번째의 위상 패턴의 촬상 패턴이 설정된다. 그리고, DMD(326)에 대하여 대략 45° 경사진 n번째의 위상에 대응한 줄무늬 패턴(도 5 참조)을 형성하도록 복수의 미러(326a)의 요동이 제어된다.
다음에, 스텝(S3)에 있어서, 줄무늬 패턴광이 투영 영역(R2)에 투영된다. 구체적으로는, 8개의 프로젝터(32)로부터 스텝(S2)에서 DMD(326)에 설정된 줄무늬 패턴에 대응하는 줄무늬 패턴광이 투영 영역(R2)에 투영된다.
다음에, 스텝(S4)에 있어서, 화상이 촬상된다. 구체적으로는, 스텝(S3)에서 투영된 줄무늬 패턴광을 사용해서 기판(110)의 화상이 취득된다.
다음에, 스텝(S5)에 있어서, 줄무늬 패턴광의 위상 번호 n이 3보다 작은지의 여부가 판단된다. 위상 번호 n이 3보다 작을 경우에는 스텝(S6)으로 진행된다. 한편, 위상 번호 n이 3보다 작지 않을 경우에는 스텝(S7)으로 진행된다.
스텝(S6)에 있어서, 줄무늬 패턴광의 위상 번호 n이 n+1로 설정되고, 그 후 스텝(S2)으로 되돌아간다. 스텝(S2)∼스텝(S5)이 반복됨으로써, 위상을 2π/4씩 시프트시킨 4매의 촬상 화상이 취득된다.
스텝(S7)에 있어서, 위상이 산출된다. 구체적으로는, 각 위상 번호 n(예를 들면, n=0∼3)에서 촬상된 화상으로부터 각 화상에 대응하는 위상값이 기판(110)의 부위마다 산출된다.
다음에, 스텝(S8)에 있어서, 기판(110)의 높이가 검출된다. 구체적으로는, 스텝(S7)에 있어서 산출된 각 화상에 대응하는 위상값의 정보와 미리 기억부에 기억되어 있는 공간 좌표와 위상값을 대응시키는 테이블에 근거하여 기판(110)의 각 부위의 높이가 검출된다. 또한, 이 기판(110)의 높이 정보에 근거하여 기판(110)의 각종 검사가 행해진다. 그 후, 외관 검사 처리 플로우가 종료된다.
본 실시형태에서는 상기한 바와 같이 다이아몬드 배열로 배치된 복수의 미러(326a)를 포함하는 DMD(326)를 외관 검사장치(100)에 설치한다. 이것에 의해, DMD(326)의 변(326d)(가장자리)에 평행한 복수의 미러(326c)의 요동축(326b)을 갖는 다이아몬드 배열의 DMD(326)에 대하여 LED(323)를 배치할 때에 평면으로 보았을 때에 직사각형상의 외형을 갖는 DMD(326)의 설치폭의 범위 내에 LED(323)를 설치했을 경우에서도 LED(323)로부터 조사되는 광의 진행 방향과 복수의 미러(326c)의 각각의 요동축(326b)을 대략 직교시킬 수 있다. 그 결과, LED(323)로부터 조사된 광을 DMD(326)에 의해 반사시켜서 줄무늬 패턴광을 기판(110)에 투영할 수 있다. 이것에 의해, 격자상의 DMD를 사용했을 경우에, 평면으로 보았을 때에 직사각형상의 외형을 갖는 DMD의 코너부에 대하여 경사 방향으로 소정의 간격을 둔 위치에 광원을 배치하는 경우와는 달이, LED(323)와 DMD(326)를 포함하는 광원 유닛(321)의 설치폭이 커지는 것을 억제할 수 있다. 따라서, LED(323)와 DMD(326)를 포함하는 광원 유닛(321)의 외형이 대형화되어버리는 것을 억제할 수 있다.
