KR101598239B1 - 가열장치, 막형성장치, 막형성방법 및 디바이스 - Google Patents

가열장치, 막형성장치, 막형성방법 및 디바이스 Download PDF

Info

Publication number
KR101598239B1
KR101598239B1 KR1020107024916A KR20107024916A KR101598239B1 KR 101598239 B1 KR101598239 B1 KR 101598239B1 KR 1020107024916 A KR1020107024916 A KR 1020107024916A KR 20107024916 A KR20107024916 A KR 20107024916A KR 101598239 B1 KR101598239 B1 KR 101598239B1
Authority
KR
South Korea
Prior art keywords
gas
substrate
temperature
film
glass substrate
Prior art date
Application number
KR1020107024916A
Other languages
English (en)
Other versions
KR20110011612A (ko
Inventor
유지 후루무라
신지 니시하라
나오미 무라
Original Assignee
가부시키가이샤 필테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008119211A external-priority patent/JP2009272343A/ja
Priority claimed from JP2008162332A external-priority patent/JP2010001541A/ja
Application filed by 가부시키가이샤 필테크 filed Critical 가부시키가이샤 필테크
Publication of KR20110011612A publication Critical patent/KR20110011612A/ko
Application granted granted Critical
Publication of KR101598239B1 publication Critical patent/KR101598239B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45595Atmospheric CVD gas inlets with no enclosed reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<과제> 유리기판상에 막을 효율 좋게 형성할 수 있는 가열장치 및 이것을 구비한 막형성장치를 제공한다.
<해결수단> 지지대(26)상에 놓인 유리기판(24)의 표면(25)에 이 유리기판의 연화점 온도보다도 높은 고온가스를 수직으로 내뿜는 가열장치를 가지고, 고온가스와 함께 가열분해하여 막퇴적을 발생하는 퇴적용 가스(43)를 상기 유리기판의 표면에 동시에 내뿜는 막형성장치이다.

