KR101509364B1 - 유로 구조 및 가스 터빈 배기 디퓨저 - Google Patents

유로 구조 및 가스 터빈 배기 디퓨저 Download PDF

Info

Publication number
KR101509364B1
KR101509364B1 KR1020137015761A KR20137015761A KR101509364B1 KR 101509364 B1 KR101509364 B1 KR 101509364B1 KR 1020137015761 A KR1020137015761 A KR 1020137015761A KR 20137015761 A KR20137015761 A KR 20137015761A KR 101509364 B1 KR101509364 B1 KR 101509364B1
Authority
KR
South Korea
Prior art keywords
concave portion
flow path
sectional area
wall surface
exhaust
Prior art date
Application number
KR1020137015761A
Other languages
English (en)
Other versions
KR20130086071A (ko
Inventor
야스로 사카모토
에이사쿠 이토
스스무 와카조노
Original Assignee
미츠비시 히타치 파워 시스템즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 히타치 파워 시스템즈 가부시키가이샤 filed Critical 미츠비시 히타치 파워 시스템즈 가부시키가이샤
Publication of KR20130086071A publication Critical patent/KR20130086071A/ko
Application granted granted Critical
Publication of KR101509364B1 publication Critical patent/KR101509364B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

이 유로 구조는, 유로를 형성하는 벽면(10b, 11b)과, 상기 벽면으로부터 상기 유로를 흐르는 유체의 주류 방향과 교차하는 방향으로 연장하여 설치된 구조물(12, 13)과, 상기 주류 방향에 있어서 상기 구조물을 포함하는 범위에 걸쳐서, 상기 벽면에 오목부(21, 22, 31, 32)가 형성된 오목부 형성 영역(20, 30)을 구비한다. 상기 구조물이, 상기 주류와 교차하는 유로 단면에 있어서 상기 유로의 일부의 범위를 차지함으로써, 상기 유로의 단면적은, 상기 주류 방향으로 진행함에 따라 변화한다.