본 실시형태에서는 상기한 바와 같이 대략 직사각형 형상으로 DMD(326)를 형성하고, 직사각형 형상의 DMD(326)의 LED(323)에 근접하는 변(326d)에 대향하도록 LED(323)를 배치한다. 이것에 의해, DMD(326)의 LED(323)에 근접하는 변(326d)이 연장되는 방향으로 광원 유닛(321)의 설치폭이 커지는 것을 억제할 수 있으므로, LED(323)와 DMD(326)를 포함하는 광원 유닛(321)의 설치폭이 커지는 것을 보다 용이하게 억제할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 복수의 미러(326a)가 조정됨으로써 DMD(326)에 대하여 대략 45° 경사진 줄무늬 패턴광을 조사하도록 DMD(326)를 구성한다. 이것에 의해, DMD(326)에 대하여 대략 45°이외의 각도(예를 들면, 90°) 경사진 줄무늬 패턴광을 조사할 경우와는 달리, 줄무늬 패턴광의 엣지를 대략 직선상으로 할 수 있으므로 정밀도가 좋은 줄무늬 패턴광을 발생시킬 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 회전가능하게 DMD(326) 및 LED(323)를 구성한다. 이것에 의해, 기판(110)을 측면에서 보았을 경우의 높이 방향에 있어서의 줄무늬 패턴광의 인접하는 명부(암부)의 피치(간격)를 작게 할 수 있으므로, 3차원 형상 측정의 분해능(계측 정밀도)을 향상시킬 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 법선(300) 주위로 대략 45° 회전가능하게 DMD(326) 및 LED(323)를 구성한다. 이것에 의해, 투영 영역(R2)의 형상이 크게 변경되는 것을 억제하면서, 기판(110)을 측면에서 보았을 경우의 높이 방향에 있어서의 줄무늬 패턴광의 인접하는 명부(암부)의 피치(간격)를 작게 할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 법선(300) 주위로 회전가능하고, 또한 투영 렌즈(327)와는 독립적으로 회전하도록 DMD(326) 및 LED(323)를 구성한다. 이것에 의해, DMD(326)와 투영 렌즈(327)와 투영 영역(R2)의 위치 관계를 유지하면서, DMD(326) 및 LED(323)를 미러(326a)의 법선(300) 주위로 회전시킬 수 있으므로, 근거리의 핀트와 원거리의 핀트를 동시에 맞출 수 있는 샤임플러그 조건을 유지할 수 있다.그 결과, DMD(326) 및 LED(323)를 회전시켜도 광학계를 조정할 필요를 없앨 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 대략 직사각형 형상으로 형성되고 대각선에 대응하는 위치에 요동축(326b)을 갖는 복수의 미러(326a)를 설치한다. 또한, 서로 대략 평행하고 또한 DMD(326)의 LED(323)에 대향하는 변에 대략 평행해지도록 복수의 요동축(326b)을 구성한다. 또한, LED(323)로부터 조사되는 광의 진행 방향과 미러(326a)의 요동축(326b)이 대략 직교하도록 LED(323) 및 DMD(326)를 배치한다. 이것에 의해, DMD(326)를 요동시키는 요동축(326b)이 직사각형상의 외형을 갖는 DMD(326)의 변(326d)(가장자리)에 평행한 다이아몬드 배열의 DMD(326)를 설치한 구성에 의해, LED(323)로부터 조사되는 광의 진행 방향과 복수의 미러(326a)의 각각의 요동축(326b)을 대략 직교시킬 수 있으므로, 용이하게 LED(323)로부터 조사된 광을 DMD(326)에 의해 반사시켜서 줄무늬 패턴광을 기판(110)에 투영할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 DMD(326) 및 LED(323)를 프로젝터 하우징부(322)에 부착하기 위한 감합부(329)를 더 설치하고, DMD(326) 및 LED(323)는 법선(300) 주위로 회전가능하고, 또한 투영 렌즈(327)와는 독립적으로 회전가능하도록 감합부(329)에 부착되어 있다. 이것에 의해, 감합부(329)에 의해 DMD(326) 및 LED(323)의 위치 관계를 유지하면서, DMD(326) 및 LED(323)를 투영 렌즈(327)에 대하여 DMD(326)의 미러(326a)의 법선(300) 주위로 용이하게 회전시킬 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 투영 영역(R2)이 촬상부(31)의 촬상 영역(R1)을 포함하도록 투영 렌즈(327)의 광축이 설정되도록 복수의 프로젝터(32)의 각각을 구성한다. 