Description

가열장치, 막형성장치, 막형성방법 및 디바이스{HEATING DEVICE, FILM FORMING APPARATUS, FILM FORMING METHOD, AND DEVICE}
본 발명은 유리기판상에, 예를 들면 실리콘박막 등을 형성하기 위한 가열장치 및 이것을 구비한 막형성장치 및 막형성방법에 관한 것이다.
또, 본 발명은 예를 들면 대면적 전자디바이스의 제작에 바람직한 막형성의 개량에 관한 것이며, 예를 들면 고온으로 할 수 없는 기판, 예를 들면 유리기판상이나 이미 배선공정을 종료시킨 기판상에 이 기판을 지지하는 지지대의 온도보다도 높은 온도를 필요로 하는 고온으로 성장 또는 가열하는 막, 예를 들면 실리콘막이나 실리콘 산화막, 실리콘 질화막 또는 3원 이상의 화합물막 등의 막을 형성하는 방법 및 그 막형성장치에 관한 것이다.
일반적으로, 유리기판상에 성장시킨 실리콘박막을 구비한 디바이스로서는 액정 표시디바이스나 유기EL 표시디바이스, 태양전지 등이 있다.
실리콘박막은 어느 디바이스에서도 전자나 정공(正孔)을 발생시키거나, 전계(電界)에서 가속시켜서 이용된다.
그리고, 유리기판상에 성장시킨 실리콘박막의 특성은 실리콘결정보다도 뒤떨어져 있으며, 이동도(移動度)는 1/100 내지 1/1000 혹은 그 이상으로 작다.
또, 유리기판상에 막성장시키거나, 그 막상에서 어떠한 가공을 하기 위해서는 공정의 온도는 유리의 연화점(軟化点)(예를 들면 300℃) 이하로 제한된다.
이 제한이 있으므로, 실리콘박막으로서는 300℃ 이하에서 성장할 수 있는 플라스마 아모퍼스 실리콘막이나 레이저 등으로 급속용융고화(急速熔融固化)시키는 재결정 실리콘막이 사용된다.
그리고, 이와 같이 기판의 온도를 유리기판 연화점 이하의 저온에서 처리하기 위한 기술개발은 유리기판을 이용하는 디바이스에 필요하다. 특히 광을 전기로 변환하는 태양전지 디바이스의 효율이나 표시디바이스의 박막 트랜지스터의 성능을 지배하는 실리콘박막의 제조기술이 중요하다.
표시디바이스에서는 유리기판상에 아모퍼스 실리콘막을 이용하여 박막 트랜지스터를 제조한다. 이 경우 실란(silane)가스를 플라스마로 분해하여 막성장을 행하므로 수% 이상의 수소를 포함하고, 결합도 규칙적으로 일어나지 않기 때문에, 이동도는 작고, 온도나 광조사의 경년변화로 특성은 열화한다. 특히, 광에 의한 열화는 태양전지의 응용에서는 치명적이다.
종래부터 레이저 어닐(anneal)이나 레이저 용융에 의해 기판의 온도를 올리지 않고 표면의 실리콘박막을 개량하는 방법이 30년 이상에 걸쳐 연구되고 있다. 이 방법은 비용을 들여도 허용되는 디바이스에서는 사용되고 있지만, 저비용이 요구되고 있는 디바이스에서는 사용되지 않는다.
또한, 레이저의 수명은 개량은 되고는 있지만, 태양전지 등의 대면적 기판의 공정에는 사용할 수 없다.
또, 불순물을 활성화하기 위해서는 표면만을 어닐할 수 밖에 없으므로, 레이저 어닐이 이용된다.
이 방법은 고가이므로, 저비용이 요구되지 않는 특수한 용도 이외는 적용할 수 없다.
염가로 표면을 고온으로 하여 박막을 결정화하는 방법의 종래예로서는 하기의 특허문헌 1에 기재된 것이 있다. 이 막형성장치는 도 4에 나타내는 바와 같이, 세관(細管)(11)에 가스(12)를 도입하여, 이 세관(11)에 감은 코일(13)에 고주파 전력원(14)으로부터 전력을 매칭(matching)회로(15)를 통해서 공급하고, 세관(11)의 관선단에 마이크로 플라스마(16)을 생성시킨다. 이 플라스마(16)에 의해, 유리기판(17)을 용융시키지 않고, 이 유리기판(17)상에 미리 성장시킨 비결정질막(아모퍼스 실리콘)(18)을 녹여 용융막(19)을 형성하며, 또한 이것을 재고화하는 방법이다.
이 플라스마 용융은 레이저 용융보다도 재현성이 있다고 생각되지만, 대면적 기판에 적용하려면 이것을 다수 늘어놓을 필요가 있다.
또, 일반적으로, 기판에 막을 형성한 디바이스 중에는 그 기판을 저온으로 유지해야 하는 것이 있다. 예를 들면, 기판으로서 유리기판이나 이미 소요의 막을 제작한 후의 실리콘 기판이 있다. 유리기판상에 성장시킨 박막을 구비한 디바이스로서는 액정 표시디바이스(LCD)나 유기 EL(일렉트로루미네센스스(electroluminescence)) 표시디바이스, 태양전지 등의 이른바 대면적 전자디바이스가 있다.
박막은 어느 디바이스에서도 아모퍼스막이나 결정막, 절연막, 보호막으로서 이용되는 것이 많다.
그리고, 기판상에 성장시키는 막은, 예를 들면 플라스마 여기(勵起)의 아모퍼스 박막인 경우는 비평형 성장(가역(可逆)반응이 아닌 성장)이므로, 기상(氣相)의 활성종끼리가 핵성장을 일으켜 기판에 부착하여 성장이 진행하기 때문에, 고온열 CVD(화학기상성장)막보다도 조성이나 구조에서 불안정하다. 이 때문에, 막은 수소 등의 불순물을 포함하여, 구조도 안정적이지 않고, 흡습도 용이해 치밀성에서 뒤떨어진다.
따라서, 예를 들면, 유리기판상에 막을 형성해 가열처리 또는 성장시키고, 그 막상에서 어떠한 가공을 하기 위해서는 당해 가공공정의 온도는 유리의 연화점(예를 들면 300℃ ~ 400℃) 이하로 제한된다. 이 제한이 있으므로, 박막으로서는 300℃ 이하에서 성장할 수 있는 플라스마 성장막이나 레이저 등으로 표면 어닐한 막이 사용된다.
이와 같이 기판의 온도를 저온으로 처리하는 기술은 유리기판을 이용하는 디바이스 제조공정에 필요하다. 또, 디바이스를 제작한 실리콘 웨이퍼끼리를 접착시켜 디바이스를 적층시키기 위해서, 이미 공정이 종료한 기판에 또 다른 공정을 행할 필요가 최근 나왔다.
예를 들면, 실리콘 기판을 관통시키는 전극(관통전극)형성을 배선공정 완료 후에 행한다. 일반적으로는 깊은 관통구멍 중에 Cu를 매립하지만, Cu가 기판 실리콘 중에 확산하는 것을 방지하기 위해서, 두꺼운 산화막이나 질화막을 구멍의 내측에 성장시킨다. 그러나, 400℃ 이하의 저온에서 성장시켜도 치밀한 막이 얻어지지 않으면, 표면에는 성장하여도 내면이나 바닥면까지 충분히 성장하지 않는다. 성장을 전(全)표면에 일으키게 할 필요가 있다. 또, 저온가스 분위기에서 성장시켜도 활성종의 표면이동이 불충분하기 때문에 균일한 두께로 구멍의 내면을 피복할 수 없다. 이것이 웨이퍼의 접착제조에 방해가 된다. 이와 같은 배경이 있으므로 저온에서 막을 성장시키기 위한 기술이 종래부터 있다(예를 들면, 비특허문헌 1 참조).
그리고, 열여기(熱勵起)의 화학기상성장(CVD)에서는 기판온도로서 낮아도 500℃ 이상이 일반적으로 필요하다. 그러나, 플라스마 여기의 화학기상성장은 저온으로 유지된 기판표면에 평탄하게 막을 성장시키는 데는 유효하다. 예를 들면 ECR(Electron Cycrotron Resonance) 플라스마 CVD는 기판온도가 300℃ 이하에서도 막성장이 가능하지만, 피복성이 나쁘기 때문에, 오히려 보텀 업(bottom up) 성장에 이용된다. 또 플라스마와 달리 ECR 플라스마는 마이크로파의 파장 의존의 제한이 있어, 장치의 확장이 자유롭지 않기 때문에, 유리 등의 대형 기판에는 적용할 수 없다. 또, 텅스텐 필라멘트에 막형성 가스를 접촉시켜 분해종을 만드는 열촉매체 CVD가 있지만, 텅스텐이 막 중에 들어오는 결점이나 치밀성의 부족을 보충하기 위해서, 이온 충격을 추가시키는 공정추가가 필요하다. 이것은 장치를 대형화시키는 확장성의 방해가 된다.
종래부터 알려져 있는 바와 같이, 500℃ 이상의 높은 온도를 이용하는 열CVD는 이상적이며, 특성에서도 반도체 산업에서 실적이 있는 막이므로, 기판을 고온으로 하지 않고 열CVD막을 성장시킬 수 있으면, 그것이 실용상 가장 신뢰성이 높고 확실한 막형성방법이다.
특허문헌 1 : 일본국 특개2000-60130호 공보
비특허문헌 1 : 「반응성열CVD법에 따른 다결정 SiGe박막의 저온성장기술의 개발」도쿄공업대학 대학원 이공학 연구과부속 상(像)정보공학연구시설 한나(半那)연구실[평성20(2008)년 6월 12일 검색] 인터넷(URL : http://www.isl.titech.ac.jp~hanna/cvd.html)
그렇지만, 이와 같은 종래의 박막 형성방법에서는 유리기판이 염가이므로 대형의 기판을 이용할 수 있지만, 저융점을 위해서 통상 300도 이하로 기판을 유지해야 한다.
그와 같은 저온에서도 실리콘의 박막을 유리기판상에 성장시키기 위해서는 현상(現狀)의 기술에서는 몇 개의 과제가 있다.
예를 들면, 300℃에서 플라스마 CVD(화학기상성장)로 실란가스로부터 성장시킨 막은 아모퍼스로 미결합수(未結合手)와 수소를 포함하고 있고, 이동도의 초기 성능도 단결정이나 폴리실리콘으로부터 비교하면 1000배나 낮다. 경년 열화도 있으므로, 얻어지는 낮은 성능의 범위에서 상품을 설계할 수 밖에 없다.
또, 이것을 개량하기 위해서 표면의 실리콘을 녹이는 레이저 어닐이나 마이크로 플라스마 용융, 레이저 용융의 기술이 있지만, 한 변이 수m인 대면적 유리기판의 제조기술로서는 염가로 사용할 수 없다. 작은 면적에 대해서 사용되는 레이저 용융기술을 대면적에 적용할 수 있을 정도로 염가로 하려면, 레이저 출력의 안정화나 고출력화가 요구된다.
또한, 종래의 기술에서는 기판이 유리판이어도, 디바이스 제작완료한 실리콘 웨이퍼라도, 높아도 400℃ 이하로 기판온도를 유지해야 한다.
그와 같은 저온에서 신뢰성이 높은 박막을 기판상에 성장시키기 위해서는 현상의 기술에서는 몇 개의 과제가 있다.
예를 들면, 300℃의 플라스마 CVD(화학기상성장)로 실란가스로부터 성장시킨 막은 아모퍼스로 미결합수와 수소를 포함하고 있고, 이동도의 초기 성능도 단결정이나 폴리실리콘으로부터 비교하면 1000배나 낮다. 경년 열화도 있으므로, 얻어지는 낮은 성능의 범위에서 상품을 설계할 수 밖에 없다.
또, 플라스마 CVD로 10㎛ 이상으로 깊은 구멍에 산화막을 성장시키면, 측면에 막이 균일하게 성장하지 않는다.
본 발명은, 이와 같은 사정을 고려해서 이루어진 것으로, 그 목적은 유리기판상에 막을 효율 좋게 형성할 수 있는 염가의 가열장치 및 이것을 구비한 염가의 막형성장치를 제공하는 것이다.
또, 본 발명은, 이와 같은 사정을 고려해서 이루어진 것으로, 그 목적은 기판을 저온으로 유지한 채로, 기판 전역에서 표면의 막을 가열하거나 열CVD막을 기판표면에 형성할 수 있는 염가의 막형성방법 및 막형성장치를 제공하는 것이다.
일반적으로, 가열한 가스를 유리기판의 표면에 수직으로 내뿜으면, 가스의 온도를 기판으로 전할 수 있다. 특히 구조를 만들지 않는 한 기판표면에 평행하게 가스가 흐른다. 그러면 정체층(停滯層)이 생기고, 이 층이 열저항이 되어 가스의 온도를 기판으로 전할 수 없다.
그러나, 고온가스를 교축하여 빔모양으로 하여 기판에 수직으로 입사시키면 정체층이 생기지 않거나 또는 얇기 때문에 효율 좋게 가스의 온도를 기판으로 전할 수 있다. 이 현상을 다른 말로 하면 기판의 온도는 수직으로 입사하는 고온가스에 대해서 잘 전해진다. 이 원리를 이용하여, 가스를 급속히 효율 좋게 가열하는 가스가열장치의 발명이 있다.
도 1은 이 가열장치의 원리도이다. 이 가열장치는 도입가스(12)를 열원(20)에 의해 가열하여 고온가스(22)를 만들어 내는 가스가열기구(21)를 가진다. 고온가스(22)는 가스가이드(23) 중을 그 기벽(器壁)과 평행하게 진행한다. 정체층이 생기므로 기벽과의 열교환의 효율은 낮고, 높은 온도를 유지한 채로 빔모양으로 나와, 유리기판(24)의 표면(25)에 수직으로 닿는다.
또한, 도 1 중, 부호 C는 예를 들면 카본 등에 의해 원주나 각주로 형성된 주상부(柱狀部)이며, 이 주상부의 내부에는 도입가스(12)가 도입되는 가스통로(R)가 형성되어 있다. 이 가스통로(R)의 일단은 가스도입관에 연통하는 한편, 타단은 가스가이드(23)에 연통하고 있다.
유리기판(24)의 열전도는 실리콘이나 금속에 비하면 낮다. 이 때문에, 기판표면(25)은 가열되지만, 기판의 지지대(26)에 접촉한 기판이면(27)은 지지대(26)의 온도로 유지된다. 지지대(26)를 냉각하면, 유리기판이면(27)은 냉각온도에 의존하여 낮은 온도로 유지된다. 이 때문에, 유리기판표면(25)을 고온으로 해도 이 유리기판(24)을 유리의 연화점 이하의 온도로 유지할 수 있다. 열접촉을 좋게 하기 위해에, 진공흡착이나 정전(靜電) 척(chuck)을 이용하여도 된다. 유리기판(24)을 이동시키면, 유리기판표면(25)의 고온표면(29)을 이동할 수 있다. 기판이면(27)의 온도를 300℃로 유지하면서, 기판표면(25)을 그것보다도 높은 온도로 유지시키는 것은 가스유량의 용량을 조정해서 할 수 있다.
이와 같이 하여, 유리기판(24)의 표면(25)만을 높은 온도로 하는 것이 가능하다.
이와 같은 고온의 유리기판표면(25)에 후술하는 퇴적(堆積)가스의 일례로서, 실란가스를 동시에 내뿜으면 폴리실리콘이 성장한다. 실란 SiH4에서는 표면온도가 600℃ 이상이고, 또 디실란(disilane) Si2H6에서는 570℃ 이상에서 폴리실리콘을 성장시킬 수 있다. 도핑(doping)가스의 일례로서 포스핀(phosphine) PH3를 넣으면 n형의 폴리실리콘을 성장할 수 있다. 또 디보란(diborane) B2H6를 동시에 넣으면 p형의 폴리실리콘이 성장한다.
실란에서는 폴리실리콘이 성장하지만, 게르만(germane) 가스 GeH4를 동시에 넣으면 게르마늄과 실리콘의 혼정(混晶)이 성장한다.
실리콘과 게르마늄은 무제한으로 혼합 가능한 결정계이다. 게르마늄은 실리콘에 변형을 주어 전자구조를 변화시키므로, 적당한 비율일 때 태양광을 효율 좋게 흡수시키는데 유효하다. 임의의 조성이 가능함으로 게르마늄의 혼합량을 막의 두께방향으로 변화시키면 경사구조의 박막을 형성할 수 있다.
이상, 설명한 바와 같이 고온가스(22)를 유리기판(24)에 대략 수직으로 충돌시키도록 내뿜음으로써, 유리기판(24)의 표면(25)을 고온으로 할 수 있고, 유리기판(24)을 융점 이하로 유지하면서 570℃ 이상에서 성장하는 실리콘막, 실리콘과 게르마늄의 혼정막 및 그들의 도핑막의 성장이 가능하다. 또 산화성의 가스나 질화성의 가스를 동시에 도입하면 CVD(화학기상성장)의 원리로 실리콘 산화막이나 실리콘 질화막의 성장이 가능하다.
또, 다른 한편의 과제를 해결하는 수단에 대해서, 이하, 도 5, 도 6에 근거하여 본 발명의 원리와 막형성방법을 설명한다.
일반적으로, 가열한 가스를 기판의 표면에 대략 수직으로 내뿜으면, 가스의 온도를 기판으로 전할 수 있다. 또, 평탄한 기판표면에 평행하게 가스가 흐른다. 그러면 기판과 평행하게 정체층이 생기고, 이 정체층이 열저항층이 되어 가스의 온도가 기판에 단시간으로는 전해지지 않는다. 환언하면, 전달 효율이 떨어진다고 하는 말로도 할 수 있다.
그러나, 고온가스를 교축하여 빔모양으로 하여 기판표면에 평행하지 않고, 대략 수직으로 분사 또는 충돌시키면 정체층이 얇아진다. 또는 상대적으로 실질상 가능하지 않는 정도로 얇게 할 수 있다. 정체층이 얇으면 효율 좋게 고온가스의 온도를 기판으로 전할 수 있다. 즉, 기판표면은 수직으로 입사하는 고온가스로부터 효율 좋게 열을 받는다. 그러나, 기판은 재료에 따라 열전도율을 가지고 있음과 아울러, 또한 기판의 이면이 냉각되고 있으면 일정한 열용량의 히트싱크(heatsink)를 갖고 있으므로 온도가 상승하여 가스의 온도에 도달하는 것은 기판표면에 한정된다. 이 원리를 이용하면, 기판표면만이 가열되어 기판의 이면과 내부는 일정 온도 이하로 유지된다.
도 6은 이 원리를 모식적으로 나타낸다. 즉, 기판(101)의 표면에 고온가스(102)가 가스취부(吹付)장치(103)의 취출구멍(103a)으로부터 빔모양(102a)으로 교축하여져 대략 수직으로 내뿜어지면, 기판(101)은 지지대(104)에 의해 유지되고 있기 때문에 기판(101)의 이면온도 T1은 지지대(104)의 냉각재(104a)에 의해 소정 온도로 일정하게 유지된다. 고온가스빔(102a)은 기판(101)표면에 정체층(105)을 형성한다.
이 정체층(105)의 두께 S는 고온가스빔(102a)의 입사속도 V나 기판(101)의 표면에 입사하는 입사각도에 의존한다. 입사속도 V가 빠를수록 정체층(105)의 두께 S는 얇아진다. 기판(101)표면의 온도는 고온가스빔(102a)의 온도 T2보다도 낮다. 고온가스빔(102a)으로부터의 열의 전달은 정체층(105)의 두께 S로 제어할 수 있으므로, 기판(101)의 표면온도는 고온가스빔(102a)의 온도 T2와 기판(101)에 충돌 입사하는 속도 V에 의해 제어할 수 있게 된다. 따라서, 고온가스빔에 의해 기판표면 또는 그 위의 막만을 가열할 수 있다.
도 6과 같이 고온가스빔(102a)이 하나일 때는 그 고온가스빔(102a)의 주변에 열분해반응을 일으키는 가스, 예를 들면 실란 SiH4가 존재하고 있어도 고온가스빔(102a)에 의해 배제되므로, 고온가스빔(102a)이 기판(101)의 표면에 충돌하여 고온이 만들어진 기판(101)의 표면에서의 성장반응의 효율이 나쁘다. 즉, 기판(101)표면에 충돌한 고온가스빔(102a)의 흐름에 따라서 분해반응종(種)이 기판표면을 따라서 배기되어 버린다. 따라서, 열을 가두어 고온의 공간(룸)을 만들어 내고, 그 고온룸에 열분해야 할 막형성용 가스를 장시간 정체시킴으로써, 반응분해종을 생성시켜 효율 좋게 기판에 보급할 수 있는 구조가 막퇴적을 위해서는 필요하다. 이것을 해결하는 구조를 설명한다.
이 고온룸을 만들기 위해서는 고온가스빔(102a)를 소정간격을 둔 2개소로부터 기판(101)의 표면상에 내뿜는 것이 유효하다. 즉, 가열한 고온가스(102)를 이간 배치된 2개소의 취출구멍(103a, 103a)으로부터 내뿜어, 대향하는 기판(101)의 표면에 대략 수직으로 충돌 입사시킨다. 이 때문에, 이들 2개의 고온가스빔(102b, 102c)에 의해 사이에 두어진 공간에 고온공간이 형성된다.
도 5는 이와 같은 새로운 기술적 발상에 근거하여 본 발명의 막형성방법의 원리를 나타내는 모식도이다. 즉, 본 발명은, 도 5에 나타내는 바와 같이, 예를 들면 2개의 고온가스빔(102b 및 102c)과 기판(101)의 표면에 의해 둘러싸인 고온공간인 고온룸(106)에 퇴적성을 가지는 막형성용 열분해가스의 일례로서 실란가스(107)를 취출구멍(108)으로부터 공급하면, 고온룸(106)에서 실란가스(107)의 열분해가 진행하여 활성종이 생성되어 정체층을 확산하여 실리콘막을 기판(101)의 표면상에 성장시킨다. 또, 이들 2개의 고온가스(102b와 102c)에 산화환원반응하는 가스를 선택하면, 이 고온룸(106)에 정체한 것끼리로 서로 열분해반응을 일으킨다. 그러나, 기상 중에 이종(異種)물질의 핵이 없으면 일정농도 이하에서는 자연핵형성은 생기지 않지만, 고온룸(106)의 아래쪽에는 온도가 낮은 이종물질인 거대핵으로서의 기판(101)이 있다. 이 때문에, 도 6에 나타낸 바와 같이 정체층(105)을 사이에 두고 열전달이 행해져 기판(101)표면은 고온가스(102b, 102c)의 각 온도 T2보다도 낮지만 기판(101)의 이면온도 T1이나 내부보다 높은 온도가 되어 있다. 기판(101)이면의 온도 T1과 고온가스(102b, 102c)의 온도 T2는 예를 들면 열전대 등의 온도센서에 의해 측정하지만, 기판(101)표면의 실제의 온도의 측정은 용이하지 않다. 그러나, 이종물질인 기판(101)표면은 온도가 낮으므로 핵성장으로부터 시작되어 막의 성장이 일어난다. 이것이 기판(101)의 온도를 낮게 유지하면서, 기판(101)의 온도보다도 높은 온도의 고온가스(102b, 102c)를 접촉시켜 열CVD를 기판(101)표면에서 발생시키는 원리이다. 고온가스(102b, 102c)의 화학적 종류를 선택하는 것 외에, 그것에 따라 고온가스(102b, 102c)의 취부속도나 취부(입사)각도, 온도, 가스의 배기 등을 조정하는 것으로 소망하는 막을 성장시키는 것이 가능하다. 열분해 활성종은 높은 표면온도로 유지되는 기판(101)표면 근방에서 표면이동하므로 깊은 구멍 등에도 이동하여 막을 형성시킬 수 있다. 또한, 도 5 중, 부호 104b는 기판(101)을 지지하는 지지대(104)의 도면 중 상면에 형성된 복수의 진공 척용 홈이며, 이들 진공 척용 홈(104b, 104b, … ) 내를 도시하지 않은 배기장치에 의해 진공으로 배기함으로써 기판(101)의 이면(101b)을 지지대(104)의 표면에 흡착시켜 고정해 지지하게 되어 있다. 또, 이들 진공 척용 홈(104b, 104b, … ) 내에 공기 등을 충전함으로써, 기판(101)을 지지대(104)로부터 떼어낼 수 있다.
그리고, 청구항 1에 관한 발명은 지지대상에 놓인 유리기판의 표면에 이 유리기판의 연화점 온도보다도 높은 고온가스를 수직으로 내뿜는 것을 특징으로 하는 가열장치이다.
청구항 2에 관한 발명은 상기 가스가 질소, 수소, Ar, He, 산소 중 어느 하나 또는 그들 2종 이상의 혼합가스인 것을 특징으로 하는 청구항 1에 기재한 가열장치이다.
청구항 3에 관한 발명은 지지대상에 놓인 유리기판의 표면에 이 유리기판의 연화점 온도보다도 높은 고온가스를 수직으로 내뿜는 가열장치를 가지고, 이 가열장치의 상기 가스 중 어느 하나 또는 혼합가스와 함께 가열분해하여 막퇴적용의 퇴적가스를 상기 유리기판의 표면에 동시에 내뿜도록 구성된 것을 특징으로 하는 막형성장치이다.
청구항 4에 관한 발명은 지지대상에 놓인 유리기판의 표면에 이 유리기판의 연화점 온도보다도 높은 고온가스를 수직으로 내뿜고, 상기 가스가 질소, 수소, Ar, He, 산소 중 어느 하나 또는 그들 2종 이상의 혼합가스인 가열장치를 가지고, 이 가열장치의 상기 가스 중 어느 하나 또는 혼합가스와 함께 가열분해하여 막퇴적용의 퇴적가스를 상기 유리기판의 표면에 동시에 내뿜도록 구성된 것을 특징으로 하는 막형성장치이다.
청구항 5에 관한 발명은 상기 퇴적가스가 실리콘을 포함하는 것을 특징으로 하는 청구항 3 또는 4에 기재한 막형성장치이다.
또한, 상기 가스, 상기 퇴적가스와 함께, 도핑가스를 동시에 도입하여도 된다.
또한, 상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 도핑가스를 동시에 도입하여도 된다.
또한, 상기 가스, 상기 퇴적가스와 함께, 산화가스, 질화가스를 동시에 도입하여도 된다.
또한, 상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 산화가스, 질화가스를 동시에 도입하여도 된다.
상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 도핑가스, 산화가스, 질화가스를 동시에 도입하여도 된다.
청구항 6에 관한 발명은 유리기판의 연화점 온도보다도 높은 고온가스를 이 유리기판의 표면에 수직으로 내뿜는 가열장치를 가지고, 상기 고온가스와 함께 가열분해하여 막퇴적용의 퇴적가스와 도핑가스의 종류와 농도를 퇴적막의 두께방향에 대해서 변화시킴으로써, 경사구조 또는 이종(異種)접합의 구조의 막을 기판상에 만드는 것을 특징으로 하는 막형성장치이다.
또한, 상기 유리기판의 표면이 조면(粗面)으로 형성되어 있어도 된다.
또한, 상기 퇴적가스가 실리콘을 포함하며, 상기 유리기판의 표면이 조면으로 형성되어 있어도 된다.
또한, 상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 도핑가스를 동시에 도입하고, 상기 유리기판의 표면이 조면으로 형성되어 있어도 된다.
또한, 상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 도핑가스, 산화가스, 질화가스를 동시에 도입하고, 상기 유리기판의 표면이 조면으로 형성되어 있어도 된다.
또한, 유리기판의 연화점 온도보다도 높은 고온가스를 이 유리기판의 표면에 수직으로 내뿜는 가열장치를 가지고, 상기 고온가스와 함께 가열분해하여 막퇴적용의 퇴적가스와 도핑가스의 종류와 농도를 퇴적막의 두께방향에 대해서 변화시킴으로써, 경사구조 또는 이종접합구조의 막을 기판상에 만들고, 상기 퇴적가스가 실리콘을 포함하며, 상기 가스, 상기 퇴적가스와 함께, 도핑가스, 산화가스, 질화가스를 동시에 도입하고, 상기 유리기판의 표면이 조면으로 형성되어 있어도 된다.
청구항 7에 관한 발명은 청구항 3 내지 6 중 어느 하나 1항에 기재한 막형성장치에 의해 형성된 박막을 탑재한 것을 특징으로 하는 디바이스이다.
청구항 8에 관한 발명은 냉각 가능한 지지대상에 지지된 기판의 표면에 있는 막상에 복수의 고온가스빔을 서로 소요의 간격을 두고 대략 수직으로 내뿜어 상기 막을 어닐하는 것을 특징으로 하는 막형성방법이다.
청구항 9에 관한 발명은 냉각 가능한 지지대상에 지지된 기판의 표면상에 복수의 고온가스빔을 서로 소요의 간격을 두고 대략 수직으로 내뿜음과 아울러, 이들 고온가스빔과 상기 기판의 표면에 의해 구획된 고온공간에 퇴적성을 가지는 막형성용의 열분해가스를 공급하여, 상기 기판의 표면에 내뿜는 것을 특징으로 하는 막형성방법이다.
청구항 10에 관한 발명은 상기 기판이 유리 또는 플라스틱으로 이루어지고, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도인 것을 특징으로 하는 청구항 8 또는 9에 기재한 막형성방법이다.
청구항 11에 관한 발명은 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온인 것을 특징으로 하는 청구항 9에 기재한 막형성방법이다.
청구항 12에 관한 발명은 기판 및 이 기판을 지지하는 냉각 가능하고 이동 가능한 지지대와, 소요의 가스가 지나가는 가스통로 및 이 가스통로의 가스를 소요의 고온가스로 가열하는 가열장치 및 이 고온가스를 빔모양으로 교축하여 상기 기판표면의 복수 개소에 대략 수직으로 각각 내뿜는 복수의 취출구멍을 구비한 가스취부장치를 구비하고 있는 것을 특징으로 하는 막형성장치이다.
청구항 13에 관한 발명은 상기 소요의 가스는 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하는 것을 특징으로 하는 청구항 12에 기재한 막형성장치이다.
청구항 14에 관한 발명은 기판 및 이 기판을 지지하는 냉각 가능하고 이동 가능한 지지대와, 소요의 가스가 지나가는 가스통로 및 이 가스통로의 가스를 소요의 고온가스로 가열하는 가열장치 및 이 고온가스를 빔모양으로 교축하여 상기 기판표면의 복수 개소에 대략 수직으로 각각 내뿜는 복수의 취출구멍 및 이들 취출구멍의 사이에 배치되어, 복수의 고온가스빔과 기판표면에 의해 구획된 고온공간을 통하여 퇴적성을 가지는 막형성용의 열분해가스를 상기 기판표면에 내뿜는 가스취출구멍을 구비한 가스취부장치를 구비하고 있는 것을 특징으로 하는 막형성장치이다.
청구항 15에 관한 발명은, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하는 것을 특징으로 하는 막형성장치이다.
청구항 16에 관한 발명은, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하는 것을 특징으로 하는 청구항 14에 기재한 막형성장치이다.
청구항 17에 관한 발명은, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하는 것을 특징으로 하는 청구항 14에 기재한 막형성장치이다.
또한, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성해도 된다.
또한, 상기 소요의 가스는 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성해도 된다.
또한, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하며, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성해도 된다.
또한, 상기 기판이 유리 또는 플라스틱으로 이루어지고, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 소요의 가스는, 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하며, 상기 기판이 유리 또는 플라스틱으로 이루어지고, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하며, 상기 기판이 유리 또는 플라스틱으로 이루어지고, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 소요의 가스는 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하며, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하며, 상기 기판이 유리 또는 플라스틱으로 이루어지고, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 유리 또는 플라스틱으로 이루어지며, 상기 고온가스가 이 유리 또는 플라스틱의 연화온도보다도 높은 온도로 해도 된다.
또한, 상기 기판이 디바이스를 형성한 실리콘 기판이고, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 소요의 가스는 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하며, 상기 기판이 디바이스를 형성한 실리콘 기판이고, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하며, 상기 기판이 디바이스를 형성한 실리콘 기판이고, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 소요의 가스는 질소, 수소, 아르곤, 헬륨, 산소 중 어느 하나 또는 이들의 2종 이상의 혼합가스를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하고, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하며, 상기 가스취부장치를 복수 대 병설하고, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하며, 상기 기판이 디바이스를 형성한 실리콘 기판이고, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
또한, 상기 막형성용의 열분해가스는 실리콘 또는 카본 또는 게르마늄을 포함하고, 상기 막형성용의 열분해가스는 실란(SiH4, Si2H6) 또는 할로겐화 실란을 포함하며, 상기 소요의 가스는 이들과 반응하는 N2O, NO2를 포함하는 산화가스 혹은 NH3를 포함하는 질화가스 중 어느 하나 또는 양자를 포함하고, 상기 가스취부장치를 복수 대 병설하며, 이들 가스취부장치의 병설방향으로 상기 지지대를 이동 가능하게 구성하고, 상기 기판이 디바이스를 형성한 실리콘 기판이며, 상기 고온가스가 상기 디바이스의 막형성공정시의 온도 이상의 고온으로 해도 된다.
본 발명에 의하면, 고온가스를 만들어 내고, 그것을 퇴적가스와 함께 유리기판에 수직으로 충돌하도록 내뿜음으로써, 유리기판상에 막을 형성하므로, 레이저 어닐이나 마이크로 플라스마를 만들어 내어 그것을 일면(一面)에 조사하는 종래 장치보다 염가로 폴리실리콘막을 형성하고, 성장시킬 수 있다.
본 발명에 의하면, 냉각 가능하고 이동 가능한 지지대 위에 실은 기판을 저온으로 유지하면서, 고온가스빔을 기판표면상에 대략 수직으로 내뿜어 기판표면만을 어닐(가열)할 수 있으므로, 기판표면의 막만을 어닐처리하는 막형성이 가능하게 된다.
본 발명에 의하면, 복수의 고온가스빔과 기판표면에 의해 구획되는 고온공간에 퇴적성을 가지는 막형성용의 열분해성 가스가 공급되고, 그 열분해성 가스가 고온공간에서 열분해되어, 기판표면상에 내뿜어지므로, 기판표면상에 막이 형성된다.
그리고, 기판표면상에 열저항층의 정체층이 형성되어 기판으로의 열전도를 억제할 수 있다. 또, 기판을 지지하는 지지대를 냉각할 수 있으므로, 기판온도를 저온으로 유지할 수 있어, 기판의 연화 등 고온에 기인하는 문제점을 방지 또는 억제할 수 있다. 또 지지대를 이동 가능하게 하므로, 그것은 기판의 전역으로의 어닐과 막퇴적을 가능하게 하여, 복수의 종류의 가스 빔 취부장치를 기판이동방향으로 둠으로써, 복수의 종류의 막형성을 기판상에 연속하여 행하는 것을 가능하게 한다.
도 1은 가열장치의 원리도인 단면 모식도.
도 2는 본 발명의 제1 실시형태에 관한 막형성장치의 단면 모식도.
도 3의 (A)는 도 2에서 나타내는 카본 중앙판과 좌우 한 쌍의 측판의 종단면도, (B)는 도 3의 (A)의 A-A단면도, (C)는 도 3의 (A)의 B-B단면도, (D)는 도 3의 (B)의 Y-Y단면도.
도 4는 종래의 막질개선의 방법을 나타내는 개략도.
도 5는 본 발명의 제2 실시형태에 관한 막형성방법의 원리를 나타내는 모식도.
도 6은 빔모양의 고온가스가 기판표면에 내뿜어져 충돌했을 때 상태와 그 때의 온도분포를 나타내는 모식도.
도 7은 본 발명의 제2 실시형태에 관한 막형성장치의 구성도.
도 8은 도 3에서 나타내는 카본 중앙판과 좌우 한 쌍의 카본 측판 등을 나타내는 측 단면도.
도 9의 (A)는 도 3에서 나타내는 카본 중앙판의 일측면의 정면도, (B)는 도 9의 (A)의 B-B선단면도, (C)는 도 9의 (A)의 C-C선단면도, (D)는 도 9의 (A)의 D-D선단면도.
도 10은 본 발명의 제2 실시형태의 변형예에 관한 막형성장치의 구성을 나타내는 모식도.
도 11의 (A)는 도 6에서 나타내는 복수의 가스취부장치를 기판의 이동방향으로 병설하는 배치예의 평면 모식도, (B)는 기판보다 작은 복수의 가스취부장치를 기판표면의 대략 전역을 커버하는 경우의 배치예를 나타내는 모식도.
이하, 본 발명의 실시형태를 첨부 도면에 근거하여 설명한다. 복수의 첨부 도면 중, 동일 또는 상당 부분에는 동일 부호를 부여하고 있다.
<제1 실시형태>
도 2는 상기 도 1에서 나타내는 가열장치와 대략 동일한 원리에 의해 구성된 가열장치를 구비한 막형성장치의 단면 모식도를 나타낸다. 도 2에 나타내는 바와 같이 유리기판(24)은 예를 들면 두께가 0.7㎜이고, 유리기판지지대(26) 위에 밀착시켜 놓인다. 이 지지대(26)에는 진공흡착의 홈(31)이 있고, 유리기판(24)을 흡착하여 열접촉을 효과적으로 행하며, 지지대(26)의 온도로 유리기판(24)의 이면(32)의 온도가 제어된다.
가열용 도입가스(12)의 가열의 기구를 설명한다. 가열기구는 카본(예를 들면 그래파이트(graphite), 등방성 카본 등을 포함) 소재에 의해 형성된 중실평판상(中實平板狀)의 카본 중앙판(33)과, 그 좌우 양측에 각각 첨설(添設)되는 카본제의 중실평판상의 좌우 한 쌍의 카본 측판(39L, 39R)을 가지고, 카본 중앙판(33)의 깊이방향(도 2의 표리(表裏)방향)으로 홈(34)을 가진다. 가열용 도입가스(12)로서 예를 들면 질소를 이용했다. 질소는 위로부터 도입파이프(35)를 통해 도입되어, 상기 홈(34)을 경유하여 제1 슬릿(37)과 제2 슬릿(36)의 틈새를 지나 유리기판(24)에 대략 수직으로 충돌한다. 카본 중앙판(33)에는 열원으로서의 램프(38)가 안쪽방향으로 관통하여 구비되고, 램프(38)의 투입 전력에 따라 카본 중앙판(33)은 예를 들면 1000℃까지 가열 가능하다.
도 3의 (A)는 카본 중앙판(33)과 그 좌우 한 쌍의 카본 측판(39L, 39R)의 종단면도, (B)는 도 3의 (A)의 A-A단면도, (C)는 도 3의 (A)의 B-B단면도, (D)는 도 3의 (B)의 Y-Y단면도이며, 이들 카본 중앙판(33)과 좌우 한 쌍의 카본 측판(39L, 39R)에 의해, 도 2에 나타내는 좌우 한 쌍의 제1, 제2 슬릿(36, 37)에 각각 연통하는 좌우 한 쌍의 홈(34, 34)을 각각 형성하고 있다. 이들 좌우 한 쌍의 홈(34, 34)은 도 2 중 세로방향으로 도입가스(12)를 각각 개별적으로 통하도록 형성하고, 이들 좌우 한 쌍의 홈(34, 34)끼리는 좌우(가로)방향으로 연결되어 있지 않다.
도 3의 (A) ~ (D)에 나타내는 바와 같이 카본 중앙판(33)은 그 입구(33a)에 가스도입파이프(35)의 일단부를 기밀하게 삽입하여 고착하고, 이 입구(33a)에는 가스유입 스페이스(33b)를 연통시키고 있다. 또한, 도 3의 (B) 중의 부호 33c는 복수의 세로구멍이며, 도 3의 (A), (B), (C), (D) 중, 38a는 가열용 램프(38)가 삽입되는 삽입구멍이다.
그리고, 홈(34)은 카본 중앙판(33)과, 이것을 그 좌우로부터 기밀하게 끼우도록 고착된 좌우 한 쌍의 카본 측판(39L, 39R)에서 가열용 도입가스(12)의 통로로서 만들어지고, 위의 홈으로부터 아래의 홈으로 질소가 빠지는 세로의 홈(40)(33c에 상당)이 있다. 이 세로의 홈(40)은 그 다음의 도 2 중의 세로홈과는 떨어져 형성되어 있어, 세로홈(40)으로부터 송출되는 질소는 홈의 상하의 벽이 되는 리브(41)에 수직으로 맞닿아, 리브(41)와 효율 좋게 열교환된다.
카본 중앙판(33)의 리브(41)를 지나 빠지는 질소는 효율 좋게 가열되어 아래로 빠진다. 카본 중앙판(33)과 좌우 측판(39L, 39R)에 의해 형성된 제1 슬릿(37)과 제2 슬릿(36)을 가열된 질소가 통과할 때는 이들 슬릿(36, 37)의 양벽과 흐름이 평행하기 때문에, 정체층이 형성되고, 그것이 열저항이 되어 열교환의 효율을 낮게 한다. 이 때문에, 위의 램프(38)로 가열된 도입가스(12)는 고온을 유지한 채로 유리기판(24)에 충돌한다.
제1 슬릿(37)과 제2 슬릿(36)으로부터 분출하는 가스에 끼워진 영역의 유리기판(24)의 표면(도 2에서는 상면)(25)은 고온이 된다. 카본 중앙판(33)의 아래에는 슬릿 모양의 공동(空洞)(42)이 있고, 이 공동(42)에 퇴적용 가스(43)나 도핑용 가스(44)가 도입되어 기판표면에 내뿜어진다. 이 퇴적용 가스(43)는 퇴적용 가스관(43a)에 의해 공동(42)에 공급되고, 도핑용 가스(44)는 도핑가스관(44a)에 의해 공동(42)에 공급된다.
도면 중 하단의 제1, 제2 슬릿(37, 36)의 분출구로부터 분출하는 가열용 가스의 온도는 열전대(45)에 의해 모니터되고 있다. 유리기판(24)의 표면의 온도를 정확하게 측정할 수 없지만, 모니터용의 열전대(45)의 모니터온도 Tm은 측정할 수 있다.
지지대(26)의 표면온도를 300℃로 설정하여 모니터온도 Tm를 650℃로 설정하여 퇴적용 가스(43)로서 실란 SiH4를 도입하면, 유리기판(24)상에 막을 예를 들면 200㎚ 정도 성장시킬 수 있었다. 배기는 배기상자(46)에서 행하고 배기기구(47)의 덕트를 통해서 배기된다. 배기상자(46)에서는 분위기 가스(48)도 동시에 배기되므로, 필요하면 혼합가스의 폭발이나 연소를 일으키지 않도록 질소 분위기로 하는 것도 유량이나 혼합비에 따라 필요하다.
퇴적막(49)을 조사했다. 우선 전반사 형광 X선 분석에 의해 퇴적막(49)은 실리콘막인 것을 확인했다. 실리콘막의 결정성을 평가하기 위해서 후방산란 라먼(raman)법에 의해 스펙트럼을 조사했다. 스펙트럼의 피크 시프트로부터 폴리실리콘인 것을 확인했다. 단면 TEM을 보면 폴리실리콘인 것을 나타내는 격자상(格子像)이 관찰되었다. 따라서, 퇴적막(49)은 폴리실리콘인 것이 확인되었다.
다음으로 퇴적막(49)의 도핑을 시도했다. 실란가스와 동시에 도핑용 가스(44)로서 질소에 1% 희석한 PH3 가스를 도입하여 유리기판상에 막을 퇴적시켰다. 시판하는 pn판정기로 막은 n형인 것을 확인했다.
다음으로 동시에 도핑용 가스로서 질소에 1% 희석한 B2H6 가스를 도입하여 유리기판(24)상에 퇴적막(49)을 퇴적시켰다. 시판의 pn판정기로 막은 p형인 것을 확인했다.
실리콘은 게르마늄과 혼정을 만들 수 있다. 혼정은 변형 실리콘을 만드는 경우나 실리콘과의 이종접합을 만드는 방법으로서도 이용된다. 그래서, 질소에 1% 희석한 게르만 GeH4 가스를 실란 SiH4와 동시에 도입했다. 전반사 형광 X선 분석에 의해 막은 실리콘과 게르마늄을 포함하는 Si1-XGex의 조성인 것을 확인했다. SIMS 분석에 의해 조성 분석을 행하면 게르마늄의 조성 X는 GeH4의 유량 증가와 함께 증가했다. 이것으로부터 Si1-XGex의 X는 GeH4의 도입량에 의존하여 제어할 수 있는 것을 확인했다.
이상의 결과로부터 GeH4의 도입량을 퇴적막(49)의 두께방향에서 제어하여 변화시킴으로써, 세로방향에 X를 변화시킨 경사조성의 Si1-XGex막을 얻는 것이 가능하다. 게르마늄의 조성이 증가함에 따라 Si1-XGex의 밴드 갭은 좁아지는 것을 알 수 있다. GeH4를 도입하여 밴드 갭의 작아지는 방향으로 경사조성막을 형성하는 것이 가능한 것을 나타냈지만, 실리콘보다 넓은 밴드 갭의 재료 Si1-XCx를 얻는 목적으로 다른 가스, 예를 들면 아세틸렌 등을 이용하는 것도 가능하다. 또 실란과 함께 산화성의 가스 N2O 가스를 도입하면 실리콘 산화막을 얻는 것도 가능하다.
퇴적가스로서 테트라에톡시실란(tetraethoxysilane) TEOS를 도입하면 단독 가스에서도 실리콘 산화막의 퇴적이 가능하다. 질화성의 가스인 암모니아 가스 NH3를 도입하면 실리콘 질화막의 생성도 가능하다.
실리콘막을 퇴적시키기 위해서 모노실란 SiH4를 여기에서는 이용했지만, 보다 저온으로 하기 위해서 디실란 Si2H6를 이용하는 것, 반응성을 이용하여 더욱 저온으로 하기 위해 SiF4 등의 가스를 이용하는 것은 자유롭게 설계할 수 있다. 또 막퇴적한 장치 부품의 클리닝을 위해서 실리콘과 반응하는 ClF3나 NF3 등의 클리닝 가스를 퇴적용 가스나 도핑가스, 가열용 가스의 도입구로부터 도입하는 것은 장치의 안정 가동을 위해서 자유롭게 설계할 수 있다. 또한, 상기 실시형태에서는 유리기판(24)의 표면(25)은 평탄하게 형성했을 경우에 대해서 설명했지만, 본 발명은 이것에 한정되는 것이 아니고, 예를 들면 유리기판표면(25)을 샌드 블레스트 등의 방법에 의해 조면(粗面)으로 형성해도 된다. 이것에 의하면, 퇴적막(49)의 성장의 초기핵이 생기기 쉽기 때문에 기판표면(25) 전체에서 막성장이 균일하게 된다고 하는 효과를 가진다.
이상과 같이 대형의 유리기판(24)상에 폴리실리콘박막과 절연막을 염가로 성장시킬 수 있으면 박막 트랜지스터의 디바이스를 유리기판상에 직접 제조 가능하게 된다. 또 경사조성의 박막을 성장시키면, 태양광의 스펙트럼을 유효하게 이용할 수 있는 경사조성박막이나 이종접합을 이용한 태양전지의 디바이스를 염가로 제조하는 것이 가능하게 된다.
또, 모니터온도 Tm를 더욱 높은 온도 800℃로 설정하여 유리기판표면만을 가열하면 반도체공정에서 행하는 불순물 확산도 가능하게 되므로, 폴리실리콘의 pn접합을 이용하는 디바이스의 제작도 가능하다.
여기에서는 카본을 이용한 가열기구의 가공이 간단한 것으로 이용했지만, 산소로 연소하지 않는 재료를 이용하면 산소의 도입도 가능하다.
<제2 실시형태>
도 7은 본 발명의 제2 실시형태에 관한 막형성장치(111)의 구성을 나타내는 구성도이며, 도 8은 그 주요부 확대도이다.
도 7에 나타내는 바와 같이 막형성장치(111)는 소요의 막을 형성하기 위한 기판(112) 및 이 기판(112)을 지지하는 냉각 가능하고 이동 가능한 지지대(113)와 가스취부장치(114)를 구비하고 있다.
기판(112)은 소요의 큰 평판모양의 유리기판이나 플라스틱 기판 등으로 이루어지고, 그 표면(112a)상에 이들 기판(112)의 연화온도(예를 들면 300℃ ~ 400℃)보다도 높은 온도에 의해 실리콘 산화막이나 같은 질화막, 폴리실리콘 등의 고온열CVD 재료의 막을 형성, 성장시키려고 하는 것이다.
지지대(113)는 그 기판(112)의 이면(112b)에 밀착하는 표면(113a)에 도면 중 상면을 개구시킨 진공 척 흡착용의 복수의 홈(113b, 113b, … )을 형성하고, 이들 홈(113b, 113b, … ) 내를 도시하지 않은 배기장치에 의해 배기함으로써 기판(112)의 이면(112b)을 흡착하여 고정한다. 한편, 이들 홈(113b, 113b, … ) 내에 공기 등을 충전함으로써, 기판(112)을 지지대(113)로부터 떼어낼 수 있다. 또, 지지대(113)는 그 내부에 순환할 수 있는 냉각재(113c)를 내장하고, 지지대(113)를 소요의 온도로 적절히 제어할 수 있도록 되어 있다.
또, 지지대(113)의 온도를 제어함으로써, 기판(112)의 이면(112b)의 온도를 제어할 수 있다. 필요한 때에는 기판지지대(113)는 수평방향(X)과 수직방향(Y)이 적어도 한 방향으로 이동 가능하게 구성할 수 있다.
한편, 가스취부장치(114)는, 예를 들면 스테인리스제 덮개가 있는 통모양의 외부케이싱(115) 내에, 예를 들면 스테인리스제 통모양의 내부케이싱(116)을 배치하고, 외부케이싱(115)의 바닥면은 개구시키고 있다. 또, 내부케이싱(116) 내에는 도 7 중 파선프레임으로 나타내는 가스가열장치(117)를 배치하고 있다.
외부케이싱(115)은 그 상부덮개(115a)에 제1, 제2, 제3 가스도입구(115a1, 115a2, 115a3)와, 전력선도입구(115a4)를 각각 형성하고, 이들 제1, 제2, 제3 가스도입구(115a1, 115a2, 115a3)의 외단에는 제1, 제2, 제3 가스도입관(118a, 118b, 118c)을 동심상으로 기밀하게 연결하고, 전력선도입구(115a4)에는 전력선(119)을 삽입하고 있다. 제3 가스도입구(115a3)의 내단에는, 예를 들면 석영제 등의 제3 내측 가스도입관(120)이 연통되고 있다.
제1, 제2 가스도입관(118a, 118b)에는, 예를 들면 질소가스가 도입되고, 제3 가스의 도입관(120)에는, 예를 들면 질소가스에 의해 1% 희석된 실란(SiH4)이 퇴적성을 가지는 막형성용의 열분해가스의 일례로서 도입된다.
외부케이싱(115)은 그 좌우 한 쌍의 측면에 좌우 한 쌍의 배기관(121, 122)를 각각 배치하고, 이들 배기관(121, 122)의 내측 개구단(121a, 122a)을 외부케이싱(115)과 내부케이싱(116)에 의해 구획되는 환상의 배기공간(123)으로 개구시켜 두고, 이 배기공간(123) 내에 외부케이싱(115)의 바닥면 개구로부터 침입한 질소가스 등의 배기를 배기관(121, 122)에 의해 외부로 배기한다.
가열장치(117)는 카본(예를 들면 그래파이트, 등방성 카본 등을 포함) 소재에 의해 형성된 중실평판상의 카본 중앙판(124)과, 그 좌우 양측면에 각각 첨설고착되는 카본제의 중실평판상의 좌우 한 쌍의 카본 측판(125, 126)을 가지며, 카본 중앙판(124)은 그 도 7 중, 좌우 양측 단부에서 그 외측면을 향하여 개구하고, 그 깊이방향(도 7의 표리방향)으로 연재하는 좌우 한 쌍의 'コ'자 모양의 홈(127, 128)을 카본 중앙판(124)의 길이방향(도 7 중, 세로방향)으로 소요의 간격을 두고 복수단 형성하고 있다. 이들 좌우 한 쌍의 각 홈(127, 127 … , 128, 128 … )의 외측단은 도 8에도 나타내는 바와 같이, 좌우 한 쌍의 카본 측판(125, 126)의 대향면에 의해 기밀하게 밀폐되어 있다.
그리고, 카본 중앙판(124)은 그 도 7, 도 8 중의 상부에서 좌우 한 쌍의 제1, 제2 상부 가스도입 세로구멍(129, 130)을 도면 중 세로방향으로 각각 형성하고, 이들 제1, 제2 가스도입 세로구멍(129, 130)의 내단(도면 중 하단)을 좌우 한 쌍의 홈(127, 128)의 종렬(縱列)방향 상단의 홈(127a, 128a)에 각각 연통시키고 있다.
또한, 카본 중앙판(124)은 좌우 한 쌍의 홈(127, 128)의 종렬방향 하단의 각 홈(127b, 128b)에 제1, 제2 하부 가스취출 세로구멍(131, 132)을 각각 연통시키고 있다. 이들 제1, 제2 하부 가스취출 세로구멍(131, 132)은 카본 중앙판(124)의 길이방향 하부의 좌우 측단에서 그 각 일측단이 외측으로 개구하는 오목부에 의해 각각 형성되고, 이들 오목부 개구가 좌우 한 쌍의 카본 측판(125, 126)에 의해 기밀하게 밀폐되어 있다.
또, 이들 좌우 한 쌍의 카본 측판(125, 126)의 하부 외측면의 외측 개구의 오목부 내에 평판모양의 단열 석영판(133, 134)이 끼워맞춰져 가열장치(117)의 단열을 도모하고 있다.
그리고, 이와 같이 구성된 좌우 한 쌍의 제1, 제2 하부 가스취출 세로구멍(131, 132)은 그 도 7, 도 8 중 하단에 제1, 제2 가스취출구멍(135, 136)을 연통시키고 있다. 이들 제1, 제2 가스취출구멍(135, 136)은 카본 중앙판(124)의 하단부의 좌우 양측 단부에 각각 형성되고, 이들 제1, 제2 가스취출구멍(135, 136)으로부터 제1, 제2 가스가 고온가스로서 기판표면(12a)에 대략 수직으로 내뿜어지게 되어 있다. 또, 이들 좌우 한 쌍의 제1, 제2 가스취출구멍(135, 136)끼리의 중간부에는 제3 가스취출구멍(137)이 형성되어 있다. 이들 제1 ~ 제3 취출구멍(135 ~ 137)은 도시의 형편상, 선상으로 도시되고 있지만, 평면(바닥면) 형상은 가는 장방형(長方形)의 슬릿이다. 또한, 이들 제1 ~ 제3 취출구멍(135 ~ 137)은 단일한 가늘고 긴 슬릿이라도 되지만, 소형의 복수의 장방형의 슬릿이나 작은 원형 구멍이나 직사각형 구멍의 복수 개를 소요의 간격을 두고 열(列)모양으로 배치함으로써 구성해도 된다. 또, 그 배열의 형상으로서는 직선 모양이나 곡선 모양, 환상이라도 된다. 이 제3 취출구멍(137)에는 제3 내측 가스도입관(120)의 취출구 단부가 접속되고, 제3 가스취출구멍(137)으로부터 제3 가스가 기판표면(113a)으로 취출되도록 되어 있다.
도 9의 (A)는 상기 카본 중앙판(124)의 일측면(예를 들면 좌측면)의 정면도, 도 9의 (B)은 도 9의 (A)의 B-B단면도, 도 9의 (C)는 도 9의 (A)의 C-C단면도, 도 9의 (D)는 도 9의 (A)의 D-D단면도이며, 이들 카본 중앙판(124)과 좌우 한 쌍의 카본 측판(125, 126)에 의해, 도 7에 나타내는 좌우 한 쌍의 복수의 홈(127, 127, … , 128, 128, … )과, 제1, 제2 하부 가스취출 세로구멍(131, 132)을 각각 형성하고 있다. 이들 좌우 한 쌍의 각 홈(127, 127, … , 128, 128, … )은)도 7, 도 8 중 세로방향으로 제1, 제2 도입가스를 각각 개별적으로 통하도록 형성되며, 이들 좌우 한 쌍의 홈(127, 128)끼리는 좌우(가로) 방향으로 연결되어 있지 않다.
도 9의 (A) 중의 부호 138은 좌우 한 쌍의 각 홈(127, 128)마다 도면 중 세로방향으로 연통시키는 복수의 세로연통홈이고, 139는 가열용 램프(140)가 삽입되는 삽입구멍이다. 가열용 램프(140)는 예를 들면 100V, 1kW의 램프이며, 전력선(119)에 접속되어, 소요의 전력이 공급되어 고온으로 발열하는 깨끗한 열원이다.
또, 도면 중, 부호 141은 열전대 등의 온도센서이며, 제1, 제2 가스취출구멍(135, 136)으로부터 기판(112)의 표면(112a)에 내뿜어지는 제1, 제2 가스의 온도를 검출하고, 그 온도검출신호를 도시하지 않은 온도제어장치에 주어지도록 되어 있다.
이 온도제어장치는 이 온도검출신호를 받아, 전력선(119)으로부터 가열용 램프(140)에 공급되는 전력을 제어함으로써, 제1, 제2 가스의 취출온도를 소정의 온도(예를 들면 650℃)로 제어할 수 있도록 되어 있다.
다음으로, 이와 같이 구성된 막형성장치(111)의 작용에 대해서 설명한다.
우선, 도시하지 않은 온도제어장치에 의해 전력선(119)으로부터 가열장치(117)의 가열용 램프(140)에 공급되는 소요의 전력의 통전이 개시된다.
이 때문에, 가열용 램프(140)의 발열에 의해 카본 중앙판(124)과 좌우 한 쌍의 카본 측판(125, 126)이 고온으로 가열되고, 이들(124, 125, 126)에 의해 형성된 제1, 제2 상부 가스도입 세로구멍(129, 130), 좌우 한 쌍의 복수의 홈(127, 127 … , 128, 128 … ), 제1, 제2 하부 가스취출 세로구멍(131, 132), 즉, 좌우 한 쌍의 제1, 제2 가스통로가 가열된다.
이 때, 제1, 제2 가스도입관(118a, 118b)으로부터 질소가스가 가열장치(117)의 좌우 한 쌍의 제1, 제2 상부 가스도입 세로구멍(129, 130)에 도입된다. 이 질소가스는 또한 좌우 한 쌍의 복수의 홈(127, 127 … , 128, 128 … ), 제1, 제2 하부 가스취출 세로구멍을 순차 경유하여, 제1, 제2 취출구멍(135, 136)에 이르기까지 소요의 고온(예를 들면 650℃)으로 각각 가열되고 나서, 이들 제1, 제2 취출구멍(135, 136)으로부터 빔모양으로 각각 교축하여져 기판(112)의 표면(112a)상에 대략 수직으로 각각 내뿜어진다. 이들 제1, 제2 취출구멍(135, 136)으로부터 고온의 질소가스 빔이 내뿜어지므로, 이들 서로 인접하는 2개의 고온질소가스 빔끼리의 사이에는 도 5에서 나타내는 고온룸(공간)(106)과 동일한 고온룸(142)이 형성된다. 이들 질소가스의 출구온도는 온도센서(141)에 의해 검출되고, 상기 제어장치에 의해 가열용 램프(140)로의 전력을 제어함으로써, 소요의 온도에 피드백 제어된다.
한편, 제3 가스도입관(118c)에서는 퇴적성을 가지는 막형성용의 열분해가스의 일례인 실란가스가 도입된다. 이 실란가스는 예를 들면 질소가스에 의해 1% 희석되어 있고, 석영제의 내측 가스도입관(20)에 의해 단열한 상태, 즉, 가열장치(117)에 의해 가열되지 않도록 단열한 상태로 제3 취출구멍(137)으로 도입되고, 이 제3 취출구멍(137)에 의해 고온룸(142)을 통해 기판표면(112a) 측으로 내뿜어진다.
이것에 의해, 제3 가스인 실란가스는 고온룸(142)에 의해 고온으로 가열되어 열분해하여 기판표면(113a)으로 내뿜어진다.
이렇게 하여, 기판표면(112a)에 내뿜어진 실란가스는 기판표면(112a)상에서 열분해하여 퇴적하는 한편, 기판표면(113a)에서 반사하여 외부케이스(115)의 바닥면 개구로부터 그 내부의 배기공간(123)으로 돌아온 가스는 배기공간(123)으로부터 배기관(121, 122)에 의해 배기된다.
이것에 의해, 유리의 기판표면(112a)상에 막을 예를 들면 200㎚ 정도 형성하여 성장시킬 수 있었으므로, 이 퇴적한 실리콘막을 조사했다. 실리콘막의 결정성을 평가하기 위해서 라먼 산란 스펙트럼을 조사한 바, 스펙트럼의 520㎝-1 부근의 피크 시프트 성분으로부터 폴리실리콘인 것을 확인했다. 또한, 단면 TEM을 보면 폴리실리콘인 것을 나타내는 격자상이 관찰되었다. 따라서, 퇴적막은 폴리실리콘이었다.
다음으로, 기판(112)으로서, 유리기판에 대신하여, 예를 들면 10Ω㎝의 실리콘 웨이퍼 기판을 300℃의 지지대(113)상에 두었다. 제3 가스도입관(118c)으로부터 실란을 도입함과 아울러 산화성의 가스 N2O가스를 포함하는 질소가스를 제1, 제2 가스도입관(118a, 118b)으로부터 도입하여 온도센서(141)의 검출온도를 700℃로 설정한 바, 이 실리콘 웨이퍼 기판의 표면(112a)상에 막이 성장했다. 시트저항측정을 시행했지만 이 막은 절연막이었다.
이 막을 퇴적시키지 않은 동일 로트(lot) 웨이퍼를 참조 웨이퍼로서 이용하여 적외분광 광도계를 이용한 적외투과 스펙트럼에서는 Si-O의 피크가 관찰되어, 이 막은 실리콘의 산화물인 것을 확인할 수 있었다.
또, 이 실리콘 웨이퍼 기판에 이미 디바이스가 형성되어 있는 경우에는 상기 제1, 제2 고온가스(질소가스)를 이 디바이스 제작시에 이용한 플라스마 질화막, 실리콘 산화막의 형성공정시의 온도(400℃) 이상의 고온으로 가열함으로써, 이 실리콘 웨이퍼 기판상에 열CVD막을 형성할 수 있다.
그리고, 상기 제1, 제2 가스도입관(118a, 118b)에 도입한 가스를 암모니아 NH3를 포함하는 질소가스로 치환하여 온도센서(141)의 검출온도를 700℃로 설정한 바, 기판표면(112a)상에서 성장한 막은 절연막이었다. 또, 이 막의 적외분광 광도계를 이용한 적외투과 스펙트럼에서는 Si-N의 진동 피크가 관찰되고, 막은 실리콘의 질화물인 것을 확인할 수 있었다.
또한, 상기 실시형태에서는 기판표면(112a)상에 실리콘막을 퇴적시키기 위해서 모노실란 SiH4를 이용했지만, 보다 저온으로 하기 위해서, 이 모노실란을 디실란 Si2H6으로 치환해도 되고, 또, 반응성을 이용하여 더욱 저온으로 하기 위해 SiF4 등의 가스를 이용하는 것은 자유롭게 설계할 수 있다. 또한, 실리콘을 포함하는 가스 외에 카본을 포함하는 가스를 도입하는 것도 가능하다. 예를 들면 카본을 포함하는 가스로서는 아세틸렌 C2H2가 열분해하기 쉽기 때문에 이용할 수 있다. 또, 이것을 실란과 동시에 이용하면 실리콘 카바이드(carbide)의 막이 형성된다. 또, 게르마늄을 포함하는 가스 GeH4와 SiH4를 동시에 도입하면 실리콘과 게르마늄의 혼정을 성장시키는 것도 가능하다.
또, 도핑가스 PH3나 B2H6를 실란가스와 동시에 도입하여 도핑된 폴리실리콘을 성장시키는 것도 자유롭게 할 수 있다. 또한, 막퇴적한 막형성장치(111)의 부품의 클리닝을 위해서 실리콘과 반응하는 ClF3나 NF3 등의 클리닝 가스를 가열용 가스의 제1 ~ 제3 도입관(118a ~ 118c)으로부터 도입하는 것은 장치의 안정 가동을 위해서 자유롭게 설계할 수 있다.
더욱이 또, 가스의 선택에 의해 다른 재료의 막을 여러 가지 형성하여 성장할 수 있는 것을 나타냈지만, 기판(112)의 이동에 의해 적층막의 형성과 적층구조의 선택과 설계를 할 수 있다.
<제2 실시형태의 변형예>
도 10은 본 발명의 제2 실시형태의 변형예에 관한 막형성장치(111A)의 구성을 나타내는 모식도이다. 이 막형성장치(111A)는 상기 도 7에서 나타내는 막형성장치(111)에서 그 가스취부장치(114)의 복수 대를 소요의 피치를 두고, 예를 들면 1열 모양으로 병설하여 고정하는 한편, 상기 지지대(113)를 복수 대의 가스취부장치(114, 114, 114)의 병설방향으로 왕복이동 가능하게 지지하는 지지대 이동장치(150)를 마련한 점에 특징이 있다. 이외의 구성은, 도 7에서 나타내는 막형성장치(111)의 구성과 대략 동일하다.
즉, 이 막형성장치(111A)는 기대(151)상에 승강대(152)를 복수의 나사(153, 153, … ) 등에 의해 상하방향으로 조절 가능하게 배치하고 있다. 이 조절은 모터 구동시키는 것은 자유롭게 기계 설계할 수 있다. 승강대(152)상에는 이동나사(154)의 축방향 양단부를 회전 가능하게 지지하는 한 쌍의 베어링(155, 155)과, 이동나사(154)를 그 축심 둘레로 회전시키는 모터(156)를 배치하고 있다.
한편, 지지대(113)의 도 10 중 하면에는 좌우 한 쌍의 지지다리(113e, 113d)를 돌출 형성하고, 이들 지지다리(113e, 113d)에는 이동나사(154)에 치합하는 나사구멍을 형성한다. 이 이동나사(154)의 회전에 의해 지지대(113)는 좌우로 이동한다. 지지대(113)가 회전하지 않도록 회전을 규제하는 도시하지 않은 슬라이드 기구를 마련하고 있다.
따라서, 이 지지대 이동장치(150)에 의해 지지대(113)를 복수 대의 가스취부장치(114, 114, 114)의 병설방향으로 순차 이동시키거나, 또는 적절히 왕복이동시킴으로써, 이들 가스취부장치(114, 114, 114)를 통과할 때마다 기판표면(112a)상에 형성되는 막의 두께를 증가시킬 수 있다. 또는, 각 가스취부장치(114)에 도입하는 고온가스나 막형성용의 가스의 종류나 그 조합을 적절히 변경함으로써, 기판표면(112a)상에 복수 종류의 막을 형성하거나, 또는 복수의 막을 적층할 수 있다.
도 11의 (A),(B)는 상기 도 10에서 나타내는 막형성장치(111A)에서 복수 대의 가스취부장치(114, 114, 114)의 배치열을 나타내는 평면 모식도이다. 도 11의 (A)는 복수의 가스취부장치(114, 114, 114)를 기판(12)의 도면 중 화살표로 나타내는 기판(112)의 이동방향으로 소요의 간격을 두고 1열 모양으로 병설하고 있는 점에 특징이 있고, 이외는 도 10에서 나타내는 막형성장치(111A)와 동일한 구성이다.
또한, 이들 가스취부장치(114, 114, 114)는 그 기판표면(112a)에 대향하는 대향면의 폭방향 길이(도 11의 (A)에서는 세로방향 길이)가 기판(112)의 짧은 쪽 방향의 길이(도 11의 (A)에서는 세로방향 길이)보다 긴 경우에 바람직하다.
도 11의 (B)는 복수의 가스취부장치(114, 114, 114)를 기판(112)의 길이방향, 즉, 도면 중 화살표로 나타내는 이동방향에 대해서 경사방향으로 배치한 점에 특징이 있다.
이 경사배열에 의하면, 각 가스취부장치(114)의 폭방향 길이(도 11의 (B)에서는 세로방향 길이)가 기판(112)의 도면 중 세로방향 길이보다 짧을 때에 이들 가스취부장치(114, 114, 114)에 의해 기판(112)의 짧은 쪽 방향 길이의 대략 전역에 막을 형성할 수 있다.
또, 대형의 유리기판(112)에 일직선 모양으로 고온부를 형성하면 기판(112)이 젖혀지므로 가스취부장치(114)를 위치분할하여 배치하는 것이 바람직하다. 또한, 막을 형성한 대형 기판(112)으로부터 복수의 패널 기판(112)으로 자를 때에는 그 경계선에 복수의 가스취부장치(114)의 배치의 분기점을 넣음으로써, 패널 하나만큼의 작은 가스취부장치(114)에서 기판표면(112a)의 대략 전역에 막을 형성할 수 있는 장치로 설계할 수 있다.
그런데, 종래부터 미리 아모퍼스 실리콘을 유리기판상에 싣고, 이것을 어닐 함으로써, 아모퍼스 실리콘 중의 수소를 빼내고, 수소가 적은 폴리실리콘으로 변환하는 막형성이 가능하다라고 하는 것이 알려져 있다. 종래는 레이저광선을 표면 스캔하여 이것을 행하고 있다. 레이저광선 대신에 고온의 가스 빔을 조사함으로써 어닐 효과를 얻을 수 있다. 이것을 상기 막형성장치(111 또는 111A)에 의해 확인하기 위해서 미리 아모퍼스 실리콘의 막을 200㎚ 성장시킨 유리기판(112)을 지지대(113)에 두고, 제3 가스취출구멍(137)으로부터의 막형성용의 가스의 취출은 정지시킨 상태에서, 제1, 제2 가스도입관(118a, 118b)으로부터 질소가스를 도입했다. 온도센서(141)의 설정온도를 700 ~ 800℃의 범위에서 선택설정하여 고온의 질소가스 빔을 기판(112)의 표면(112a)의 막상에 대략 수직으로 각각 내뿜었다. 이 후, 이 막에 대해서 라먼 산란 스펙트럼을 조사한 바, 520㎝-1 부근의 피크 시프트 성분으로부터 폴리실리콘으로 변환할 수 있는 것을 확인했다. 즉, 상기 막형성장치(111 또는 111A)에 의해, 기판표면(112a)상에 실은 막을 가열함으로써, 이 막을 어닐 기판표면(112a)상에 고착 형성할 수 있는 것이 확인되었다.
이상 설명한 바와 같이, 유리기판(112)의 표면(112a)상에 폴리실리콘박막이나 절연막 등을 염가로 형성하고, 형성시킬 수 있으므로, 박막 트랜지스터의 디바이스를 유리기판상에 직접 제조하는 것이 가능하게 된다. 또 경사조성의 박막을 성장시키면, 태양광의 스펙트럼을 유효하게 이용할 수 있는 경사조성박막이나 이종접합을 이용한 태양전지의 디바이스를 염가로 제조하는 것도 가능하게 된다. 또한, 상기 실시형태에서는 카본 중앙판(124)나 카본 측판(125, 126)을 카본에 의해 형성했을 경우에 대해서 설명했지만, 이들 중앙판이나 측판은 산소에 의해 연소하지 않는 재료를 이용하는 것으로 산소의 도입도 가능하다.
<산업상의 이용 가능성>
유리기판을 유리의 연화점보다도 낮은 온도 300℃로 유지하면서 650℃의 질소가스와 함께 실란가스를 기판에 수직으로 내뿜음으로써, 유리기판상에 폴리실리콘을 성장시켰다. 도핑하는 것, 조성을 경사적으로 변화시킨 막을 생성하는 것이 가능하므로, 대형 유리기판상에 박막 트랜지스터나 유기EL, 태양전지 등의 디바이스를 염가로 만드는 것이 가능하다.
또, 본 발명은 유리제 등의 기판을 그 연화점보다도 낮은 온도로 유지하면서, 그 연화점보다도 높은 온도의 고온가스를 다른 2개소 이상의 출구로부터 빔모양으로 기판에 대략 수직으로 내뿜어 충돌시킴으로써, 기판을 연화점 이하의 저온으로 유지하면서 기판표면의 막만을 어닐할 수 있는 것을 나타냈다. 또, 기판상에 빔모양의 2개의 고온가스빔에 의해 끼워진 곳에 고온의 가스정체룸을 만들어 내고, 이 고온룸에서 퇴적성을 가지는 막형성용의 열분해가스를 고효율로 열분해할 수 있으므로, 효율 좋게 막을 형성하여 성장시킬 수 있다. 또, 기판상에 폴리실리콘을 성장시킴과 아울러, 반도체에서 이용되는 고온의 열CVD막을 적층하여 성장시킬 수도 있다. 또한, 조성을 경사적으로 변화시킨 막이나 적층막구조를 생성하는 것도 가능하므로, 예를 들면 대형 유리기판상에 박막 트랜지스터나 유기EL(일렉트로루미네선스), 태양전지 등의 디바이스를 염가로 만들 수 있다.
11 세관 12 도입가스
13 코일 14 고주파 전력원
15 매칭회로 16 마이크로 플라스마
17 기판 18 비결정질막
19 용융막 20 열원
21 가스가열기구 22 고온가스
23 가스가이드 24 유리기판
25 기판표면 26 기판의 지지대
27, 32 기판이면 28, 31 진공흡착의 홈
29 고온표면 33 카본 중앙판
34 홈 35 가스도입파이프
36 제2 슬릿 37 제1 슬릿
38 열원으로서의 램프 39L, 39R 카본 측판
40 세로홈 41 리브
42 공동 43 퇴적용 가스
44 도핑용 가스 45 열전대
46 배기상자 47 배기기구
48 분위기 가스 49 퇴적막
101 기판 102a 고온가스빔
103 가스취부장치 103a 취출구멍
104 지지대 111, 111A 막형성장치
112 기판 112a 기판표면
112b 기판이면 113 지지대
113a 지지대 표면 113b 진공 척 흡착용의 복수의 홈
113c 냉각재 114 가스취부장치
115 외부케이싱 116 내부케이싱
117 가열장치 118a 제1 가스도입관
118b 제2 가스도입관 118c 제3 가스도입관
119 전력선 120 제3 내측 가스도입관
121, 122 한 쌍의 배기관 123 배기공간
124 카본 중앙판 125, 126 좌우 한 쌍의 카본 측판
127, 128 좌우 한 쌍의 홈 127a, 128a 좌우 한 쌍의 상부 홈
129 제1 상부 가스도입 세로구멍 130 제2 상부 가스도입 세로구멍
131 제1 하부 가스취출 세로구멍 132 제2 하부 가스취출 세로구멍
135 제1 가스취출구멍 136 제2 가스취출구멍
137 제3 가스취출구멍 139 가열용 램프 삽입구멍
140 가열용 램프 141 온도센서
142 고온룸 150 이동장치
151 기대 152 승강대
153 나사 154 이동나사
155 베어링 156 모터

Claims (17)

  1. 주상(柱狀)체의 내부에 열원과, 일단이 가스도입관에 연결되며 타단이 가스가이드에 연통되는 가스통로를 구비하며,
    상기 가스통로는, 중실 평판 모양의 중앙판과 상기 중앙판의 좌우 양측에 각각 첨설된 좌우 한쌍의 측판으로 형성되는 홈이며, 가스가 상기 홈의 상하의 벽에 수직하게 맞닿도록 상기 가스도입관으로부터 상기 가스가이드를 향하는 방향으로 인접하는 홈을 연결하는 세로홈이 형성되며,
    지지대상에 놓인 유리기판의 표면에 이 유리기판의 연화점(軟化點) 온도보다도 높은 고온가스를 수직으로 내뿜는 것을 특징으로 하는 가열장치.
  2. 청구항 1에 있어서,
    상기 가스가 질소, 수소, Ar, He, 산소 중 어느 하나 또는 그들 2종 이상의 혼합가스인 것을 특징으로 하는 가열장치.
  3. 청구항 1에 기재된 가열장치를 가지며,
    이 가열장치의 상기 가스 중 어느 하나 또는 혼합가스와 함께 가열분해하여 막퇴적용의 퇴적가스를 상기 유리기판의 표면에 동시에 내뿜도록 구성된 것을 특징으로 하는 막형성장치.
  4. 청구항 3에 있어서,
    상기 가스가 질소, 수소, Ar, He, 산소 중 어느 하나 또는 그들 2종 이상의 혼합가스인 것을 특징으로 하는 막형성장치.
  5. 청구항 3에 있어서,
    상기 퇴적가스가 실리콘을 포함하는 것을 특징으로 하는 막형성장치.
  6. 청구항 1에 기재된 가열장치를 가지며, 상기 고온가스와 함께 가열분해하여 막퇴적용의 퇴적가스와 도핑가스의 종류와 농도를 퇴적막의 두께방향에 대해서 변화시키는 것에 의해, 경사구조 또는 이종접합의 구조의 막을 기판상에 만드는 것을 특징으로 하는 막형성장치.
  7. 청구항 3 내지 6 중 어느 한 항에 기재한 막형성장치에 의해 형성된 박막을 탑재한 것을 특징으로 하는 디바이스.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
KR1020107024916A 2008-04-30 2009-04-28 가열장치, 막형성장치, 막형성방법 및 디바이스 KR101598239B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008119211A JP2009272343A (ja) 2008-04-30 2008-04-30 加熱装置およびこれを具備した膜形成装置
JPJP-P-2008-119211 2008-04-30
JP2008162332A JP2010001541A (ja) 2008-06-20 2008-06-20 膜形成方法および膜形成装置
JPJP-P-2008-162332 2008-06-20

Publications (2)

Publication Number Publication Date
KR20110011612A KR20110011612A (ko) 2011-02-08
KR101598239B1 true KR101598239B1 (ko) 2016-02-26

Family

ID=41254923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107024916A KR101598239B1 (ko) 2008-04-30 2009-04-28 가열장치, 막형성장치, 막형성방법 및 디바이스

Country Status (3)

Country Link
KR (1) KR101598239B1 (ko)
CN (1) CN102017084B (ko)
WO (1) WO2009133699A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137444A (zh) * 2011-11-29 2013-06-05 上海华虹Nec电子有限公司 改善锗硅膜层厚度均一性的方法
JP5955089B2 (ja) * 2012-05-08 2016-07-20 株式会社フィルテック 流体加熱冷却シリンダー装置
KR101680291B1 (ko) * 2015-10-02 2016-11-30 참엔지니어링(주) 증착 장치 및 증착 방법
KR101862085B1 (ko) * 2016-03-03 2018-05-30 에이피시스템 주식회사 Ela 공정용 탈산소 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109081A (ja) * 2003-09-30 2005-04-21 Hitachi Displays Ltd 表示装置の製造方法
JP2006339520A (ja) 2005-06-03 2006-12-14 Sharp Corp 酸化膜形成装置及び酸化膜形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888186A (ja) * 1994-09-19 1996-04-02 Sanyo Electric Co Ltd 薄膜形成方法
JP2000060130A (ja) 1998-08-18 2000-02-25 Toshiba Corp 直流高電圧発生装置
US20060154480A1 (en) * 2003-12-26 2006-07-13 Hisayoshi Yamoto Vaporizer for cvd, solution voporizing cvd system and voporization method for cvd
KR100584812B1 (ko) * 2004-07-19 2006-05-30 뉴영엠테크 주식회사 유리기판의 열처리 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109081A (ja) * 2003-09-30 2005-04-21 Hitachi Displays Ltd 表示装置の製造方法
JP2006339520A (ja) 2005-06-03 2006-12-14 Sharp Corp 酸化膜形成装置及び酸化膜形成方法

Also Published As

Publication number Publication date
CN102017084B (zh) 2012-09-05
CN102017084A (zh) 2011-04-13
WO2009133699A1 (ja) 2009-11-05
KR20110011612A (ko) 2011-02-08

Similar Documents

Publication Publication Date Title
US6427622B2 (en) Hot wire chemical vapor deposition method and apparatus using graphite hot rods
US6755151B2 (en) Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
TWI362063B (ko)
CN101800176B (zh) 膜沉积方法和半导体器件的制造方法
US20110033638A1 (en) Method and apparatus for deposition on large area substrates having reduced gas usage
KR20010090427A (ko) 성막방법 및 성막장치
DE112009004253T5 (de) Trockenreinigung einer Siliziumoberfläche für Solarzellenanwendungen
US20120237695A1 (en) Method and apparatus for depositing a thin film
WO2002050333A1 (en) Hot wire chemical vapor deposition method and apparatus using graphite hot rods
US20100275981A1 (en) Apparatus and method for manufacturing photoelectric conversion elements, and photoelectric conversion element
KR101598239B1 (ko) 가열장치, 막형성장치, 막형성방법 및 디바이스
US7521341B2 (en) Method of direct deposition of polycrystalline silicon
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JPWO2007049402A1 (ja) 大気圧水素プラズマを用いた膜製造方法、精製膜製造方法及び装置
Kakiuchi et al. Characterization of Si and SiOx films deposited in very high‐frequency excited atmospheric‐pressure plasma and their application to bottom‐gate thin film transistors
JP5105620B2 (ja) 膜形成方法および膜形成装置
US7833579B2 (en) Method for in-situ polycrystalline thin film growth
Hirose Plasma-deposited films: kinetics of formation, composition, and microstructure
JP2010001541A (ja) 膜形成方法および膜形成装置
JP2010001560A (ja) 膜形成方法および膜形成装置
JP2009272343A (ja) 加熱装置およびこれを具備した膜形成装置
Slaoui et al. Polycrystalline silicon films for electronic devices
JP2010004010A (ja) 膜形成方法および膜形成装置
US7776751B2 (en) Process for producing silicon compound
Moslehi et al. Advanced epitaxial Si and GexSi1− x multiprocessing for semiconductor device technologies

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 5