Description

유로 구조 및 가스 터빈 배기 디퓨저{FLOW PATH STRUCTURE AND GAS TURBINE EXHAUST DIFFUSER}
본 발명은, 유로 구조 및 가스 터빈 배기 디퓨저에 관한 것이다.
이미 알고 있는 바와 같이, 유로 구조의 일종으로서, 유로를 형성하는 벽면으로부터 유로를 흐르는 유체의 주류에 따른 주류 방향과 교차하는 방향으로 구조물이 연장한 것이 알려져 있다. 예를 들어, 가스 터빈의 배기 디퓨저의 일종에 있어서는, 배기 케이싱의 내부에 로터를 축지지하는 베어링이 설치되어 있고, 이 베어링의 주위의 환형상 공간이 배기 유로로 되어 있지만, 이 환형상 공간에 배기 케이싱으로부터 연장하여 베어링을 보유 지지하는 스트러츠가 배치되어 있다(특허문헌 1).
일본 특허 출원 공개 제2004-190664호 공보
그런데, 상기 유로 구조에 있어서는, 유로 단면적이 변화하기 때문에, 압력 손실이 발생해버린다.
예를 들어, 상술한 가스 터빈의 배기 디퓨저의 일종에 있어서는, 배기의 주류 방향에 있어서의 스트러츠가 배치된 범위는, 유로 단면에 있어서 스트러츠가 유로 중 일부의 범위를 차지함으로써, 배기 주류의 상류로부터 하류로 진행함에 따라 유로의 단면적이 급격하게 감소한 후, 증가하는 구조로 되어 있다. 이로 인해, 스트러츠가 배치된 범위를 배기가 통과할 때에, 비교적 큰 압력 손실이 발생한다.
본 발명은, 이러한 사정을 고려해서 이루어진 것으로, 그 목적은, 압력 손실의 발생을 억제하고, 그것에 의해 가스 터빈의 성능을 향상시킬 수 있는 유로 구조 및 가스 터빈 배기 디퓨저를 제공하는 것이다.
본 발명의 유로 구조는, 유로를 형성하는 벽면으로부터 상기 유로를 흐르는 유체의 주류에 따른 주류 방향과 교차하는 방향으로 구조물이 연장하고, 상기 주류와 교차하는 유로 단면에 있어서 상기 구조물이 상기 유로 중 일부의 범위를 차지함으로써, 상기 주류 방향으로 진행함에 따라 상기 유로의 단면적이 변화하는 유로 구조이며, 상기 주류 방향에 있어서 상기 구조물을 포함하는 범위에 걸쳐서 상기 벽면에 오목부가 형성된 오목부 형성 영역을 갖는다. 즉, 본 발명의 유로 구조는, 유로를 형성하는 벽면과, 상기 벽면으로부터 상기 유로를 흐르는 유체의 주류 방향과 교차하는 방향으로 연장해서 설치된 구조물과, 상기 주류 방향에 있어서 상기 구조물을 포함하는 범위에 걸쳐서, 상기 벽면에 오목부가 형성된 오목부 형성 영역을 구비한다. 상기 구조물이, 상기 주류와 교차하는 유로 단면에 있어서 상기 유로의 일부의 범위를 차지함으로써, 상기 유로의 단면적은, 상기 주류 방향으로 진행함에 따라 변화된다.
본 발명에 따르면, 주류 방향에 있어서 구조물을 포함하는 오목부 형성 영역에 걸쳐서 벽면에 오목부가 형성되어 있으므로, 오목부를 형성하지 않는 경우에 비해, 오목부의 분만큼 유로의 단면적이 증가한다. 즉, 주류 방향에 있어서의 구조물이 형성된 범위에 있어서는, 구조물에 의한 단면적의 감소 분의 적어도 일부를, 오목부에 의한 단면적의 증가 분으로 상쇄할 수 있다. 이에 의해, 단면적의 변화가, 오목부를 형성하지 않는 경우에 비교해서 완만한 것으로 되므로, 압력 손실의 발생을 억제할 수 있다.
또한, 주류 방향에 있어서의 구조물의 상류 및 하류에 있어서는, 오목부를 형성하지 않는 경우에 비해, 유로의 단면적이 증가하게 되므로, 구조물의 전방 모서리 및 후방 모서리에 있어서의 압력 변화의 영향을 완화시킬 수 있다.
또한, 상기 오목부는, 상기 유로 단면에 있어서 상기 벽면 중 상기 구조물이 연장하는 위치가 포함되도록 형성되어 있어도 된다.
본 발명에 따르면, 유로 단면 중 구조물이 포함되는 부분적인 영역의 단면적을 크게 할 수 있다. 이에 의해, 유로 단면에 있어서 오목부를 구조물로부터 이격된 위치에 형성했을 경우에 비해, 구조물에 충돌한 유체를 빠르게 오목부로 이동시킬 수 있으므로, 효과적으로 압력 손실을 저하시킬 수 있다.
또한, 주류 방향에 있어서의 구조물의 전방 모서리 상류 및 후방 모서리 하류에 있어서는, 오목부를 형성하지 않는 경우에 비해, 부분적으로 유로의 단면적이 증가하게 되므로, 구조물의 전방 모서리 및 후방 모서리에 있어서의 압력 변화의 영향을 대폭으로 완화시킬 수 있다.
또한, 상기 오목부는, 상기 주류 방향에 있어서 상기 구조물이 연장하는 범위에서의 상기 유로의 단면적의 변화의 궤적의 일부가, 상기 구조물과 상기 오목부가 없다고 가정했을 경우의 상기 유로의 단면적의 변화의 궤적과, 상기 오목부가 없다고 가정했을 경우의 상기 유로의 단면적의 변화의 궤적 사이가 되도록, 형성되어 있어도 된다.
본 발명에 따르면, 유로의 단면적의 변화가, 구조물이 없다고 가정했을 경우의 유로의 단면적의 변화에 근사한 것으로 되어, 압력 손실을 효과적으로 억제할 수 있다.
또한, 상기 오목부는, 상기 주류 방향에 있어서의 상기 구조물의 전방 모서리로부터 후방 모서리까지의 길이를 L로 했을 경우에, 상기 전방 모서리로부터 상류측으로 거리 0.4L 이격된 위치로부터, 상기 후방 모서리로부터 하류측으로 거리0.4L 이격된 위치까지의 범위에 형성되어 있어도 된다.
본 발명에 따르면, 압력 손실을 효과적으로 억제할 수 있다.
또한, 상기 오목부는, 상기 전방 모서리로부터 상류측으로 거리 0.2L 이격된 위치로부터, 상기 후방 모서리로부터 하류측으로 거리 0.2L 이격된 위치까지의 범위에 형성되어 있어도 된다.
본 발명에 따르면, 압력 손실을 보다 효과적으로 억제할 수 있다.
본 발명의 가스 터빈 배기 디퓨저는, 상기의 유로 구조를 갖는다. 본 발명에 따르면, 상기 유로 구조의 기능에 의해 디퓨저의 성능을 향상시킬 수 있다.
본 발명의 유로 구조 및 가스 터빈 배기 디퓨저에 따르면, 압력 손실의 발생을 억제하고, 그것에 의해 가스 터빈의 성능을 향상시킬 수 있다.
도 1은 본 발명의 실시 형태에 관한 가스 터빈(1)의 개략 구성을 나타내는 반 단면도이다.
도 2는 본 발명의 실시 형태에 관한 가스 터빈(1)의 주요부 확대 단면도이며, 도 1에 있어서의 주요부 I을 나타내고 있다.
도 3은 본 발명의 실시 형태에 관한 배기 디퓨저(10)의 주요부 확대 단면도이며, 도 2에 있어서의 II-II선 단면도를 나타내고 있다.
도 4는 본 발명의 실시 형태에 관한 배기 디퓨저(10)의 배기 유로(P)의 단면적의 변화를 나타내는 선 그래프이며, 횡축에 주류 방향의 위치를, 종축에 배기 유로(P)의 단면적을 나타내고 있다.
도 5는 본 발명의 실시 형태에 관한 배기 디퓨저(10)의 배기 유로(P)의 단면적의 변화를 나타내는 선 그래프이며, 도 4의 주요부 III의 확대도이다.
도 6은 본 발명의 실시 형태에 관한 배기 디퓨저(10)의 효과 설명도이며, 횡축에 오목부 형성 영역의 개시 위치 및 종료 위치를, 종축에 디퓨저 성능 향상량을 각각 나타내고 있다.
도 7은 본 발명의 실시 형태에 관한 배기 디퓨저(10)의 변형예를 나타내는 주요부 확대 단면도이며, 도 3에 상당하는 도면이다.
이하, 도면을 참조하여, 본 발명의 실시 형태에 대해서 설명한다.
도 1은, 본 발명의 실시 형태에 관한 가스 터빈(1)을 나타내는 반 단면도이다.
도 1에 나타낸 바와 같이, 가스 터빈(1)은, 압축기(2)와 연소기(3)와 터빈(4)을 구비하고 있다. 압축기(2)의 압축기 케이싱(2a)과, 터빈(4)의 터빈 케이싱(4a)에, 로터(5)가 삽입 관통되어 있다.
압축기(2)는, 압축기 케이싱(2a)의 내주에 환형상으로 배열된 압축기 정익(2b)으로 이루어지는 익렬과, 로터(5)의 외주에 환형상으로 배열된 압축기 동익(2c)으로 이루어지는 익렬을 갖고, 이들 정익(2b)과 동익(2c)이, 회전 중심축 S 방향으로 교대로 배치되어 있다. 이들 익렬을 통과하도록, 압축 유로가 형성되어 있다. 이들 압축기 동익(2c)으로 이루어지는 익렬과 압축기 정익(2b)으로 이루어지는 익렬은, 회전 중심축 S 방향에 인접하는 한 쌍이 각각 단을 이루어, 다단 구조이다.
이 압축기(2)는, 내부에 도입된 공기 A를, 압축 유로의 상류측으로부터 하류측을 향함에 따라 단열 압축된다.
연소기(3)는, 압축기(2)와 터빈(4) 사이에 배치되어 있고, 압축기(2)로 압축된 고압의 공기 A에 연료를 혼합하고 연소시켜 연소 가스 G를 발생시킨다. 연소 가스 G는 터빈(4)에 공급된다.
터빈(4)은, 터빈 케이싱(4a)의 내주에 환형상으로 배열된 터빈 정익(4b)으로 이루어지는 익렬과, 로터(5)의 외주에 환형상으로 배열된 터빈 동익(4c)으로 이루어지는 익렬을 갖고, 이들 정익(4b)과 동익(4c)이, 회전 중심축 S 방향으로 교대로 배치되어 있다. 이들 익렬이 통과하도록, 연소 가스 유로 R이 형성되어 있다. 이들 터빈 동익(4c)으로 이루어지는 익렬과 터빈 정익(4b)으로 이루어지는 익렬은, 회전 중심축 S 방향으로 인접하는 한 쌍이 각각 단을 이루는, 다단 구조이다.
이 터빈(4)은, 연소기(3)에서 발생한 연소 가스 G를 팽창시키면서 하류로 흐름으로써, 로터(5)를 통하여, 연소 가스 G의 열에너지를 기계적 일인 회전 에너지로 변환하고 있다.
로터(5)는, 상술한 바와 같이, 압축기 케이싱(2a)과 터빈 케이싱(4a)으로 삽입 관통되고, 또한 그 일단부가 도시하지 않은 발전기에 접속되어 있고, 터빈(4)에서 발생시킨 회전에너지를 동력으로서 발전기에 공급한다.
가스 터빈(1)은, 터빈 케이싱(4a)의 최종단의 터빈 동익(4c)의 하류측에 접속된 배기 디퓨저(10)를 구비하고 있다.
도 2는, 도 1에 있어서의 주요부 I을 나타내는 확대 단면도이며, 도 3은, 도 2에 있어서의 II-II선 단면도를 나타내고 있다.
도 2에 나타낸 바와 같이, 배기 디퓨저(10)는, 배기 케이싱(10a)과, 원통 형상의 보호 케이싱(11)과, 복수의 스트러츠(구조물)(12)와, 맨홀(구조물)(13)을 구비하고 있다. 배기 케이싱(10a)은, 터빈 케이싱(4a)에 접속되어 있다. 보호 케이싱(11)은, 배기 케이싱(10a)의 내부에 설치되어 있고, 로터(5)를 축지지하는 저널 베어링(7) 등은, 보호 케이싱(11) 내부에 수용되어 있다. 스트러츠(12)는, 배기 케이싱(10a)으로부터 보호 케이싱(11)의 내부까지 연장하고, 저널 베어링(7)의 주위에 접해서 동 베어링(7)을 보유 지지한다. 맨홀(13)은, 저널 베어링(7) 등의 메인터넌스를 위하여 설치되어 있고, 이들 스트러츠(12)보다도 하류측에 배치되어 있다.
또한, 배기 디퓨저(10)에 있어서는, 회전 중심축 S 방향이, 배기 가스(E)의 주류가 흐르는 방향으로 거의 일치하고 있다.
배기 케이싱(10a)은, 주류 방향에 있어서, 터빈(4)이 접속된 상류측으로부터 하류측을 향함에 따라서, 내주 벽면(벽면)(10b)이 점차 직경 확장하도록 되어 있다.
보호 케이싱(11)은, 배기 디퓨저(10)와 동축에 설치되어 있고, 주류 방향에 있어서, 터빈(4)이 접속된 상류측으로부터 하류측을 향해서 거의 동일한 직경으로 형성되어 있다.
이들 배기 케이싱(10a)과 보호 케이싱(11) 사이에는, 배기 케이싱(10a)의 내주 벽면(10b)과 보호 케이싱(11)의 외주 벽면(11b)에서, 원환상의 배기 유로(P)가 형성되어 있다. 이 배기 유로(P)는, 보호 케이싱(11)의 외주 벽면(11b)이 거의 동일한 직경으로 형성되어 있는 한편, 배기 케이싱(10a)의 내주 벽면(10b)이 하류측으로 진행함에 따라 점차 직경 확장하기 때문에, 주류 방향의 상류로부터 하류측으로 진행함에 따라, 주류 방향으로 교차하는 단면적이 점차 커지고 있다(도 4 참조).
각 스트러츠(12)는, 저널 베어링(7)을 보유 지지하는 스트러츠 본체(12a)와,이 스트러츠 본체(12a)를 연소 가스(G)로부터 피복하고, 가열로부터 보호하는 스트러츠 커버(12b)를 구비하고 있다. 스트러츠 커버(12b)는, 보호 케이싱(11)으로부터 배기 케이싱(10a)을 향해서 연장하고 있다.
맨홀(13)은, 배기 케이싱(10a)의 외부와 보호 케이싱(11)의 내부(수용 공간)를 연통시켜고 있다.
상기 스트러츠 커버(12b)와 맨홀(13)은, 주류에 교차하는 방향으로 연장하고 있고, 배기 유로(P)에 있어서 주류의 저항을 저감하기 위해서, 단면 형상이 날개형(유선형)으로 되어 있다.
이와 같은 배기 케이싱(10a)은, 도 2에 나타낸 바와 같이, 상류 오목부 형성 영역(오목부 형성 영역)(20)과 하류 오목부 형성 영역(오목부 형성 영역)(30)을 갖고 있다.
상류 오목부 형성 영역(20)에는, 주류 방향에 있어서 스트러츠(12)를 포함하는 범위에 걸쳐서, 배기 케이싱(10a)의 내주 벽면(10b)에 형성된 상류측 내주 오목부(오목부)(21)와, 보호 케이싱(11)의 외주 벽면(벽면)(11b)에 형성된 상류측 외주 오목부(오목부)(22)가 형성되어 있다.
이들 상류 오목부[상류측 내주 오목부(21)와 상류측 외주 오목부(22)]는, 도3에 나타낸 바와 같이, 유로 단면에 있어서 내주 벽면(10b)과 외주 벽면(11b) 중, 각각 스트러츠(12)가 연장하는 위치가 포함되는 범위에 걸쳐서 형성되어 있다.
이들 상류 오목부는, 도 2에 나타낸 바와 같이, 주류 방향의 한쪽으로부터 다른 쪽을 향해서 점차 깊어진 후에, 점차 얕아져 있다. 또한, 도 3에 나타낸 바와 같이, 둘레 방향의 한쪽으로부터 다른 쪽을 향해서 점차 깊어진 후에 점차 얕아져 있다.
또한, 이들 상류 오목부는, 스트러츠(12)의 주류 방향의 길이를 L1로 했을 경우에, 주류 방향으로 연장하는 위치가 이하와 같이 설정되어 있다. 즉, 주류 방향에 있어서, 스트러츠(12)의 최상류에 위치하는 스트러츠 전방 모서리(12c)로부터 상류측으로 0.2L1 이격된 위치로부터, 스트러츠(12)의 최하류에 위치하는 스트러츠 후방 모서리(12d)로부터 하류측으로 0.2L1 이격된 위치까지, 연장하고 있다.
하류 오목부 형성 영역(30)에는, 도 2에 나타낸 바와 같이, 주류 방향에 있어서 맨홀(13)을 포함하는 범위에 걸쳐서, 내주 벽면(10b)에 형성된 하류측 내주 오목부(오목부)(31)와, 외주 벽면(11b)에 형성된 하류측 외주 오목부(오목부)(32)가 형성되어 있다.
이들 하류 오목부[하류측 내주 오목부(31) 및 하류측 외주 오목부(32)]는, 유로 단면에 있어서, 각각 맨홀(13)이 연장하는 위치가 포함되는 범위에 걸쳐서 형성되어 있다(도 3 참조).
또한, 이들 하류 오목부는, 도 2에 나타낸 바와 같이, 주류 방향을 향해서 점차 깊어진 후에, 점차 얕아지고 있고, 도 3에 나타낸 바와 같이, 둘레 방향을 향해서 점차 깊어진 후에 점차 얕아지고 있다.
이들 하류 오목부는, 맨홀(13)의 주류 방향의 길이를 L2로 했을 경우에, 주류 방향에 있어서, 맨홀(13)의 최상류에 위치하는 맨홀 전방 모서리(13c)로부터 상류측으로 0.2L2 이격된 위치로부터, 맨홀(13)의 최하류에 위치하는 맨홀 후방 모서리(13d)로부터 하류측으로 0.2L2 이격된 위치까지, 연장하고 있다.
도 4는, 배기 디퓨저(10)의 배기 유로(P)의 단면적의 변화를 나타내는 선 그래프이며, 도 5는, 도 4의 주요부 III의 확대도이다. 또한, 도 4에 있어서는, 횡축에 주류 방향의 위치를, 종축에 배기 유로(P)의 단면적을 나타내고 있다. 또한, 도 4 및 도 5에 있어서는, 실선으로 나타낸 궤적이 배기 유로(P)를 나타내고 있고, 파선으로 나타낸 궤적이 상류 오목부 형성 영역(20) 및 하류 오목부 형성 영역(30) 및 스트러츠(12) 및 맨홀(13)이 없다고 가정했을 경우에 있어서의 제1 가정 유로 PX의 단면적의 변화를 나타내고 있고, 1점 쇄선으로 나타낸 궤적이 상류 오목부 형성 영역(20) 및 하류 오목부 형성 영역(30)이 없다고 가정했을 경우에 있어서의 제2 가정 유로 PY의 단면적의 변화를 나타내고 있다.
도 4에 나타낸 바와 같이, 상류 오목부와 하류 오목부는, 배기 유로(P)의 단면적의 변화의 궤적의 중앙 부분이, 제1 가정 유로 PX와 제2 가정 유로 PY 사이에 위치하도록, 그 깊이가 형성되어 있다. 보다 정확하게는, 도 5에 나타낸 바와 같이, 스트러츠 전방 모서리(12c)와 스트러츠 후방 모서리(12d) 사이, 및, 맨홀 전방 모서리(13c)와 맨홀 후방 모서리(13d) 사이에 있어서, 배기 유로(P)의 단면적의 변화의 궤적이, 제1 가정 유로 PX와 제2 가정 유로 PY 사이에 위치하도록, 형성되어 있다.
도 4에 나타낸 바와 같이, 배기 유로(P)의 단면적의 변화는, 이하와 같이 이루어진다.
우선, 배기 유로(P)는, 배기 가스(E)의 유입부로부터 하류측으로 진행함에 따라 터빈(4)의 내주 벽면(10b)의 직경 확장에 의해 단면적이 커진다. 그 후, 상류 오목부 형성 영역(20)에 도달하면, 상류 오목부에 의한 단면적의 증가 분이 내주 벽면(10b)의 직경 확장에 의한 단면적의 증가 분에 더해져, 단면적의 증가율이 커진다. 다음에, 스트러츠 전방 모서리(12c)에 도달하면, 스트러츠(12)가 배기 유로(P)에 차지하는 것에 의한 단면적의 감소 분이, 상류 오목부와 내주 벽면(10b)의 직경 확장에 의한 단면적의 증가 분을 상회하여, 단면적의 증가율이 마이너스로 바뀐다. 그리고, 배기 유로(P)의 단면적이 스트러츠(12)의 주류 방향의 중간 부근의 위치까지 감소한 후에, 상기와 반대의 궤적을 그려, 단면적이 증가한다. 스트러츠 후방 모서리(12d)에 도달하면 내주 벽면(10b)의 직경 확장에 의한 단면적의 증가 분을 상류 오목부의 단면적의 감소 분이 상회하여 배기 유로(P)의 단면적이 완만하게 감소하고, 그 후, 다시 내주 벽면(10b)의 직경 확장에 의한 단면적의 증가만큼의 궤적이 된다.
하류 오목부 형성 영역(30)의 경우도 마찬가지이다.
계속해서, 상기와 같이 구성된 배기 디퓨저(10)의 작용에 대해서 설명한다.
도 2에 나타낸 바와 같이, 최종단의 터빈 동익(4c)을 통과한 연소 가스(G)는, 배기 유로(P)에 유입한다. 이 배기 유로(P)는, 하류측으로 진행함에 따라 점차 직경 확장하고 있기 때문에, 배기 가스(E)의 동압이 정압으로 변환된다.
상류 오목부 형성 영역(20)의 최상류측에 도달한 배기 가스(E)는, 하류측의 스트러츠(12)를 향해서 흘러 간다. 이때, 스트러츠 전방 모서리(12c)의 주류 방향의 상류측에는, 배기 가스(E)의 충돌에 의해, 스트러츠 전방 모서리(12c)를 향할 수록 압력이 점차 높아지는 압력 분포가 형성되어 있지만, 상류측 내주 오목부(21)와 상류측 외주 오목부(22)에 의한 배기 유로(P)의 단면적의 증가에 의해, 압력 구배가 비교적 완만한 것으로 된다.
배기 가스(E)가, 스트러츠 전방 모서리(12c)에 도달하면, 배기 유로(P)의 단면 중에 스트러츠(12)가 차지하기 때문에, 배기 유로(P)의 단면적이 감소한다. 배기 유로(P)의 단면적은, 주류 방향의 중앙 부근, 바꾸어 말하면, 날개형 단면 형상으로 한 스트러츠(12)의 날개 두께가 최대로 되는 위치에 있어서 감소 분이 가장 커지고, 그 후는, 완만하게 증가한다.
이때, 도 4 및 도 5에 나타낸 바와 같이, 배기 유로(P)의 단면적의 감소 분을 상류측 외주 오목부(22) 및 상류측 내주 오목부(21)의 단면적의 증가 분이 상쇄하여, 제2 가정 유로 PY에 비해, 배기 유로(P)의 단면적의 변화가 완만한 것으로 된다. 이로 인해, 배기 가스(E)의 압력 변동이 비교적 완만한 것으로 되어, 배기 가스(E)에 발생하는 압력 손실이 비교적 작은 것으로 된다.
배기 가스(E)가, 스트러츠 후방 모서리(12d)로부터 하류측으로 흘러 나오면, 내주 벽면(10b)의 직경 확장에 의한 단면적의 증가 분을 상류측 내주 오목부(21)와 상류측 외주 오목부(22)의 단면적의 감소 분이 상회하여 배기 유로(P)의 단면적이 완만하게 감소한 후에, 내주 벽면(10b)의 직경 확장에 의해 증가한다. 이때에도, 배기 유로(P)의 단면적이 비교적 완만하게 변화한다. 이로 인해, 배기 가스(E)의 압력 변동이 비교적 완만한 것으로 되어, 배기 가스(E)에 발생하는 압력 손실이 비교적 작은 것으로 된다.
마찬가지로, 배기 가스(E)가 맨홀(13)[하류 오목부 형성 영역(30)]을 통과할 때에도, 스트러츠(12)[상류 오목부 형성 영역(20)]을 통과할 때와 동일한 작용에 의해, 발생하는 압력 손실이 비교적 작아진다.
이상 설명한 바와 같이, 본 발명의 실시 형태에 관한 배기 디퓨저(10)에 따르면, 주류 방향에 있어서 스트러츠(12)를 포함하는 상류 오목부 형성 영역(20)에 걸쳐서 내주 벽면(10b)에 상류측 내주 오목부(21)가, 외주 벽면(11b)에 상류측 외주 오목부(22)가 형성되어 있으므로, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)를 형성하지 않는 제2 가정 유로 PY에 비해, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)의 분만큼 배기 유로(P)의 단면적이 증가한다.
즉, 스트러츠(12)에 의한 단면적의 감소 분의 적어도 일부를, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)에 의한 단면적의 증가 분으로 상쇄할 수 있다. 이에 의해, 배기 유로(P)의 단면적의 변화가, 제2 가정 유로 PY에 비교해서 완만한 것으로 되므로, 배기 가스(E)의 압력 손실의 발생을 억제할 수 있다.
또한, 주류 방향에 있어서의 스트러츠(12)의 상류 및 하류에 있어서는, 제2 가정 유로 PY에 비해, 배기 유로(P)의 단면적이 증가하게 되므로, 스트러츠 전방 모서리(12c) 및 스트러츠 후방 모서리(12d)에 있어서의 압력 변화의 영향을 완화시킬 수 있다.
상류측 내주 오목부(21) 및 상류측 외주 오목부(22)가, 유로 단면에 있어서 스트러츠(12)가 연장하는 위치가 포함되도록 형성되어 있으므로, 유로 단면 중 스트러츠(12)가 포함되는 부분적인 영역의 단면적을 크게 할 수 있다. 이에 의해, 유로 단면에 있어서 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)를, 스트러츠(12)로부터 둘레 방향으로 이격된 위치에 형성한 경우에 비해, 스트러츠(12)에 충돌한 유체를 빠르게 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)로 이동시킬 수 있으므로, 효과적으로 압력 손실을 저하시킬 수 있다.
또한, 주류 방향에 있어서의 스트러츠 전방 모서리(12c)의 상류 및 스트러츠 후방 모서리(12d)의 하류에 있어서는, 제2 가정 유로 PY를 형성하지 않는 경우에 비해, 부분적으로 유로의 단면적이 증가하게 되므로, 스트러츠 전방 모서리(12c) 및 스트러츠 후방 모서리(12d)에 있어서의 압력 변화의 영향을 대폭으로 완화시킬 수 있다.
또한, 주류 방향에 있어서 스트러츠(12)가 연장하는 범위에서의 배기 유로(P)의 단면적의 변화의 궤적의 중앙의 일부가, 제1 가정 유로 PX의 단면적의 변화의 궤적과, 제2 가정 유로 PY의 단면적의 변화의 궤적 사이가 되도록, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)가 형성되어 있으므로, 배기 유로(P)의 단면적의 변화가, 제1 가정 유로 PX의 단면적의 변화에 근사한 것으로 되어, 압력 손실을 효과적으로 억제할 수 있다.
또한, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)가, 스트러츠 전방 모서리(12c)로부터 상류측으로 거리 0.2L 이격된 위치로부터, 스트러츠 후방 모서리(12d)로부터 하류측으로 거리 0.2L 이격된 위치까지의 범위에 형성되어 있으므로, 압력 손실을 보다 효과적으로 억제할 수 있다.
도 6은, 오목부 형성 영역과 디퓨저 성능 향상량의 상관도이다. 도 6에 있어서는, 상류 오목부 형성 영역(20)의 상류측의 개시 위치 및 하류측의 종료 위치를 변화시켜 디퓨저 성능 향상량을 확인한 결과를 나타내고 있다.
도 6에 나타낸 바와 같이, 상류 오목부 형성 영역(20)의 상류측의 개시 위치 및 하류측의 종료 위치를, 크게 해 가면, 완만하게 증가하여, 0.2L1 부근에서 가장 높아진다. 그리고, 그 후 완만하게 저하하여, 0.4L1 부근부터 디퓨저 성능 향상량이 저하되어 간다.
이와 같이, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)를, 스트러츠 전방 모서리(12c)로부터 상류측으로 거리 0.2L1 이격된 위치로부터, 스트러츠 후방 모서리(12d)로부터 하류측으로 거리 0.2L1 이격된 위치까지의 범위에 형성했으므로, 디퓨저 성능을 대폭으로 향상시킬 수 있어, 가스 터빈의 성능을 향상시킬 수 있다.
하류 오목부 형성 영역(30)이 위치하는 맨홀(13)에 있어서도, 하류측 내주 오목부(31) 및 하류측 외주 오목부(32)에 의해, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)와 동일한 작용 효과를 발휘하므로, 압력 손실을 효과적으로 억제할 수 있다.
이상, 본 발명의 바람직한 실시 형태를 설명했지만, 본 발명은 상기의 실시 형태에 한정되는 것은 아니다. 본 발명의 취지를 일탈하지 않는 범위에서, 구성의 부가, 생략, 치환, 및 기타의 변경이 가능하다.
예를 들어, 상술한 실시 형태에서는, 디퓨저에, 상류 오목부[상류측 내주 오목부(21) 및 상류측 외주 오목부(22)]와, 하류 오목부[하류측 내주 오목부(31) 및 하류측 외주 오목부(32)]가 설치되어 있지만, 상류 오목부 또는 하류 오목부의 어느 한쪽만을 설치해도 된다. 또한, 내주 벽면(10b) 또는 외주 벽면(11b)의 어느 한쪽에만 오목부 형성 영역을 설치해도 된다.
또한, 상술한 실시 형태에서는, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)가, 스트러츠 전방 모서리(12c)로부터 상류측으로 거리 0.2L1 이격된 위치로부터, 스트러츠 후방 모서리(12d)로부터 하류측으로 거리 0.2L1 이격된 위치까지의 범위에 형성되어 있지만, 도 6에 나타낸 바와 같이, 거리 0.4L1 이격된 위치까지의 범위이면, 양호한 디퓨저 성능 향상량이 인정된다. 따라서, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)는, 스트러츠 전방 모서리(12c)로부터 상류측으로 거리 0.4L1 이격된 위치로부터, 스트러츠 후방 모서리(12d)로부터 하류측으로 거리 0.4L1 이격된 위치까지의 범위에 형성되어도 된다. 하류측 내주 오목부(31) 및 하류측 외주 오목부(32)에 대해서도 동일하다.
또한, 상술한 실시 형태에서는, 유로 단면에 있어서 스트러츠(12)가 연장하는 위치를 포함하도록, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22)가 형성되고, 맨홀(13)이 연장하는 위치를 포함하도록, 하류측 내주 오목부(31) 및 하류측 외주 오목부(32)가 형성되어 있지만, 도 7에 나타낸 바와 같이, 유로 단면에 있어서, 스트러츠(12)나 맨홀(13)을 포함하지 않는 범위에, 오목부(40)가 적어도 하나이상 형성되어도 된다.
이 오목부(40)는, 도 7에 나타낸 바와 같이, 외주 벽면(11b) 또는 내주 벽면(10b)의 어느 한쪽에만 설치되어도 되고, 양쪽에 설치되어도 된다.
또한, 상류 오목부 형성 영역(20)에 있어서, 상류측 내주 오목부(21) 및 상류측 외주 오목부(22) 대신에, 오목부(40)만을 설치해도 된다. 마찬가지로, 하류 오목부 형성 영역(30)에 있어서, 하류측 내주 오목부(31) 및 하류측 외주 오목부(32) 대신에, 오목부(40)만을 설치해도 된다.
또한, 상술한 실시 형태에서는, 가스 터빈(1)의 배기 디퓨저(10)에 본 발명의 유로 구조를 적용했을 경우를 설명했지만, 가스 터빈(1)의 다른 부위(예를 들어, 압축기의 공기 A의 흡입 유로 등)나, 다른 유체 기계에 본 발명의 유로 구조를 적용해도 된다.
1 : 가스 터빈
10 : 배기 디퓨저
10b : 내주 벽면(벽면)
11b : 외주 벽면(벽면)
12 : 스트러츠(구조물)
12c : 스트러츠 전방 모서리(전방 모서리)
12d : 스트러츠 후방 모서리(후방 모서리)
13 : 맨홀(구조물)
13c : 맨홀 전방 모서리(전방 모서리)
13d : 맨홀 후방 모서리(후방 모서리)
20 : 상류 오목부 형성 영역(오목부 형성 영역)
21 : 상류측 내주 오목부(오목부)
22 : 상류측 외주 오목부(오목부)
30 : 하류 오목부 형성 영역(오목부 형성 영역)
31 : 하류측 내주 오목부(오목부)
32 : 하류측 외주 오목부(오목부)
40 : 오목부
E : 배기 가스(유체)
P : 배기 유로

Claims (12)

  1. 터빈 케이싱에 접속되어 있는 배기 케이싱과, 배기 케이싱의 내부에 설치되어 있는 보호 케이싱과, 보호 케이싱의 내부에 수용되어 로터를 축지지하는 저널 베어링을 구비하고 있는 유로 구조이며,
    유로를 형성하는 벽면과,
    배기 케이싱으로부터 보호 케이싱의 내부까지 연장하고, 저널 베어링의 주위에 접해서 당해 베어링을 보유 지지하는 제1 구조물과,
    상기 제1 구조물보다도 하류측에 배치되어 있고, 상기 배기 케이싱의 외부와 상기 보호 케이싱의 내부를 연통시키고 있는 제2 구조물과,
    상기 벽면으로부터 상기 유로를 흐르는 유체의 주류 방향에 있어서 상기 제1 구조물을 포함하는 범위에 걸쳐서, 상기 배기 케이싱의 내주 벽면에 형성된 상류측 내주 오목부와, 상기 보호 케이싱의 외주 벽면에 형성된 상류측 외주 오목부가 형성되어 있는 상류 오목부 형성 영역과,
    상기 주류 방향에 있어서 상기 제2 구조물을 포함하는 범위에 걸쳐서, 상기 내주 벽면에 형성된 하류측 내주 오목부와, 상기 외주 벽면에 형성된 하류측 외주 오목부가 형성되어 있는 하류 오목부 형성 영역을 구비하고,
    상기 제1 구조물 및 상기 제2 구조물이, 상기 주류와 교차하는 유로 단면에 있어서 상기 유로의 일부의 범위를 차지함으로써, 상기 주류 방향으로 진행함에 따라서 상기 유로의 단면적이 변화되고,
    상기 오목부는, 상기 유로 단면에 있어서 상기 벽면 중 상기 제1 구조물 및 상기 제2 구조물이 연장하는 위치가 포함되도록 형성되어 있고,
    상기 오목부는, 상기 주류 방향에 있어서 상기 제1 구조물 및 상기 제2 구조물이 연장하는 범위에서의 상기 유로의 단면적의 변화의 궤적의 일부가, 상기 제1 구조물 및 상기 제2 구조물과 상기 오목부가 없다고 가정했을 경우의 상기 유로의 단면적의 변화의 궤적과, 상기 오목부가 없다고 가정했을 경우의 상기 유로의 단면적의 변화의 궤적 사이가 되도록 형성되어 있고,
    상기 오목부는, 상기 주류 방향에 있어서의 상기 제1 구조물 및 상기 제2 구조물의 전방 모서리로부터 후방 모서리까지의 길이를 L로 했을 경우에, 상기 전방 모서리로부터 상류측으로 거리 0.4L 이격된 위치로부터, 상기 후방 모서리로부터 하류측으로 거리 0.4L 이격된 위치까지의 범위에 형성되어 있는, 유로 구조.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제1항에 기재된 유로 구조를 갖는, 가스 터빈 배기 디퓨저.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
KR1020137015761A 2010-12-24 2010-12-24 유로 구조 및 가스 터빈 배기 디퓨저 KR101509364B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073278 WO2012086044A1 (ja) 2010-12-24 2010-12-24 流路構造及びガスタービン排気ディフューザ

Publications (2)

Publication Number Publication Date
KR20130086071A KR20130086071A (ko) 2013-07-30
KR101509364B1 true KR101509364B1 (ko) 2015-04-07

Family

ID=46313347

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137015761A KR101509364B1 (ko) 2010-12-24 2010-12-24 유로 구조 및 가스 터빈 배기 디퓨저

Country Status (5)

Country Link
US (1) US9732674B2 (ko)
EP (1) EP2657482B1 (ko)
KR (1) KR101509364B1 (ko)
CN (1) CN103261631B (ko)
WO (1) WO2012086044A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850771B2 (en) * 2014-02-07 2017-12-26 United Technologies Corporation Gas turbine engine sealing arrangement
JP5758529B1 (ja) * 2014-06-26 2015-08-05 三菱日立パワーシステムズ株式会社 ガスタービンの部品の取付又は取外し方法、この方法を実行する装置、この装置の設置方法
GB201420010D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
GB201420011D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
EP3032032B1 (de) * 2014-12-12 2019-06-12 MTU Aero Engines GmbH Austrittsleitgitter und Mantelstromtriebwerk mit einem Austrittsleitgitter
JP6498534B2 (ja) * 2015-06-09 2019-04-10 川崎重工業株式会社 排気ディフューザ
GB201512516D0 (en) * 2015-07-17 2015-08-19 Rolls Royce Plc A gas turbine engine
JP6546481B2 (ja) 2015-08-31 2019-07-17 川崎重工業株式会社 排気ディフューザ
US11274563B2 (en) * 2016-01-21 2022-03-15 General Electric Company Turbine rear frame for a turbine engine
DE102016217320A1 (de) * 2016-09-12 2018-03-15 Siemens Aktiengesellschaft Gasturbine mit getrennter Kühlung für Turbine und Abgasgehäuse
JP6745233B2 (ja) * 2017-02-28 2020-08-26 三菱重工業株式会社 タービン及びガスタービン
FR3064298B1 (fr) * 2017-03-23 2021-04-30 Safran Aircraft Engines Turbomachine
GB2566751B (en) * 2017-09-26 2020-07-15 Gkn Aerospace Sweden Ab Divot for outer case shroud
WO2019143366A1 (en) * 2018-01-22 2019-07-25 Siemens Aktiengesellschaft Exhaust diffuser for a gas turbine engine
KR102217633B1 (ko) 2019-03-26 2021-02-22 두산중공업 주식회사 가스터빈의 스트럿 구조체, 이를 포함하는 배기 디퓨저 및 가스터빈
FR3108937B1 (fr) * 2020-04-01 2023-03-24 Safran Aircraft Engines Carter intermédiaire de turbomachine
US11927137B2 (en) 2022-03-21 2024-03-12 Ge Infrastructure Technology Llc System and method for insulating components in an exhaust gas flow from a gas turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190664A (ja) * 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービン
JP2006138319A (ja) * 2004-11-10 2006-06-01 United Technol Corp <Utc> ガスタービンエンジンのロータおよびベーンエレメント、ならびにエンジン設計方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH229266A (de) 1942-03-26 1943-10-15 Sulzer Ag Turbomaschine, deren Schaufelblattflächen am Schaufelfuss mit einer Abrundung in die Grundfläche übergehen.
FR1602965A (ko) 1968-08-16 1971-03-01
JPH04121495U (ja) 1991-04-15 1992-10-29 株式会社次世代航空機基盤技術研究所 軸流圧縮機の翼列構造
DE59204947D1 (de) 1992-08-03 1996-02-15 Asea Brown Boveri Mehrzoniger Diffusor für Turbomaschine
DE4232088A1 (de) 1992-09-25 1994-03-31 Asea Brown Boveri Gasturbine mit Abgasgehäuse und Abgaskanal
JPH06257597A (ja) 1993-03-02 1994-09-13 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk 軸流圧縮機の翼列構造
US5397215A (en) 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
JPH07247996A (ja) 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の通路形状
DE19650656C1 (de) * 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbomaschine mit transsonischer Verdichterstufe
JPH10184304A (ja) 1996-12-27 1998-07-14 Toshiba Corp 軸流タービンのタービンノズルおよびタービン動翼
JP3601958B2 (ja) 1997-12-25 2004-12-15 株式会社荏原製作所 ターボ機械
JP2000274202A (ja) 1999-03-23 2000-10-03 Toshiba Corp 流体機械
SE9904603D0 (sv) 1999-12-16 1999-12-16 Atlas Copco Tools Ab Turbine motor for elastic fluid operation
US6561761B1 (en) 2000-02-18 2003-05-13 General Electric Company Fluted compressor flowpath
US6478545B2 (en) 2001-03-07 2002-11-12 General Electric Company Fluted blisk
JP4040556B2 (ja) 2003-09-04 2008-01-30 株式会社日立製作所 ガスタービン設備及び冷却空気供給方法
US7134842B2 (en) 2004-12-24 2006-11-14 General Electric Company Scalloped surface turbine stage
US8511978B2 (en) 2006-05-02 2013-08-20 United Technologies Corporation Airfoil array with an endwall depression and components of the array
JP5283855B2 (ja) * 2007-03-29 2013-09-04 株式会社Ihi ターボ機械の壁、及びターボ機械

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190664A (ja) * 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービン
JP2006138319A (ja) * 2004-11-10 2006-06-01 United Technol Corp <Utc> ガスタービンエンジンのロータおよびベーンエレメント、ならびにエンジン設計方法

Also Published As

Publication number Publication date
EP2657482A4 (en) 2017-05-03
US20130259670A1 (en) 2013-10-03
EP2657482B1 (en) 2019-05-01
KR20130086071A (ko) 2013-07-30
US9732674B2 (en) 2017-08-15
CN103261631A (zh) 2013-08-21
CN103261631B (zh) 2016-01-20
WO2012086044A1 (ja) 2012-06-28
EP2657482A1 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
KR101509364B1 (ko) 유로 구조 및 가스 터빈 배기 디퓨저
JP5398405B2 (ja) 流路構造及びガスタービン排気ディフューザ
US10392975B2 (en) Exhaust gas diffuser with main struts and small struts
JP5606473B2 (ja) 蒸気タービン
US9359900B2 (en) Exhaust diffuser
US20190234223A1 (en) Axial flow rotating machine and diffuser
CA2669101C (en) Blade row of axial flow type compressor
JP6847673B2 (ja) タービン排気室
JP2010156331A (ja) ノズルの応力を低減する方法および装置
KR101055231B1 (ko) 터빈 하우징
US10605266B2 (en) Gas turbine engine
JP2017115876A (ja) 間隙制御システムで使用するマニホールドおよび製造方法
US8591185B2 (en) Low pressure exhaust gas diffuser for a steam turbine
JP6877952B2 (ja) ラジアルタービン、ターボチャージャー及びラジアルタービンのタービンハウジングのためのインサート部品
JP5946542B2 (ja) ガスタービンエンジンコンポーネント
JP5675914B2 (ja) ガスタービン排気ディフューザ
JP5852185B2 (ja) 流路構造及びガスタービン排気ディフューザ
ES2962229T3 (es) Canal de flujo para turbomaquinaria
US20130022444A1 (en) Low pressure turbine exhaust diffuser with turbulators
GB2562642A (en) Gas turbine engine
US20140037439A1 (en) Turbomachine exhaust diffuser
JP2011089508A (ja) タービン排気構造
US20220065131A1 (en) Gas turbine and gas turbine manufacturing method
EP2126367B1 (en) Turbogas system multistage compressor
US10570743B2 (en) Turbomachine having an annulus enlargment and airfoil

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190318

Year of fee payment: 5