이것에 의해, 복수의 프로젝터(32)를 배치했을 경우에도 복수의 프로젝터(32)의 각각으로부터 조사된 줄무늬 패턴광에 대응하는 화상을 누락없이(빠짐없이) 취득할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 DMD(326)의 평면으로 보았을 때에 있어서의 중심(중심선(500))이 투영 렌즈(327)의 광축에 대하여 어긋나도록 DMD(326)가 투영 렌즈(327)에 대하여 상대적으로 평행 이동가능하도록 프로젝터(32)를 구성한다. 이것에 의해, 프로젝터(32)의 투영 영역(R2)과 촬상부(31)의 촬상 영역(R1)이 어긋나 있을 경우에도 DMD(326)의 투영 렌즈(327)에 대한 상대적인 위치를 변경함으로써 프로젝터(32)의 투영 영역(R2)에 촬상부(31)의 촬상 영역(R1)을 포함시킬 수 있으므로, 프로젝터(32)로부터 조사된 줄무늬 패턴광에 대응하는 화상을 용이하게 누락없이(빠짐없이) 취득할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 8개의 프로젝터(32) 중 촬상 영역(R1)의 변에 대하여 대략 45° 경사지는 위치(위치(C1∼C4)))에 배치되는 4개의 프로젝터(32)의 DMD(326) 및 LED(323)를 복수의 미러(326a)의 반사면(326c)에 대략 수직한 법선(300) 주위로 대략 45° 회전시켜서 배치한다. 이것에 의해, 투영 렌즈(327)의 투영 배율을 높이지 않고 위치(C1∼C4)에 배치되는 4개의 프로젝터(32)의 투영 영역(R2)에 촬상부(31)의 촬상 영역(R1)을 포함시킬 수 있으므로, 투영 영역(R2)에 투영되는 줄무늬 패턴광의 해상도가 저하하는 것을 억제할 수 있다. 또한, 투영 렌즈(327)의 투영 배율을 높이지 않고 위치(C1∼C4)에 배치되는 4개의 프로젝터(32)의 투영 영역(R2)에 촬상부(31)의 촬상 영역(R1)을 포함시킬 수 있으므로, 투영 영역(R2)에 투영되는 줄무늬 패턴광의 휘도가 저하하는 것을 억제할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 프로젝터(32)의 배치 위치가 촬상 영역(R1)의 단변에 대향하는 위치(A1 및 A2)일 경우에는 촬상 영역(R1)의 장변에 대향하는 위치(B1 및 B2)에 배치된 프로젝터(32)의 DMD(326) 및 LED(323)에 대하여 DMD(326) 및 LED(323)를 복수의 미러(326a)의 법선(300) 주위로 대략 90° 회전해서 배치하고, 프로젝터(32)의 배치 위치가 촬상 영역(R1)의 장변에 대하여 대략 45° 경사지는 위치(C1∼C4)일 경우에는 위치(B1 및 B2)에 배치된 프로젝터(32)의 DMD(326) 및 LED(323)에 대하여 DMD(326) 및 LED(323)를 복수의 미러(326a)의 법선(300) 주위로 대략 45° 회전해서 배치한다. 이것에 의해, 소정 위치의 DMD(326) 및 LED(323)를 위치(B1 및 B2)에 배치된 프로젝터(32)의 DMD(326) 및 LED(323)에 대하여 복수의 미러(326a)의 법선(300) 주위로 소정 각도(예를 들면, 대략 45°또는 대략 90°) 회전시킴으로써 용이하게 투영 렌즈(327)의 투영 배율을 높이지 않고 프로젝터(32)의 투영 영역(R2)에 촬상 영역(R1)을 포함시킬 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 프로젝터(32)에 가까운 측보다 먼 측에서 강도가 강해지도록 줄무늬 패턴광을 기판(110)에 조사하도록 DMD(326)를 구성한다. 이것에 의해, 투영 영역(R2)에 조사된 줄무늬 패턴광의 명도가 프로젝터(32)에 가까운 측보다 먼 측에서 저하하는 것을 억제할 수 있으므로, 투영 영역(R2)에 있어서의 줄무늬 패턴광의 명도를 균일화할 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 촬상부(31)의 촬상 영역(R1)보다 외측의 영역(R3)에서는 줄무늬 패턴광을 조사하지 않음으로써 흑색 표시를 행하도록 DMD(326)를 구성한다. 이것에 의해, 투영 영역(R2)으로부터 투영된 줄무늬 패턴광이 촬상 영역(R1)의 주위로서 난반사하는 것을 억제할 수 있으므로, 외관 검사장치(100)의 계측 정밀도를 향상시킬 수 있다.
