WO2012086044A1 - 流路構造及びガスタービン排気ディフューザ - Google Patents

流路構造及びガスタービン排気ディフューザ Download PDF

Info

Publication number
WO2012086044A1
WO2012086044A1 PCT/JP2010/073278 JP2010073278W WO2012086044A1 WO 2012086044 A1 WO2012086044 A1 WO 2012086044A1 JP 2010073278 W JP2010073278 W JP 2010073278W WO 2012086044 A1 WO2012086044 A1 WO 2012086044A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cross
recess
upstream
sectional area
Prior art date
Application number
PCT/JP2010/073278
Other languages
English (en)
French (fr)
Inventor
康朗 坂元
伊藤 栄作
進 若園
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020137015761A priority Critical patent/KR101509364B1/ko
Priority to US13/991,796 priority patent/US9732674B2/en
Priority to CN201080070787.9A priority patent/CN103261631B/zh
Priority to PCT/JP2010/073278 priority patent/WO2012086044A1/ja
Priority to EP10861150.0A priority patent/EP2657482B1/en
Publication of WO2012086044A1 publication Critical patent/WO2012086044A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave

Definitions

  • the present invention relates to a flow path structure and a gas turbine exhaust diffuser.
  • a structure in which a structure extends in a direction intersecting with a main flow direction along a main flow of a fluid flowing through the flow path from a wall surface forming the flow path is known.
  • a bearing that supports a rotor is provided inside an exhaust casing, and an annular space around the bearing serves as an exhaust passage.
  • a strut that extends from the exhaust casing and holds the bearing is disposed (Patent Document 1).
  • the range in which the struts are disposed in the main flow direction of the exhaust gas is such that the struts occupy a part of the flow path in the cross section of the flow path.
  • the cross-sectional area of the flow path decreases rapidly and then increases. For this reason, when the exhaust gas passes through the area where the struts are disposed, a relatively large pressure loss occurs.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a flow path structure and a gas turbine exhaust diffuser that can suppress the occurrence of pressure loss and thereby improve the performance of the gas turbine. Is to provide.
  • the structure extends in a direction intersecting with the main flow direction along the main flow of the fluid flowing through the flow channel from the wall surface forming the flow channel, and the structure is in the cross section of the flow channel intersecting with the main flow.
  • a flow path structure in which a cross-sectional area of the flow path changes as the object occupies a part of the flow path in the main flow direction and includes the structure in the main flow direction. And having a recess formation region in which a recess is formed on the wall surface.
  • the flow channel structure of the present invention includes a wall surface that forms a flow channel, a structure that extends from the wall surface in a direction that intersects a main flow direction of the fluid that flows through the flow channel, and the structure in the main flow direction. And a recess forming region in which a recess is formed on the wall surface over a range including the structure.
  • the concave portion is formed on the wall surface over the concave portion forming region including the structure in the mainstream direction, the cross-sectional area of the flow path is increased by the amount of the concave portion compared to the case where the concave portion is not formed. . That is, in the range where the structure in the mainstream direction is formed, at least a part of the decrease in the cross-sectional area due to the structure can be offset by the increase in the cross-sectional area due to the recess. Thereby, since the change in the cross-sectional area becomes gentler than that in the case where the concave portion is not formed, generation of pressure loss can be suppressed.
  • the upstream and downstream of the structure in the main flow direction will increase the cross-sectional area of the flow path as compared with the case where no recess is formed, so the effect of pressure changes at the front and rear edges of the structure will be reduced. Can be relaxed.
  • the said recessed part may be formed so that the position where the said structure extends among the said wall surfaces in the said flow-path cross section may be included.
  • ADVANTAGE OF THE INVENTION According to this invention, the cross-sectional area of the partial area
  • the cross-sectional area of the flow path partially increases compared to the case where no recess is formed, the front edge and the rear edge of the structure are upstream of the upstream and the downstream of the rear edge of the structure in the main flow direction. The effect of pressure changes at the edges can be greatly mitigated.
  • the concave portion is a portion of the trajectory of the change in the cross-sectional area of the flow path in a range in which the structure extends in the main flow direction, and it is assumed that the structure and the concave portion are not present. You may form so that it may become between the locus
  • the change in the cross-sectional area of the flow path approximates the change in the cross-sectional area of the flow path when it is assumed that there is no structure, and pressure loss can be effectively suppressed.
  • the concave portion is spaced from the rear edge by a distance of 0.4 L from the front edge to the upstream side. It may be formed in a range up to a position 0.4 L away on the downstream side. According to the present invention, pressure loss can be effectively suppressed.
  • the said recessed part may be formed in the range from the position 0.2L away from the front edge to the upstream side to the position 0.2 L away from the rear edge downstream. According to the present invention, pressure loss can be more effectively suppressed.
  • the gas turbine exhaust diffuser of the present invention has the above-described flow path structure. According to the present invention, the performance of the flow passage structure can improve the performance of the diffuser.
  • FIG. 1 is a half sectional view showing a schematic configuration of a gas turbine 1 according to an embodiment of the present invention.
  • 1 is an enlarged cross-sectional view of a main part of a gas turbine 1 according to an embodiment of the present invention, showing a main part I in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the exhaust diffuser 10 according to the embodiment of the present invention, and shows a cross-sectional view taken along line II-II in FIG.
  • FIG. 5 is a line graph showing a change in the cross-sectional area of the exhaust passage P of the exhaust diffuser 10 according to the embodiment of the present invention, and is an enlarged view of a main part III of FIG.
  • FIG. 5 is an enlarged cross-sectional view of a main part showing a modified example of the exhaust diffuser 10 according to the embodiment of the present invention, corresponding to FIG. 3.
  • FIG. 1 is a half sectional view showing a gas turbine 1 according to an embodiment of the present invention.
  • the gas turbine 1 includes a compressor 2, a combustor 3, and a turbine 4.
  • a rotor 5 is inserted into the compressor casing 2 a of the compressor 2 and the turbine casing 4 a of the turbine 4.
  • the compressor 2 has a blade row composed of compressor stationary blades 2b arranged in an annular shape on the inner periphery of the compressor casing 2a and a blade row composed of compressor moving blades 2c arranged in an annular shape on the outer periphery of the rotor 5.
  • the stationary blades 2b and the moving blades 2c are alternately arranged in the direction of the rotation center axis S.
  • a compression flow path is formed so as to pass through these cascades.
  • the cascade composed of the compressor moving blades 2c and the cascade composed of the compressor stationary blades 2b have a multistage structure in which a pair adjacent to each other in the direction of the rotation center axis S forms a stage.
  • the compressor 2 adiabatically compresses the air A taken inside as it goes from the upstream side to the downstream side of the compression flow path.
  • the combustor 3 is disposed between the compressor 2 and the turbine 4 and generates a combustion gas G by mixing fuel with the high-pressure air A compressed by the compressor 2 and burning it.
  • the combustion gas G is supplied to the turbine 4.
  • the turbine 4 has a blade row composed of turbine stationary blades 4b arranged in an annular shape on the inner periphery of the turbine casing 4a, and a blade row made up of turbine rotor blades 4c arranged in an annular shape on the outer periphery of the rotor 5.
  • the stationary blades 4b and the moving blades 4c are alternately arranged in the rotation center axis S direction.
  • a combustion gas flow path R is formed so as to pass through these cascades.
