KR101411839B1 - Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물 - Google Patents

Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물 Download PDF

Info

Publication number
KR101411839B1
KR101411839B1 KR1020120075395A KR20120075395A KR101411839B1 KR 101411839 B1 KR101411839 B1 KR 101411839B1 KR 1020120075395 A KR1020120075395 A KR 1020120075395A KR 20120075395 A KR20120075395 A KR 20120075395A KR 101411839 B1 KR101411839 B1 KR 101411839B1
Authority
KR
South Korea
Prior art keywords
egf
nissle
coli
recombinant
microorganism
Prior art date
Application number
KR1020120075395A
Other languages
English (en)
Other versions
KR20130007991A (ko
Inventor
문유석
안정훈
최혜진
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to PCT/KR2012/005520 priority Critical patent/WO2013009103A2/ko
Publication of KR20130007991A publication Critical patent/KR20130007991A/ko
Application granted granted Critical
Publication of KR101411839B1 publication Critical patent/KR101411839B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1808Epidermal growth factor [EGF] urogastrone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF], i.e. urogastrone

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 ABC 트랜스포터를 통한 EGF 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물으로, 보다 상세하게는 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및 ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물 및, 상기 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물에 관한 것이다.본 발명에 따른 미생물은 생체내 소화효소에 저항성을 가지어 목표된 타겟 지점까지 다량이 살아남을 수 있고, 상피세포 성장인자의 단백질 발현 효율 및 세포밖 배출 효과가 높기 때문에 소량으로도 우수한 소화기 궤양 치료효과를 나타낼 수 있다.

Description

ABC 트랜스포터를 통한 EGF 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물{EGF-secreting recombinant microorganism via ABC transporter and composition for improving and treating peptic ulcer comprising the same}
본 발명은 ABC 트랜스포터를 통한 EGF 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물에 관한 것이다.
성장 인자(Growth factor)는 다양한 세포들의 활성을 유도함으로써 악성 또는 만성의 상처 치료에 있어 가능성을 열어 주었다. 성장 인자는 치료과정에서 세포의 분열과 이동, 신생혈관생성 등 세포활성에 필요한 많은 요소들을 조절한다. 이러한 과정에 관련된 성장 인자들로는 상피세포 성장인자 (epidermal growth factor, EGF), 혈소판유래 성장인자 (platelet derived growth factor, PDGF), 섬유아세포 증식인자 (broblast growth factor, FGF), 케라틴세포 성장인자 (keratinocyte growth factor, KGF), 형질전환 성장인자-β (transforming growth factor-β, TGF-β), 과립구집락 자극인자 (granulocyte colony stimulating factor, G-CSF), 관내피세포 성장인자 (vascular endothelial growth factor, VEGF) 들이 있다.
상피세포 성장인자 (epidermal growth factor, EGF)는 3개의 디설파이드 결합 (disulfide bond)을 갖는 단일 단백질로서 1962년 쥐의 악하선 (submaxillary gland)에서 신경 성장인자 (nerve growth factor)를 분리하던 중에 발견되었고 (Cohen, S. J. Biol Chem. 1962, vol.237, p.1555), Savage에 의해 그 일차 구조가 밝혀졌다 (Savage, C. R. et. al. J. Biol Chem. 1972, vol.247, p.7609). 1975년에 Cohen과 Carpenter는 사람의 뇨에서 최초로 인간 상피세포 성장인자 (human epidermal growth factor)를 분리·정제하였다 (Cohen, S.et. al. Adv. Metab. Disord. 1975, vol.8, p.265).
인간 상피세포 성장인자는 53개의 아미노산 (159개의 뉴클레오티드)으로 구성된 단백질로서, 전체 분자량이 6,300 달톤 (6.3 kDa)에 이른다. 47번째에 위치한 류신 (leucine) 부분은 인간 상피세포 성장인자의 생체내 활성에 필수적인 역할을 담당하며, 이를 발린 (valine) 또는 이소류신 (isoleucin)으로 치환할 경우에는 생물학적 활성이 감소하며, 37번째에 위치한 티로신 (tyrosine)은 베타 구조의 수소결합에 중요한 역할을 담당하는 것으로 알려져 있다.
또한, 상피세포 성장인자 (EGF: Epidermal Growth Factor)는 세포활성을 자극하는 신호를 전달하는 많은 폴리펩타이드들 중 일부이다. 따라서 펩타이드나 스테로이드와 같은 분자의 이동으로 인하여 한 세포와 인접 세포는 상호작용을 할 수 있으며, 더 나아가 세포 기능을 전체적으로 조절할 수 있다.
상피 상처가 치료되는 과정에서 EGF의 역할은 상피세포와 섬유아세포에 있는 EGF 수용체와 결합하여 혈소판, 대식세포, 단핵세포 등의 활성화에 관여하는데, 이로써 상피세포의 증식, 분화와 신생혈관 형성, 많은 세포주에서 DNA, RNA, 단백질 합성과 같은 다양한 생물학적 현상들을 일으켜 상처 회복 과정을 향상시킨다 (Servold SA, ClinPodiatr Med Surg, 8:937-53, 1991; Brown GL, et. al., J Exp Med, 163:1319-24, 1986; Carpenter, G., et. al., Annu Rev Biochem, 48:193-216, 1979). 다양한 이전의 결과들을 토대로 EGF가 피부 상처 치료에 큰 효과가 있음을 확인하고 (Andree C, et. al., Proc Natl Acad Sci USA, 91:12188-92, 1994; Brazzell RK, et. al., Invest Ophthalmol Vis Sci 32:336-40, 1991; Hong JP, et. al., Ann Plast Surg, 56:394-8, 2006) DNA의 재조합 기술을 통하여 단백질을 합성하여 현재 임상에서 사용되고 있다.
종래의 DNA 재조합 기술을 이용한 상피세포 성장인자를 발현시켜 소화기 궤양 부위에 투입하는 방법은, 우선적으로 발현량이 현저히 적었고 상기 성장인자 단백질은 다양한 프로테아제에 의해 쉽게 분해되는 문제가 있었다.
이에 본 발명자는 상피세포 성장인자가 위장관에서의 프로테아제에 의한 분해될 가능성을 최소화하기 위하여 인체에 대한 안전성이 입증된 재조합 미생물에서 상피세포 성장인자를 충분히 발현 분비시킨 형질전환 재조합 미생물 및 이를 이용한 소화기궤양 개선 및 치료용 조성물을 제공하고자 한다.
본 발명은 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및, ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물을 제공한다.
상기 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터에 추가적으로 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 (LARD)을 코딩하는 유전자가 첨가될 수 있다.
상기 ATP-결합 카세트 트랜스포터를 코딩하는 유전자는 PrtDEF일 수 있다.
상기 미생물은 프로바이오틱 미생물일 수 있다.
상기 미생물은 E. coli Nissle 1917 또는 E. coli XL1-Blue일 수 있다.
상기 미생물은 상피세포 성장인자를 코딩하는 유전자 및 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 (LARD)을 코딩하는 유전자를 포함하는 재조합 벡터 및 PrtDEF 유전자를 포함하는 재조합 벡터로 형질전환된 E. coli Nissle 1917 KCTC 12228BP(국제기탁기관: 한국생명공학연구원, 기탁일: 2012.06.26) 일 수 있다. 상기 균주는 국립농업과학원 농업유전자원센터에 미생물 명칭 Esherichia coli NISSLE-AC, 수탁번호 KACC91653P 및 수탁일 2011.05.06로 수탁된 미생물과 동일한 미생물이다.
본 발명은 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및 ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물을 제공한다.
본 발명은 상피세포 성장인자를 코딩하는 유전자, 리파아제 ATP-결합 카세트 트랜스포터 인식도메인(LARD)을 코딩하는 유전자 및 prtDEF 유전자가 유전체 내 특정 유전자 위치에 삽입된 것을 특징으로 하는 재조합 미생물을 제공한다. 상세하게는 상기 유전체 내 특정 유전자는 ompC인 것을 특징으로 한다. 보다 상세하게는 상기 재조합 미생물은 E. coli Nissle 1917 KCTC 12229BP(국제기탁기관: 한국생명공학연구원, 기탁일: 2012.06.26)인 것을 특징으로 한다.
본 발명은 상피세포 성장인자를 코딩하는 유전자, 리파아제 ATP-결합 카세트 트랜스포터 인식도메인(LARD)을 코딩하는 유전자 및 prtDEF 유전자가 유전체 내 특정 유전자 위치에 삽입된 것을 특징으로 하는 재조합 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물을 제공한다.
본 발명에 따르면, ABC 트랜스포터를 통한 인간 EGF를 분비하는 프로바이오틱 미생물은 인체에 무해하고 생리활성효과를 나타낼 뿐만 아니라, 생체내 소화효소에 최소한으로 분해되어 목표된 타겟 지점까지 다량이 살아남을 수 있고, EGF 단백질 발현 효율 및 세포밖 배출 효과가 높기 때문에 소화기성 궤양의 치료에 소량으로도 우수한 치료효과를 나타낼 수 있다.
도 1은 E. coli Nissle 1917에서 인간 EGF의 발현을 나타낸 것이다. 도 1A는 재조합 EGF-LARD3 유전자를 LB 액체배지 (LB broth)에서 1mM IPTG 처리 후 E. coli Nissle 1917에서 발현시켰는데, 이의 산물은 항-EGF (anti-EGF) 또는 항-LARD3 항체 (anti-LARD3 antibody)를 가지고 면연침강법 (immunoprecipitation)을 사용하여 검출하였다. 각 재조합 박테리아는 Nissle (E. coli Nissle 1917 야생형), Nissle AB (EGF 발현 플라스미드와 TliDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli Nissle 1917 박테리아) 또는 Nissle AC (EGF 발현 플라스미드와 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli Nissle 1917 박테리아)로 고안되었다. 도 1B는 PrtDEF 트랜스포터 유전자를 LARD3-연결 EGF를 발현하는 E. coli XL-Blue에 도입한 결과이다. 1mM IPTG 처리 후, 세포 용해액과 배양액을 단백질 분석에 사용하였다. 도 1C는 박테리아 배양배지를 20 m까지 인간 장상피세포 (human intestinal epithelial cells, HCT-8)에 처리하였고, 항-EGFR 또는 항-phospho EGFR항체를 가지고 면역침강법을 사용하여 세포 용해물의 생물학적 활성을 모니터하였다.
도 2는 상피상처치료에서 재조합 EGF-분비박테리아의 효과를 나타낸 것으로, Y축은 상대적인 이동 활성을 나타낸다. HCT-8 또는 IEC-18 세포 단일층은 하룻밤 동안 혈청기아상태를 유지한 후, 물리적으로 상처를 냈다. 도 2A는 대조군 상등액(FBS 없는 RPMI 1640 배지)과 각 박테리아 (Nissle, Nissle AB 또는 Nissle AC) 배양 배지 상등액을 상처난 상피세포에 처리하고, 채워진 상처갭의 상대적인 길이를 각 시점마다 측정한 것이다. 도 2B는 동일한 실험과정을 다른 일반적인 비병원성 E. coli인 XL1 (E. coli XL1 Blue 야생형), XL1-AB (EGF 발현 플라스미드 및 pACYC-184로 형질전환된 E. coli XL1-Blue), 또는 XL1-AC (EGF 발현 플라스미드 및 PrtDEF 트랜스포터로 형질전환된 E. coli XL1-Blue)를 사용하여 수행한 것이다. 수치는 평균±평균표준편차(standard errors of the means; SEM)(n = 10-14)를 나타낸다. 다른 글자를 가진 바(bars)는 서로 유의적으로 다르다(P<0.05). 쌍별 비교(pairwise comparison)는 post hoc ANOVA SNK 방법을 사용하여 수행하였다.
도 3은 정제된 EGF의 상피 상처 치료에 대한 효과를 나타낸다. 도 3A는EGF가 면역친화도(immunoaffinity) 방법을 이용하여 정제된 결과를 나타냈다. 도 3B는 세포 배양 상등액 또는 정제된 EGF를 인간 장내 상피 세포(HCT-8)의 상처난 단일층에 20분 동안 처리하고, 세포 용해액을 회수하여 면역침강법(immunoprecipitation)을 통해 항-EGFR 또는 항-포스포-EGFR 항체를 사용하여 생물학적 활성을 관찰한 결과를 나타낸다. 도 3C에서 Y축은 상대적인 이동 활성을 나타낸다. HCT-8의 세포 단일층에 하룻밤 동안 혈청기아상태를 유지한 후, 물리적으로 상처를 냈다. 대조군(FBS 없는 RPMI 1640 배지), 재조합 EGF 및 Nissle-AC로부터 정제된 EGF를 상처난 상피세포에 각각 처리 하여, 각각의 시간 포인트에서 상피 이주(epithelial migration)의 상대적인 거리를 측정한 결과이다. 수치는 평균±평균표준편차(standard errors of the means; SEM)(n = 10-14)를 나타낸다. 별표는 각각의 시간 포인트에서 각각의 대조군과 비교하여 유의적으로 다른 결과를 나타낸다(P<0.05). 두 그룹 간 데이터의 비교 분석을 위하여, Student's test를 수행하였다.
도 4는 상처 치료에 있어서 EGF 수용체-연결된 신호가 관련되었다는 것을 나타낸다. 혈청-고갈된 장내상피세포를 vehicle (DMSO) 또는 10uM AG1478로 전처리하고, 이후 대조군 상등액(Con; FBS 없는 RPMI 1640 배지) 및 각 균주(Nissle, Nissle AB 또는 Nissle AC) 배양 상등액으로 자극하였다. 전체 상피 세포 용해물을 웨스터 블롯 분석에 적용하였다.
도 5는 혈청-고갈되고 상처난 장내 상피 단일층 세포주(HCT-8)(A) 또는 IEC-18(B)는 vehicle (DMSO) 또는 각 저해제 (10uM AG1478, 5uM LY294002 및 2uM U0126) 존재 하에서 대조군 및 Nissle AC 배양 상등액으로 처리하였다. 48시간 후에 상대적인 상처 매워짐을 측정하였고, 대표적인 사진(×100 확대)을 오른쪽에 나타냈다. 수치는 평균±평균표준편차(standard errors of the means; SEM)(n = 10-14)를 나타낸다. 별표는 각각의 그룹으로부터 나타난 유의적 차이를 보여준다(P<0.05). 두 그룹 간 데이터의 비교 분석을 위하여, Student's test를 수행하였다.
도 6은 재조합 박테리아에 의한 상피 시그널 활성을 가시화한 것이다. 대조군 상등액(FBS 없는 RPMI 1640 배지), 각각의 균주(Nissle, Nissle AB 또는 Nissle AC) 배양 상등액 또는 상업적으로 구할 수 있는 정제 EGF을 40분간 상처난 상피세포에 처리하였다. 인산화된 ERK1/2(빨간색) 및 인산화된 EGF 수용체(녹색)를 면역현광 공초점현미경으로 측정하였다. DIC는 차등간섭대비(differential interference contrast)를 나타낸다.
도 7은 인산화 신호를 정량한 결과를 나타낸다. 수치는 평균±평균표준편차(standard errors of the means; SEM)(n = 10-14)를 나타낸다. 별표는 각각의 부위에서 각각의 그룹 간에 나타나는 유의적 차이를 보여준다(P<0.05). 두 그룹 간 데이터의 비교 분석을 위하여, Student's test를 수행하였다.
도 8은 prtDEFhEGF - LARD3의 게놈 삽입에 대한 전체적인 과정을 나타낸다.
도 9는 prtDEFhEGF - LARD3의 게놈 삽입을 확인하기 위해 PCR 실험을 수행한 결과를 나타낸다.
본 발명은 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및 ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물, 및 상기 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물을 제공한다.
이하, 본 발명을 상세히 설명한다.
종래의 DNA 재조합 기술을 이용한 상피세포 성장인자를 발현시켜 생체 내에 투입하는 방법은 일반적으로 구강으로의 섭취가 일반적이었는데, 우선적으로 재조합단백질의 발현량이 현저히 적었고 이러한 단백질마저 소화 중 다양한 프로테아제에 의해 쉽게 분해되기에, 실제 소화기 궤양 치료 및 회복을 위해서는 회복에 필요한 용량의 50 내지 100배 이상이 투입되어 비용-효과적인 측면에서 적절하지 못할 뿐만 아니라, 재조합 산물이 인체에 안정적이지 못한 경우도 있다는 문제점이 있었다.
이에, 본 발명자는 인체에 무해하며 소화기 궤양 치료 효과를 나타내는 프로바이오틱 미생물을 선별하였고, 상기 미생물을 본 발명의 벡터로 형질전환할 경우 생체내 소화효소에 저항성을 가지어 목표된 타겟 지점까지 다량이 살아남을 수 있고, 상피세포 성장인자 단백질 발현 효율 및 세포밖 배출 효과가 높으며, 소량으로도 우수한 소화기 궤양 치료효과를 나타내어 상기 문제점을 해결할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명은 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및, ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물을 제공한다.
상기 상피세포 성장인자는 소화기 궤양 부위, 특히 점막층의 손상에 대해 상피이주 (epithelial migration) 및 증식성 재상피화 (proliferative re-epithelialization)를 촉진시키는데, 이는 세포표면에서 상피세포 성장인자 수용체 (epidermal growth factor receptor, EGFR)와 높은 친화력을 가지고 결합하여 이러한 수용체의 내부 단백질 티로신 키나아제를 자극하는 방식으로 작용한다.
상기 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터에는 추가적으로 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 (LARD)이 포함될 수 있다.
본 발명의 일례로, EGF 발현 플라스미드는 인간의 성숙 EGF 폴리펩티드와, 열안정적 리파아제 (TliA) 유래의 일련의 분비 신호를 지닌 한 조각의 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 (LARD)의 인프레임 (in-frame) 융합을 암호화할 수 있다.
상기 ATP-결합 카세트 트랜스포터 (ATP-Binding Cassette transporter)는 막단백질로서 ATP가 결합되는 결합부위를 갖고 ATP 에너지를 이용하여 세포내의 세포질로부터 세포바깥쪽으로 물질을 능동적으로 수송하는 강력한 물질수송 단백질의 하나이다.
상기 ATP-결합 카세트 트랜스포터 (ATP-Binding Cassette transporter)는 종래의 문제점인 재조합 단백질의 발현량이 적고 세포질 밖으로의 분비량이 적은 점을 개선하기 위한 해결책일 수 있으며, 이는 EGF 단백질을 세포질에서 궤양이 있는 타겟지점인 세포바깥으로 다량 분비할 수 있도록 하여 소화기 궤양 치료에 중요한 역할을 담당할 수 있다.
본 발명의 상기 ATP-결합 카세트 트랜스포터를 코딩하는 유전자는 특별히 한정된 것은 아니나, 바람직하게는 PrtDEF일 수 있다.
이때, Erwinia chrysanthemi 유래의 PrtDEF 트랜스포터는 33 내지 42℃, 바람직하게는 37℃에서 더 잘 기능할 수 있으며, Pseudomonas fluorescens 유래의 TliDEF 트랜스포터는 20 내지 28℃, 바람직하게는 25℃에서 잘 기능 할 수 있기에, 상기 트랜스포터로 대장균을 형질감염 시킬 경우 대장균의 최적배양온도인 37℃에서는 PrtDEF 트랜스포터가 EGF 단백질을 세포질에서 세포밖으로 운송하는데 더욱 적절할 수 있다.
본 발명에 따른 재조합 벡터로 형질전환될 수 있는 미생물로는 원핵세포와 진핵세포 모두를 포함하며, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 미생물이 통상 사용될 수 있다.
상기 미생물의 종류는 특별히 한정된 것은 아니나, 대장균을 이용할 수 있으며, 바람직하게는 E. coli Nissle 1917 또는 E. coli XL1-Blue일 수 있다.
이러한 형질전환 미생물 중 대장균을 이용할 경우에는, 첫째로 단위 세포당 목적단백질의 발현율이 다른 미생물들에 비해 월등히 높고, 둘째로 유전적인 특성이 많이 밝혀져 있어 다양한 유전공학적 시도를 할 수 있으며, 셋째로 대량 생산을 용이하게 진행할 수 있다.
도 2에서 나타난 바와 같이, E. coli Nissle 1917 또는 E. coli XL1-Blue는 그 자체로도 상처 치료활성을 나타낼 수 있음을 확인하였고, 상기 미생물에 본 발명의 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및, ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환시킬 경우 상처치료 효과가 크게 증가함을 확인할 수 있었다.
또한, 본 발명의 미생물은 프로바이오틱 미생물인 것이 바람직할 수 있다.
프로바이오틱 (probiotic) 미생물은 소화관에서 미생물 조성물을 안정화 또는 개선시키는 것에 의해 인간 또는 동물 소비자의 건강을 촉진하는, 인간이 섭취하는 식품이나 다른 소모품, 동물 사료 또는 약제의 생존하는 미생물 성분을 의미할 수 있으며, 소화관에서 쉽게 소화되지 않을 수 있다.
따라서, 상기 프로바이오틱 미생물은 소화관 내의 소화효소에 의한 단백질 분해로부터 EGF를 안전하게 보호하여 상기 단백질을 궤양 부위로 효율적으로 분비하는 역할을 수행할 수 있다.
상기 프로바이오틱 미생물은 특별히 한정되는 것은 아니나, 바람직하게는 E. coli Nissle 1917일 수 있다.
본 발명의 미생물의 일례로 사용된 E. coli Nissle 1917는 1920년대 초반부터 인간 및 동물 약제에서 프로바이오틱 제제로 사용된 비병원성 배설물 분리체로서, 생리적으로 이롭고 치료활성을 지닐 뿐만 아니라 상기 박테리아를 무균동물에 접종시켜도 대장염을 유발하지 않는 균주이며, 병원성 특성을 지닌 유전자를 전달하지 않고 장독소, 세포독소 또는 용혈소를 형성하지 않는 안정한 생물체이다.
상기 E. coli Nissle 1917는 프로바이오틱 미생물로서 그 자체로 인체에 유익한 활성을 지니고 궤양 치료효과를 나타내고 소화중 소화효소에 의해 쉽게 분해되지 않을 뿐만 아니라, 본 발명의 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및, ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환시켰을 때 우수한 단백질 발현효율을 나타내고 ABC 트랜스포터에 의해 세포질로부터 세포 바깥쪽으로 높은 EGF 배출률을 나타내기 때문에 타겟부위의 궤양치료에 좋은 치료효과를 나타낼 수 있다.
본 발명에서 미생물은 공지된 기술을 이용해서 상피세포 성장인자 단백질의 생산에 적합한 영양 배지에서 배양할 수 있다. 예를 들어, 대장균 숙주세포들은 적합한 배지와 상기 단백질이 발현 및/또는 분리되는 것을 허용하는 조건 하에, 실시된 실험실 또는 산업용 발효기에서 소규모 혹은 대규모 발효, 셰이크 플라스크 배양에 의해서 배양될 수 있다. 배양은 공지된 기술을 사용해서 탄소, 질소 공급원 및 무기염을 포함하는 적합한 영양배지에서 진행할 수 있다. 적합한 배지는 상업적인 공급자로부터 입수 가능하고, 예를 들면, 미국타입배양콜렉션 (American Type Culture Collection)의 카탈로그 등에 기재된 성분 및 이들의 조성 비율에 따라 만들 수도 있다.
본 발명의 일례로, E. coli Nissle 1917 또는 E. coli XL1-Blue는 EGF 발현 플라스미드 및 ABC 트랜스포터 (PrtDEF) 발현된 플라스미드로 형질전환된 재조합 미생물을 제공할 수 있다. EGF 발현 플라스미드와 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli Nissle 1917 (Nissle-AC)를 제공할 수 있고, EGF 발현 플라스미드 및 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli XL1-Blue (XL1-AC)를 제공할 수 있다.
또한, 본 발명의 바람직한 일례로, 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및 PrtDEF 유전자를 포함하는 재조합 벡터로 형질전환된 E. coli Nissle 1917을 제공할 수 있다.
도 2A에서 나타난 바와 같이 EGF 발현 플라스미드 (EGF expression plasmid)와 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli Nissle 1917에서 가장 우수한 상피 상처 치료효과를 확인할 수 있었다.
본 발명의 상기 재조합 벡터를 숙주세포에 도입하여 형질전환시키는 방법은 당업계에 공지된 방법에 의할 수 있으며, Davis et al. Basic Methods in Molecular Biology (1986) 및 Sambrook et al. Basic Methods in Molecular Biology와 같은 기본적인 실험 지침서에 기술된 방법에 의해서 실시될 수 있다.
본 발명의 재조합 발현벡터를 대장균 숙주세포로 도입하기 위해서는, 본 발명의 일례로 대장균 세포막을 수용성 (competent)으로 만들 수 있다. 이러한 방법은 대장균을 염화칼슘 용액 또는 폴리에틸렌 글리콜 (polyethylene glycol)과 염화마그네슘이 혼합된 용액에 노출시키는 것을 포함할 수 있다. 또한 대장균 세포막은 전기천공에 의해서도 수용성이 될 수 있으며, 상기 전기 전류는 DNA가 세포내로 유입되도록 세포막을 파열시키는 역할을 할 수 있다.
본 발명은 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터 및 ATP-결합 카세트 트랜스포터를 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환된 재조합 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물을 제공한다.
상기 조성물은 그 종류에 있어 특별히 한정된 것은 아니나, 소화기 궤양 치료용 약학 조성물 또는 소화기 궤양 개선용 건강식품 조성물로 활용될 수 있다.
상기 상피세포 성장인자를 코딩하는 유전자를 포함하는 재조합 벡터에는 추가적으로 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 (LARD)이 포함될 수 있다.
상기 ATP-결합 카세트 트랜스포터를 코딩하는 유전자는 특별히 한정된 것은 아니나, PrtDEF인 재조합 벡터일 수 있다.
상기 미생물의 종류는 특별히 한정된 것은 아니나, 상기 미생물은 프로바이오틱 미생물일 수 있으며, 바람직하게는 E. coli Nissle 1917 또는 E. coli XL1-Blue일 수 있으며, 보다 바람직하게는 E. coli Nissle 1917일 수 있다.
본 발명의 일례로, E. coli Nissle 1917는 EGF 발현 플라스미드 및 ABC 트랜스포터 (PrtDEF) 발현된 플라스미드로 형질전환된 균주를 제공할 수 있다. EGF 발현 플라스미드와 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli Nissle 1917 (Nissle-AC)를 제공할 수 있다.
도 2A에서 나타난 바와 같이, 대조군 E. coli Nissle 1917만으로 처리된 그룹과 비교하였을 때, EGF-생산하는 Nissle-AC는 상당히 상피치료효과가 우수하였다.
본 발명의 일례로, E. coli XL1-Blue는 EGF 발현 플라스미드 및 ABC 트랜스포터 (PrtDEF) 발현된 플라스미드로 형질전환된 균주를 제공할 수 있다. EGF 발현 플라스미드 및 PrtDEF 트랜스포터 발현 플라스미드로 형질전환된 E. coli XL1-Blue (XL1-AC)를 제공할 수 있다.
도 2B에서 나타난 바와 같이, 대조군 E. coli XL1-Blue만으로 처리된 그룹과 비교하였을 때, EGF-생산하는 XL1-AC는 또한 상피치료효과를 나타내었다.
상기 소화기 궤양은 위와 장의 점막에 손상이 생긴 것으로, 본 발명의 일례로, 위장관 점막층이 심하게 파괴 되었을 경우 치료를 위해 점막층, 미세혈관 네트워크, 신경 및 결합조직세포를 포함한 표면 선상피구조와 고유층 (lamina propria)의 재구성이 요구될 수 있는데, 세포의 이동을 자극하고 혈류를 증가시키는 EGF의 존재하에 위장관 점막층은 손상이 회복될 수 있다. 이때, 전구 세포군 (progenitor cell populations)에 대한 분열을 촉진시키는 EGF는 위뮤신 (gastric mucin)의 방출을 증가시키고 위산분비를 약화시키며 세포이동을 자극할 수 있다.
도 5에서 나타난 바와 같이, ERK 활성 또는 EGF 수용체- 연결된 시그널의 저해는 Nissle-AC-유발된 궤양치료이동을 감소시켰다. 게다가, 분비된 EGF-유도된 EGFR 활성과 차후의 ERK1/2의 인산화는 공초점 현미경을 사용하여 인간 장세포의 물리적으로 상처난 단일층에서 확인되었는데, 특히 상처난 모서리의 이동 프론티어는 Nissle-AC 존재하에 EGFR 인산화에서 가장 강력한 신호를 나타내었다 (도 6).
본 발명에 따른 상기 미생물을 유효성분으로 포함하는 약학조성물은, 조성물 총 100 중량에 대하여 상기 미생물을 0.1 내지 90 중량%로 포함할 수 있다.
상기 미생물은 임상투여시에 경구 또는 비경구로 투여가 가능하며, 당업계에서 제죄되는 일반적인 의약품제제의 형태로 제조될 수 있다 (예: 문헌 [Remington's Pharmaceutical Science, 최신판; Mack Publishing Company, Easton PA). 본 발명의 조성물은 실제 임상투여시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다.
본 발명의 일례로, 프로바이오틱 미생물은 농축액 또는 동결 건조 형태로서 캡슐화 매질에 주입될 수 있다. 프로바이오틱 박테리아는 오일 중에 분산된 후 수성 현탁액으로 에멀전화 된 후 프로바이오틱을 수반하는 캡슐화된 오일로서 제조될 수 있다. 이는 또한 건조되어 분말로도 제조될 수 있다. 임의의 적절한 건조 기술 예컨대 분무 건조, 동결 건조 또는 굴절창 건조(refractive windows drying)가 사용될 수 있다. 오일 현탁된 프로바이오틱은 프로바이오틱이 수분 민감성인 곳에 바람직할 수 있다. 오일은 바람직하게는 식용 오일이며 에멀전 또는 에멀전을 건조시켜 수득된 분말로서 사용될 수 있다.
이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예 들은 본 발명을 예시한 것으로, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
< 실시예 >
실시예 1: E. coli Nissle 1917에서 인간 EGF 발현
1-1. 세포배양
인간 장내상피세포주 HCT-8 및 비전이 장내상피세포주 IEC-18은 미국타입배양콜렉션 (American Type Culture Collection, Rockville, MD)으로부터 구입하였다. 세포들을 10% 소태아혈청 (fetal bovine serum, FBS; Wellgene, Daegu, Korea) 및 1% 페니실린/ 스트렙토마이신 (penicillin/streptomycin, Wellgene)을 함유한 RPMI 1640 배지를 사용하고, 37℃, humidified 5% CO2 배양기 (incubators)에서 배양하였다. IEC-18 세포주 배양을 위해서는, 25mM HEPES가 첨가되었다. 세포수와 생존력은 혈구계산기 (hemocytometer)를 사용하여 트리판블루염색 (Trypan blue dye, Sigma-Aldrich, St. Louis, MO)을 배제함으로 측정하였다.
1-2. 본 발명에 사용된 균주
본 발명에 사용한 균주는 E. coli XL-1 Blue와 E. coli Nissle 1917이다. E.coli Nissle 1917은 ardeypharm GmbH에서 기증 받았다. 형질전환된 E. coli는 클로람페니콜(chloramphenicol) 100ug/ml, 앰피실린(ampicilin) 100ug/ml가 첨가된 LB 브로스(broth) 또는 LB 아가(agar) 배지에 접종한 뒤 37에서 배양하였다. 모든 균주는 LB 배지에서 OD 600에서의 흡광도가 약 1.0이 될 때까지 키운 다음, 원심분리하여 상등액을 제거하고 혈청(serum)이 없는 RPMI 배지로 부유하였다. 균주로부터 발현되는 EGF의 효과를 알아보기 위해서, RPMI에 균주를 접종하여 OD 600에서의 흡광도가 약 0.6-0.7이 되도록 키운 후, 세포와 숙주의 비율이 50:1이 되도록 계산하여 1mM IPTG가 들어있는 RPMI 배지에 8-12시간 동안 배양하였다. 이 배양액을 공극 크기(pore size) 0.45um 필터를 사용하여 여과하고 세포에 처리하였다.
1-3. 플라스미드 제작
본 발명에 사용된 플라스미드들은 표 1에 기재하였다. 본 발명에서는 Pseudomonas fluorescens SIK W1의 열안정성 리파제(thermostable lipase; TliA) C-말단 단편(잔기 302-476)에 부착된 재조합 인간 EGF의 방출에 대해 보고하였다. 상기 단편들은 리파제 ABC 전달자 인식 도메인(LARD)으로 확인되었고, TilA로부터 유래한 분비 신호이다. 여러 LARD 중에서, LARD3(잔기 372-479)은 인간 EGF의 C 말단에 부착되었다. LARD3은 주형으로서 pTOTAL을 사용하여 증폭하였다(J. Bacteriol. 181 (1999) 1847-852). PCR 산물은 다른 효소 사이트를 포함하는 EGF 유전자 프라이머에 연결되었다. EGF 유전자 및 pTOTAL의 염기서열을 코딩하는 LARD3는 각각 EcoRI/XbaI 및 XbaI/HindIII 사이트를 가진 프라이머를 사용하여 PCR 증폭되었다. 관련 올리고뉴클레오티드를 첨부함으로써 A 인자 Xa 프로테아제 절단 사이트(A factor Xa protease cleavage site; IEGR)가 EGF 및 LARD3 사이에 링커로서 추가되었다. pEGF-LARD3을 제작하기 위해서, EGF 및 LARD3 서열은 각각 tac 프로모터의 pKK223-3 다운스트림에 있는 EcoRI-XbaI 및 XbaI-HindIII 사이트로 삽입되었다. pEcPre-DEF를 제작하기 위해서, PrtDEF 유전자를 pACYC-184의 SacI-NdeI 사이트에 삽입하였다. 상기 플라스미드들은 열 충격 형질전환을 통하여 대장균에 동시에 도입되었다.
Plasmids Inserts Vectors
pEGF-LARD3 EGF and LARD3 pKK223-3
pEcPrtDEF PrtDEF transporter gene
(from E. chrysanthemi )
pACYC-184
1-4. 웨스턴블롯 분석
EGFR 및 EGF의 활성은 HCT8 세포용해물의 웨스턴블롯분석에 의해 결정하였다. 세포용해물과 동량을 단백질을 정해진 시간에 수집하여 12% 소디엄 도데실 설페이트-폴리아크릴아미드 겔 전기영동 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)에서 분석하고, 분석된 단백질을 폴리비닐리덴 불화물막 (polyvinylidene fluoride membranes, Amersham Pharmacia Biotech, Piscataway, NJ, USA)에 옮겼다.
각 막을 2시간 동안 0.1% Tween-20 (TBST), 5% 탈지우유 (nonfat skim milk)가 포함된 TBS완충액 (Tris-buffered saline)으로 블록하고 (blocked), 4℃에서 밤새 동안 특정한 항체와 함께 배양하였다. 이때 사용된 항체는 anti-total EGFR, anti-phospho-EGFR, anti-phosphor ERK, anti-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 및 anti-phosphor AKT (Cell Signaling Technologies, Cambridge, MA, USA)이다.
일차항체와 배양한 후, 각 막을 TBST로 씻고 2시간 동안 horseradish peroxidase-연결된 이차항체와 함께 배양하였다. 상기 단백질을 강화된 화학발광 (chemiluminescence) 기질로 검출하였다 (ELPIS Biotech, Taejon, Korea).
1-5. Nissle - AC 의 배양 상등액으로부터 EGF 분리( EGF 발현 플라스미드 및 PrtDEF 트랜스포터를 가진 Nissle 1917)
분비된 재조합 EGF는 anti-LARD3 항체와 단백질 G 아가로스(protein G agarose)를 이용한 동시 면역침강법(co-immunoprecipitation)을 이용하여 정제 하였다. EGF에 결합한 레진은 pH 7.0의 20mM 쇼듐 포스페이트(sodium phosphate)로 3회 세척하고, pH 2.5의 100mM 글리신 완충액(glycine buffer)으로 녹였다. 여기에 1M tris-HCl(pH 9.0)을 사용하여 pH 7.4로 중화시켜 EGFR의 활성화 및 상처 치료(wound-healing)에 생물학적 활성을 가지는지 확인하였다.
1-6. E. coli Nissle 1917에서 인간 EGF 발현검출 및 그 결과
본 연구의 EGF 발현 플라스미드는 인간의 성숙 EGF 폴리펩티드와, 열안정적 리파아제(TliA) 유래의 일련의 분비 신호를 지닌 한조각의 LARD 3의 인플래임 (in-frame)융합을 암호화 한다 (표 1). 이러한 플라스미드와 함께, PrtDEF 또는 Pseudomonas fluorescens TliDEF를 지닌 ABC 트랜스포터 유전자를 LARD3-연결된 재조합 EGF 단백질의 분비를 위해 도입하였다. Erwinia chrysanthemi PrtDEF 트랜스포터는 대장균의 최적 생장온도인 37℃에서 더 잘 기능하는 반면, TliDEF는 적절한 기능을 발휘하기 위해선 25℃에서 발현되어야 한다. E. coli Nissle 1917 또는 E. coli XL1-Blue는 EGF 발현 및 ABC 트랜스포터 (PrtDEF) 발현된 플라스미드로 형질전환되고 이는 각각 Nissle-AC 및 XL1-AC로 명명되었고, EGF 발현 플라스미드 및 공벡터(pACYC-184)를 가진 균주는 Nissle-AB 및 XL1-AB로 명명되었다.(표 2). 항-EGF (anti-EGF) 또는 항-LARD (anti-LARD) 항체를 사용하여 면역침전법에 의해 분비된 EGF를 검출하였다.
Bacteria Properties
XL1-AB E. coli XL1-Blue with pEGF-LARD3 and pACYC-184
XL1-AC E. coli XL1-Blue with pEGF-LARD3 and pEcPrtDEF
Nissle-AB E. coli Nissle 1917 with pEGF-LARD3 and pACYC-184
Nissle-AC E. coli Nissle 1917 with pEGF-LARD3 and pEcPrtDEF
하기 도 1A에서 나타난 바와 같이, 대략 분자량 21 kDa을 지닌 LARD3-연결된 EGF 분비단백질은 각 항체를 사용하여 검출된 밴드로 보여진다 (도 1A). Nissle-AC는 EGF를 분비하는 반면, Nissle-AB는 EGF의 생산량이 크지 못하였다 (도 1A). LARD3-연결된 EGF를 발현하는 E. coli XL1-Blue에서도 유사한 패턴이 관찰되었다(도 1B). PrtDEF 트랜스포터 유전자의 도입은 재조합 EGF 단백질의 생체 밖 분비를 이끌었다. 반면, 대부분의 EGF 단백질들은 세포 내에 잡혀있었다. Nissle-AB에는 PrtDEF 트랜스포터가 없기 때문에, LARD3-연결된 EGF의 세포 밖 수송이 Nissle-AC와 비교하여 제한적이었다.
생체밖 인간 소화관 상피 상처치료모델에서 재조합 프로바이오틱의 생물학적 활성을 모니터하기 위해 인간 장 상피세포배양 시스템에 EGF-생산 대장균 Nissle 1917를 도입하였다. HCT-8 인간 장 상피세포를 박테리아 세포배양배지로 처리하고, 인간 EGF 수용체의 활성을 분석하였다.
하기 도 1C에서 나타난 바와 같이, 각각의 박테리아 배양배지를 처리한 후, EGFR의 티로신 인산화는 노출후 10 내지 20분간 피크에서 관찰되었다. EGFR 활성은 Nissle AB 존재나 야생형 E. coli Nissle 1917에서보다 Nissle-AC 존재하에서 더욱 두드러졌다 (도 1C).
본 실시예의 Nissle-AC 미생물은 한국생명공학연구원에 KCTC 12228BP(기탁일: 2012.06.26)로 수탁되었다. 상기 균주는 국립농업과학원 농업유전자원센터에 미생물 명칭 Esherichia coli NISSLE-AC, 수탁번호 KACC91653P 및 수탁일 2011.05.06로 수탁된 미생물과 동일한 미생물이다.
실시예 2: 인간 장상피 수복을 촉진하는 EGF - LARD3 단백질
2-1. 상처치료분석
세포들을 배양접시에 접종하고 성장하여 합쳐질 (confluent) 때까지 10% FBS를 함유한 RPMI 1640 배지에서 배양하였다. 플라스틱 블래이드 (plastic blade)를 사용하여 각각의 합쳐진 단일층 (confluent monolayer)의 중앙에 상처를 만들었다. 상처난 단일층을 재조합 E. coli가 존재하거나 없이 RPMI 1640에서 배양하였다. 무세포 영역의 변화를 현미경 (Nikon, Tokyo, Japan)과 연결된 디지털 이미지 프로세서를 사용하여 48시간 동안 모니터하였고, 이러한 지역을 이미지 분석 프로그램 (Leica, Cambridge, UK)으로 세 번 측정하였다. 상처 부위로부터 상처 치유 부분은 상처 모서리로부터 상피 이주(epithelial migration)의 거리를 재면서 측정하였다. 각각의 상대적 이주 거리는 균주 배양액이 없는 대조군의 이주 거리와 비교하였다. 측정 단위는 24시간 후에 대조군의 이주 거리와 비교하여 그 변화량을 측정하였다. 각각의 처리를 위하여, 3번의 실험을 반복하였다. 한 접시로부터 10개의 필드가 수집되었다. 각 필드는 10번 이상 측정하였다.
2-2. 장상피 수복 촉진 확인 및 그 결과
인간 상피에 대한 EGF 관련 생물학적 기능으로서, 본 발명에서는 상처 치유 과정에 초점을 맞추었다. 상처 치유 과정에 있어서 물리적으로 상처를 입은 인간 장세포 단일층(enterocyte monolayer)에 대해 Nissle 1917이 전달하는 EGF 단백질의 효능이 평가되었고, 부분적으로 상피 이주(epithelial migration)에도 초점을 맞추었다. 대조군에 비해서 EGF-생산 Nissle-AB와 EGF-생산 Nissle-AC에서 상피 치유 효과가 상당히 높게 나타나는 것을 확인했다(도 2A). 또한, 재조합 균주(Nissle-AB 및 Nissle-AC 배양액 사용)에 의한 상처치유는 비전이 장내 세포주 (nontransformed intestinal cell line)인 IEC-18에서도 같은 결과를 보였다(도 2A). 인간의 EGF는 설치류 EGF와 약 80% 상동성이 있기 때문에 설치류 모델(murine model)에서도 적용이 가능하다. 추가로 E. coli XL-1 Blue에 EGF-LARD3 융합 단백질을 탑재하여 발현했을 때도 비슷한 결과를 얻었다(도 2B). 또한, Nissle-AB는 prtDEF ABC 트랜스포트 시스템이 없음에도 여전히 대조군인 E. coli XL-1 Blue를 처리한 경우보다 상처 치유 효과가 더 높았다. 이것은 비특이적으로 분비되어 나오는 아주 적은 양의 EGF가 효과를 보이는 것이라 예상된다.
뿐만 아니라, 직접적인 EGF의 효과를 보기 위해서, Nissle-AC에서 분비된 EGF를 면역친화도(immunoaffinity) 방법을 이용하여 정제하였다(도 3A). 정제된 EGF는 Nissle-AC에서 생산된 EGF로서 EGFR을 활성화시켰다. 정제된 EGF는 HCT8 세포의 상처 치유 이주 활성도 보였다(도 3C). 양성 대조군으로 시중에 판매되는 재조합 EGF를 동시에 처리해 결과를 비교해본 결과, 모든 결과들은 E. coli nissle 1917과 E. coli XL-1 blue에서 생산되어 분비되는 ABC-트랜스포처-매개 EGF가 장세포 단일층(enterocyte monolayer)를 이용한 시험관 내 시험(in vitro) 수준에서의 상피 상처 치유를 촉진한다는 것을 보여준다.
실시예 3: ERK 시그널 경로의 활성에 의해 상처치료를 유도하는 E. coli Nissle 1917- delivered EGF 단백질
3-1. 공초점 현미경 ( Confocal microscopy )
세포들을 유리바닥배양접시 (glass bottom culture dish)에 배양하였다. EGF-LARD3 또는 vehicle (dimethylsulfoxide; DMSO)로 처리한 후에, 세포들을 PBS (phosphate buffered saline)에서 희석된 4% 파라포름알데하이드 (paraformaldehyde)로 고정하였다. 고정된 세포를 10분간 0.2% Triton X-100가 함유된 PBS로 투과시켰다.
PBS에서 3% 소혈청알부민 (BSA)으로 2시간 동안 블록킹 (blocking)한 다음, 실온에서 1시간 반 동안 쥐 다클론 anti-phospho EGFR (Epitomics, Burlingame, CA, USA) 및 phospho ERK 항체 (Santa Cruz Biotechnology)를 1:200 희석한 버퍼 (3% bovine serum albumin (BSA) in PBS)를 첨가하여 세포들을 배양하고, 반복하여 PBS로 헹구었다. 실온에서 1시간 반 동안 Alexa Fluor 546 goat anti-mouse IgG (H+L) 및 Alexa Fluor 488 goat anti-rabbit IgG (H+L)와 함께 배양하여 PBS를 사용하여 반복적으로 헹궜다.
이어서 30분 동안 PBS에서 405 nm에서 흡광도를 가진 100 ng/ml DAPI (4'-6-diamidino-2-phenylindole)로 염색한 다음, 단일선 여기 (single line excitation, 546 nm) 또는 멀티트랙 순차적 여기 (546 nm 및 633 nm)를 사용한 모델 FV1000 공초점 현미경 (Olympus, Tokyo, Japan)으로 공초점 이미지 (confocal images)를 얻었다. FV10-ASW 소프트웨어 (Olympus)로 이미지를 얻고 처리하였다. 4개의 선택된 필드로부터의 신호 세기를 Multi Gauge 소프트웨어(후지필름, 도쿄, 일본)를 이용하여 측정하였다. 상처의 모서리는 4개의 지역으로 분할되었고, 각각의 지역은 너비에 있어 25 픽셀이었다.
3-2. ERK 시그널 경로의 활성확인 및 결과
EGFR은 ErbB 패밀리의 원형으로서, 거의 모든 상피조직에서 발현된다. EGFR의 활성화는 미토젠-활성 단백질 키나아제(mitogen-activated protein kinase; MEK), 세포외-관련 키나아제(extracellular-related kinase; ERK) 경로 또는 포스파티딜이노시톨 3-키나아제-AKT(phosphatidylinositol 3-kinase-AKT) 경로를 포함하는 여러 주요 신호 반응을 촉발시킨다. 이들은 증식, 이주 및 다른 상처-회복 세포 활성에 있어서 다양한 상피세포의 생물물리학적 과정을 책임지고 있다. 따라서, 본 발명자들은 E. coli Nissle 1917-전달된 EGF에 의한 EGFR 활성이, AKT와 ERK 활성과 인간 장세포 단일층에서의 이동상처치료를 매개하는데 중요한 역할을 하는지를 조사하였다. EGF-생산 재조합 프로바이오틱 균주에 의해 유도되는 신호 경로를 연구하기 위해, HCT8 세포에서 AKT 및 ERK의 인산화에 대한 EGF 시그널 저해효과를 측정하였다. 야생형 및 재조합 E. coli Nissle 1917로 처리하면, ERK1/2 및 AKT 단백질의 인산화를 향상시켰다. 특히, Nissle-AC 그룹은 ERK1/2 및 AKT 신호를 강력하게 활성화하였다(도 4). 또한, 강한 순간 ERK1/2 활성화가 약 40분 후에 관측되었고, 곧 감소되었다. 반면, 약하게 활성화된 AKT는 60분 동안 유지되었다. 또한, EGFR 패밀리 타이로신 키나아제 억제제 AG1478은 EGF-LARD3-유도 ERK 활성화를 완전히 약화시켰으나, AKT 신호에 있어서 감소 효과는 미미했다(도 4). 이는 분비된 재조합 EGF-LARD3가 EGF 수용체를 통해 ERK 활성화에 배타적으로 연관되어 있다는 것을 나타낸다.
또한, 본 발명자들은 ERK 시그널이 Nissle-AC-노출된 상피단일층에서 EGF-연결된 상처치료과정에 있어 중요한지 여부를 테스트하였다. U0126 MEK 억제자를 이용한 ERK1/2 신호 억제 또는 AG1478을 이용한 EGFR-연결된 신호의 단절은 Nissle-AC-촉발된 상처-치료 이주(migration)를 감소시켰다. 반면 LY294002 포스파티딜이노시톨 3-키나아제 억제자를 이용한 AKT 억제는 HCT-8 및 IEC-18 단일층에 있어서는 크게 효과적이지 않았다(도 5). 게다가, 분비된 EGF-유도된 EGFR 활성과 차후의 ERK1/2의 인산화는 공초점 현미경을 사용하여 인간 장세포의 물리적으로 상처난 단일층에서 확인되었다. 특히, 상처난 모서리의 이동 프론티어는 Nissle-AC 존재하에 EGFR 인산화에서 가장 강력한 신호를 나타내었다 (도 6). 상처 모서리는 4개의 부분으로 분할되었다. 각각의 부분에 있어서의 색채 신호가 정량화되고 비교되었다(도 7). 포스포-EGFR의 신호는 주변부 끝(marginal end; zone 4)에서 가장 높았던 반면, 포스포-ERK1/2는 다음 부분(zone 3)에서 최고의 수준을 나타냈다.
실시예 4: Nissle 1917에서의 ABC 수송체 유전자와 인간표피성장인자 유전자의 게놈 내 삽입: 인간표피성장인자를 분비하는 재조합 대장균 제작
4-1. prtDEF hEGF - LARD3 의 게놈 내 삽입 Nissle 1917 균주 제작
Erwinia chrysanthemi의 ABC 수송체인 PrtDEF가 인간표피성장인자를 분비시키는 데 사용됐으며, 인간표피성장인자는 ABC 수송체에 인식되는 특정한 신호서열인 Lipase ABC transporter Recognition Domain (LARD)와 융합해 ABC 수송체를 통해 세포 밖으로 분비되도록 했다. prtDEFhEGF - LARD는 Nissle 1917 게놈 내 ompC와 치환해 항생제 없이도 인간의 생체 내에서 이 두 유전자들이 발현되게 했다. 이를 위해 온도감수적인 복제원점과 유전자의 게놈 내 삽입과 절제를 확인하는 마커를 갖는 유전자치환벡터 pKOV를 이용했다. prtDEF와 hEGF-LARD가 게놈 내 삽입된 재조합 Nissle 1917은 PCR을 통해 확인했다.
본 발명에 사용된 유전자 치환 벡터인 pKOV는 Cm R , SacB, 온도감수적인 pSC101 복제원점을 갖고 있으며 pKOV로부터 파생된 pKHP도 그러하다 (J Bacteriol (1997) 179(20): 6228-6237). pSC101 복제원점은 30℃에서 잘 작동하지만 42-44℃에서는 작동하지 않아 플라스미드의 복제가 안 이루어진다. prtDEFhEGF - LARD3를 Nissle 1917의 게놈에 넣기 위해 pKOV의 multi cloning site에 Nissle 1917의 ompC1, prtDEF , hEGF - LARD3 , ompC2를 클로닝했다. ompC1ompC2는 Nissle 1917 게놈 내의 ompC와 교차를 일으켜 재조합되게 함께 클로닝해 pKHP를 만들었다(도 8). pKHP가 Nissle 1917에 형질전환된 후 43℃ 클로람페니콜(Chloramphenicol) LB 배지에 나타난 콜로니들은 pKHP의 ompC1 혹은 ompC2가 Nissle 1917 게놈 내의 ompC와 첫 번째 교차가 일어나 pKHP 전체가 Nissle 1917 게놈 내로 삽입된 세포들이다. 이 세포들은 pSC101 복제원점이 작동하지 않더라도 ompC의 프로모터로 Cm R 이 발현되어 클로람페니콜 LB 배지에서 자랄 수 있다. 이 세포들을 30℃, 5% 수크로즈 (wt/vol) 배지에 스프레딩(spreading) 해 나타난 콜로니들은 Nissle 1917의 게놈 내의 ompCompC1 혹은 ompC2와 두 번째 교차가 일어나 sacB를 지닌 플라스미드가 세포 밖으로 빠져나간 세포들이다. 수크로즈(sucrose)가 첨가된 LB 배지에서 sacB는 세포의 사멸을 유발하므로 이 세포들은 세포 내 sacB를 포함한 초기 pKOV 유전자들을 버리게된다. 이 때 이 세포들은 야생형 Nissle 1917일수도 있고 ompCompC1 , prtDEF, hEGF - LARD3 , ompC2으로 치환된 재조합된 Nissle 1917일 수도 있다. 이는 PCR을 통해 구분해 내 prtDEFhEGF - LARD3가 게놈 내로 삽입된 Nissle 1917을 얻었다. 본 실시예의 prtDEFhEGF - LARD3가 게놈 내로 삽입된 Nissle 1917 균주는 한국생명공학연구원에 KCTC 12229BP(기탁일: 2012.06.26)로 수탁되었다.
4-2. 게놈 삽입 여부의 확인
prtDEFhEGF - LARD3를 Nissle 1917의 게놈에 넣는 작업은 단일 재조합(single recombination)과 이중(double recombination)의 2번에 교차에 의해 삽입이 되었다. 형질전환에 의해 pKHP를 E. coli Nissle 에 삽입하고 30℃에서 배양하여 얻은 콜로니(작은 콜로니와 큰 콜로니가 나오는데 이중 큰 콜로니가 플라스미드를 가지고 있음)를 액체에 풀어서 이를 20ug/ml 클로람페니콜(chloramphenicol) LB 배지에 스프레딩(spreading) 하여 30℃와 44℃에서 각각 배양하였다. 스프레딩에 사용한 미생물의 개수(colony forming unit; CFU)는 대략 105 이었으며 44℃에서 키운 배지에서는 5개의 큰 콜로니와 500여개의 작은 콜로니가 나타났으며 이중 큰 콜로니를 PCR로 확인해본 결과 삽입된 양상을 나타내었다.
앞에서 얻은 단일 재조합(single recombination)된 콜로니를 CFU가 1,000개 이하가 되도록 희석하여 LB와 5% 수크로즈(sucrose) 배지에 스프레딩(spreading)하여 30℃에서 배양한 결과 콜로니의 개수는 LB와 5% 수크로즈 배지에서 크게 차이가 나지 않고 100여개 나타났다. 여기서 이중 재조합(double recombination)이 된 것은 Cm에 내성을 가지고 있지 않으므로 나온 콜로니들을 Cm 배지에서 확인해본 결과 Cm에 민감한 콜로니가 20% 비율로 나타났다. 이들은 이중 재조합(double recombination)에 의해 ompC 유전자 사이에 ABC 트랜스포터와 EGF-LARD3가 삽입된 것이다. 이 과정에서 sacB 유전자와 Cm 저항성 유전자 등의 플라스미드 부분은 제거가 된다. 본 발명에서는 최종적으로 7-2, 7-10 두 개의 이중 재조합(double recombination) 콜로니를 확보하였으며 염기서열분석 및 여러 가지 PCR 확인결과 둘다 예상했던 그대로 ompC 유전자 사이에 삽입된 것을 확인할 수 있었다(도 8).
상기와 같이 제조된 prtDEFhEGF - LARD3가 게놈에 삽입되어 EGF를 항시 발현하는 재조합 Nissle 1917 균주는 EGF 및 LARD3가 정상적으로 발현되었으며(도 9A), E. coli Nissle-AC 균주와 그 발현량은 유사하였다. 한편, 상피 치유 효과도 E. coli Nissle-AC 균주와 유사한 정도로 확인되었다(도 9B).
농업생명공학연구원 KACC91653 20110506 한국생명공학연구원 KCTC12228BP 20120626 한국생명공학연구원 KCTC12229BP 20120626

Claims (11)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 상피세포 성장인자를 코딩하는 유전자 및 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 3(LARD3)을 코딩하는 유전자를 포함하는 재조합 벡터 및 PrtDEF 유전자를 포함하는 재조합 벡터로 형질전환된 E. coli Nissle 1917인 재조합 미생물(수탁번호: KACC 91653P 또는 KCTC 12228BP).
  7. 제 6항의 재조합 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물.
  8. 상피세포 성장인자를 코딩하는 유전자, 리파아제 ATP-결합 카세트 트랜스포터 인식도메인 3(LARD3)을 코딩하는 유전자 및 prtDEF 유전자가 E. coli Nissle 1917 유전체 내 특정 유전자 위치에 삽입된 것을 특징으로 하는 E. coli Nissle 1917 재조합 미생물(수탁번호: KCTC 12229BP).
  9. 제 8항에 있어서, 상기 유전체 내 특정 유전자는 ompC인 것을 특징으로 하는 재조합 미생물.
  10. 삭제
  11. 제 8항의 재조합 미생물을 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물.
KR1020120075395A 2011-07-11 2012-07-11 Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물 KR101411839B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/005520 WO2013009103A2 (ko) 2011-07-11 2012-07-11 Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110068375 2011-07-11
KR20110068375 2011-07-11

Publications (2)

Publication Number Publication Date
KR20130007991A KR20130007991A (ko) 2013-01-21
KR101411839B1 true KR101411839B1 (ko) 2014-06-27

Family

ID=47838249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120075395A KR101411839B1 (ko) 2011-07-11 2012-07-11 Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물

Country Status (1)

Country Link
KR (1) KR101411839B1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677090B1 (ko) * 2014-12-24 2016-11-17 한국과학기술원 목적 단백질의 정제용 폴리펩타이드 및 이의 용도
KR102322908B1 (ko) 2015-05-28 2021-11-04 한국화학연구원 Abc 트랜스포터를 통한 목적 단백질의 분비생산을 위한 재조합 균주 제조 및 이를 이용한 목적 단백질의 생산 방법
KR102083009B1 (ko) * 2015-06-05 2020-02-28 한국화학연구원 Abc 트랜스포터를 통한 아라자임 분비 재조합 균주 및 이를 이용한 아라자임 생산방법
KR20190027698A (ko) * 2017-09-07 2019-03-15 한국과학기술원 재조합 단백질의 분비를 증가시키는 방법
WO2019050318A2 (ko) * 2017-09-07 2019-03-14 한국과학기술원 재조합 단백질의 분비를 증가시키는 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041105A (ko) * 2008-10-13 2010-04-22 부경대학교 산학협력단 인간상피세포 성장인자와 콜라겐 결합 도메인을 함유하는 융합단백질

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041105A (ko) * 2008-10-13 2010-04-22 부경대학교 산학협력단 인간상피세포 성장인자와 콜라겐 결합 도메인을 함유하는 융합단백질

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chan Woo Chung 등. Microbial Cell Factories. Vol. 8, No. 11, 페이지 1-12 (2009) *
Chan Woo Chung 등. Microbial Cell Factories. Vol. 8, No. 11, 페이지 1-12 (2009)*

Also Published As

Publication number Publication date
KR20130007991A (ko) 2013-01-21

Similar Documents

Publication Publication Date Title
JP6726419B2 (ja) 組換え型プロバイオティクス細菌
JP2521851B2 (ja) Ngf/bdnf群の神経栄養性タンパク質の生物学的に活性な組み換え体の生産
KR101411839B1 (ko) Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물
JP2004500042A (ja) エフェクター分子の腫瘍標的送達のための組成物および方法
JP2006519014A (ja) 乳酸菌からの抗炎症活性
KR101464842B1 (ko) EB 바이러스에 의해 유도된 종양에 대한 융합 폴리펩티드 및 콜리신 Ia 돌연변이체
CN101490080A (zh) 用于缓解和治疗缺血性病症的药物组合物及其输送方法
WO2017041739A1 (zh) 改造的白介素12及其在制备治疗肿瘤药物中的用途
EP2364361A1 (en) Use of bacteria for the sensing and killing of cancer cells
US10253089B2 (en) Matrix metalloproteinase cleavable protein polymers for cancer gene therapy
WO2013009103A2 (ko) Abc 트랜스포터를 통한 egf 분비 재조합 미생물 및 이를 유효성분으로 포함하는 소화기 궤양 개선 또는 치료용 조성물
WO2022261498A1 (en) Device and methods for acne therapeutics: antibacterial bacteriophages and engineered lysins
ES2972138T3 (es) Sistema de expresión procariota inducible por cloruro
KR102186838B1 (ko) Slurp-1을 발현하는 약독화된 살모넬라 균주를 유효성분으로 함유하는 암 백신 조성물
JPS62501071A (ja) 成長因子活性を有する新規なポリペプチド及び該ポリペプチドをコ−ドする核酸配列
US20220152127A1 (en) Engineered lactococcus
RU2812766C2 (ru) Хлорид-индуцируемая прокариотическая система экспрессии
US20220177533A1 (en) Recombinant TGF a for wound healing purposes, and the process thereof
KR20230064561A (ko) 이중 분비 시스템을 탑재한 항암 균주
CN115960936A (zh) 一种智能工程细菌系统及其制备和在抗肿瘤药物中的应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170602

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 5