KR101603079B1 - 레이트 특성이 향상된 리튬 이차전지 - Google Patents

레이트 특성이 향상된 리튬 이차전지 Download PDF

Info

Publication number
KR101603079B1
KR101603079B1 KR1020130043325A KR20130043325A KR101603079B1 KR 101603079 B1 KR101603079 B1 KR 101603079B1 KR 1020130043325 A KR1020130043325 A KR 1020130043325A KR 20130043325 A KR20130043325 A KR 20130043325A KR 101603079 B1 KR101603079 B1 KR 101603079B1
Authority
KR
South Korea
Prior art keywords
lithium
propionate
secondary battery
lithium secondary
based material
Prior art date
Application number
KR1020130043325A
Other languages
English (en)
Other versions
KR20130118809A (ko
Inventor
전종호
양두경
김슬기
김유석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130118809A publication Critical patent/KR20130118809A/ko
Application granted granted Critical
Publication of KR101603079B1 publication Critical patent/KR101603079B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 레이트 특성이 향상된 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 하기 화학식 2로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다.
LixMyMn2-yO4-zAz (1)
(상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
LiaM’bO4-cAc (2)
(상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.)

Description

레이트 특성이 향상된 리튬 이차전지 {Lithium Secondary Battery of Improved Rate Capability}
본 발명은 레이트 특성이 향상된 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 특정 화학식으로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 특정 화학식으로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
이러한 리튬 이차전지는 일반적으로 양극 활물질로 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 니켈계 산화물 등의 금속 산화물과 음극 활물질로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 개재하고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다. 충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 탄소 층으로 삽입되고, 방전시에는 탄소 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 비수성 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질 역할을 한다.
이러한 전해액은 기본적으로 전지의 작동 전압 범위인 0 ~ 4.2V에서 안정해야 하고, 충분히 빠른 속도로 이온을 전달할 수 있는 성능을 가져야 한다. 이를 위하여, 에틸렌 카보네이트, 프로필렌 카보네이트 등의 환형 카보네이트 화합물 및 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트 등의 선형 카보네이트 화합물이 적절히 혼합된 혼합 용매를 전해액의 용매로 이용하는 기술이 개발되었다.
그러나, 리튬 이차전지는 작동 전위가 높기 때문에 순간적으로 고에너지가 흐를 수 있고, 이로 인해 4.2V 이상으로 과충전 되면 상기 전해액 역시 분해되기 시작하고, 고온일수록 발화점에 쉽게 도달하여 발화할 가능성이 높아지는 문제점이 있다.
더욱이, 최근에는 전극 활물질로서 종래 사용하는 재료를 벗어나, 스피넬 구조의 리튬 망간 복합 산화물을 양극 활물질에 사용하거나, 리튬 금속 산화물, 특히 리튬 티타늄 산화물 등을 음극 활물질로 사용하는 것에 대한 연구가 많이 진행되고 있다.
특히, 상기 리튬 망간 복합 산화물 중, 4.7V의 평균 전압을 나타내어 고전압용으로 사용되는 LixNiyMn2-yO4 (y = 0.01 ~ 0.6 임)와 같은 스피넬 구조의 리튬 니켈 망간 복합 산화물의 경우, 전해액의 산화전위에 도달하여, 전해액이 산화됨으로써 가스 등 부산물이 발생할 수 있고, 이는 이차전지의 안전성을 더욱 저하시키는 요인이 된다.
따라서, 이러한 문제점을 유발하지 않으면서 고전압 조건에서 안정적이면서 레이트(rate) 특성을 향상시킬 수 있는 전해액 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극 활물질로서 리튬 망간 복합 산화물을, 음극 활물질로서 리튬 금속 산화물을 포함하는 리튬 이차전지에 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하는 전해액을 사용하는 경우, 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 리튬 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서, 상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 양극은 하기 화학식 1로 표시되는 리튬 망간 복합 산화물을 활물질로 포함하며, 상기 음극은 하기 화학식 2로 표시되는 리튬 금속 산화물을 활물질로 포함하는 것을 특징으로 한다.
LixMyMn2-yO4-zAz (1)
(상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고; M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
LiaM’bO4-cAc (2)
(상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며; c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고; A는 -1 또는 -2가의 하나 이상의 음이온이다.)
일반적으로, 그라파이트(graphite)를 음극 활물질로 하는 이차전지에서는, 전해액의 용매로 저점도 선형 카보네이트, 예를 들어 디메틸 카보네이트(DMC), 에틸 메틸 카보네이트(EMC), 디에틸 카보네이트(DEC) 및 환형 카보네이트의 혼합 용매를 사용하는 경우, 환형 카보네이트의 함량이 30% 이하인 전해액을 사용하면, 음극 보호 피막(SEI)의 형성에 문제가 발생하게 되어 수명 특성의 급격한 열화가 발생하게 되는 문제가 있고, 상기 선형 카보네이트를 대체하여 선형 에스테르를 사용하는 경우에도, 음극에서 환원반응이 카보네이트계 저점도 용매 대비 크게 되는 문제가 있어, 환형 카보네이트를 고함량으로 사용하거나, VC(vinylene carbonate) 등의 음극 보호 피막 형성 첨가제를 사용할 수 밖에 없었다.
그러나, 본 출원의 발명자들이 확인한 바에 따르면, 양극 활물질로서 리튬 망간 복합 산화물을, 음극 활물질로서 리튬 금속 산화물을 사용하는 이차전지에 상기 전해액과 동일한 구성을 적용시키는 경우에는 문제점이 존재한다.
첫째로, 양극 활물질로서 리튬 망간 복합 산화물을 사용할 경우, 양극의 전압이 리튬 대비 고전압에서 구동되기 때문에, VC의 낮은 산화 전압의 문제로 인한 전해액의 분해 및 양극 활물질의 구성성분, 예를 들어, 전이금속, 산소 등의 물질들이 용출되는 문제가 있고, 이렇게 용출된 구성성분들이 음극의 표면에 전착되어 전지 성능을 열화시키거나, 전해액의 구성성분, 예를 들어, 용매나 리튬염을 분해시켜 성능을 악화시키는 2차적인 문제를 야기한다.
둘째로, 음극 활물질로서 고율 충방전 특성을 위해 사용되는 리튬 금속 산화물을 포함하는 리튬 이차전지에 30% 이상의 환형 카보네이트를 포함하는 전해액 조성을 적용할 경우, 레이트 특성의 향상이 저함량을 사용할 경우보다 떨어지게 된다. 업계 통상의 논리로 볼 때, 리튬 이온의 전도도가 증가하게 될 경우, 전지의 고율 충방전 특성이 향상되는 것으로 알려져 있고, 실제 환형 카보네이트의 함량비가 약 30% 이하, 예를 들어, 10 ~ 20% 수준으로 낮아지게 되면, 이온 전도도가 떨어지는 결과를 확인할 수 있으나, 실제 레이트 특성은 환형 카보네이트가 저함량으로 포함될 때 오히려 상승하는 결과를 보인다.
이에, 본 출원의 발명자들은 심도 있는 연구를 거듭한 끝에, 음극 활물질로서 리튬 금속 산화물을 사용하면서 전해액의 조성으로 저함량의 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 사용하는 경우, 높은 환원전위를 가져 전해액의 환원에 대한 안정성이 큰 음극에서는 환원문제가 발생하지 않고, 레이트 특성이 향상될 뿐만 아니라, 동시에 리튬 망간 복합 산화물과 같은 고전압 양극 활물질을 사용하는 경우에 발생할 수 있는 양극 활물질 구성성분의 용출 및 표면 반응으로 인한 이산화탄소나 일산화탄소와 같은 부산물의 생성 문제를 억제 또는 감소시킬 수 있음을 밝혀내었다.
하나의 구체적인 예에서, 상기 혼합 용매의 구성성분 중 하나인 프로피오네이트계 물질은 하기 화학식 3으로 표시될 수 있다.
R1-COO-R2(3)
상기 식에서, R1은 치환 또는 비치환의 에틸이고, R2는 치환 또는 비치환의 C1-C4 직쇄 또는 측쇄 알킬이다.
상기 프로피오네이트계 물질은, 예를 들어, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP), 프로필 프로피오네이트(PP), 부틸 프로피오네이트(BP) 및 이들의 조합으로 이루어진 군에서 선택될 수 있고, 더욱 상세하게는 메틸 프로피오네이트일 수 있다.
상기와 같은 프로피오네이트계 물질은 리튬 이온을 적절하게 배위하여 상온 및 저온에서 높은 이온 전도도를 나타내고, 전지 충전시 양극에서의 전해액 분해 반응에 대한 저항성을 높임으로서 전지의 전반적인 성능, 특히 레이트 특성을 향상시킨다.
하나의 구체적인 예에서, 상기 프로피오네이트계 물질과 함께 혼합 용매를 이루는 환형 카보네이트 물질은 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 및 플루오르에틸렌 카보네이트(FEC), γ-부티로락톤 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 한정되지 않는다. 상기 환형 카보네이트는 리튬 이온을 잘 용해시키므로, 전해액 자체의 이온 전도도를 높일 수 있다.
이 때, 상기 환형 카보네이트계 물질은 전해액 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있다.
환형 카보네이트계 물질이 1 중량% 미만으로 포함되는 경우에는 환형 카보네이트계 물질의 장점인 이온 전도도 향상의 효과를 얻을 수 없고, 30 중량%를 초과하여 포함되는 경우에는 상대적으로 프로피오네이트계 물질의 함량이 줄어들게 되어 레이트 특성과 고전압 양극 표면에서의 산화 안정성 향상이라는 소망하는 효과를 얻을 수 없는 바 바람직하지 않다.
하나의 구체적인 예에서, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 5~15 : 85~95, 더욱 상세하게는, 10 : 90일 수 있다. 본 출원의 발명자들은 상기와 같은 혼합비율이 충방전 특성 등의 이차전지 성능을 향상시킬 수 있는 최적의 범위임을 밝혀내었다.
선형 카보네이트는 상기 혼합 용매의 기본 구성 성분으로 첨가되지 않으나, 본 발명의 목적을 저하시키지 않는 범위 내에서 미량 첨가하는 것을 배제하는 것은 아니다.
본 발명에 따른 리튬 이차전지의 제조방법은, 공지된 바와 크게 다르지 않으며, 구체적으로, 전극 집전체 상에 각각 활물질을 도포한 양극과 음극 사이에 다공성의 분리막을 개재시켜 전극조립체를 제조하고, 이에 리튬염 및 상기 혼합 용매를 포함하는 전해액을 함침시켜 제조한다.
상기 전극 조립체는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 구조의 스택형(적층형) 전극조립체, 또는 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)들을 긴 길이의 연속적인 분리막 시트를 이용하여 권취한 구조의 스택/폴딩형 전극조립체일 수 있다.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 앞서 살펴본 바와 같이, 리튬 망간 복합 산화물을 포함할 수 있는데, 하나의 구체적인 예에서, 상기 리튬 망간 복합 산화물은 하기 화학식 4로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)일 수 있고, 더욱 상세하게는, LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.
LixNiyMn2-yO4 (4)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
상기 양극 활물질로는 리튬 망간 복합 산화물이외에도 다른 활물질이 더 포함될 수 있는데, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등이 더 포함될 수 있다. 이 경우, 리튬 망간 복합 산화물의 함량은 전체 양극 활물질의 중량을 기준으로 40 ~ 100%일 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 활물질은 앞서 살펴본 바와 같이, 리튬 금속 산화물을 포함할 수 있는데, 하나의 구체적인 예에서, 상기 리튬 금속 산화물은 하기 화학식 5로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)일 수 있고, 구체적으로, Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등 일 수 있으나, 이들만으로 한정되는 것은 아니고, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조를 갖는 것으로서, Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.
LiaTibO4 (5)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
상기 화학식 5로 표시되는 리튬 티타늄 산화물을 제조하는 방법은 당업계에 공지되어 있는 바, 예를 들어, 리튬 소스로서 수산화 리튬, 산화 리튬, 탄산 리튬 등의 리튬염을 물에 용해시킨 용액에 리튬과 티탄의 원자비에 따라 티탄 소스로서 산화 티탄 등을 투입한 다음, 교반 및 건조시켜 전구체를 제조한 후 이를 소성하여 제조할 수 있다.
상기 음극 활물질로는 리튬 금속 산화물 이외에 다른 활물질 역시 포함될 수 있는데, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물 등을 포함될 수 있다. 이 경우, 리튬 금속 산화물의 함량은 전체 음극 활물질의 중량을 기준으로 예를 들어 40 내지 100%일 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액에 포함되는 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩을 제공하는 한편, 상기 전지팩을 포함하는 디바이스를 제공한다.
상기 디바이스는, 예를 들어, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기에서 설명한 바와 같이, 본 발명에 따른 리튬 이차전지는, 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하는 전해액을 사용함으로써, 고전압용으로 사용되는 리튬 망간 복합 산화물을 양극 활물질로서, 높은 작동 전위를 갖는 리튬 금속 산화물을 음극 활물질로서 포함하는 리튬 이차전지에서도 안정하여 전지의 레이트(rate) 특성을 향상시키는 효과가 있다.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
음극 활물질(Li1.33Ti1.67O4), 도전재(Denka black), 바인더(PVdF)를 95: 2.5: 2.5 의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 상기 음극 합제를 200 ㎛ 두께로 코팅한 후 압연 및 건조하여 음극을 제조하였다.
또한, 양극으로는 LiNi0.5Mn1.5O4를 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 95: 2.5: 2.5 의 중량비로 NMP에 넣고 믹싱한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.
이렇게 제조된 음극과 양극 사이에 분리막으로서 폴리에틸렌 막(Celgard, 두께: 20 ㎛)을 개재하고, 에틸렌 카보네이트, 메틸 프로피오네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용하여, 2016 코인 전지를 제조하였다.
<실시예 2>
상기 실시예 1에서, 전해액으로 프로필렌 카보네이트, 메틸 프로피오네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 1>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 에틸 메틸 카보네이트, 디메틸 카보네이트가 30: 30: 40 vol%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 2>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 디메틸 카보네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 3>
상기 실시예 1에서, 전해액으로 프로필렌 카보네이트, 디메틸 카보네이트가 10: 90 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<실시예 3>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 메틸 프로피오네이트가 30: 70 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<비교예 4>
상기 실시예 1에서, 전해액으로 에틸렌 카보네이트, 메틸 프로피오네이트가 50: 50 wt%로 혼합된 용매에 LiPF6가 1M로 녹아 있는 액체 전해액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 2016 코인 전지를 제조하였다.
<실험예1>
실시예 1 내지 3 및 비교예 1 내지 4에서 각각 제조된 코인 전지들에 대해 레이트(rate) 테스트를 실시하였고, 그 결과를 하기 표 1에 나타내었다.
LTO/LNMO(1.5~3.5V, coin full cell)Rate test (1Crate=1.49mA) 3C/3C
vs.
3C/3C
5C/5C
vs.
3C/3C
10C/10C
vs.
3C/3C
20C/20C
vs.
3C/3C
실시예 1 EC/MP 10:90 wt%, 1M LiPF6 100%
1.49mAh
99% 85% 50%
실시예 2 PC/MP 10:90 wt%, 1M LiPF6 100%
1.36mAh
99% 79% 50%
비교예 1 EC/EMC/DMC 30:30:40 vol%,
1M LiPF6
100%, 1.30mAh 95% 12% 9%
비교예 2 EC/DMC 10:90 wt%, 1M LiPF66 100% 1.48mAh 99% 56% 17%
비교예 3 PC/DMC 10:90 wt%, 1M LiPF6 100% 1.47mAh 98% 51% 14%
실시예 3 EC/MP 30:70 wt%, 1M LiPF6 100%
1.47mAh
98% 63% 12%
비교예 4 EC/MP 50:50 wt%, 1M LiPF6 100%
1.47mAh
96% 10% 7%
상기 표 1을 참조하면, 프로피오네이트계 물질인 MP를 사용하는 실시예 1 및 실시예 2가 선형 카보네이트계 물질인 DMC를 사용한 비교예 1 내지 비교에 3에 비하여 우수한 레이트 특성을 나타내는 것을 확인할 수 있다.
또한, 실시예 1 내지 3 및 비교예 4를 비교하면, 환형 카보네이트계 물질인 EC를 30 wt% 이하로 적게 포함하는 경우에 더 우수한 레이트 특성을 나타내는 것을 확인할 수 있다. 이는 환형 카보네이트계 물질의 첨가량이 많아질수록 상대적으로 프로피오네이트계 물질의 함량이 줄어 이온의 이동성이 감소하고, 특히 일정량 이상으로 포함되는 경우에는 리튬 이온의 해리성이 감소하기 때문인 것으로 보인다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (14)

  1. 양극, 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액으로 구성되는 리튬 이차전지에 있어서,
    상기 전해액은 환형 카보네이트계 물질 및 프로피오네이트계 물질의 혼합 용매를 포함하고, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 5~15 : 85~95이며,
    상기 양극은 화학식 LixNiyMn2-yO4 (0.9≤x≤1.2, 0.4≤y≤0.5)로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)을 활물질로 포함하며,
    상기 음극은 화학식 LiaTibO4 (0.5≤a≤3, 1≤b≤2.5)로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)을 활물질로 포함하고,
    상기 프로피오네이트계 물질은 화학식 R1-COO-R2 로 표시되며, R1은 치환 또는 비치환의 에틸이고, R2는 치환 또는 비치환의 C1-C4 직쇄 또는 측쇄 알킬인 것을 특징으로 하는 리튬 이차전지.
  2. 삭제
  3. 제 1 항에 있어서, 상기 프로피오네이트계 물질은 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP), 프로필 프로피오네이트(PP), 부틸 프로피오네이트(BP) 및 이들의 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 리튬 이차전지.
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서, 상기 환형 카보네이트계 물질과 프로피오네이트계 물질의 혼합비는 중량을 기준으로 10 : 90인 것을 특징으로 하는 리튬 이차전지.
  7. 삭제
  8. 제 1 항에 있어서, 상기 리튬 니켈 망간 복합 산화물은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4인 것을 특징으로 하는 리튬 이차전지.
  9. 삭제
  10. 제 1 항에 있어서, 상기 리튬 티타늄 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 리튬 이차전지.
  11. 제 1 항에 따른 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  12. 제 11 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  13. 제 12 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  14. 제 13 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
KR1020130043325A 2012-04-20 2013-04-19 레이트 특성이 향상된 리튬 이차전지 KR101603079B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120041297 2012-04-20
KR20120041297 2012-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140169770A Division KR101611195B1 (ko) 2012-04-20 2014-12-01 레이트 특성이 향상된 리튬 이차전지

Publications (2)

Publication Number Publication Date
KR20130118809A KR20130118809A (ko) 2013-10-30
KR101603079B1 true KR101603079B1 (ko) 2016-03-14

Family

ID=49383745

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130043325A KR101603079B1 (ko) 2012-04-20 2013-04-19 레이트 특성이 향상된 리튬 이차전지
KR1020140169770A KR101611195B1 (ko) 2012-04-20 2014-12-01 레이트 특성이 향상된 리튬 이차전지

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020140169770A KR101611195B1 (ko) 2012-04-20 2014-12-01 레이트 특성이 향상된 리튬 이차전지

Country Status (6)

Country Link
US (2) US20140011098A1 (ko)
EP (1) EP2822083B1 (ko)
KR (2) KR101603079B1 (ko)
CN (1) CN104221206A (ko)
TW (1) TWI487172B (ko)
WO (1) WO2013157867A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991514B2 (en) * 2013-08-29 2018-06-05 Lg Chem, Ltd. Method of manufacturing lithium nickel complex oxide, lithium nickel complex oxide manufactured thereby, and cathode active material including the same
KR101764266B1 (ko) 2014-12-02 2017-08-04 주식회사 엘지화학 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US9834117B2 (en) * 2015-10-06 2017-12-05 Ford Global Technologies, Llc Release mechanism for a reclining vehicle seat
KR102160709B1 (ko) * 2017-04-14 2020-09-28 주식회사 엘지화학 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지
KR102140127B1 (ko) * 2017-04-25 2020-07-31 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지
JP6746549B2 (ja) * 2017-09-19 2020-08-26 株式会社東芝 二次電池、電池パック及び車両
US11335955B2 (en) 2017-09-26 2022-05-17 Tdk Corporation Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
WO2019082338A1 (ja) * 2017-10-26 2019-05-02 株式会社 東芝 非水電解質電池及び電池パック
EP3707766A1 (en) 2017-11-07 2020-09-16 CPS Technology Holdings LLC Lithium-ion battery cell and module
JPWO2019216267A1 (ja) * 2018-05-07 2021-02-18 本田技研工業株式会社 非水電解質二次電池
CN111837257B (zh) * 2018-10-31 2023-10-24 株式会社Lg新能源 锂二次电池
US20230268555A1 (en) * 2022-02-22 2023-08-24 Enevate Corporation Prevention of gassing in si dominant lithium-ion batteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282618A (ja) * 2007-05-09 2008-11-20 Toyota Central R&D Labs Inc リチウムイオン二次電池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574490A (ja) * 1991-09-13 1993-03-26 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP3502118B2 (ja) 1993-03-17 2004-03-02 松下電器産業株式会社 リチウム二次電池およびその負極の製造法
KR100262852B1 (ko) * 1997-12-11 2000-08-01 유현식 리튬 이차전지용 양극활물질인 lixmymn-2-yo4 분말 및 그 제조방법
JP4644895B2 (ja) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 リチウム二次電池
KR100742111B1 (ko) * 2000-03-30 2007-07-25 소니 가부시끼 가이샤 양극 재료와 이차 배터리
JP4197237B2 (ja) * 2002-03-01 2008-12-17 パナソニック株式会社 正極活物質の製造方法
US20050123834A1 (en) 2003-12-03 2005-06-09 Nec Corporation Secondary battery
US7476467B2 (en) * 2004-03-29 2009-01-13 Lg Chem, Ltd. Lithium secondary battery with high power
JP4245532B2 (ja) * 2004-08-30 2009-03-25 株式会社東芝 非水電解質二次電池
JP2007207617A (ja) * 2006-02-02 2007-08-16 Sony Corp 非水溶媒、非水電解質組成物及び非水電解質二次電池
US20070287071A1 (en) 2006-06-11 2007-12-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
US7923157B2 (en) * 2007-02-08 2011-04-12 Lg Chem, Ltd. Lithium secondary battery of improved high-temperature cycle life characteristics
US8673506B2 (en) * 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
US8421405B2 (en) 2007-06-13 2013-04-16 Kyocera Corporation Charge system, mobile electronic device, cell terminal used for them, and secondary cell
US9825327B2 (en) * 2007-08-16 2017-11-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
EP2212964B1 (en) * 2007-09-12 2017-06-21 LG Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
EP2206189B1 (en) * 2007-09-19 2014-10-22 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
JP2008050259A (ja) * 2007-09-25 2008-03-06 Nippon Chem Ind Co Ltd リチウムマンガン複合酸化物及びリチウム二次電池
KR100987280B1 (ko) * 2008-01-02 2010-10-12 주식회사 엘지화학 파우치형 리튬 이차전지
KR101040464B1 (ko) * 2008-11-13 2011-06-09 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
US20120231325A1 (en) * 2011-03-10 2012-09-13 Su-Jin Yoon Electrolyte for a lithium rechargeable battery, lithium rechargeable battery including the same, and method of manufacturing a lithium rechargeable battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282618A (ja) * 2007-05-09 2008-11-20 Toyota Central R&D Labs Inc リチウムイオン二次電池

Also Published As

Publication number Publication date
CN104221206A (zh) 2014-12-17
EP2822083B1 (en) 2017-07-19
US10170796B2 (en) 2019-01-01
KR20130118809A (ko) 2013-10-30
TWI487172B (zh) 2015-06-01
TW201405919A (zh) 2014-02-01
US20140011098A1 (en) 2014-01-09
KR101611195B1 (ko) 2016-04-11
US20150340740A1 (en) 2015-11-26
EP2822083A4 (en) 2015-08-12
KR20150008024A (ko) 2015-01-21
EP2822083A1 (en) 2015-01-07
WO2013157867A1 (ko) 2013-10-24

Similar Documents

Publication Publication Date Title
KR101611195B1 (ko) 레이트 특성이 향상된 리튬 이차전지
KR101545886B1 (ko) 다층구조 전극 및 그 제조방법
KR101634749B1 (ko) 수명 특성이 향상된 리튬 이차전지
KR20140148355A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101542052B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR101445602B1 (ko) 안전성이 강화된 이차전지
KR101527748B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101502832B1 (ko) 성능이 우수한 리튬 이차전지
KR20150035881A (ko) 전극 및 이를 포함하는 이차전지
KR101506451B1 (ko) 이차전지용 음극
KR101461169B1 (ko) 양극 활물질 및 이를 포함하는 이차전지
KR101517885B1 (ko) 이차전지의 제조방법 및 이를 사용하여 제조되는 이차전지
KR101451193B1 (ko) 성능이 우수한 리튬 이차전지
KR101507450B1 (ko) 성능이 우수한 리튬 이차전지
KR101506452B1 (ko) 이차전지용 양극
KR101514303B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR20130118274A (ko) 전해액 첨가제를 포함하는 이차전지
KR20140037987A (ko) 전지의 보관 및 출하 방법 및 이를 사용하여 제조되는 이차전지
KR101515363B1 (ko) 이차전지용 전극 활물질 및 그 제조방법
KR101497351B1 (ko) 과량의 전해액을 포함하는 리튬 이차전지
KR20150014829A (ko) 가스가 제거된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR101470336B1 (ko) 이차전지용 첨가제
KR20130117608A (ko) 전극 및 이를 포함하는 이차전지
KR20160039986A (ko) 성능이 우수한 리튬 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20141201

Effective date: 20151123

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 5