  • the cascade composed of the turbine rotor blades 4c and the cascade composed of the turbine stationary blades 4b have a multi-stage structure in which a pair adjacent to each other in the direction of the rotation center axis S forms a stage.
  • the turbine 4 converts the thermal energy of the combustion gas G into rotational energy of mechanical work through the rotor 5 by flowing the combustion gas G generated in the combustor 3 downstream while expanding.
  • the rotor 5 is inserted into the compressor casing 2a and the turbine casing 4a, and one end of the rotor 5 is connected to a generator (not shown).
  • the rotational energy generated by the turbine 4 is used as power for the generator. Supply.
  • the gas turbine 1 includes an exhaust diffuser 10 connected to the downstream side of the turbine blade 4c in the final stage of the turbine casing 4a.
  • the exhaust diffuser 10 includes an exhaust casing 10 a, a cylindrical protective casing 11, a plurality of struts (structures) 12, and a manhole (structure) 13.
  • the exhaust casing 10a is connected to the turbine casing 4a.
  • the protective casing 11 is provided inside the exhaust casing 10 a, and the journal bearing 7 and the like that pivotally support the rotor 5 are accommodated inside the protective casing 11.
  • the strut 12 extends from the exhaust casing 10 a to the inside of the protective casing 11, and contacts the periphery of the journal bearing 7 to hold the bearing 7.
  • the manhole 13 is provided for maintenance of the journal bearing 7 and the like, and is disposed downstream of these struts 12.
  • the direction of the rotation center axis S substantially coincides with the direction in which the main flow of the exhaust gas E flows.
  • the exhaust casing 10a is configured such that the inner peripheral wall surface (wall surface) 10b gradually increases in diameter in the main flow direction from the upstream side to which the turbine 4 is connected toward the downstream side.
  • the protective casing 11 is provided coaxially with the exhaust diffuser 10 and is formed to have substantially the same diameter from the upstream side to which the turbine 4 is connected to the downstream side in the main flow direction.
  • annular exhaust flow path P is formed by the inner peripheral wall surface 10 b of the exhaust casing 10 a and the outer peripheral wall surface 11 b of the protective casing 11.
  • the exhaust passage P has the outer peripheral wall surface 11b of the protective casing 11 formed to have substantially the same diameter, while the inner peripheral wall surface 10b of the exhaust casing 10a gradually increases in diameter as it goes downstream.
  • the cross-sectional area that intersects the main flow direction gradually increases as it goes from the upstream side to the downstream side (see FIG. 4).
  • Each strut 12 includes a strut body 12a that holds the journal bearing 7, and a strut cover 12b that covers the strut body 12a with combustion gas G and protects it from heating.
  • the strut cover 12b extends from the protective casing 11 toward the exhaust casing 10a.
  • the manhole 13 allows the outside of the exhaust casing 10a to communicate with the inside of the protective casing 11 (accommodating space).
  • the strut cover 12b and the manhole 13 extend in a direction intersecting the mainstream, and in order to reduce the mainstream resistance in the exhaust passage P, the cross-sectional shape is a wing shape (streamline type).
  • Such an exhaust casing 10a has an upstream recess formation region (recess formation region) 20 and a downstream recess formation region (recess formation region) 30, as shown in FIG.
  • An upstream peripheral recess (recess) 22 formed in the wall surface 11b is formed.
  • these upstream recesses are positions where the struts 12 respectively extend out of the inner peripheral wall surface 10 b and the outer peripheral wall surface 11 b in the flow path cross section. It is formed over the range including.
  • these upstream recesses gradually become shallower after becoming gradually deeper from one side in the main flow direction to the other side. Moreover, as shown in FIG. 3, after becoming gradually deeper from one to the other in the circumferential direction, it becomes gradually shallower.
  • the positions of the upstream recesses extending in the main flow direction are set as follows when the length of the strut 12 in the main flow direction is L1. That is, in the main flow direction, 0.2 L1 away from the strut leading edge 12 c located upstream of the strut 12 upstream from the position 0.2 L1 away from the strut trailing edge 12 d located downstream of the strut 12 0.2 L1 away from the downstream. It extends to the position.
  • the downstream recess forming region 30 includes a downstream inner peripheral recess (recess) 31 formed in the inner peripheral wall surface 10b and an outer peripheral wall surface 11b over a range including the manhole 13 in the main flow direction.
  • a formed downstream outer peripheral recess (recess) 32 is formed.
  • downstream recesses (downstream inner peripheral recesses 31 and downstream outer periphery recesses 32) are each formed over a range including the position where the manhole 13 extends in the flow path cross section (see FIG. 3). Further, as shown in FIG. 2, these downstream recesses become gradually shallower after becoming gradually deeper in the main flow direction, and gradually getting shallower after becoming gradually deeper in the circumferential direction as shown in FIG. It has become.
  • these downstream recesses are located in the mainstream direction from a position 0.2 L2 upstream from the manhole leading edge 13c located at the uppermost stream of the manhole 13 in the mainstream direction. Extends from the manhole trailing edge 13d located on the most downstream side to a position 0.2 L2 away from the downstream side.
  • FIG. 4 is a line graph showing a change in the cross-sectional area of the exhaust passage P of the exhaust diffuser 10, and FIG. 5 is an enlarged view of a main part III of FIG.
  • the horizontal axis indicates the position in the main flow direction
  • the vertical axis indicates the cross-sectional area of the exhaust passage P. 4 and 5
  • the locus indicated by the solid line indicates the exhaust flow path P
  • the locus indicated by the broken line does not include the upstream recessed portion forming region 20 and the downstream recessed portion forming region 30, the strut 12, and the manhole 13.
  • the change in the cross-sectional area of the first hypothetical flow path PX is assumed, and the second hypothetical flow in the case where the locus indicated by the alternate long and short dash line is assumed to have no upstream recess formation region 20 and downstream recess formation region 30 is shown.
  • the change of the cross-sectional area of the path PY is shown.
  • the upstream concave portion and the downstream concave portion are located between the first hypothetical channel PX and the second hypothetical channel PY in the central part of the change path of the cross-sectional area of the exhaust channel P. As such, its depth is formed. More precisely, as shown in FIG. 5, the change in the cross-sectional area of the exhaust passage P between the strut leading edge 12c and the strut trailing edge 12d and between the manhole leading edge 13c and the manhole trailing edge 13d. Is formed so as to be located between the first assumed flow path PX and the second assumed flow path PY.
  • the change in the cross-sectional area of the exhaust passage P is as follows. First, the cross-sectional area of the exhaust passage P increases as the inner peripheral wall surface 10b of the turbine 4 increases in diameter as it proceeds downstream from the inflow portion of the exhaust gas E. Thereafter, when reaching the upstream recess formation region 20, the increase in the cross-sectional area due to the upstream recess is added to the increase in the cross-sectional area due to the expansion of the inner peripheral wall surface 10b, and the increase rate of the cross-sectional area increases.
  • the decrease in the cross-sectional area due to the strut 12 occupying the exhaust flow path P exceeds the increase in the cross-sectional area due to the upstream recess and the expansion of the inner peripheral wall surface 10b.
  • the cross-sectional area increase rate turns negative.
  • the cross-sectional area of the exhaust passage P decreases to a position near the middle of the strut 12 in the main flow direction, the cross-sectional area increases while depicting a trajectory opposite to the above.
  • the cross-sectional area of the exhaust passage P is gently reduced by increasing the cross-sectional area due to the expansion of the inner peripheral wall surface 10b more than the decrease of the cross-sectional area of the upstream recess.