또한, 본 실시형태에서는 상기한 바와 같이 촬상 영역(R1)의 위치를 변경가능하게 촬상부(31)를 구성하고, 위치 변경가능한 촬상 영역(R1)이 투영 영역(R2)에 포함되도록 법선(300) 주위로 회전가능하게 DMD(326)를 구성한다. 이것에 의해, 촬상부(31)의 촬상 영역(R1)의 위치를 변경했을 경우에서도 DMD(326)를 회전시키는 간이한 조작에 의해 위치 변경가능한 촬상 영역(R1)을 투영 영역(R2)에 포함시킬 수 있으므로, 줄무늬 패턴광에 대응하는 화상을 용이하게 누락없이(빠짐없이) 취득할 수 있다.
또한, 금회 개시된 실시형태는 모든 점에서 예시이고 제한적인 것이 아닌 것으로 생각되어야 한다. 본 발명의 범위는 상기한 실시형태의 설명에서는 없고 특허청구범위에 의해서 표시되고, 또한 특허청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함된다.
예를 들면, 상기 실시형태에서는 본 발명을 3차원 형상 측정장치의 일례로서의 기판(검사 대상 부위)을 검사하는 외관 검사장치에 적용하는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명은 이물검사장치, 땜납인쇄 검사장치 및 부품 검사장치 등의 다른 3차원 형상 측정장치에도 적용가능하다.
또한, 상기 실시형태에서는 위치(C1∼C4)의 DMD(디지털 미러 디바이스) 및 LED(광원)를 미러의 법선 주위로 대략 45° 회전시킨 상태로 배치하는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 위치(C1∼C4)의 디지털 미러 디바이스 및 광원을 미러의 법선 주위로 45° 이외의 각도 회전시킨 상태로 배치해도 좋고, 미러의 법선 주위로 회전시키지 않은 상태로 배치해도 좋다.
또한, 상기 실시형태에서는 본 발명의 광원으로서 LED를 사용한 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 LED 이외의, 예를 들면 레이저 광원을 광원으로서 설치해도 좋다.
또한, 상기 실시형태에서는 DMD의 평면으로 보았을 때에 있어서의 중심선(500)이 투영 렌즈의 광축에 대하여 어긋나도록 DMD가 투영 렌즈에 대하여 평행 이동하는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 투영 렌즈의 광축이 DMD의 평면으로 보았을 때에 있어서의 중심선(500)에 대하여 어긋나도록 투영 렌즈가 DMD에 대하여 평행 이동해도 좋고, DMD의 평면으로 보았을 때에 있어서의 중심선(500)과 투영 렌즈의 광축이 어긋나도록 투영 렌즈 및 DMD의 양쪽이 서로 상대적으로 평행 이동해도 좋다.
또한, 상기 실시형태에서는 상방에서 보아서 복수의 프로젝터가 서로 촬상부를 중심으로 하여 대략 45° 경사진 위치에 설치되는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 복수의 프로젝터가 서로 촬상부를 중심으로 하여 대략 45° 이외의 각도로 경사진 위치에 설치되어도 좋다.
또한, 상기 실시형태에서는 프로젝터에 가까운 측보다 먼 측에서 강도가 강해지도록 줄무늬 패턴광을 검사 대상 부위에 조사하는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 프로젝터에 가까운 측과 먼 측에서 강도가 대략 균일해지도록 줄무늬 패턴광을 검사 대상 부위에 조사해도 좋다.
또한, 상기 실시형태에서는 촬상 영역보다 외측 영역에서는 줄무늬 패턴광을 조사하지 않은 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 촬상 영역보다 외측의 영역에서도 줄무늬 패턴광을 조사해도 좋다.
또한, 상기 실시형태에서는 투영 영역이 촬상부의 촬상 영역을 포함하도록 투영 렌즈의 광축이 설정되는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 투영 영역이 촬상부의 촬상 영역을 포함하도록 투영 렌즈의 투영 배율을 설정해도 좋고, 투영 렌즈의 투영 배율 및 광축 양쪽을 설정해도 좋다.
또한, 상기 실시형태에서는 DMD 및 LED(광원)를 수동에 의해 DMD를 구성하는 복수의 미러의 법선 주위로 회전시킴과 아울러, 투영 렌즈의 렌즈면에 대하여 평행 이동시키는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 프로젝터(32)에 모터를 설치하고, DMD 및 광원을 모터의 동력에 의해 DMD를 구성하는 복수의 미러의 법선 주위로 회전시킴과 아울러, 투영 렌즈의 렌즈면에 대하여 평행 이동시켜도 좋다.
또한, 상기 실시형태에서는 DMD 및 LED(광원)를 시계 방향으로 회전시키는 예를 개시했지만, 본 발명은 이것에 한정되지 않는다. 본 발명에서는 DMD 및 광원을 반시계 방향으로 회전시켜도 좋다.
또한, 상기 실시형태에서는 설명의 편의상 제어부의 처리를 처리 플로우에 따라 순번으로 처리를 행하는 플로우 구동형의 플로우를 사용해서 설명했지만, 예를 들면 제어부의 처리 동작을 이벤트 단위로 처리를 실행하는 이벤트 구동형(이벤트 드라이븐형)의 처리에 의해 행해도 좋다. 이 경우, 완전한 이벤트 구동형으로 행해도 좋고, 이벤트 구동 및 플로우 구동을 조합시켜서 행해도 좋다.

Claims (15)

  1. 광원과,
    상기 광원으로부터 조사된 광을 반사시킴으로써 검사 대상 부위의 높이 정보를 취득가능한 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 상기 검사 대상 부위에 조사하는 디지털 미러 디바이스와,
    상기 디지털 미러 디바이스에 의해 줄무늬 패턴광이 조사된 상기 검사 대상 부위를 촬상하는 촬상부를 구비하고,
    상기 디지털 미러 디바이스는 다이아몬드 배열이 되도록 배치된 복수의 미러에 의해 구성되고, 상기 복수의 미러의 경사 상태가 제어됨으로써 소정의 반사 방향으로 반사되는 광의 광량이 조정되는 것에 의해 상기 디지털 미러 디바이스에 대하여 45° 경사진 명부와 암부를 교대로 포함하는 줄무늬 패턴광을 조사하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  2. 제 1 항에 있어서,
    상기 디지털 미러 디바이스는 다각형 형상을 갖고,
    상기 광원은 다각형 형상의 상기 디지털 미러 디바이스의 상기 광원에 근접하는 변에 대향하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  3. 삭제
  4. 제 1 항에 있어서,
    상기 디지털 미러 디바이스 및 상기 광원은 상기 복수의 미러의 반사면에 수직한 법선 주위로 회전가능하게 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  5. 제 4 항에 있어서,
    상기 디지털 미러 디바이스 및 상기 광원은 상기 법선 주위로 45° 회전가능하게 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  6. 제 4 항에 있어서,
    투영 렌즈를 더 구비하고,
    상기 디지털 미러 디바이스 및 상기 광원은 상기 법선 주위로 회전가능하고, 또한 상기 투영 렌즈와는 독립적으로 회전하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  7. 제 1 항에 있어서,
    상기 광원 및 상기 디지털 미러 디바이스를 포함하고, 소정의 투영 영역에 줄무늬 패턴광을 조사하는 프로젝터를 더 구비하고,
    상기 복수의 미러는 각각 직사각형 형상으로 형성됨과 아울러, 직사각형의 대각선에 대응하는 위치에 요동축을 갖고,
    복수의 상기 요동축은 서로 평행하고, 또한 상기 디지털 미러 디바이스의 상기 광원에 대향하는 변에 평행해지도록 구성되고,
    상기 광원 및 상기 디지털 미러 디바이스는 상기 광원으로부터 조사되는 광의 진행 방향과 상기 미러의 상기 요동축이 직교하도록 배치되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  8. 제 7 항에 있어서,
    상기 디지털 미러 디바이스 및 상기 광원을 프로젝터 하우징부에 부착하기 위한 부착부를 더 구비하고,
    상기 디지털 미러 디바이스 및 상기 광원은 법선 주위로 회전가능하고, 또한 투영 렌즈와는 독립적으로 회전가능하도록 상기 부착부에 부착되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  9. 제 7 항에 있어서,
    상기 프로젝터는 투영 렌즈를 갖고,
    상기 프로젝터는 상방에서 보아서 상기 촬상부를 둘러싸도록 복수 배치되고,
    복수의 상기 프로젝터의 각각은 상기 투영 영역이 상기 촬상부의 촬상 영역을 포함하도록 적어도 상기 투영 렌즈의 투영 배율 또는 상기 투영 렌즈의 광축이 설정되도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  10. 제 7 항에 있어서,
    상기 프로젝터는 투영 렌즈를 갖고,
    상기 프로젝터는 상기 디지털 미러 디바이스의 평면으로 보았을 때에 있어서의 중심과 상기 투영 렌즈의 광축이 어긋나도록 상기 디지털 미러 디바이스와 상기 투영 렌즈가 서로 상대적으로 평행 이동가능하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  11. 제 7 항에 있어서,
    상기 촬상부는 직사각형 형상의 촬상 영역에 있어서 상기 검사 대상 부위를 촬상가능하도록 구성되고,
    상기 프로젝터는 상방에서 보아서 상기 촬상부를 둘러싸도록 복수 배치되고,
    복수의 상기 프로젝터 중 상기 촬상 영역의 변에 대하여 소정 각도 경사지는 위치에 배치되는 프로젝터의 디지털 미러 디바이스 및 광원은 상기 복수의 미러의 반사면에 수직한 법선 주위로 상기 프로젝터가 배치되는 상기 소정 각도 경사진 위치에 대응하는 각도로 회전되어서 배치되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  12. 제 11 항에 있어서,
    상기 촬상부는 직사각형 형상의 촬상 영역에 있어서 상기 검사 대상 부위를 촬상가능하도록 구성되고,
    상기 프로젝터의 배치 위치가 상기 촬상 영역의 단변에 대향하는 위치일 경우에는 디지털 미러 디바이스 및 광원은 상기 촬상 영역의 장변에 대향하는 위치에 배치된 프로젝터의 디지털 미러 디바이스 및 광원에 대하여 상기 복수의 미러의 반사면에 수직한 법선 주위로 90° 회전되어서 배치되고,
    상기 프로젝터의 배치 위치가 상기 촬상 영역의 장변에 대하여 45° 경사진 위치일 경우에는 디지털 미러 디바이스 및 광원은 상기 촬상 영역의 장변에 대향하는 위치에 배치된 프로젝터의 디지털 미러 디바이스 및 광원에 대하여 상기 복수의 미러의 반사면에 수직한 법선 주위로 45° 회전되어서 배치되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  13. 제 7 항에 있어서,
    상기 디지털 미러 디바이스는 상기 프로젝터에 가까운 측보다 먼 측에서 강도가 강해지도록 줄무늬 패턴광을 상기 검사 대상 부위에 조사하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  14. 제 1 항에 있어서,
    상기 디지털 미러 디바이스는 상기 촬상부의 촬상 영역보다 외측의 영역에서는 줄무늬 패턴광을 조사하지 않음으로써 흑색 표시를 행하도록 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
  15. 제 4 항에 있어서,
    상기 촬상부는 촬상 영역의 위치를 변경가능하게 구성되고,
    상기 디지털 미러 디바이스는 위치 변경가능한 상기 촬상 영역이 투영 영역에 포함되도록 상기 법선 주위로 회전가능하게 구성되어 있는 것을 특징으로 하는 3차원 형상 측정장치.
KR1020140060345A 2013-06-13 2014-05-20 3차원 형상 측정장치 KR101615946B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2013-124349 2013-06-13
JP2013124349A JP5780659B2 (ja) 2013-06-13 2013-06-13 3次元形状測定装置

Publications (2)

Publication Number Publication Date
KR20140145541A KR20140145541A (ko) 2014-12-23
KR101615946B1 true KR101615946B1 (ko) 2016-04-27

Family

ID=50628615

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140060345A KR101615946B1 (ko) 2013-06-13 2014-05-20 3차원 형상 측정장치

Country Status (5)

Country Link
US (1) US9441957B2 (ko)
EP (1) EP2813808B1 (ko)
JP (1) JP5780659B2 (ko)
KR (1) KR101615946B1 (ko)
CN (1) CN104236481B (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322335B2 (ja) * 2015-04-14 2018-05-09 ヤマハ発動機株式会社 外観検査装置
CN104897082B (zh) * 2015-06-08 2018-02-23 华东师范大学 一种基于智能移动平台的高速结构光产生与处理装置
JP2017045001A (ja) * 2015-08-28 2017-03-02 キヤノン株式会社 情報処理装置
JP6800597B2 (ja) * 2016-03-30 2020-12-16 キヤノン株式会社 制御装置、制御方法およびプログラム
CN105973166A (zh) * 2016-05-09 2016-09-28 南京理工大学 采用部分相干光场式漫反射屏的面形检测装置及检测方法
JP2018021829A (ja) * 2016-08-03 2018-02-08 キヤノン株式会社 投影装置、計測装置、システム、および物品の製造方法
JP6848385B2 (ja) * 2016-11-18 2021-03-24 オムロン株式会社 三次元形状計測装置
JP6353573B1 (ja) * 2017-03-02 2018-07-04 Ckd株式会社 三次元計測装置
US9992472B1 (en) * 2017-03-13 2018-06-05 Heptagon Micro Optics Pte. Ltd. Optoelectronic devices for collecting three-dimensional data
JP2019191310A (ja) * 2018-04-23 2019-10-31 株式会社モリテックス プロジェクタおよびこれを用いた空間周波数成分の低減方法
JP7174768B2 (ja) 2018-09-27 2022-11-17 ヤマハ発動機株式会社 3次元測定装置
CN112867905A (zh) * 2018-11-16 2021-05-28 北京闻亭泰科技术发展有限公司 一种用于三维检测的光学引擎和三维检测设备
JP7139953B2 (ja) 2019-01-08 2022-09-21 オムロン株式会社 三次元形状測定装置、三次元形状測定方法及びプログラム
JP7257162B2 (ja) * 2019-02-08 2023-04-13 株式会社キーエンス 検査装置
CN109932367A (zh) * 2019-03-14 2019-06-25 佛山缔乐视觉科技有限公司 一种曲面雕刻图像采集装置
JP7279469B2 (ja) * 2019-03-28 2023-05-23 セイコーエプソン株式会社 三次元計測装置およびロボットシステム
JP7241611B2 (ja) * 2019-06-06 2023-03-17 東京エレクトロン株式会社 パターン測定装置、パターン測定装置における傾き算出方法およびパターン測定方法
KR102601271B1 (ko) * 2019-11-19 2023-11-13 주식회사 에스디에이 3d 스캐너의 구현을 위한 dmd 컨트롤러 및 그의 제어 방법
WO2021210128A1 (ja) 2020-04-16 2021-10-21 ヤマハ発動機株式会社 測定装置、検査装置、表面実装機
CN112268519B (zh) * 2020-09-27 2022-04-19 西北工业大学宁波研究院 基于dmd的光谱成像目标检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020867A (ja) * 2006-07-10 2008-01-31 Zero Rabo Kk 光源装置
JP2009204343A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd 3次元形状計測方法および装置
WO2013037050A1 (en) * 2011-09-16 2013-03-21 Annidis Health Systems Corp. System and method for assessing retinal functionality and optical stimulator for use therein

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471948Y1 (ko) 1969-06-02 1972-01-24
JPH071948B2 (ja) 1988-07-27 1995-01-11 松下電器産業株式会社 産業機器用遠隔制御装置
US5629794A (en) 1995-05-31 1997-05-13 Texas Instruments Incorporated Spatial light modulator having an analog beam for steering light
US5923036A (en) * 1997-02-11 1999-07-13 Bruker Instruments, Inc. Spatially-multiplexed imaging microscope
US6977732B2 (en) 2002-12-26 2005-12-20 National Taiwan University Miniature three-dimensional contour scanner
JP4613644B2 (ja) 2005-03-09 2011-01-19 パナソニック株式会社 回路実装基板の外観検査方法
JP3937024B2 (ja) 2005-09-08 2007-06-27 国立大学法人 和歌山大学 モアレ縞を用いたずれ、パタ−ンの回転、ゆがみ、位置ずれ検出方法
JP4701948B2 (ja) 2005-09-21 2011-06-15 オムロン株式会社 パタン光照射装置、3次元形状計測装置、及びパタン光照射方法
JP2009210509A (ja) * 2008-03-06 2009-09-17 Roland Dg Corp 3次元形状測定装置および3次元形状測定コンピュータプログラム
CN101458067B (zh) * 2008-12-31 2010-09-29 苏州大学 激光光斑测量装置及其测量方法
JP5441840B2 (ja) 2009-07-03 2014-03-12 コー・ヤング・テクノロジー・インコーポレーテッド 3次元形状測定装置
KR101245623B1 (ko) 2011-03-31 2013-03-20 주식회사 미르기술 가시광선의 격자무늬와 자외선 또는 적외선 격자 무늬를 이용한 비전검사장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020867A (ja) * 2006-07-10 2008-01-31 Zero Rabo Kk 光源装置
JP2009204343A (ja) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd 3次元形状計測方法および装置
WO2013037050A1 (en) * 2011-09-16 2013-03-21 Annidis Health Systems Corp. System and method for assessing retinal functionality and optical stimulator for use therein

Also Published As

Publication number Publication date
US9441957B2 (en) 2016-09-13
US20140368835A1 (en) 2014-12-18
CN104236481B (zh) 2017-05-17
JP5780659B2 (ja) 2015-09-16
JP2015001381A (ja) 2015-01-05
EP2813808B1 (en) 2021-07-07
EP2813808A3 (en) 2014-12-31
KR20140145541A (ko) 2014-12-23
EP2813808A2 (en) 2014-12-17
CN104236481A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
KR101615946B1 (ko) 3차원 형상 측정장치
JP4744610B2 (ja) 三次元計測装置
KR101513107B1 (ko) 조정 장치, 레이저 가공 장치, 조정 방법, 및 조정 프로그램
JP4484288B2 (ja) 画像処理方法および画像処理システム
KR102515369B1 (ko) 3차원 측정 장치
JP4315536B2 (ja) 電子部品実装方法及び装置
JP5546292B2 (ja) 検査装置および検査方法
JP4877100B2 (ja) 実装基板の検査装置および検査方法
TWI661176B (zh) 三次元測定裝置、三次元測定方法及基板之製造方法
JP6097389B2 (ja) 検査装置および検査方法
JP6941306B2 (ja) 撮像装置、バンプ検査装置、及び撮像方法
JP2008294065A (ja) 電子部品の実装方法及び装置
JPWO2020003384A1 (ja) 平坦度取得システムおよび実装機
JPH0820207B2 (ja) 光学式3次元位置計測方法
JP6879484B2 (ja) 画像取得装置、露光装置、及び画像取得方法
JP2013096831A (ja) 部品実装基板生産装置、および、三次元形状測定装置
JPH11132735A (ja) Icリード浮き検査装置及び検査方法
WO2023032095A1 (ja) ワーク高さ計測装置、及びこれを用いた実装基板検査装置
WO2022224455A1 (ja) 測定装置および基板検査装置
JP3498074B2 (ja) 電気部品装着システム
KR20120123538A (ko) 검출 방법 및 검출 장치
JP7271250B2 (ja) 計測装置および表面実装機
JP2013170987A (ja) 部品実装基板生産装置、および、三次元形状測定装置
JP2013098341A (ja) 部品実装装置
JPH03296607A (ja) 3次元形状計測装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant