KR101469979B1 - 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법 - Google Patents

그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법 Download PDF

Info

Publication number
KR101469979B1
KR101469979B1 KR1020080026843A KR20080026843A KR101469979B1 KR 101469979 B1 KR101469979 B1 KR 101469979B1 KR 1020080026843 A KR1020080026843 A KR 1020080026843A KR 20080026843 A KR20080026843 A KR 20080026843A KR 101469979 B1 KR101469979 B1 KR 101469979B1
Authority
KR
South Korea
Prior art keywords
layer
light
nitride
extracting structure
transparent
Prior art date
Application number
KR1020080026843A
Other languages
English (en)
Other versions
KR20090101604A (ko
Inventor
송준오
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020080026843A priority Critical patent/KR101469979B1/ko
Priority to CN2009801111348A priority patent/CN102037574B/zh
Priority to PCT/KR2009/001500 priority patent/WO2009120011A2/ko
Priority to EP09724259.8A priority patent/EP2259344B1/en
Priority to US12/934,000 priority patent/US8791480B2/en
Publication of KR20090101604A publication Critical patent/KR20090101604A/ko
Application granted granted Critical
Publication of KR101469979B1 publication Critical patent/KR101469979B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Abstract

본 발명은 그룹 3족 질화물계 반도체 발광다이오드 소자의 발광면인 상부 질화물계 클래드층의 상층부에 오믹접촉 커런트스프레딩층(current spreading layer), 투명성 결합층(transparent bonding layer), 광추출 구조층(light-extraction structured layer)이 순차적으로 형성 구비하는 것이 특징인 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조 방법, 상기 발광다이오드 소자를 포함하는 발광 장치를 제공한다.
상세하게 말하자면, 본 발명은 상부 질화물계 클래드층의 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층 상부에서 오믹접촉 계면을 형성하는 투명성 커런트스프레딩층과, 전기절연성인 투명성 결합층과, 표면 요철(surface texturing) 또는 패터닝(patterning)이 도입된 광추출 구조층을 구비하여 구동 전압 및 외부 발광 효율을 비롯한 발광다이오드 소자의 전체적인 성능을 효과적으로 향상시킬 수 있다.
그룹 3족 질화물계 반도체 발광다이오드, 그룹 3족 질화물계, 그룹 2족 산화물, 오믹접촉 커런트스프레딩층, 투명성 결합층, 광추출 구조층, 레이저 리프트 오프, 화학적 습식에칭, 질소 극성 질화물, 산소 극성 산화물, 양성 극성 표면, 음성 극성 표면

Description

그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조 방법 {group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them}
본 발명은 구동 전압 및 외부 발광 효율을 비롯한 발광다이오드 소자의 전체적인 성능을 향상시킬 수 있는 그룹 3족 질화물계 반도체 발광다이오드 소자 및 그 제조방법에 관한 것이다. 상세하게 말하자면, 본 발명은 상부 질화물계 클래드층의 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층 상부에서 오믹접촉 계면을 형성하는 투명성 커런트스프레딩층과, 전기절연성인 투명성 결합층과, 표면 요철(surface texturing) 또는 패터닝(patterning)이 도입된 광추출 구조층을 구비하여 구동 전압 및 외부 발광 효율을 비롯한 발광다이오드 소자의 전체적인 성능을 효과적으로 향상시키는 구조를 갖는다.
발광다이오드(light emitting diode; LED) 소자는 일정한 크기의 순방향 전류를 인가하면 고체 발광 다층구조체 내의 활성층에서 전류가 광으로 변환되어 빛을 발생시킨다. 초창기 LED 소자 연구 개발은 인듐인(InP), 갈륨비소(GaAs), 갈륨인(GaP)등의 화합물 반도체를 p-i-n 접합구조로 형성한다. 상기 LED는 녹색 빛의 파장 보다 더 긴 파장대의 가시광선 영역대의 빛을 발광하는 반면에, 최근 들어 그룹 3족 질화물계 반도체 물질계의 연구 개발에 힘입어 청색 및 자외선 광을 발광하는 소자도 상용화됨으로서 표시장치, 광원용 장치, 환경 응용장치에 널리 이용되고 있으며, 더 나아가서는 적, 녹, 청색의 3개 LED 소자 칩을 조합하거나, 또는 단파장의 펌핑 발광다이오드(pumping LED) 소자에 형광체(phosphor)를 접목하여 백색을 발광하는 백색광원용 LED가 개발되어 조명장치로도 그 응용범위가 넓어지고 있다. 특히, 고체 단결정 반도체를 이용한 LED 소자는 전기에너지를 빛에너지로 변환하는 효율이 높고 수명이 평균 5년 이상으로 길며 에너지 소모와 유지보수 비용을 크게 절감할 수 있는 장점이 있어서 차세대 조명용 백색광원 분야에서 주목받고 있다.
이와 같은 그룹 3족 질화물계 반도체 물질계로 제조된 발광다이오드(이하, 그룹 3족 질화물계 반도체 발광다이오드) 소자는 일반적으로 절연성 성장 기판(대표적으로, 사파이어) 상부에 성장되어 제조되기 때문에, 다른 그룹 3-5족 화합물계 반도체 발광다이오드 소자와 같이 성장 기판의 서로 반대 면에 대향 하는 두 전극을 설치할 수 없어, LED 소자의 두 전극을 결정 성장된 반도체 물질계 상부에 형성해야 한다. 이러한 그룹 3족 질화물계 반도체 발광다이오드 소자의 종래 구조가 도 12에 개략적으로 예시되어 있다.
도 12를 참조하면, 그룹 3족 질화물계 반도체 발광다이오드 소자는 사파이어 성장 기판(10)과 상기 성장 기판(10) 상부에 순차적으로 성장 형성된 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20), 질화물계 활성층(30) 및 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)을 포함한다. 상기 하부 질화물계 클래드층(20)은 n형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층(201)과 상기 n형 In x Al y Ga 1-x-y N층(201)과 다른 조성의 n형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층(202)으로 이루어질 수 있으며, 상기 질화물계 활성층(30)은 다중양자우물(multi-quantum well)구조의 다른 조성으로 구성된 질화물계 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)인 반도체 다층으로 이루어질 수 있다. 또한, 상기 상부 질화물계 클래드층(40)은 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층(401)과 상기 p형 In x Al y Ga 1-x-y N층(401)과 다른 조성의 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)층(402)으로 구성될 수 있다. 일반적으로, 상기 그룹 3족 질화물계 반도체 단결정으로 형성된 하부 질화물계 클래드층/질화물계 활성층/상부 질화물계 클래드층(20, 30, 40)은 MOCVD 또는 MBE 등의 장치를 이용하여 성장될 수 있다. 이때, 상기 하부 질화물계 클래드층(20)의 n형 In x Al y Ga 1-x-y N층(201)을 성장하기 전에 사파이어 성장 기판(10)과의 격자 정합을 향상시키기 위해, AlN 또는 GaN와 같은 버퍼층(미도시)을 그 사이에 형성할 수도 있다.
상기한 바와 같이, 상기 사파이어 성장 기판(10)은 전기절연성 물질이므로, LED 소자의 두 전극을 모두 단결정 반도체 성장방향인 동일한 상면에 형성해야 하며, 이를 위해서는 상부 질화물계 클래드층(40)과 질화물계 활성층(30)의 일부 영역을 에칭(즉, 식각)하여 하부 질화물계 클래드층(20)의 일부 상면 영역을 노출하고, 상기 노출된 n형 In x Al y Ga 1-x-y N층(20) 상면에 n형 오믹접촉(ohmic contact) 계면 전극 및 전극 패드(70)를 형성한다.
특히 상기 상부 질화물계 클래드층(40)은 낮은 캐리어 농도(carrier concentration) 및 이동도(mobility)로 인하여 상대적으로 높은 면저항을 갖고 있기 때문에, p형 전극(60)을 형성하기에 앞서, 양질의 오믹접촉 커런트스프레딩층을 형성할 수 있는 추가적인 물질계가 요구된다. 이에 대하여, 미국특허 US5,563,422에서는, 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체의 최상층부에 위치한 p형 In x Al y Ga 1-x-y N층(402)의 상면에 p형 전극(60)을 형성하기 전에, 수직방향으로의 비접촉 저항이 낮은 오믹접촉 계면을 형성하는 오믹접촉 커런트스프레딩층(50)을 형성하기 위해 Ni/Au로 구성된 물질계를 제안하였다.
상기 오믹접촉 커런트스프레딩층(50)은 p형 In x Al y Ga 1-x-y N층(402)에 대한 수평방향으로의 전류퍼짐(current spreading)을 향상시키면서도 동시에 수직방향으로의 낮은 비접촉 저항을 갖는 오믹접촉 계면(ohmic interface)을 형성하여 효과적인 전류주입(current injecting)을 할 수 있어, 발광다이오드 소자의 전기적인 특성을 향상시킨다. 그러나 Ni/Au로 구성된 오믹접촉 커런트스프레딩층(50)은 열처리를 거친 후에도 평균 70%의 낮은 투과율을 보이며, 이러한 낮은 빛 투과율은 해당 발광다이오드 소자에서 생성된 빛을 외부로 방출될 때, 많은 양의 빛을 흡수하여 전체 외부 발광 효율을 감소시키게 한다.
상기한 바와 같이, 오믹접촉 커런트스프레딩층(50)의 높은 빛 투과율을 통한 고휘도 발광다이오드 소자를 얻기 위한 방안으로, 최근 들어 상기 Ni/Au 물질계를 포함한 각종 불투명성 금속 또는 합금으로 형성된 오믹접촉 커런트스프레딩층(50) 대신에 투과율이 평균 90% 이상인 것으로 알려진 ITO(indium tin oxide) 또는 ZnO(zinc oxide) 등의 투명성 전도성 물질계로 형성하는 방안이 제안되었다. 그런 데, 상기한 투명성 전기전도성 물질계는 p형 In x Al y Ga 1-x-y N (0≤x, 0≤y, x+y≤1) (~7.5 eV 이상)에 비해 작은 일함수(4.7~6.1eV), 그리고 p형 In x Al y Ga 1-x-y N층(402)에 직접 증착하고 열처리를 비롯한 후속 공정을 행하는 후에 오믹접촉(ohmic contact) 계면이 아니라 비접촉 저항이 큰 쇼키접촉(schottky contact) 계면을 형성하고 있어, 새로운 투명성 전도성 물질계 또는 제조 공정이 필요하다.
이에, 더 최근에는 미국특허 US20070001186 에서는 ZnO을 비롯한 두꺼운 투명성 전기전도성 물질계 웨이퍼를 웨이퍼 결합(wafer bonding) 공정으로 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 반도체 상부에 접목하여 오믹접촉 커런트스프레딩층(50)을 형성한 기술이 도안 되었다. 하지만, 이러한 두꺼운 웨이퍼 형태로 존재하는 투명성 전기전도성 물질계는 10-3 Ω㎝ 이하 수준의 우수한 전기전도성을 갖도록 만들기가 쉽지가 않을뿐더러, 열팽창 계수 차이(difference of thermal expansion coefficient) 등으로 인해 웨이퍼 결합이 어렵고 또한 웨이퍼 제작에 고비용이 들기 때문에 실용적인 측면에선 적합하지가 않다.
따라서, 당 기술 분야에서는 높은 빛 투명성을 유지하는 것과 동시에, 상부 질화물계 클래드층(40)의 최상부층인 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)과 양호한 오믹접촉 계면을 형성하는 오믹접촉 커런트스프레딩층(50)을 갖춘 양질의 그룹 3족 질화물계 반도체 발광다이오드 소자 및 그 제조방법이 요구되고 있는 실정이다.
또한, 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 내의 활성 층에서 생성된 빛을 최대한 많이 외부로 끄집어내어 패키징된 발광다이오드 소자의 에너지 변환 효율(lm/W)을 증가시켜야 한다. 일반적으로 그룹 3족 질화물계 반도체 발광다이오드의 외부 발광 효율은 의외로 상당히 낮은 수준이다. 이러한 이유는 GaN을 비롯한 그룹 3족 질화물계 반도체 또는 ITO 등의 오믹접촉 커런트스프레딩층과 몰딩재 간의 큰 굴절률(refractive index) 차에 의하여 LED 구조에서 발생된 빛의 상당 부분이 외부로 방출되지 않고 전반사되어 다시 LED 내부 쪽으로 진행하여 소멸하게 된다. 일예로, 질화갈륨(GaN)의 경우 굴절률을 약 2.3, 몰딩재의 굴절률을 약 1.5 정도로 가정할 경우 두 물질의 접합 면에서 전반사되는 빛의 양은 약 90% 정도로 광추출 효율의 많은 개선이 요구된다. 이를 해결하기 위해서, 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체의 상부 질화물계 클래드층의 최상부층인 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 또는 오믹접촉 커런트스프레딩층 표면에 식각(etching) 공정을 이용하여 다양한 형상 및 디멘젼의 표면에 요철 또는 패터닝을 도입하는 것이다. 이 경우, 광추출 효율이 상당히 많이 개선되는 것으로 확인되었다.
그러나, 이와 같이 최상부층인 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 또는 오믹접촉 커런트스프레딩층 표면에 요철 또는 패터닝을 도입하는 공정은 추가적인 포토리쏘(photolitho) 및 식각 공정이 요구되어 복잡한 동시에, 상기 최상부층인 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 또는 오믹접촉 커런트스프레딩층 표면에 전기적으로 악영향을 끼쳐 LED 소자의 구동 전압 및 누설 전류를 상승시켜 에너지 변환 효율을 훼손하는 단점이 있다.
본 발명은 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체의 상부 질화물계 클래드층의 최상부층인 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 또는 오믹접촉 커런트스프레딩층 표면에 요철 또는 패터닝 형성시의 문제점을 인식하고, 이를 해결하기 위해서 전기절연성인 투명성 결합층을 이용하여 GaN을 비롯한 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 또는 오믹접촉 커런트스프레딩층의 전기적인 특성에 영향은 미치지 않고, LED 발광면인 최상층부 표면에 식각에 의한 요철 또는 패터닝이 도입된 광추출 구조층을 구비함으로써 LED로부터 발생하는 빛이 내부로 전반사되는 양을 감소시켜 광추출 효율을 증가시키고자 하였다.
삭제
본 발명은 제 1 도전형 반도체층; 상기 제 1 도전형 반도체층 상에 형성된 활성층; 상기 활성층 상에 형성된 제 2 도전형 반도체층; 상기 제 2 도전형 반도체층 상에 형성된 투명성 오믹접촉 커런트 스프레딩층; 상기 투명성 오믹접촉 커런트 스프레딩층 상에 형성된 투명성 결합층; 및 상기 투명성 결합층 상에 형성된 광추출 구조층을 포함하고, 상기 광추출 구조층은 상기 투명성 결합층 상에 형성된 제 1 광추출 구조층과, 상기 제 1 광추출 구조층 상에 형성되고 표면에 요철 또는 패터닝이 형성된 제 2 광추출 구조층을 포함하는 그룹 3족 질화물계 반도체 발광다이오드 소자를 제안하고자 한다.
나아가, 상기 투명성 오믹접촉 커런트스프레딩층 상에는 상기 광추출 구조층 및 상기 투명성 결합층이 형성되지 않는 일부 영역이 형성되고, 상기 투명성 오믹접촉 커런트스프레딩층 상의 일부 영역에는 상기 투명성 오믹접촉 커런트 스프레딩층과 쇼키 접촉하는 제 2 도전형 전극패드가 형성된 것을 특징으로 하는 발광 다이오드 소자를 제안하고자 한다.
이와 다른 측면에서, 상기 광추출 구조층 상에 형성된 제 2 도전형 전극패드를 더 포함하고, 상기 광추출 구조층은 상기 제 2 도전형 전극패드와 상기 투명성 오믹접촉 커런트스프레딩층을 전기적으로 연결하는 제 3 광추출 구조층을 포함하는 그룹 3족 질화물계 반도체 발광다이오드 소자를 제안하고자 한다.
나아가, 상기 제 3 광추출 구조층은 상기 제 1 및 제 2 광추출 구조층에 형성된 적어도 하나 이상의 비아홀(via-hole)을 채우는 전기전도성 물질이고,상기 제 2 광추출 구조층 상에 형성되어 상기 제 3 광추출 구조층과 전기적으로 연결된 제 4 광추출 구조층을 더 포함하는 그룹 3족 질화물계 반도체 발광다이오드 소자를 제안하고자 한다.
더 나아가, 상기 제 4 광추출 구조층은 상기 제 2 광추출 구조층의 형상에 따라서 증착된 것을 특징으로 하는 그룹 3족 질화물계 반도체 발광다이오드 소자를 제안하고자 한다.
본 발명은 상술한 목적을 달성하기 위한 구성 수단으로서, 화학식 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 표기된 그룹 3족 질화물계 반도체를 이용한 발광다이오드(이하, 그룹 3족 질화물계 반도체 발광다이오드) 소자 제조 방법에 있어서,
그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체를 성장시키기 위한 성장 기판(growth substrate)을 준비하는 단계;
상기 성장 기판 상부에 n형 도전성의 그룹 3족 질화물계 반도체 물질계로 이루어진 하부 질화물계 클래드층과, 또 다른 그룹 3족 질화물계 반도체 물질계로 이루어진 질화물계 활성층과, p형 도전성의 그룹 3족 질화물계 반도체 물질계로 이루어진 상부 질화물계 클래드층이 순차적으로 구성된 그룹 3족 질화물계 반도체 발광 소자용 다층구조체를 형성하는 단계;
상기 발광다이오드 소자용 다층구조체의 최상층부인 상부 질화물계 클래드층 상부에 투명성 오믹접촉 커런트스프레딩층을 형성하는 단계;
광추출 구조(light-extraction structure)을 형성시키기 위한 지지 기판(supporting substrate)을 준비하는 단계;
상기 지지 기판 상부에 광추출 구조를 형성하는 단계;
상기 투명성 오믹접촉 커런트스프레딩층과 광추출 구조를 투명성 결합용 이종물질계(이하, “투명성 결합층” 이라 치칭)를 사용하여 웨이퍼 결합(wafer bonding)시켜 복합체를 형성하는 단계;
상기 웨이퍼 결합된 복합체에서 지지 기판을 분리 제거하는 단계;
상기 대기 중으로 노출된 광추출 구조층의 표면에 요철 또는 패터닝을 형성시키는 단계;
상기 광추출 구조층과 투명성 결합층의 일부 영역을 제거하여 투명성 오믹접촉 커런트스프레딩층을 대기 중으로 노출한 다음, 상기 투명성 오믹접촉 커런트스프레딩층 상층부에 p형 쇼키접촉 전극 패드를 형성하는 단계; 및
상기 하부 질화물계 클래드층 상부의 일부 영역에 형성되는 n형 오믹접촉 전극 및 전극 패드를 형성하는 단계;를 포함한다.
상기 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체의 p형 도전성의 상부 질화물계 클래드층 상부에 기존 공지된 슈퍼래티스 구조(spuerlattice structure), n형 도전성의 InGaN, p형 도전성의 InGaN, 또는 질소 극성으로 형성된 표면(nitrogen-polar surface)을 갖는 질화물계가 형성된 구조를 포함한다.
상기 투명성 오믹접촉 커런트스프레딩층을 구성하는 물질계는 600 나노미터 이하의 파장 영역 대에서 70% 이상의 높은 빛 투과율 특성을 지니면서, 동시에 상기 상부 질화물계 클래드층와의 오믹접촉 계면을 형성한다.
상기 투명성 결합층(transparent bonding layer)은 상기 투명성 오믹접촉 커런트스프레딩층과 광추출 구조층 간에 강한 기계 및 열적으로 안정한 결합력을 형성하는 전기절연성 물질이면 모두 가능하지만, 무엇보다도 상기 발광다이오드 내부에서 생성된 빛을 외부로 방출시킬 수 있는 투명한 SiO2, SiNx, Al2O3, ZnO, ZnS, MgF2, SOG(spin on glass) 등의 전기절연성인 물질계를 우선적으로 선택하는 것이 바람직하다.
상기 지지 기판을 분리 제거하는 방법은 화학-기계적인 폴리싱(chemical-mechanical polishing: CMP), 특정 파장 대역의 포톤 빔을 이용한 레이저 리프트 오프(laser lift-off: LLO), 습식 식각 용액을 이용한 화학적 리프트 오프(chemical lift-off: CLO) 등이 바람직하다.
상기 광추출 구조층을 구성하는 물질은 식각(etching) 가능한 물질이면 모두 가능하지만, 단결정 육방정계 구조를 갖는 GaN을 포함한 그룹 3족 질화물계, ZnO을 포함한 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조의 물질계를 우선적으로 선택하는 것이 바람직하다.
더 나아가서, 상기 대기 중으로 노출된 광추출 구조층의 표면은 금속성 표면(metallic surface)인 양성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial positive polarity hexagonal surface) 보다 비금속성 표면(non-metallic surface)인 음성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial negative polarity hexagonal surface) 또는 상기 두 극성이 혼합된 극성을 갖는 단결정 육방정계 결정 표면(epitaxial mixed polarity hexagonal surface)이 바람직하다. 이 경우, 일예로, 식각 용액 속에서 용이하게 피라미드 형상으로 표면 요철 또는 패터닝이 형성되는 질소 극성(nitrogen polarity)을 갖는 단결정 그룹 3족 질화물계, 산소 극성(oxygen polarity)을 갖는 단결정 그룹 2족 산화물계 등이 바람직하다.
더 나아가서, 상기 광추출 구조층은 단결정(epitaxy) 이외에도, 다결정 체(poly-crystal) 또는 비정질(amorphous) 육방정계 구조의 물질계도 가능하다.
더 나아가서, 상기 광추출 구조층은 형광성(luminescent), 비반사성(anti-reflective), 또는 광 필터링(light filtering) 역할을 수행할 수 있도록 도판트(dopant) 원소 내지 또 다른 층(layer)을 포함하는 것도 바람직하다.
이상 설명한 바와 같이, 본 발명은 그룹 3족 질화물계 반도체 발광소자(발광다이오드) 소자에 있어서, p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1) 질화물계 반도체인 상부 질화물계 클래드층 상층부에 형성된 투명성 오믹접촉 커런트스프레딩층 위에 투명성 결합층에 의해 광추출 구조층을 형성시켜 양호한 LED 소자 전체의 양호한 전기적 특성 이외에도, 빛의 투과율 특성이 개선된 상기 광추출 구조층 사용 결과로 LED 소자의 휘도를 향상시킬 수 있는 우수한 효과가 있다.
더하여, 종래 기술들과는 달리 기판 웨이퍼와 기판 웨이퍼 결합 공정에 의해 형성된 광추출 구조층을 갖는 그룹 3족 질화물계 반도체 발광다이오드 소자에 있어서, 습식 또는 건식에칭에 의해 표면 요철 또는 패터닝을 용이하게 광추출 구조층 표면에 형성시킬 수 있기 때문에 LED 소자용 다층구조체 구조 내부로 전반사하는 빛을 최소화시켜 LED 소자의 전체 휘도 특성을 한층 더 향상시킬 수 있는 우수한 효과가 있다.
이하, 첨부된 도를 참조하여, 본 발명에 따라 제조된 그룹 3족 질화물계 반도체 발광다이오드 소자에 대해 보다 상세하게 설명하기로 한다.
도 1은 본 발명에 의해 제조된 제1 실시예로서 보인 그룹 3족 질화물계 반도체 발광다이오드 소자의 단면도이다.
도 1을 참조하여 설명하면, 성장 기판(10) 상부에 본 발명의 일 실시예에 따른 발광다이오드(1)는 버퍼층(110), n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20), 질화물계 활성층(30), p형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(40), 투명성 오믹접촉 커런트스프페딩층(50), 투명성 결합층(80), 광추출 구조층(90), p형 전극패드(60) 및 n형 오믹접촉 전극 및 전극패드(70)를 포함한다.
상기 성장 기판(10)은 사파이어(sapphire) 또는 실리콘카바이드(SiC) 등과 같은 소재로 이루어질 수 있다.
상기 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20)은 n형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 형성될 수 있으며, 상기 성장 기판(10) 상부에 형성된 버퍼층(110)을 포함할 수 있다.
상기 하부 질화물계 클래드층(20)은 실리콘(Si)을 도핑(doping)하여 형성할 수 있다.
상기 질화물계 발광층(30)은 전자(electron) 및 정공(hole)이 재결합되는 영역으로서, InGaN, AlGaN, GaN, AlInGaN 등을 포함하여 이루어진다. 상기 질화물계 발광층(30)을 이루는 물질의 종류에 따라 상기 발광다이오드(1)에서 방출되는 빛의 발광 파장이 결정된다. 상기 질화물계 발광층(30)은 양자 우물층(well layer)과 장벽층(barrier layer)이 반복적으로 형성된 다층막일 수 있다. 상기 장벽층과 우물 층은 일반식 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 표현되는 2원 내지 4원 화합물 질화물계 반도체층일 수 있다. 더 나아가서, 상기 장벽층과 우물층은 실리콘(Si) 또는 마그네슘(Mg) 등을 도핑하여 형성할 수 있다.
상기 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)은 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 형성될 수 있다.
상기 상부 질화물계 클래드층(40)은 아연(Zn) 또는 마그네슘(Mg)을 도핑(doping)하여 형성할 수 있다.
상기 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)은 상기 상부 질화물계 클래드층(40) 상부에 직접적으로 기존 공지된 슈퍼래티스 구조(spuerlattice structure), n형 도전성의 InGaN, p형 도전성의 InGaN, 또는 질소 극성으로 형성된 표면(nitrogen-polar surface)을 갖는 질화물계 등이 형성될 수 있다.
상기 발광다이오드(1)는 상기 하부 질화물계 클래드층(20), 상기 질화물계 발광층(30), 그리고 상부 질화물계 클래드층(40)이 연속적으로 적층된 구조를 이룬다. 상기 질화물계 발광층(30)은 상기 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20)의 일부 영역 상부에 형성되며, 상기 질화물계 발광층(30) 위로는 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)이 형성된다. 따라서, 상기 하부 질화물계 클래드층(20) 상면 일부 영역은 상기 질화물계 발광층(30)과 접합 되어 있으며, 상면의 나머지 일부 영역은 외부로 노출된다.
상기 투명성 오믹접촉 커런트스프레딩층은(50)은 상기 상부 질화물계 클래드 층(40) 상부의 일부 또는 전체 영역에 형성되고, 상기 질화물계 발광층(30)에서 방출되는 빛을 외부로 투과시킨다. 상기 투명성 오믹접촉 커런트스프레딩층은(50)은 산화된 니켈금(Ni-Au-O), 인디움틴산화막(ITO), 아연산화막(ZnO) 등과 같이 600 나노미터 이하의 파장 영역 대에서 70% 이상의 높은 빛 투과율 특성을 지니며, 물리적 증기 증착(physical vapor deposition; PVD) 또는 화학적 증기 증착(chemical vapor deposition; CVD) 방법에 의해 형성될 수 있다. 상기 투명성 오믹접촉 커런트스프레딩층은(50)은 상기 제 p 및 제 n 형 전극패드(60, 70)를 통해 입력되는 전류를 골고루 분산시켜 발광 효율을 높이는 역할을 수행한다.
상기 투명성 결합층(80)은 상기 투명성 오믹접촉 커런트스프레딩층은(50) 상부의 일부 영역에 형성되고, 상기 질화물계 발광층(30)에서 방출되는 빛을 외부로 투과시킨다. 상기 투명성 결합층(80)은 상기 발광다이오드(1) 내부에서 생성된 빛을 외부로 방출시키는 것 이외에도, 상기 광추출 구조층(90)을 상부 질화물계 클래드층(40) 상부에 기계 및 열적으로 안정하게 결합시켜 주는 투명한 SiO2, SiNx, Al2O3, ZnO, ZnS, MgF2, SOG(spin on glass) 등의 전기절연성인 물질계를 물리적 증기 증착(PVD) 또는 화학적 증기 증착(CVD) 방법에 의해 형성될 수 있다.
상기 광추출 구조층(90)은 상기 투명성 결합층(80) 상부에 형성되고, 상기 질화물계 발광층(30)에서 방출되는 빛을 외부로 투과시킨다. 상기 광추출 구조층(90)은 상기 발광다이오드(1) 내부에서 생성된 빛의 내부로 전반사되는 양을 감소시켜 광추출 효율을 증가시키기 위해서, 표면 요철 또는 패터닝이 도입되지 않은 제1 광추출 구조층(901)과 도입된 제2 광추출 구조층(902)의 두 영역으로 구성되어 있다. 특히, 상기 제2 광추출 구조층(902)은 대기(air)와 접한 부분으로서 빛의 입사각을 변환시켜 물질 상수인 빛의 굴절률(refractive index)과는 상관없이 많은 빛을 외부로 방출시킨다.
상기 광추출 구조층(90)을 구성하는 물질은 식각(etching) 가능한 물질이면 모두 가능하지만, 육방정계의 구조를 갖는 GaN을 포함한 그룹 3족 질화물계, ZnO을 포함한 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조의 물질계로 형성될 수 있다.
더 나아가서, 상기 제2 광추출 구조층(902)은 금속성 표면(metallic surface)인 양성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial positive polarity hexagonal surface) 보다 비금속성 표면(non-metallic surface)인 음성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial negative polarity hexagonal surface) 또는 상기 두 극성이 혼합된 극성을 갖는 단결정 육방정계 결정 표면(epitaxial mixed polarity hexagonal surface)이 바람직하며, 이 경우, 일예로 식각 용액 속에서 용이하게 피라미드 형상으로 표면 요철 또는 패터닝이 형성되는 질소 극성(nitrogen polarity)을 갖는 그룹 3족 질화물계, 산소 극성(oxygen polarity)을 갖는 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조로 형성될 수 있다.
더 나아가서, 상기 광추출 구조층(90)은 단결정(epitaxy) 이외에도, 다결정체(poly-crystal) 또는 비정질(amorphous)의 투명성 육방정계 구조로 형성될 수 있다.
더 나아가서, 상기 광추출 구조층(90)은 형광성(luminescent), 비반사성(anti-reflective), 또는 광 필터링(light filtering) 역할을 수행 할 수 있도록 도판트(dopant) 원소 내지 또 다른 층(layer)을 포함하고 있는 투명성 육방정계 구조로 형성될 수 있다.
상기 p형 전극패드(60)는 상기 투명성 결합층(80) 및 광추출 구조층(90)의 일부 영역을 제거시킨 후, 대기 중에 노출된 상기 투명성 오믹접촉 커런트스프레딩층(50) 상부에 위치한다. 상기 p형 전극패드(60)는 상기 투명성 오믹접촉 커런트스프레딩층(50)과 쇼키접촉(schottky contact) 계면을 형성하기 위한 물질, 예를 들어 Cr/Au과 같은 금속으로 이루어지며 리프트 오프(lift off) 방법에 의해 형성될 수 있다. Cr/Au을 사용하여 상기 투명성 오믹접촉 커런트스프레딩층(50)와의 접착력(adhesion)을 개선시킬 뿐만 아니라 바람직한 상기 투명성 오믹접촉 커런트스프레딩층(50)와의 쇼키접촉 계면을 얻을 수 있다.
상기 n형 오믹접촉 전극 및 전극패드(70)는 n형 도전성의 반도체 물질로 이루어진 상기 하부 질화물계 클래드층(20)의 노출면 위에 형성되며 리프트 오프 방법을 사용하여 형성할 수 있다. 상기 n형 오믹접촉 전극 및 전극패드(70)는 상기 하부 질화물계 클래드층(20)과 오믹접촉 계면을 형성하기 위한 물질, 예를 들어 Cr/Al과 같은 금속으로 이루어지며, Cr 금속을 사용하여 접착력(adhesion)을 개선할 뿐만 아니라 바람직한 상기 하부 질화물계 클래드층(20)과의 오믹접촉(ohmic contact) 계면을 얻을 수 있다.
도 2는 본 발명에 의해 제조된 제2 실시예로서 보인 그룹 3족 질화물계 반도 체 발광다이오드 소자의 단면도이다.
도 2를 참조하여 설명하면, 성장 기판(10) 상부에 본 발명의 일 실시예에 따른 발광다이오드(2)는 버퍼층(110), n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20), 질화물계 활성층(30), p형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(40), 투명성 오믹접촉 커런트스프페딩층(50), 투명성 결합층(80), 광추출 구조층(90), p형 전극패드(60) 및 n형 오믹접촉 전극 및 전극패드(70)를 포함한다.
상기 성장 기판(10)은 사파이어(sapphire) 또는 실리콘카바이드(SiC) 등과 같은 소재로 이루어질 수 있다.
상기 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20)은 n형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 형성될 수 있으며, 상기 성장 기판(10) 상부에 형성된 버퍼층(110)을 포함할 수 있다.
상기 하부 질화물계 클래드층(20)은 실리콘(Si)을 도핑(doping)하여 형성할 수 있다.
상기 질화물계 발광층(30)은 전자(electron) 및 정공(hole)이 재결합되는 영역으로서, InGaN, AlGaN, GaN, AlInGaN 등을 포함하여 이루어진다. 상기 질화물계 발광층(30)을 이루는 물질의 종류에 따라 상기 발광다이오드(1)에서 방출되는 빛의 발광 파장이 결정된다. 상기 질화물계 발광층(30)은 양자 우물층(well layer)과 장벽층(barrier layer)이 반복적으로 형성된 다층막일 수 있다. 상기 장벽층과 우물층은 일반식 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 표현되는 2원 내지 4 원 화합물 질화물계 반도체층일 수 있다. 더 나아가서, 상기 장벽층과 우물층은 실리콘(Si) 또는 마그네슘(Mg) 등을 도핑하여 형성할 수 있다.
상기 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)은 p형 In x Al y Ga 1-x-y N(0≤x, 0≤y, x+y≤1)으로 형성될 수 있다.
상기 상부 질화물계 클래드층(40)은 아연(Zn) 또는 마그네슘(Mg)을 도핑(doping)하여 형성할 수 있다.
상기 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)은 상기 상부 질화물계 클래드층(40) 상부에 직접적으로 기존 공지된 슈퍼래티스 구조(spuerlattice structure), n형 도전성의 InGaN, p형 도전성의 InGaN, 또는 질소 극성으로 형성된 표면(nitrogen-polar surface)을 갖는 질화물계 등이 형성될 수 있다.
상기 발광다이오드(1)는 상기 하부 질화물계 클래드층(20), 상기 질화물계 발광층(30), 그리고 상부 질화물계 클래드층(40)이 연속적으로 적층된 구조를 이룬다. 상기 질화물계 발광층(30)은 상기 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20)의 일부 영역 상부에 형성되며, 상기 질화물계 발광층(30) 위로는 p형 도전성의 반도체 물질로 이루어진 상부 질화물계 클래드층(40)이 형성된다. 따라서, 상기 하부 질화물계 클래드층(20) 상면 일부 영역은 상기 질화물계 발광층(30)과 접합되어 있으며, 상면의 나머지 일부 영역은 외부로 노출된다.
상기 투명성 오믹접촉 커런트스프레딩층은(50)은 상기 상부 질화물계 클래드층(40) 상부의 일부 또는 전체 영역에 형성되고, 상기 질화물계 발광층(30)에서 방 출되는 빛을 외부로 투과시킨다. 상기 투명성 오믹접촉 커런트스프레딩층은(50)은 산화된 니켈금(Ni-Au-O), 인디움틴산화막(ITO), 아연산화막(ZnO) 등과 같이 600 나노미터 이하의 파장 영역 대에서 70% 이상의 높은 빛 투과율 특성을 지니며, 물리적 증기 증착(PVD) 또는 화학적 증기 증착(CVD) 방법에 의해 형성될 수 있다. 상기 투명성 오믹접촉 커런트스프레딩층은(50)은 상기 제 p 및 제 n 형 전극패드(60, 70)를 통해 입력되는 전류를 골고루 분산시켜 발광 효율을 높이는 역할을 수행한다.
상기 투명성 결합층(80)은 상기 투명성 오믹접촉 커런트스프레딩층은(50) 상부의 일부 영역에 형성되고, 상기 질화물계 발광층(30)에서 방출되는 빛을 외부로 투과시킨다. 상기 투명성 결합층(80)은 상기 발광다이오드(2) 내부에서 생성된 빛을 외부로 방출시키는 것 이외에도, 상기 광추출 구조층(90)을 상부 질화물계 클래드층(40) 상부에 기계 및 열적으로 안정하게 결합시켜 주는 투명한 SiO2, SiNx, Al2O3, ZnO, ZnS, MgF2, SOG(spin on glass) 등의 전기절연성인 물질계를 물리적 증기 증착(PVD) 또는 화학적 증기 증착(CVD) 방법에 의해 형성될 수 있다.
상기 광추출 구조층(90)은 상기 투명성 결합층(80) 상부에 형성되고, 상기 질화물계 발광층(30)에서 방출되는 빛을 외부로 투과시킨다. 상기 광추출 구조층(90)은 상기 발광다이오드(2) 내부에서 생성된 빛의 내부로 전반사되는 양을 감소시켜 광추출 효율을 증가시키기 위해서, 표면 요철 또는 패터닝이 도입되지 않은 제1 광추출 구조층(901), 표면 요철 또는 패터닝이 도입된 제2 광추출 구조층(902)과, 물질로 충진된 비아홀(via-hole)의 제3 광추출 구조층(903)과, 및 물질로 증착 된 제4 광추출 구조층(904)의 네 영역으로 구성되어 있다.
상기 제1 및 제2 광추출 구조층(901, 902)을 구성하는 물질은 식각(etching) 가능한 물질이면 모두 가능하지만, 육방정계의 구조를 갖는 GaN을 포함한 그룹 3족 질화물계, ZnO을 포함한 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조의 물질계로 형성될 수 있다. 특히, 상기 제2 광추출 구조층(902)은 대기(air)와 접한 부분으로서 빛의 입사각을 변환시켜 상기 광추출 구조층(90)의 물질 상수인 빛의 굴절률(refractive index)과는 상관없이 많은 빛을 외부로 방출시킨다.
더 나아가서, 상기 제2 광추출 구조층(902)은 금속성 표면(metallic surface)인 양성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial positive polarity hexagonal surface) 보다 비금속성 표면(non-metallic surface)인 음성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial negative polarity hexagonal surface) 또는 상기 두 극성이 혼합된 극성을 갖는 단결정 육방정계 결정 표면(epitaxial mixed polarity hexagonal surface)이 바람직하며, 이 경우, 일예로 식각 용액 속에서 용이하게 피라미드 형상으로 표면 요철 또는 패터닝이 형성되는 질소 극성(nitrogen polarity)을 갖는 그룹 3족 질화물계, 산소 극성(oxygen polarity)을 갖는 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조로 형성될 수 있다.
더 나아가서, 상기 제1 및 제2 광추출 구조층(901, 902)은 단결정(epitaxy) 이외에도, 다결정체(poly-crystal) 또는 비정질(amorphous)의 투명성 육방정계 구조로 형성될 수 있다.
더 나아가서, 상기 제1 및 제2 광추출 구조층(901, 902)은 형광성(luminescent), 비반사성(anti-reflective), 또는 광 필터링(light filtering) 역할을 수행할 수 있도록 도판트(dopant) 원소 내지 또 다른 층(layer)을 포함하고 있는 투명성 육방정계 구조로 형성될 수 있다.
상기 제3 광추출 구조층(903)은 광학적으로 투명하고, 전기전도성을 갖는 ITO 또는 ZnO 등의 물질로 충진(filling)될 수 있다.
상기 제2 광추출 구조층(902) 상부에 증착된 상기 제4 광추출 구조층(904)은 광학적으로 투명하고, 전기전도성을 갖는 ITO 또는 ZnO 등의 물질로 형성될 수 있다.
상기 제3 및 제4 광추출 구조층(903, 904)은 상기 제 p 및 제 n 형 전극패드(60, 70)를 통해 입력되는 전류를 골고루 분산시켜 발광 효율을 높이는 역할을 수행한다.
상기 p형 전극패드(60)는 상기 제4 광추출 구조층(904) 상부에 위치하며, 상기 제4 광추출 구조층(904)과 쇼키접촉(schottky contact) 계면을 형성하기 위한 물질, 예를 들어 Cr/Au과 같은 금속으로 이루어지며 리프트 오프(lift off) 방법에 의해 형성될 수 있다. Cr/Au을 사용하여 상기 제4 광추출 구조층(904)과의 접착력(adhesion)을 개선시킬 뿐만 아니라 바람직한 상기 제4 광추출 구조층(904)의 쇼키접촉 계면을 얻을 수 있다.
상기 n형 오믹접촉 전극 및 전극패드(70)는 n형 도전성의 반도체 물질로 이루어진 상기 하부 질화물계 클래드층(20)의 노출면 위에 형성되며 리프트 오프 방 법을 사용하여 형성할 수 있다. 상기 n형 오믹접촉 전극 및 전극패드(70)는 상기 하부 질화물계 클래드층(20)과 오믹접촉 계면을 형성하기 위한 물질, 예를 들어 Cr/Al과 같은 금속으로 이루어지며, Cr 금속을 사용하여 접착력(adhesion)을 개선할 뿐만 아니라 바람직한 상기 하부 질화물계 클래드층(20)과의 오믹접촉(ohmic contact) 계면을 얻을 수 있다.
도 3은 본 발명에 따른 일 실시예로서, 그룹 3족 질화물계 반도체 발광다이오드 소자 제조 공정을 보여주는 흐름도이다. 또한, 그룹 3족 질화물계 반도체 발광다이오드 소자를 제조하는 각각의 단계를 더욱 상세하게 설명하기 위한 도 4 내지 11은 본 발명에 따른 일 실시예이다.
도 3과, 4 내지 11을 참조하면, 우선 먼저 A 단계에서, 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체를 성장시키기 위한 성장 기판(growth substrate)을 마련하고, 상기 성장 기판의 상부에 n형 도전성의 그룹 3족 질화물계 반도체 물질계로 구성된 하부 질화물계 클래드층, 그룹 3족 질화물계 활성층, 및 p형 도전성의 그룹 3족 질화물계 반도체 물질계로 구성된 상부 질화물계 클래드층을 순차적으로 성장한다.
도 4에 보인 바와 같이, 상기 성장 기판(10)으로는 Al2O3, SiC 등을 사용할 수 있으며, 패터닝된 표면을 갖는 기판(patterned or corrugated substrate)도 사용할 수 있다.
상기 하부 질화물계 클래드층(20) 및 상부 질화물계 클래드층(40)은 GaN층, InGaN층, AlInN층, AlGaN층, 또는 AlInGaN층 등을 연속적으로 형성하여 이루어질 수 있으며, MOCVD 또는 MBE 공정으로 형성될 수 있다. 더 나아가서, p형 도전성의 그룹 3족 질화물계 반도체 물질계로 구성된 상기 상부 질화물계 클래드층(40) 상부에 직접적으로 기존 공지된 슈퍼래티스 구조(spuerlattice structure), n형 도전성의 InGaN, p형 도전성의 InGaN, 또는 질소 극성으로 형성된 표면(nitrogen-polar surface)을 갖는 질화물계막(미도시) 등이 형성될 수 있다.
그런 다음, B 단계에서는 상기 A 단계에서 성장된 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 상부에 오믹접촉 커런트스프레딩층(ohmic contact current spreading layer)을 형성한다. 도 5에 보인 바와 같이, 상기 오믹접촉 커런트스프레딩층(50)은 600 나노미터 이하의 파장 영역 대에서 70% 이상의 높은 빛 투과율 특성을 갖는 산화된 니켈-금(Ni-Au-O), 인디움틴산화막(ITO), 아연산화막(ZnO) 등의 물질을, 상온 내지 600도 이하의 온도 범위 내에서 물리적 증기 증착(PVD) 또는 화학적 증기 증착(CVD) 방법에 의해 형성될 수 있다. 더 나아가서, 상기 오믹접촉 커런트스프레딩층(50)을 증착한 후에 전기 및 광학적 특성을 향상시키기 위해서 추가적인 열처리(annealing)를 수행할 수 있다.
그런 다음, C 단계에서는 지지 기판(supporting substrate)을 준비하고, 상기 준비된 지지 기판 상부에 광추출 구조(light-extraction structure)를 형성한다. 도 6에 보인 바와 같이, 상기 지지 기판(11)은 A 단계에서 준비된 성장 기판(10)과 동일한 물질을 우선적으로 사용하는 것이 바람직하다. 더 나아가서, 상기 지지 기판(11)은 Al2O3, SiC, 유리, AlGaN, AlN, GaN, InGaN 등과 같이 600 나노미터 이하의 파장 영역 대에서 50% 이상의 높은 빛 투과율 특성을 갖는 물질 내지, 또는 GaAs, Si 등과 같이 용이하게 식각이 되는 물질이 사용될 수 있다.
상기 광추출 구조(1400)는 상기 지지 기판(11) 상부에 위치하며, 희생 분리층(1401)과 광추출 구조층(1402)으로 구성된다. 상기 희생 분리층(1401)은 상기 지지 기판(11)을 식각 용액(etching solution) 또는 포톤 빔(photo-beam)에 의해서 각각 화학 및 열-화학 분해(chemical and thermo-chemical decomposition) 반응에 의해 분리(lift-off) 제거하는데 유리한 물질계로 형성될 수 있다. 상기 광추출 구조층(1402)은 식각(etching) 가능한 물질이면 모두 가능하지만, 육방정계의 구조를 갖는 GaN을 포함한 그룹 3족 질화물계, ZnO을 포함한 그룹 2족 산화물계 등의 투명성 단결정 육방정계 구조의 물질계로서 MOCVD, MBE, PVD, CVD 등의 방법을 이용할 수 있다.
그런 다음, D 단계에서는 상기 B 단계를 거친 후 준비된 성장 기판과 상기 C 단계를 거친 후 준비된 지지 기판을 투명성 결합층(transparent bonding layer)을 이용하여 웨이퍼 결합시킨 복합체를 형성한다. 도 7에 보인 바와 같이, 상기 성장 기판(10) 상부에 형성된 투명성 오믹접촉 커런트스프레딩층(50)과 상기 지지 기판(11) 상부에 형성된 광추출 구조층(1402)을 맞대어 정렬시킨 후, 투명성 결합층(80)을 이용하여 웨이퍼를 결합시킨 복합체(3)를 형성한다. 특히, 상기 투명성 결합층(80)을 이용하여 복합체를 형성하기에 앞서, 상기 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 내지 광추출 구조를 각각의 기판까지 다양한 디멘젼(demiension)와 형상(shape)으로 완전 또는 부분 아이솔레이션(isolation) 공정을 수행할 수 있다.
상기 투명성 결합층(80)은 상기 투명성 오믹접촉 커런트스프레딩층(50)과 광추출 구조층(1402) 사이에 위치하며, 상하의 두 층(50, 1402)을 기계 및 열적으로 안정하게 결합시켜 주는 투명한 SiO2, SiNx, Al2O3, ZnO, ZnS, MgF2, SOG(spin on glass) 등의 전기절연성인 물질계를 물리적 증기 증착(PVD) 또는 화학적 증기 증착(CVD) 방법에 의해 형성될 수 있다.
그런 다음, E 단계에서는 상기 D 단계에서 형성된 복합체에서 상기 지지 기판을 분리(lift-off) 제거한다. 도 8에 보인 바와 같이, 상기 복합체로부터 지지 기판(11)을 분리 제거하는 방법은 도 8a에서처럼 특정 파장을 갖는 포톤 빔(12)을 지지 기판(11) 후면(back-side)에 조사시켜 미도시된 상기 희생 분리층(sacrificial separation layer)의 열-화학 분해 반응을 이용하는 것이고, 상기 도 8b에서처럼 특정 식각 용액(13)을 이용하여 상기 희생 분리층(1401)만의 선택적 화학 분해 반응을 이용하는 것이다. 상기 특정 파장을 갖는 포톤 빔(12)은 상기 지지 기판(11)을 투과한 반면에, 상기 희생 분리층에 의해서 강한 흡수가 일어나는 동시에 높은 열이 발생하게 되어 상기 희생 분리층을 구성하는 물질을 분해할 수 있어야 한다. 더 나아가서, 상기 복합체로부터 지지 기판(11)을 분리 제거하는 방법은 미도시되었지만, 기계적 가공인 폴리싱(polishing) 내지 기계-화학적 가공인 CMP(chemical mechanical polishing)을 이용할 수 있다.
그런 다음, F 단계에서는 상기 E 단계에서 상기 지지 기판을 제거 분리시킨 후에 대기 중으로 노출된 광추출 구조층 표면에 요철(surface texturing) 또는 패터닝(patterning)을 형성한다. 도 9a 및 9b는 상기 지지 기판(11)을 각각 전면 및 부분으로 제거 분리시킨 후의 단면도이다. 도 9a는, 상기 광추출 구조층(1402)이 대면적으로 상기 투명성 결합층(80)에 의해 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 상부에 부착되어 있다. 반면에, 도 9b는 상기 광추출 구조층(1402)이 일정한 모양의 디멘젼으로 상기 투명성 결합층(80)에 의해 결합되어 있다. 특히, 상기 광추출 구조층(1402)의 표면에는 다양한 식각 공정에 의해서 표면 요철 또는 패터닝 공정이 수행될 수 있다.
그런 다음, G 단계에서는 상기 E 단계를 거친 복합체 내의 상기 투명성 오믹접촉 커런트스프레딩층 상부에 p형 전극패드를 형성한다. 도 10에 보인 바와 같이, 상기 투명성 오믹접촉 커런트스프레딩층(50) 상부에 위치한 전기절연성인 상기 투명성 결합층(80)으로 인해 상기 광추출 구조층(1402) 상부에 직접적으로 p형 전극패드(60)를 형성시킬 수가 없기 때문에 상기 광추출 구조층(1402) 및 투명성 결합층(80)의 일부 영역을 제거시킨 후, 대기 중으로 노출시킨 상기 투명성 오믹접촉 커런트스프레딩층(50) 상부의 일부 영역에 p형 전극패드(60)를 형성할 수 있다. 특히, 상기 투명성 오믹접촉 커런트스프레딩층(50) 상부의 일부 영역에 형성시킨 p형 전극패드(60)는 Cr, Al, Ag, Ti, Au, Pt, Pd 등의 물질계로 쇼키접촉 계면을 갖는 것이 바람직하다. 더 나아가서, 경우에 따라서는 오믹접촉 계면을 형성할 수 있다.
또한, 언급한 바와 같이, 상기 투명성 오믹접촉 커런트스프레딩층(50) 상부에 위치한 전기절연성인 상기 투명성 결합층(80)으로 인해 상기 광추출 구조층(1402) 및 투명성 결합층(80)의 일부 영역을 수직방향으로 상기 투명성 오믹접촉 커런트스프레딩층(50)까지 비아홀(via-hole)을 생성시킨 후, ITO, ZnO 등의 투명성 전기전도성 물질로 상기 비이홀을 충진한 다음, 연이어 상기 광추출 구조층(1402) 표면에 투명성 전기전도성 물질막을 형성시켜 상기 광추출 구조층(1402) 상부에 위치한 투명성 전기전도성 물질막 상부에 p형 전극패드(60)를 형성할 수 있다.
그런 다음, H 단계에서는 상기 E 단계를 거친 복합체 내의 상기 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층 상층부의 일부 영역에 n형 오믹접촉 전극 및 전극패드를 형성한다. 도 11에 도시된 바와 같이, 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체 내에 묻혀 있기 때문에 상기 광추출 구조층(1402), 투명성 결합층(80), 투명성 오믹접촉 커런트스프레딩층(50), 상부 질화물계 클래드층(40), 질화물계 발광층(30), 일부의 상부 질화물계 클래드층(20)을 제거 한 후, 대기 중으로 노출된 n형 도전성의 반도체 물질로 이루어진 하부 질화물계 클래드층(20) 상층부의 일부 영역에 Cr, Al, Ag, Ti, Au, Pt, Pd 등의 물질계로 n형 오믹접촉 전극 및 전극패드(70)를 형성할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
도 1은 본 발명에 의해 제조된 제1 실시예로서 보인 그룹 3족 질화물계 반도체 발광다이오드 소자의 단면도이고,
도 2는 본 발명에 의해 제조된 제2 실시예로서 보인 그룹 3족 질화물계 반도체 발광다이오드 소자의 단면도이고,
도 3은 본 발명에 따른 일 실시예로서, 그룹 3족 질화물계 반도체 발광다이오드 소자 제조 공정을 보여주는 흐름도이고,
도 4 내지 11은 본 발명에 따른 일 실시예로서, 그룹 3족 질화물계 반도체 발광다이오드 소자 제조 공정을 보여주는 단면도이고,
도 12는 종래 그룹 3족 질화물계 반도체 발광다이오드 소자의 대표적인 예를 도시한 단면도이다.

Claims (14)

  1. 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체를 성장시키기 위한 성장 기판(growth substrate)을 준비하는 단계;
    상기 성장 기판 상부에 n형 도전성의 그룹 3족 질화물계 반도체 물질계로 이루어진 하부 질화물계 클래드층과, 또 다른 그룹 3족 질화물계 반도체 물질계로 이루어진 질화물계 활성층과, p형 도전성의 그룹 3족 질화물계 반도체 물질계로 이루어진 상부 질화물계 클래드층이 순차적으로 구성된 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체를 형성하는 단계;
    상기 발광다이오드 소자용 다층구조체의 최상층부인 상부 질화물계 클래드층 상부에 투명성 오믹접촉 커런트스프레딩층을 형성하는 단계;
    광추출 구조(light-extraction structure)을 형성시키기 위한 지지 기판(supporting substrate)을 준비하는 단계;
    상기 지지 기판 상부에 광추출 구조를 형성하는 단계;
    상기 투명성 오믹접촉 커런트스레딩층과 광추출 구조를 투명성 결합층을 사용하여 웨이퍼 결합(wafer bonding)시켜 복합체를 형성하는 단계;
    상기 웨이퍼 결합된 복합체에서 지지 기판을 분리 제거하는 단계;
    대기 중으로 노출된 상기 광추출 구조의 표면에 요철 또는 패터닝을 형성시키는 단계;
    상기 광추출 구조층과 투명성 결합층의 일부 영역을 제거하고, 투명성 오믹접촉 커런트스프레딩층을 대기 중으로 노출한 다음, 상기 투명성 오믹접촉 커런트스프레딩층 상층부에 p형 쇼키접촉 전극 패드를 형성하는 단계; 및
    상기 하부 질화물계 클래드층 상부의 일부 영역에 형성되는 n형 오믹접촉 전극 및 전극 패드를 형성하는 단계;를 거친 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  2. 제 1항에 있어서,
    상기 그룹 3족 질화물계 반도체 발광다이오드 소자용 다층구조체의 p형 도전성의 상부 질화물계 클래드층 상부에 기존 공지된 슈퍼래티스 구조(spuerlattice structure), n형 도전성의 InGaN, p형 도전성의 InGaN, 또는 질소 극성으로 형성된 표면(nitrogen-polar surface)을 갖는 질화물계가 형성된 구조을 포함하는 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  3. 제 1항에 있어서,
    상기 투명성 오믹접촉 커런트스프레딩층을 구성하는 물질계는 600 나노미터 이하의 파장 영역 대에서 70% 이상의 높은 빛 투과율 특성을 지니면서, 동시에 상기 상부 질화물계 클래드층과의 오믹접촉 계면을 형성하는 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  4. 제 1항에 있어서,
    상기 투명성 결합층(transparent bonding layer)은 투명한 전기절연성 물질인 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  5. 제 1항에 있어서,
    상기 지지 기판을 분리 제거하는 방법은 화학-기계적인 폴리싱(chemical-mechanical polishing: CMP), 특정 파장대역의 포톤 빔을 이용한 레이저 리프트 오프(laser lift-off: LLO), 습식 식각 용액을 이용한 화학적 리프트 오프(chemical lift-off: CLO), 화학-기계적 폴리싱(CMP) 방법을 사용한 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  6. 제 1항에 있어서,
    상기 광추출 구조를 구성하는 물질은 투명성 단결정 육방정계 구조의 물질계를 포함한 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  7. 제 1항에 있어서,
    상기 대기 중으로 노출된 광추출 구조의 표면은 비금속성 표면(non-metallic surface)인 음성 극성을 갖는 단결정 육방정계 결정 표면(epitaxial negative polarity hexagonal surface) 또는 두 극성이 혼합된 극성을 갖는 단결정 육방정계 결정 표면(epitaxial mixed polarity hexagonal surface)인 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  8. 제 1항에 있어서,
    상기 광추출 구조층은 단결정(epitaxy) 이외에도, 다결정체(poly-crystal) 또는 비정질(amorphous) 육방정계 구조의 물질계을 포함한 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  9. 제 1항에 있어서,
    상기 광추출 구조층은 형광성(luminescent), 비반사성(anti-reflective), 또는 광 필터링(light filtering) 역할을 수행할 수 있도록 도판트(dopant) 원소 내 지 또 다른 층(layer)을 포함하는 그룹 3족 질화물계 반도체 발광다이오드의 제조 방법.
  10. 제 1 도전형 반도체층;
    상기 제 1 도전형 반도체층 상에 배치된 활성층;
    상기 활성층 상에 배치된 제 2 도전형 반도체층;
    상기 제 2 도전형 반도체층 상에 배치된 투명성 오믹접촉 커런트 스프레딩층;
    상기 투명성 오믹접촉 커런트 스프레딩층 상에 배치된 투명성 결합층; 및
    상기 투명성 결합층 상에 배치된 광추출 구조층;을 포함하고,
    상기 광추출 구조층은 상기 투명성 결합층 상에 배치된 제 1 광추출 구조층과, 상기 제 1 광추출 구조층 상에 배치되고 표면에 요철 또는 패터닝이 형성된 제 2 광추출 구조층과, 상기 제 1 및 제 2 광추출 구조층에 형성된 적어도 하나 이상의 비아홀(via-hole)을 채우는 전기전도성 물질인 제 3 광추출 구조층을 포함하는 그룹 3족 질화물계 반도체 발광다이오드 소자.
  11. 제 10항에 있어서,
    상기 투명성 오믹접촉 커런트스프레딩층 상에는 상기 광추출 구조층 및 상기 투명성 결합층이 형성되지 않는 일부 영역이 형성되고,
    상기 투명성 오믹접촉 커런트스프레딩층 상의 일부 영역에는 상기 투명성 오믹접촉 커런트 스프레딩층과 쇼키 접촉하는 제 2 도전형 전극패드가 형성된 것을 특징으로 하는 그룹 3족 질화물계 반도체 발광다이오드 소자.
  12. 제 10항에 있어서,
    상기 광추출 구조층 상에 형성된 제 2 도전형 전극패드를 더 포함하고,
    상기 제 3 광추출 구조층은 상기 제 2 도전형 전극패드와, 상기 투명성 오믹접촉 커런트스프레딩층을 전기적으로 연결하는 그룹 3족 질화물계 반도체 발광다이오드 소자.
  13. 제 12항에 있어서,
    상기 제 2 광추출 구조층 상에 배치되어 상기 제 3 광추출 구조층과 전기적으로 연결된 제 4 광추출 구조층을 더 포함하는 그룹 3족 질화물계 반도체 발광다이오드 소자.
  14. 제 13 항에 있어서,
    상기 제 4 광추출 구조층은 상기 제 2 광추출 구조층의 형상에 따라서 증착된 것을 특징으로 하는 그룹 3족 질화물계 반도체 발광다이오드 소자.
KR1020080026843A 2008-03-24 2008-03-24 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법 KR101469979B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020080026843A KR101469979B1 (ko) 2008-03-24 2008-03-24 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
CN2009801111348A CN102037574B (zh) 2008-03-24 2009-03-24 发光器件及其制造方法
PCT/KR2009/001500 WO2009120011A2 (ko) 2008-03-24 2009-03-24 발광소자 및 그 제조방법
EP09724259.8A EP2259344B1 (en) 2008-03-24 2009-03-24 Light emitting device and manufacturing method for same
US12/934,000 US8791480B2 (en) 2008-03-24 2009-03-24 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080026843A KR101469979B1 (ko) 2008-03-24 2008-03-24 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20090101604A KR20090101604A (ko) 2009-09-29
KR101469979B1 true KR101469979B1 (ko) 2014-12-05

Family

ID=41114452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080026843A KR101469979B1 (ko) 2008-03-24 2008-03-24 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법

Country Status (5)

Country Link
US (1) US8791480B2 (ko)
EP (1) EP2259344B1 (ko)
KR (1) KR101469979B1 (ko)
CN (1) CN102037574B (ko)
WO (1) WO2009120011A2 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986327B1 (ko) * 2009-12-08 2010-10-08 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR101181000B1 (ko) * 2009-12-29 2012-09-07 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
KR101652792B1 (ko) * 2010-02-18 2016-09-01 삼성전자주식회사 발광 소자 및 그 제조 방법
KR101165259B1 (ko) * 2010-07-08 2012-08-10 포항공과대학교 산학협력단 MgO피라미드 구조를 갖는 발광소자 및 그 제조방법
CN102569575A (zh) * 2010-12-22 2012-07-11 上海蓝光科技有限公司 一种发光二极管芯片结构
CN102637799B (zh) * 2011-02-12 2015-01-28 上海蓝光科技有限公司 一种发光二极管芯片结构
DE102011012928A1 (de) * 2011-03-03 2012-09-06 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Dünnfilm-Halbleiterkörpers und Dünnfilm-Halbleiterkörper
CN103560189B (zh) * 2013-11-14 2016-05-18 安徽三安光电有限公司 发光二极管芯片及其制作方法
CN105280838B (zh) * 2015-09-22 2017-08-25 深圳市华星光电技术有限公司 一种oled发光器件及显示装置
JP6242954B1 (ja) 2016-07-11 2017-12-06 浜松ホトニクス株式会社 放射線検出器
FR3064109A1 (fr) * 2017-03-20 2018-09-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure a nanofils et procede de realisation d'une telle structure
WO2019241215A1 (en) * 2018-06-12 2019-12-19 The Trustees Of Dartmouth College Method and apparatus of qr-coded, paper-based, colorimetric detection of volatile byproduct for rapid bacteria identification
KR102373099B1 (ko) * 2020-03-06 2022-03-14 웨이브로드 주식회사 반도체 발광소자 및 이를 제조하는 방법
JP2021196583A (ja) * 2020-06-18 2021-12-27 株式会社ジャパンディスプレイ 表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199887A1 (en) * 2004-03-10 2005-09-15 Toyoda Gosei Co., Ltd. Light emitting device
JP2008060331A (ja) * 2006-08-31 2008-03-13 Rohm Co Ltd 半導体発光素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465186B1 (en) * 1997-12-30 2002-10-15 Genecor International, Inc. Proteases from gram positive organisms
US6420736B1 (en) * 2000-07-26 2002-07-16 Axt, Inc. Window for gallium nitride light emitting diode
JP4233268B2 (ja) * 2002-04-23 2009-03-04 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
JP3874701B2 (ja) * 2002-06-26 2007-01-31 株式会社東芝 半導体発光素子及び半導体発光装置
JP4590905B2 (ja) * 2003-10-31 2010-12-01 豊田合成株式会社 発光素子および発光装置
TWM255518U (en) * 2004-04-23 2005-01-11 Super Nova Optoelectronics Cor Vertical electrode structure of Gallium Nitride based LED
KR100730537B1 (ko) 2004-06-25 2007-06-20 학교법인 성균관대학 질화갈륨계 수직구조 발광다이오드 및 그 제조방법
KR20060007948A (ko) * 2004-07-23 2006-01-26 광주과학기술원 탑에미트형 질화물계 발광소자 및 그 제조방법
JP4371029B2 (ja) * 2004-09-29 2009-11-25 サンケン電気株式会社 半導体発光素子およびその製造方法
TWI271883B (en) * 2005-08-04 2007-01-21 Jung-Chieh Su Light-emitting devices with high extraction efficiency
KR100856089B1 (ko) 2006-08-23 2008-09-02 삼성전기주식회사 수직구조 질화갈륨계 발광 다이오드 소자 및 그 제조방법
JP2008053685A (ja) * 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法
JP4770785B2 (ja) * 2007-04-25 2011-09-14 日立電線株式会社 発光ダイオード

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199887A1 (en) * 2004-03-10 2005-09-15 Toyoda Gosei Co., Ltd. Light emitting device
JP2008060331A (ja) * 2006-08-31 2008-03-13 Rohm Co Ltd 半導体発光素子

Also Published As

Publication number Publication date
CN102037574A (zh) 2011-04-27
WO2009120011A3 (ko) 2010-01-14
EP2259344B1 (en) 2017-12-13
EP2259344A2 (en) 2010-12-08
US20110062467A1 (en) 2011-03-17
KR20090101604A (ko) 2009-09-29
EP2259344A4 (en) 2013-09-18
WO2009120011A2 (ko) 2009-10-01
CN102037574B (zh) 2013-01-09
US8791480B2 (en) 2014-07-29

Similar Documents

Publication Publication Date Title
KR101469979B1 (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
TWI609505B (zh) 光電元件
KR101081135B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
JP5816243B2 (ja) 発光素子及び発光素子パッケージ
US20130015465A1 (en) Nitride semiconductor light-emitting device
KR20090115906A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자를 위한 표면요철 형성 방법
KR101014136B1 (ko) 반도체 발광소자 및 그 제조방법
KR101428066B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR101480551B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR101459770B1 (ko) 그룹 3족 질화물계 반도체 소자
KR20090112854A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR101449032B1 (ko) 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법
KR101480552B1 (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR101428069B1 (ko) 플립칩 구조의 그룹 3족 질화물계 반도체 발광다이오드소자 및 이의 제조 방법
KR101550913B1 (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법
KR101534845B1 (ko) 고성능의 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR20110103229A (ko) 반도체 발광소자
KR20100093341A (ko) 반도체 발광소자 및 그 제조방법
KR101510383B1 (ko) 고성능의 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
KR101428068B1 (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
KR100831713B1 (ko) 질화물계 반도체 발광다이오드
KR100612592B1 (ko) 열전도성 기판을 갖는 발광 다이오드 및 그것을 제조하는방법
KR20090106428A (ko) 정전기 방지능을 갖고 있는 그룹 3족 질화물계 반도체발광다이오드 소자 및 이의 제조 방법
KR20150003119A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자
KR20090113349A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181112

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 6