  • the locus is only an increase in the cross-sectional area due to the diameter expansion of the wall surface 10b. The same applies to the downstream recess formation region 30.
  • the combustion gas G that has passed through the final stage turbine blade 4 c flows into the exhaust passage P. Since the exhaust passage P gradually increases in diameter as it goes downstream, the dynamic pressure of the exhaust gas E is converted to a static pressure.
  • the exhaust gas E that has reached the most upstream side of the upstream recess formation region 20 flows toward the downstream strut 12.
  • a pressure distribution in which the pressure gradually increases toward the strut leading edge 12c due to the collision of the exhaust gas E is formed on the upstream side in the main flow direction of the strut leading edge 12c.
  • the upstream outer circumferential concave portion 22 increase the cross-sectional area of the exhaust flow path P, so that the pressure gradient becomes relatively gentle.
  • the cross-sectional area of the exhaust flow path P is the largest in the vicinity of the center in the mainstream direction, in other words, at the position where the blade thickness of the strut 12 having the airfoil cross-sectional shape is maximized, and then gradually increases. .
  • the decrease in the cross-sectional area of the exhaust passage P is offset by the increase in the cross-sectional areas of the upstream outer peripheral recess 22 and the upstream inner peripheral recess 21.
  • the change in the cross-sectional area of the exhaust flow path P becomes gentle. For this reason, the pressure fluctuation of the exhaust gas E becomes relatively gentle, and the pressure loss generated in the exhaust gas E becomes relatively small.
  • the increase in the cross-sectional area due to the expansion of the inner peripheral wall surface 10b is reduced by the decrease in the cross-sectional area between the upstream inner peripheral recess 21 and the upstream outer recess 22.
  • the cross-sectional area of the exhaust passage P is gently reduced, and then increases due to the diameter expansion of the inner peripheral wall surface 10b. Even at this time, the cross-sectional area of the exhaust passage P changes relatively gently. For this reason, the pressure fluctuation of the exhaust gas E becomes relatively gentle, and the pressure loss generated in the exhaust gas E becomes relatively small.
  • the upstream inner peripheral recess 21 is formed on the inner peripheral wall surface 10b over the upstream recess forming region 20 including the strut 12 in the main flow direction. Since the upstream outer peripheral concave portion 22 is formed in 11b, the upstream inner peripheral concave portion 21 and the upstream outer peripheral concave portion are compared with the second assumed flow path PY in which the upstream inner peripheral concave portion 21 and the upstream outer peripheral concave portion 22 are not formed. The cross-sectional area of the exhaust flow path P increases by the amount of 22.
  • At least a part of the decrease in the cross-sectional area due to the struts 12 can be offset by the increase in the cross-sectional area due to the upstream inner peripheral recess 21 and the upstream outer peripheral recess 22.
  • the change of the cross-sectional area of the exhaust flow path P becomes gentler than that of the second hypothetical flow path PY, generation of pressure loss of the exhaust gas E can be suppressed.
  • the cross-sectional area of the exhaust passage P increases compared to the second hypothetical passage PY, so the pressure at the strut leading edge 12c and the strut trailing edge 12d. The effects of change can be mitigated.
  • the upstream inner circumferential concave portion 21 and the upstream outer circumferential concave portion 22 are formed so as to include a position where the strut 12 extends in the flow path cross section, a partial region in which the strut 12 is included in the flow path cross section.
  • the cross-sectional area of can be increased.
  • the cross-sectional area of the flow path partially increases compared to the case where the second hypothetical flow path PY is not formed upstream of the strut leading edge 12c and downstream of the strut trailing edge 12d.
  • the influence of the pressure change at the strut leading edge 12c and the strut trailing edge 12d can be greatly reduced.
  • a part of the center of the change path of the cross-sectional area of the exhaust passage P in the range in which the struts 12 extend in the main flow direction is the change of the cross-section area of the first assumed flow path PX and the second assumption. Since the upstream inner circumferential concave portion 21 and the upstream outer circumferential concave portion 22 are formed so as to be between the change trajectories of the flow path PY, the change in the cross sectional area of the exhaust flow path P is the first. It approximates the change in the cross-sectional area of the assumed flow path PX, and pressure loss can be effectively suppressed.
  • upstream inner circumferential recess 21 and the upstream outer circumferential recess 22 extend from a position 0.2 L away from the strut leading edge 12 c to the upstream side to a position 0.2 L away from the strut trailing edge 12 d. Since it is formed in the range, pressure loss can be more effectively suppressed.
  • FIG. 6 is a correlation diagram between the recessed portion formation region and the diffuser performance improvement amount.
  • FIG. 6 shows the result of confirming the amount of improvement in the diffuser performance by changing the upstream start position and the downstream end position of the upstream recess formation region 20. As shown in FIG. 6, as the upstream start position and the downstream end position of the upstream recess formation area 20 are increased, they gradually increase and become the highest in the vicinity of 0.2L1. Then, it gradually decreases, and the amount of improvement in the diffuser performance decreases from around 0.4L1.
  • the upstream inner circumferential recess 21 and the upstream outer circumferential recess 22 are separated from the strut leading edge 12c by a distance of 0.2L1 upstream and from the strut trailing edge 12d by a distance of 0.2L1 downstream. Therefore, the diffuser performance can be greatly improved, and the performance of the gas turbine can be improved.
  • downstream inner peripheral recessed portion 31 and the downstream outer peripheral recessed portion 32 exhibit the same effects as the upstream inner peripheral recessed portion 21 and the upstream outer peripheral recessed portion 22, so that the pressure loss Can be effectively deterred.
  • the diffuser is provided with an upstream recess (upstream inner peripheral recess 21 and upstream outer recess 22) and a downstream recess (downstream inner recess 31 and downstream outer recess 32).
  • upstream recess upstream inner peripheral recess 21 and upstream outer recess 22
  • downstream recess downstream inner recess 31 and downstream outer recess 32.
  • upstream recess and downstream recess may be provided.
  • the upstream inner circumferential recess 21 and the upstream outer circumferential recess 22 are separated from the strut leading edge 12c by a distance of 0.2L1 upstream from the strut trailing edge 12d by a distance 0 downstream. Although it is formed in a range up to a position 2L1 apart, as shown in FIG. 6, if the range is up to a position 0.4L1 away, a good amount of improvement in diffuser performance is recognized.
  • the upstream inner circumferential recess 21 and the upstream outer circumferential recess 22 are located from a position separated by a distance of 0.4 L1 upstream from the strut leading edge 12 c to a position separated by a distance of 0.4 L1 downstream from the strut trailing edge 12 d. It may be formed in a range. The same applies to the downstream inner circumferential recess 31 and the downstream outer circumferential recess 32.
  • the upstream inner peripheral recessed part 21 and the upstream outer peripheral recessed part 22 are formed so that the position where the strut 12 extends in the flow-path cross section, and the position where the manhole 13 extends is included.
  • the downstream inner peripheral recess 31 and the downstream outer peripheral recess 32 are formed.
  • the recess 40 may be provided only on either the outer peripheral wall surface 11b or the inner peripheral wall surface 10b, or may be provided on both.
  • only the recess 40 may be provided instead of the upstream inner periphery recess 21 and the upstream outer periphery recess 22.
  • only the recess 40 may be provided instead of the downstream inner periphery recess 31 and the downstream outer periphery recess 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 この流路構造は、流路を形成する壁面(10b,11b)と、前記壁面から前記流路を流れる流体の主流方向と交差する方向に延出して設けられた構造物(12,13)と、前記主流方向において前記構造物を含む範囲に亘って、前記壁面に凹部(21,22,31,32)が形成された凹部形成領域(20,30)とを備える。 前記構造物が、前記主流と交差する流路断面において前記流路の一部の範囲を占めることにより、前記流路の断面積は、前記主流方向に進むに従って変化する。

Description

流路構造及びガスタービン排気ディフューザ
 本発明は、流路構造及びガスタービン排気ディフューザに関する。
 周知のように、流路構造の一種として、流路を形成する壁面から流路を流れる流体の主流に沿った主流方向と交差する方向に構造物が延出したものが知られている。例えば、ガスタービンの排気ディフューザの一種においては、排気ケーシングの内部にロータを軸支する軸受が設けられており、この軸受の周囲の環状空間が排気流路となっているが、この環状空間に排気ケーシングから延びて軸受を保持するストラットが配設されている(特許文献1)。
特開2004-190664号公報
 ところで、上記流路構造においては、流路断面積が変化するために、圧力損失が生じてしまう。
 例えば、上述したガスタービンの排気ディフューザの一種においては、排気の主流方向におけるストラットの配設された範囲は、流路断面においてストラットが流路のうち一部の範囲を占めることにより、排気主流の上流から下流に進むに従って流路の断面積が急激に減少した後に、増加する構造となっている。このため、ストラットの配設された範囲を排気が通過する際に、比較的に大きな圧力損失が生じる。
 本発明は、このような事情を考慮してなされたもので、その目的は、圧力損失の発生を抑止し、それによってガスタービンの性能を向上させることができる流路構造及びガスタービン排気ディフューザを提供することである。
 本発明の流路構造は、流路を形成する壁面から前記流路を流れる流体の主流に沿った主流方向と交差する方向に構造物が延出し、前記主流と交差する流路断面において前記構造物が前記流路のうち一部の範囲を占めることにより、前記主流方向に進むに従って前記流路の断面積が変化する流路構造であって、前記主流方向において前記構造物を含む範囲に亘って前記壁面に凹部が形成された凹部形成領域を有する。すなわち、本発明の流路構造は、流路を形成する壁面と、前記壁面から前記流路を流れる流体の主流方向と交差する方向に延出して設けられた構造物と、前記主流方向において前記構造物を含む範囲に亘って、前記壁面に凹部が形成された凹部形成領域とを備える。前記構造物が、前記主流と交差する流路断面において前記流路の一部の範囲を占めることにより、前記流路の断面積は、前記主流方向に進むに従って変化する。
 本発明によれば、主流方向において構造物を含む凹部形成領域に亘って壁面に凹部が形成されているので、凹部を形成しない場合に比べて、凹部の分だけ流路の断面積が増加する。つまり、主流方向における構造物が形成された範囲においては、構造物による断面積の減少分の少なくとも一部を、凹部による断面積の増加分で相殺することができる。これにより、断面積の変化が、凹部を形成しない場合に比べて穏やかなものとなるので、圧力損失の発生を抑止することができる。
 さらに、主流方向における構造物の上流及び下流においては、凹部を形成しない場合に比べて、流路の断面積が増加することになるので、構造物の前縁及び後縁における圧力変化の影響を緩和することができる。
 また、前記凹部は、前記流路断面において前記壁面のうち前記構造物が延出する位置が含まれるように形成されていてもよい。
 本発明によれば、流路断面のうち構造物が含まれる部分的な領域の断面積を大きくすることができる。これにより、流路断面において凹部を構造物から離間した位置に形成した場合に比べて、構造物に衝突した流体を速やかに凹部に逃がすことができるので、効果的に圧力損失を低下させることができる。
 さらに、主流方向における構造物の前縁上流及び後縁下流においては、凹部を形成しない場合に比べて、部分的に流路の断面積が増加することになるので、構造物の前縁及び後縁における圧力変化の影響を大幅に緩和することができる。
 また、前記凹部は、前記主流方向において前記構造物が延出する範囲での前記流路の断面積の変化の軌跡の一部が、前記構造物と前記凹部とが無いと仮定した場合の前記流路の断面積の変化の軌跡と、前記凹部が無いと仮定した場合の前記流路の断面積の変化の軌跡との間になるように、形成されていてもよい。
 本発明によれば、流路の断面積の変化が、構造物が無いと仮定した場合の流路の断面積の変化に近似したものとなり、圧力損失を効果的に抑止することができる。
 また、前記凹部は、前記主流方向における前記構造物の前縁から後縁までの長さをLとした場合に、前記前縁から上流側に距離0.4L離れた位置から、前記後縁から下流側に距離0.4L離れた位置までの範囲に形成されていてもよい。
 本発明によれば、圧力損失を効果的に抑止することができる。
 また、前記凹部は、前記前縁から上流側に距離0.2L離れた位置から、前記後縁から下流側に距離0.2L離れた位置までの範囲に形成されていてもよい。
 本発明によれば、圧力損失をより効果的に抑止することができる。
 本発明のガスタービン排気ディフューザは、上記の流路構造を有する。本発明によれば、上記流路構造のはたらきによりディフューザの性能を向上させることができる。
 本発明の流路構造及びガスタービン排気ディフューザによれば、圧力損失の発生を抑止し、それによってガスタービンの性能を向上させることができる。
本発明の実施形態に係るガスタービン1の概略構成を示す半断面図である。 本発明の実施形態に係るガスタービン1の要部拡大断面図であって、図1における要部Iを示している。 本発明の実施形態に係る排気ディフューザ10の要部拡大断面図であって、図2におけるII-II線断面図を示している。 本発明の実施形態に係る排気ディフューザ10の排気流路Pの断面積の変化を示す線グラフであって、横軸に主流方向の位置を、縦軸に排気流路Pの断面積を示している。 本発明の実施形態に係る排気ディフューザ10の排気流路Pの断面積の変化を示す線グラフであって、図4の要部IIIの拡大図である。 本発明の実施形態に係る排気ディフューザ10の効果説明図であって、横軸に凹部形成領域の開始位置及び終了位置を、縦軸にディフューザ性能向上量をそれぞれ示している。 本発明の実施形態に係る排気ディフューザ10の変形例を示す要部拡大断面図であって、図3に相当する図である。
 以下、図面を参照し、本発明の実施形態について説明する。
 図1は、本発明の実施形態に係るガスタービン1を示す半断面図である。
 図1に示すように、ガスタービン1は、圧縮機2と燃焼器3とタービン4とを備えている。圧縮機2の圧縮機ケーシング2aと、タービン4のタービンケーシング4aとに、ロータ5が挿通されている。
 圧縮機2は、圧縮機ケーシング2aの内周に環状に配列された圧縮機静翼2bからなる翼列と、ロータ5の外周に環状に配列された圧縮機動翼2cからなる翼列とを有し、これら静翼2bと動翼2cとが、回転中心軸S方向に交互に配置されている。これら翼列を通過するように、圧縮流路が形成されている。これら圧縮機動翼2cからなる翼列と圧縮機静翼2bからなる翼列とは、回転中心軸S方向に隣接する一対がそれぞれ段をなす、多段構造である。
 この圧縮機2は、内部に取り入れた空気Aを、圧縮流路の上流側から下流側に向かうにつれて断熱圧縮する。
 燃焼器3は、圧縮機2とタービン4との間に配設されており、圧縮機2で圧縮された高圧の空気Aに燃料を混合して燃焼させて燃焼ガスGを発生させる。燃焼ガスGはタービン4に供給される。
 タービン4は、タービンケーシング4aの内周に環状に配列されたタービン静翼4bからなる翼列と、ロータ5の外周に環状に配列されたタービン動翼4cからなる翼列とを有し、これら静翼4bと動翼4cとが、回転中心軸S方向に交互に配置されている。これら翼列を通過するように、燃焼ガス流路Rが形成されている。これらタービン動翼4cからなる翼列とタービン静翼4bからなる翼列とは、回転中心軸S方向に隣接する一対がそれぞれ段をなす、多段構造である。 
 このタービン4は、燃焼器3で発生した燃焼ガスGを膨張させながら下流に流すことで、ロータ5を介して、燃焼ガスGの熱エネルギーを機械仕事の回転エネルギーに変換している。
 ロータ5は、上述したように、圧縮機ケーシング2aとタービンケーシング4aとに挿通され、さらにその一端が図示しない発電機に接続されており、タービン4で発生させた回転エネルギーを動力として発電機に供給する。
 ガスタービン1は、タービンケーシング4aの最終段のタービン動翼4cの下流側に接続された排気ディフューザ10を備えている。
 図2は、図1における要部Iを示す拡大断面図であり、図3は、図2におけるII-II線断面図を示している。
 図2に示すように、排気ディフューザ10は、排気ケーシング10aと、円筒状の保護ケーシング11と、複数のストラット(構造物)12と、マンホール(構造物)13とを備えている。排気ケーシング10aは、タービンケーシング4aに接続されている。保護ケーシング11は、排気ケーシング10aの内部に設けられており、ロータ5を軸支するジャーナル軸受7等は、保護ケーシング11内部に収容されている。ストラット12は、排気ケーシング10aから保護ケーシング11の内部まで延び、ジャーナル軸受7の周囲に接して同軸受7を保持する。マンホール13は、ジャーナル軸受7等のメンテナンスのために設けられており、これらストラット12よりも下流側に配置されている。
 なお、排気ディフューザ10においては、回転中心軸S方向が、排気ガスEの主流の流れる方向にほぼ一致している。
 排気ケーシング10aは、主流方向において、タービン4が接続された上流側から下流側に向かうに従って、内周壁面(壁面)10bが次第に拡径するようになっている。
 保護ケーシング11は、排気ディフューザ10と同軸に設けられており、主流方向において、タービン4が接続された上流側から下流側に向かって略同径に形成されている。
 これら排気ケーシング10aと保護ケーシング11との間には、排気ケーシング10aの内周壁面10bと保護ケーシング11の外周壁面11bとで、円環状の排気流路Pが形成されている。この排気流路Pは、保護ケーシング11の外周壁面11bが略同径に形成されている一方で、排気ケーシング10aの内周壁面10bが下流側に進むに従って次第に拡径するために、主流方向の上流から下流側に進むに従って、主流方向に交差する断面積が次第に大きくなっている(図4参照)。
 各ストラット12は、ジャーナル軸受7を保持するストラット本体12aと、このストラット本体12aを燃焼ガスGより被覆し、加熱より保護するストラットカバー12bとを備えている。ストラットカバー12bは、保護ケーシング11から排気ケーシング10aに向けて延びている。
 マンホール13は、排気ケーシング10aの外部と保護ケーシング11の内部(収容空間)とを連通させている。
 上記ストラットカバー12bとマンホール13とは、主流に交差する方向に延出しており、排気流路Pにおいて主流の抵抗を低減するために、断面形状が翼型(流線型)となっている。
 このような排気ケーシング10aは、図2に示すように、上流凹部形成領域(凹部形成領域)20と下流凹部形成領域(凹部形成領域)30とを有している。
 上流凹部形成領域20には、主流方向においてストラット12を含む範囲に亘って、排気ケーシング10aの内周壁面10bに形成された上流側内周凹部(凹部)21と、保護ケーシング11の外周壁面(壁面)11bに形成された上流側外周凹部(凹部)22とが形成されている。
 これら上流凹部(上流側内周凹部21と上流側外周凹部22)は、図3に示すように、流路断面において内周壁面10bと外周壁面11bとのうち、それぞれストラット12が延出する位置が含まれる範囲に亘って形成されている。
 これら上流凹部は、図2に示すように、主流方向の一方から他方に向かって漸次深くなった後に、漸次浅くなっている。また、図3に示すように、周方向の一方から他方に向かって漸次深くなった後に漸次浅くなっている。
 また、これら上流凹部は、ストラット12の主流方向の長さをL1とした場合に、主流方向に延在する位置が以下のように設定されている。すなわち、主流方向において、ストラット12の最上流に位置するストラット前縁12cから上流側に0.2L1離れた位置から、ストラット12の最下流に位置するストラット後縁12dから下流側に0.2L1離れた位置まで、延在している。
 下流凹部形成領域30には、図2に示すように、主流方向においてマンホール13を含む範囲に亘って、内周壁面10bに形成された下流側内周凹部(凹部)31と、外周壁面11bに形成された下流側外周凹部(凹部)32とが形成されている。
 これら下流凹部(下流側内周凹部31及び下流側外周凹部32)は、流路断面において、それぞれマンホール13が延出する位置が含まれる範囲に亘って形成されている(図3参照)。
 また、これら下流凹部は、図2に示すように、主流方向に向かって漸次深くなった後に、漸次浅くなっており、図3に示すように、周方向に向かって漸次深くなった後に漸次浅くなっている。
 これら下流凹部は、マンホール13の主流方向の長さをL2とした場合に、主流方向において、マンホール13の最上流に位置するマンホール前縁13cから上流側に0.2L2離れた位置から、マンホール13の最下流に位置するマンホール後縁13dから下流側に0.2L2離れた位置まで、延在している。
 図4は、排気ディフューザ10の排気流路Pの断面積の変化を示す線グラフであり、図5は、図4の要部IIIの拡大図である。なお、図4においては、横軸に主流方向の位置を、縦軸に排気流路Pの断面積を示している。また、図4及び図5においては、実線で示した軌跡が排気流路Pを示しており、破線で示した軌跡が上流凹部形成領域20及び下流凹部形成領域30並びにストラット12及びマンホール13がないと仮定した場合における第一仮定流路PXの断面積の変化を示しており、一点鎖線で示した軌跡が上流凹部形成領域20及び下流凹部形成領域30がないと仮定した場合における第二仮定流路PYの断面積の変化を示している。
 図4に示すように、上流凹部と下流凹部とは、排気流路Pの断面積の変化の軌跡の中央部分が、第一仮定流路PXと第二仮定流路PYとの間に位置するように、その深さが形成されている。より正確には、図5に示すように、ストラット前縁12cとストラット後縁12dとの間、及び、マンホール前縁13cとマンホール後縁13dとの間において、排気流路Pの断面積の変化の軌跡が、第一仮定流路PXと第二仮定流路PYとの間に位置するように、形成されている。
 図4に示すように、排気流路Pの断面積の変化は、以下のようになる。
 まず、排気流路Pは、排気ガスEの流入部から下流側に進むに従ってタービン4の内周壁面10bの拡径によって断面積が大きくなる。その後、上流凹部形成領域20に到達すると、上流凹部による断面積の増加分が内周壁面10bの拡径による断面積の増加分に加わり、断面積の増加率が大きくなる。次に、ストラット前縁12cに到達すると、ストラット12が排気流路Pに占めることによる断面積の減少分が、上流凹部と内周壁面10bの拡径とによる断面積の増加分を上回って、断面積の増加率がマイナスに転じる。そして、排気流路Pの断面積がストラット12の主流方向の中間付近の位置まで減少した後に、上記と反対の軌跡を描いて、断面積が増加する。ストラット後縁12dに到達すると内周壁面10bの拡径による断面積の増加分を上流凹部の断面積の減少分が上回って排気流路Pの断面積が穏やかに減少し、その後、再び内周壁面10bの拡径による断面積の増加だけの軌跡となる。
 下流凹部形成領域30の場合も同様である。
 続いて、上記のように構成された排気ディフューザ10の作用について説明する。
 図2に示すように、最終段のタービン動翼4cを通過した燃焼ガスGは、排気流路Pに流入する。この排気流路Pは、下流側に進むに従って漸次拡径しているために、排気ガスEの動圧が静圧に変換される。
 上流凹部形成領域20の最上流側に到達した排気ガスEは、下流側のストラット12に向けて流れていく。この際、ストラット前縁12cの主流方向の上流側には、排気ガスEの衝突により、ストラット前縁12cに向かうほど圧力が漸次高くなる圧力分布が形成されているが、上流側内周凹部21と上流側外周凹部22とによる排気流路Pの断面積の増加によって、圧力勾配が比較的に緩やかなものとなる。
 排気ガスEが、ストラット前縁12cに到達すると、排気流路Pの断面中にストラット12が占めるために、排気流路Pの断面積が減少する。排気流路Pの断面積は、主流方向の中央付近、換言すれば、翼型断面形状としたストラット12の翼厚が最大となる位置において減少分が最も大きくなり、その後は、緩やかに増加する。
 これらの際、図4及び図5に示すように、排気流路Pの断面積の減少分を上流側外周凹部22及び上流側内周凹部21の断面積の増加分が相殺し、第二仮定流路PYに比べて、排気流路Pの断面積の変化が穏やかなものとなる。このため、排気ガスEの圧力変動が比較的に穏やかなものとなり、排気ガスEに生じる圧力損失が比較的に小さなものとなる。
 排気ガスEが、ストラット後縁12dから下流側に流れ出ると、内周壁面10bの拡径による断面積の増加分を上流側内周凹部21と上流側外周凹部22との断面積の減少分が上回って排気流路Pの断面積が穏やかに減少した後に、内周壁面10bの拡径によって増加する。この際においても、排気流路Pの断面積が比較的に穏やかに変化する。このために、排気ガスEの圧力変動が比較的に穏やかなものとなり、排気ガスEに生じる圧力損失が比較的に小さなものとなる。
 同様に、排気ガスEがマンホール13(下流凹部形成領域30)を通過する際にも、ストラット12(上流凹部形成領域20)を通過する際と同様の作用により、発生する圧力損失が比較的に小さくなる。
 以上説明したように、本発明の実施形態に係る排気ディフューザ10によれば、主流方向においてストラット12を含む上流凹部形成領域20に亘って内周壁面10bに上流側内周凹部21が、外周壁面11bに上流側外周凹部22が形成されているので、上流側内周凹部21及び上流側外周凹部22を形成しない第二仮定流路PYと比べて、上流側内周凹部21及び上流側外周凹部22の分だけ排気流路Pの断面積が増加する。
 つまり、ストラット12による断面積の減少分の少なくとも一部を、上流側内周凹部21及び上流側外周凹部22による断面積の増加分で相殺することができる。これにより、排気流路Pの断面積の変化が、第二仮定流路PYに比べて穏やかなものとなるので、排気ガスEの圧力損失の発生を抑止することができる。
 さらに、主流方向におけるストラット12の上流及び下流においては、第二仮定流路PYに比べて、排気流路Pの断面積が増加することになるので、ストラット前縁12c及びストラット後縁12dにおける圧力変化の影響を緩和することができる。
 上流側内周凹部21及び上流側外周凹部22が、流路断面においてストラット12が延出する位置が含まれるように形成されているので、流路断面のうちストラット12が含まれる部分的な領域の断面積を大きくすることができる。これにより、流路断面において上流側内周凹部21及び上流側外周凹部22を、ストラット12から周方向に離間した位置に形成した場合に比べて、ストラット12に衝突した流体を速やかに上流側内周凹部21及び上流側外周凹部22に逃がすことができるので、効果的に圧力損失を低下させることができる。
 さらに、主流方向におけるストラット前縁12cの上流及びストラット後縁12dの下流においては、第二仮定流路PYを形成しない場合に比べて、部分的に流路の断面積が増加することになるので、ストラット前縁12c及びストラット後縁12dにおける圧力変化の影響を大幅に緩和することができる。
 また、主流方向においてストラット12が延出する範囲での排気流路Pの断面積の変化の軌跡の中央の一部が、第一仮定流路PXの断面積の変化の軌跡と、第二仮定流路PYの断面積の変化の軌跡との間になるように、上流側内周凹部21及び上流側外周凹部22が形成されているので、排気流路Pの断面積の変化が、第一仮定流路PXの断面積の変化に近似したものとなり、圧力損失を効果的に抑止することができる。
 また、上流側内周凹部21及び上流側外周凹部22が、ストラット前縁12cから上流側に距離0.2L離れた位置から、ストラット後縁12dから下流側に距離0.2L離れた位置までの範囲に形成されているので、圧力損失をより効果的に抑止することができる。
 図6は、凹部形成領域とディフューザ性能向上量との相関図である。図6においては、上流凹部形成領域20の上流側の開始位置及び下流側の終了位置を変化させてディフューザ性能向上量を確認した結果を示している。
 図6に示すように、上流凹部形成領域20の上流側の開始位置及び下流側の終了位置を、大きくしていくと、緩やかに増加して、0.2L1付近で最も高くなる。そして、その後緩やかに低下し、0.4L1付近からディフューザ性能向上量が低下していく。
 このように、上流側内周凹部21及び上流側外周凹部22を、ストラット前縁12cから上流側に距離0.2L1離れた位置から、ストラット後縁12dから下流側に距離0.2L1離れた位置までの範囲に形成したので、ディフューザ性能を大幅に向上させることができ、ガスタービンの性能を向上させることができる。
 下流凹部形成領域30が位置するマンホール13においても、下流側内周凹部31及び下流側外周凹部32によって、上流側内周凹部21及び上流側外周凹部22と同様の作用効果を奏するので、圧力損失を効果的に抑止することができる。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 例えば、上述した実施の形態では、ディフューザに、上流凹部(上流側内周凹部21及び上流側外周凹部22)と、下流凹部(下流側内周凹部31及び下流側外周凹部32)とが設けられているが、上流凹部または下流凹部のいずれか一方だけを設けてもよい。また、内周壁面10bまたは外周壁面11bのいずれか一方だけに凹部形成領域を設けてもよい。
 また、上述した実施の形態では、上流側内周凹部21及び上流側外周凹部22が、ストラット前縁12cから上流側に距離0.2L1離れた位置から、ストラット後縁12dから下流側に距離0.2L1離れた位置までの範囲に形成されているが、図6に示すように、距離0.4L1離れた位置までの範囲であれば、良好なディフューザ性能向上量が認められる。従って、上流側内周凹部21及び上流側外周凹部22は、ストラット前縁12cから上流側に距離0.4L1離れた位置から、ストラット後縁12dから下流側に距離0.4L1離れた位置までの範囲に形成されてもよい。下流側内周凹部31及び下流側外周凹部32についても同様である。
 また、上述した実施の形態では、流路断面においてストラット12が延出する位置を含むように、上流側内周凹部21及び上流側外周凹部22が形成され、マンホール13が延出する位置を含むように、下流側内周凹部31及び下流側外周凹部32が形成されているが、図7に示すように、流路断面において、ストラット12やマンホール13を含まない範囲に、凹部40が少なくとも一つ以上形成されてもよい。
 この凹部40は、図7に示すように、外周壁面11bまたは内周壁面10bのいずれか一方にのみ設けられてもよいし、双方に設けられてもよい。
 また、上流凹部形成領域20において、上流側内周凹部21及び上流側外周凹部22に代えて、凹部40のみを設けてもよい。同様に、下流凹部形成領域30において、下流側内周凹部31及び下流側外周凹部32に代えて、凹部40のみを設けてもよい。
 また、上述した実施の形態では、ガスタービン1の排気ディフューザ10に本発明の流路構造を適用した場合を説明したが、ガスタービン1の他の部位(例えば、圧縮機の空気Aの吸込流路等)や、他の流体機械に本発明の流路構造を適用してもよい。
 1…ガスタービン、
10…排気ディフューザ、
10b…内周壁面(壁面)、
11b…外周壁面(壁面)、
12…ストラット(構造物)、
12c…ストラット前縁(前縁)、
12d…ストラット後縁(後縁)、
13…マンホール(構造物)、
13c…マンホール前縁(前縁)、
13d…マンホール後縁(後縁)、
20…上流凹部形成領域(凹部形成領域)、
21…上流側内周凹部(凹部)、
22…上流側外周凹部(凹部)、
30…下流凹部形成領域(凹部形成領域)、
31…下流側内周凹部(凹部)、
32…下流側外周凹部(凹部)、
40…凹部E…排気ガス(流体)、
P…排気流路

Claims (6)

  1.  流路を形成する壁面と、
     前記壁面から前記流路を流れる流体の主流方向と交差する方向に延出して設けられた構造物と、
     前記主流方向において前記構造物を含む範囲に亘って、前記壁面に凹部が形成された凹部形成領域とを備え、
     前記構造物が、前記主流と交差する流路断面において前記流路の一部の範囲を占めることにより、前記主流方向に進むに従って前記流路の断面積が変化する流路構造。
  2.  前記凹部は、前記流路断面において前記壁面のうち前記構造物が延出する位置が含まれるように形成されている請求項1に記載の流路構造。
  3.  前記凹部は、前記主流方向において前記構造物が延出する範囲での前記流路の断面積の変化の軌跡の一部が、前記構造物と前記凹部とが無いと仮定した場合の前記流路の断面積の変化の軌跡と、前記凹部が無いと仮定した場合の前記流路の断面積の変化の軌跡との間になるように、形成されている請求項1又は2に記載の流路構造。
  4.  前記凹部は、前記主流方向における前記構造物の前縁から後縁までの長さをLとした場合に、前記前縁から上流側に距離0.4L離れた位置から、前記後縁から下流側に距離0.4L離れた位置までの範囲に形成されている請求項1から3のいずれか一項に記載の流路構造。
  5.  前記凹部は、前記前縁から上流側に距離0.2L離れた位置から、前記後縁から下流側に距離0.2L離れた位置までの範囲に形成されている請求項4に記載の流路構造。
  6.  請求項1から5のいずれか一項に記載の流路構造を有するガスタービン排気ディフューザ。
PCT/JP2010/073278 2010-12-24 2010-12-24 流路構造及びガスタービン排気ディフューザ WO2012086044A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137015761A KR101509364B1 (ko) 2010-12-24 2010-12-24 유로 구조 및 가스 터빈 배기 디퓨저
US13/991,796 US9732674B2 (en) 2010-12-24 2010-12-24 Flow path structure and gas turbine exhaust diffuser
CN201080070787.9A CN103261631B (zh) 2010-12-24 2010-12-24 流路结构及燃气涡轮排气扩散器
PCT/JP2010/073278 WO2012086044A1 (ja) 2010-12-24 2010-12-24 流路構造及びガスタービン排気ディフューザ
EP10861150.0A EP2657482B1 (en) 2010-12-24 2010-12-24 Flow path structure and gas turbine exhaust diffuser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073278 WO2012086044A1 (ja) 2010-12-24 2010-12-24 流路構造及びガスタービン排気ディフューザ

Publications (1)

Publication Number Publication Date
WO2012086044A1 true WO2012086044A1 (ja) 2012-06-28

Family

ID=46313347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073278 WO2012086044A1 (ja) 2010-12-24 2010-12-24 流路構造及びガスタービン排気ディフューザ

Country Status (5)

Country Link
US (1) US9732674B2 (ja)
EP (1) EP2657482B1 (ja)
KR (1) KR101509364B1 (ja)
CN (1) CN103261631B (ja)
WO (1) WO2012086044A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471233A (zh) * 2014-06-26 2017-03-01 三菱日立电力系统株式会社 轮机的部件的安装或拆卸方法、执行该方法的装置、该装置的设置方法
JP2017129138A (ja) * 2016-01-21 2017-07-27 ゼネラル・エレクトリック・カンパニイ タービンエンジン用のタービン後部フレーム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850771B2 (en) * 2014-02-07 2017-12-26 United Technologies Corporation Gas turbine engine sealing arrangement
GB201420011D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
GB201420010D0 (en) * 2014-11-11 2014-12-24 Rolls Royce Plc Gas turbine engine
EP3032032B1 (de) * 2014-12-12 2019-06-12 MTU Aero Engines GmbH Austrittsleitgitter und Mantelstromtriebwerk mit einem Austrittsleitgitter
JP6498534B2 (ja) * 2015-06-09 2019-04-10 川崎重工業株式会社 排気ディフューザ
GB201512516D0 (en) * 2015-07-17 2015-08-19 Rolls Royce Plc A gas turbine engine
JP6546481B2 (ja) 2015-08-31 2019-07-17 川崎重工業株式会社 排気ディフューザ
DE102016217320A1 (de) * 2016-09-12 2018-03-15 Siemens Aktiengesellschaft Gasturbine mit getrennter Kühlung für Turbine und Abgasgehäuse
JP6745233B2 (ja) * 2017-02-28 2020-08-26 三菱重工業株式会社 タービン及びガスタービン
FR3064298B1 (fr) * 2017-03-23 2021-04-30 Safran Aircraft Engines Turbomachine
GB2566751B (en) * 2017-09-26 2020-07-15 Gkn Aerospace Sweden Ab Divot for outer case shroud
WO2019143366A1 (en) * 2018-01-22 2019-07-25 Siemens Aktiengesellschaft Exhaust diffuser for a gas turbine engine
KR102217633B1 (ko) * 2019-03-26 2021-02-22 두산중공업 주식회사 가스터빈의 스트럿 구조체, 이를 포함하는 배기 디퓨저 및 가스터빈
FR3108937B1 (fr) * 2020-04-01 2023-03-24 Safran Aircraft Engines Carter intermédiaire de turbomachine
US11927137B2 (en) 2022-03-21 2024-03-12 Ge Infrastructure Technology Llc System and method for insulating components in an exhaust gas flow from a gas turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121495U (ja) * 1991-04-15 1992-10-29 株式会社次世代航空機基盤技術研究所 軸流圧縮機の翼列構造
JPH06257597A (ja) * 1993-03-02 1994-09-13 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk 軸流圧縮機の翼列構造
JPH07247996A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の通路形状
JPH10502150A (ja) * 1993-06-14 1998-02-24 ユナイテッド テクノロジーズ コーポレイション 回転機械の圧縮領域のための流れ配向アッセンブリ
JP2001271792A (ja) * 2000-02-18 2001-10-05 General Electric Co <Ge> 縦溝付き圧縮機流路
JP2004190664A (ja) 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービン
JP2006138319A (ja) * 2004-11-10 2006-06-01 United Technol Corp <Utc> ガスタービンエンジンのロータおよびベーンエレメント、ならびにエンジン設計方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH229266A (de) 1942-03-26 1943-10-15 Sulzer Ag Turbomaschine, deren Schaufelblattflächen am Schaufelfuss mit einer Abrundung in die Grundfläche übergehen.
FR1602965A (ja) 1968-08-16 1971-03-01
DE59204947D1 (de) * 1992-08-03 1996-02-15 Asea Brown Boveri Mehrzoniger Diffusor für Turbomaschine
DE4232088A1 (de) 1992-09-25 1994-03-31 Asea Brown Boveri Gasturbine mit Abgasgehäuse und Abgaskanal
DE19650656C1 (de) * 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbomaschine mit transsonischer Verdichterstufe
JPH10184304A (ja) 1996-12-27 1998-07-14 Toshiba Corp 軸流タービンのタービンノズルおよびタービン動翼
JP3601958B2 (ja) 1997-12-25 2004-12-15 株式会社荏原製作所 ターボ機械
JP2000274202A (ja) 1999-03-23 2000-10-03 Toshiba Corp 流体機械
SE9904603D0 (sv) 1999-12-16 1999-12-16 Atlas Copco Tools Ab Turbine motor for elastic fluid operation
US6478545B2 (en) 2001-03-07 2002-11-12 General Electric Company Fluted blisk
JP4040556B2 (ja) 2003-09-04 2008-01-30 株式会社日立製作所 ガスタービン設備及び冷却空気供給方法
US7134842B2 (en) 2004-12-24 2006-11-14 General Electric Company Scalloped surface turbine stage
US8511978B2 (en) 2006-05-02 2013-08-20 United Technologies Corporation Airfoil array with an endwall depression and components of the array
JP5283855B2 (ja) * 2007-03-29 2013-09-04 株式会社Ihi ターボ機械の壁、及びターボ機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121495U (ja) * 1991-04-15 1992-10-29 株式会社次世代航空機基盤技術研究所 軸流圧縮機の翼列構造
JPH06257597A (ja) * 1993-03-02 1994-09-13 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk 軸流圧縮機の翼列構造
JPH10502150A (ja) * 1993-06-14 1998-02-24 ユナイテッド テクノロジーズ コーポレイション 回転機械の圧縮領域のための流れ配向アッセンブリ
JPH07247996A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の通路形状
JP2001271792A (ja) * 2000-02-18 2001-10-05 General Electric Co <Ge> 縦溝付き圧縮機流路
JP2004190664A (ja) 2002-12-09 2004-07-08 Mitsubishi Heavy Ind Ltd ガスタービン
JP2006138319A (ja) * 2004-11-10 2006-06-01 United Technol Corp <Utc> ガスタービンエンジンのロータおよびベーンエレメント、ならびにエンジン設計方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657482A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471233A (zh) * 2014-06-26 2017-03-01 三菱日立电力系统株式会社 轮机的部件的安装或拆卸方法、执行该方法的装置、该装置的设置方法
CN106471233B (zh) * 2014-06-26 2018-04-10 三菱日立电力系统株式会社 部件的悬吊装置、悬吊装置的设置方法、部件的拆卸方法
JP2017129138A (ja) * 2016-01-21 2017-07-27 ゼネラル・エレクトリック・カンパニイ タービンエンジン用のタービン後部フレーム

Also Published As

Publication number Publication date
EP2657482B1 (en) 2019-05-01
CN103261631A (zh) 2013-08-21
EP2657482A1 (en) 2013-10-30
KR20130086071A (ko) 2013-07-30
US20130259670A1 (en) 2013-10-03
US9732674B2 (en) 2017-08-15
KR101509364B1 (ko) 2015-04-07
EP2657482A4 (en) 2017-05-03
CN103261631B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2012086044A1 (ja) 流路構造及びガスタービン排気ディフューザ
JP5398405B2 (ja) 流路構造及びガスタービン排気ディフューザ
US9771830B2 (en) Housing section of a turbine engine compressor stage or turbine engine turbine stage
JP5606473B2 (ja) 蒸気タービン
JP6409072B2 (ja) 主要ストラットと小型ストラットを備えた排気ガスディフューザ
EP3034804B1 (en) Pre-diffuser strut for gas turbine engine
JP6847673B2 (ja) タービン排気室
EP2853694B1 (en) Steam turbine
US11002140B2 (en) Guide vane segment
JP6188069B2 (ja) 圧縮機、及びガスタービン
WO2017110973A1 (ja) ガスタービンエンジン
JP5675914B2 (ja) ガスタービン排気ディフューザ
JP5852185B2 (ja) 流路構造及びガスタービン排気ディフューザ
JP2016530436A (ja) 熱ターボ機械のロータ
JP2019094899A (ja) タービンおよびターボチャージャ
JP5677332B2 (ja) 蒸気タービン
ES2962229T3 (es) Canal de flujo para turbomaquinaria
JP2018105221A (ja) ディフューザ、タービン及びガスタービン
JP2011137413A (ja) 蒸気タービン
CN110475948B (zh) 燃气轮机
JP6434780B2 (ja) タービン用ロータアセンブリ、タービン、及び、動翼
JP6994976B2 (ja) タービンの排気室及びタービン
WO2015056454A1 (ja) 圧縮機、及びガスタービン
WO2016098393A1 (ja) 圧力容器およびタービン
US9822706B2 (en) Gas turbine subassembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010861150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13991796

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137015761

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP