KR101391672B1 - 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치 - Google Patents

묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치 Download PDF

Info

Publication number
KR101391672B1
KR101391672B1 KR1020070082674A KR20070082674A KR101391672B1 KR 101391672 B1 KR101391672 B1 KR 101391672B1 KR 1020070082674 A KR1020070082674 A KR 1020070082674A KR 20070082674 A KR20070082674 A KR 20070082674A KR 101391672 B1 KR101391672 B1 KR 101391672B1
Authority
KR
South Korea
Prior art keywords
point
screen
slits
measured
imaging
Prior art date
Application number
KR1020070082674A
Other languages
English (en)
Other versions
KR20080016494A (ko
Inventor
타케시 후쿠다
마나부 미즈모토
Original Assignee
가부시키가이샤 아도테크 엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아도테크 엔지니어링 filed Critical 가부시키가이샤 아도테크 엔지니어링
Publication of KR20080016494A publication Critical patent/KR20080016494A/ko
Application granted granted Critical
Publication of KR101391672B1 publication Critical patent/KR101391672B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 노광 헤드와 묘화면을 상대적으로 이동시키고, 노광 헤드에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 측정하는 묘화 위치 측정 방법에 있어서, 보다 고정밀도로 묘화점의 위치를 측정함을 과제로 하며, 이를 위해 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 노광 헤드(26)와 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 노광 헤드(26)에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 묘화면에 형성된 검출용 슬릿(74)에 의해 측정하는 묘화 위치 측정 방법에 있어서, 상대적 이동중에 있어서의 노광 헤드와 검출용 슬릿(74)의 상대적인 위치 편차를 측정하고, 그 측정한 위치 편차에 의거하여 검출용 슬릿(74)에 의해 측정된 묘화점의 위치를 보정한다.
묘화 위치 측정 방법, 묘화 위치 측정 장치, 묘화 방법, 묘화 장치

Description

묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치{METHOD AND APPARATUS FOR MEASURING DRAWING POSITION, AND METHOD AND APPARATUS FOR DRAWING IMAGE}
본 발명은 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 묘화면을 상대적으로 이동시키고, 묘화점 형성 수단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 측정하는 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치에 관한 것이다.
최근, 디지털ㆍ마이크로미러ㆍ디바이스(DMD)라고 하는 공간 광 변조 소자 등을 이용하여 화상 데이터에 따라 변조된 광 빔에 의해 피노광부재 상에 화상 노광을 행하는 노광 장치의 개발이 진척되어 있다.
이 DMD는 예를 들면 제어 신호에 따라서 반사면의 각도가 변화되는 다수의 마이크로미러를 실리콘 등의 반도체 기판 상에 2차원적으로 배열한 미러 디바이스이며, 각 메모리 셀에 축적된 전하에 의한 정전기력으로 마이크로미러의 반사면의 각도를 변화시키도록 구성되어 있다.
상기와 같은 DMD를 이용한 노광 장치에 있어서는, 예를 들면, 레이저 빔을 출사하는 광원으로부터 출사된 레이저 빔을 렌즈계로 콜리메이팅(collimating)하고, 이 렌즈계의 거의 초점 위치에 배치된 DMD의 복수의 마이크로미러로 각각 레이저 빔을 반사해서 복수의 빔 출사구로부터 각 빔을 출사하는 노광 헤드를 이용하고, 또한, 노광 헤드의 빔 출사구로부터 출사된 각 빔을 1화소마다 1개의 렌즈로 집광하는 마이크로렌즈 어레이 등의 광학 소자를 갖는 렌즈계에 의해 감광 재료(피노광부재)의 노광면 상에 스팟 직경을 작게 해서 결상하고, 해상도가 높은 화상 노광을 행한다.
그리고, 이 노광 장치에 있어서는 화상 데이터 등에 따라 생성한 제어 신호에 의거하여 DMD의 마이크로미러의 각각을 제어 장치로 온, 오프 제어해서 레이저 빔을 변조하고, 변조된 레이저 빔을 노광면 상에 조사해서 노광한다.
그리고, 이 노광 장치에 있어서는 노광면에 감광 재료(포토레지스트 등)를 배치하고, 노광 장치의 복수의 노광 헤드로부터 각각 감광 재료 상에 레이저 빔이 조사되어서 결상된 빔 스팟의 위치를 감광 재료에 대하여 상대적으로 이동시키면서 각각의 DMD를 화상 데이터에 따라 변조함으로써 감광 재료 상에 패턴 노광이 실시된다.
여기서, 상기와 같은 노광 장치에 있어서는, 예를 들면, 기판 상에 고정밀도로 회로 패턴을 노광하는 처리에 이용할 경우, 노광 헤드의 조명 광학계나 결상 광학계에 이용되는 렌즈가 디스토션이라 불리는 고유한 왜곡 특성을 갖고 있기 때문에 DMD의 전체 마이크로미러에 의해 구성된 반사면과, 노광면 상에 있어서의 투영상이 정확한 유사 관계가 되지 않고, 노광면상의 투영상이 디스토션에 의해 변형되 어 위치 편차가 발생하여 설계된 회로 패턴에 엄밀하게 일치하지 않을 경우가 있다.
따라서, 상기와 같은 디스토션을 보정하는 방법이 제안되어 있다. 예를 들면, 특허문헌 1에 있어서는 노광면의 단부에 L자형의 슬릿과 이 슬릿을 투과한 광을 검출하는 포토 센서를 설치하고, DMD의 각 마이크로미러로부터 출사되고, L자형의 슬릿을 통과한 레이저 빔을 검출함과 아울러 그 검출 시점에 있어서의 노광면의 위치를 측정함으로써 DMD의 각 마이크로미러 빔 스팟 위치를 측정하고, 이 빔 스팟 위치 정보와 DMD의 각 마이크로미러의 반사면의 위치 정보로부터 이것들의 상대적인 위치 편차를 산출하고, 이 위치 편차에 의거하여 화상 데이터를 보정함으로써 디스토션을 보정하는 방법이 제안되어 있다.
[특허문헌 1] 일본 특허공개 2005-316409호 공보
그러나, 특허문헌 1에 기재된 방법에 있어서는 빔 스팟 위치의 측정중에, 예를 들면, 진동 등의 외란에 의해 L자형의 슬릿과 노광 헤드의 상대적인 위치 관계가 벗어났을 경우에는 정확한 빔 스팟 위치를 측정할 수 없고, 고정밀도의 회로 패턴을 노광할 수 없다.
본 발명은 상기 사정을 감안하여 보다 고정밀도의 묘화를 가능하게 하기 위해서 보다 고정밀도로 빔 스팟 위치를 측정할 수 있는 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명의 제 1 묘화 위치 측정 방법은 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 묘화점 형성 수단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 위치 측정 수단에 의해 측정하는 묘화 위치 측정 방법에 있어서, 상대적 이동중에 있어서의 묘화점 형성 수단의 각 묘화점과 위치 측정 수단의 상대적인 위치를 측정하고, 그 측정한 상대 위치에 의거하여 묘화점의 위치를 결정하는 것을 특징으로 한다.
본 발명의 제 2 묘화 위치 측정 방법은 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 묘화점 형성 수단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 묘화면에 설치된 위치 측정 수단에 의해 측정하는 묘화 위치 측정 방법에 있어서, 상대적 이동중에 있어서의 묘화점 형성 수단의 각 묘화점과 위치 측정 수단의 상대적인 위치 편차를 측정하고, 그 측정한 위치 편차에 의거하여 위치 측정 수단에 의해 측정된 묘화점의 위치를 보정하는 것을 특징으로 한다.
또한, 본 발명의 제 1 및 제 2 묘화 위치 측정 방법에 있어서는 위치 측정 수단으로서, 묘화면과 동일면에 서로 평행하지 않은 적어도 2개의 슬릿을 형성함과 아울러 묘화점 형성 수단에 의해 변조되어 적어도 2개의 슬릿을 통과한 광을 검출하는 검출 수단을 설치하고, 적어도 2개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 묘화면의 각 상대적 이동 위치 정보에 의거하여 묘화점의 위치를 측정하도록 할 수 있다.
또한, 위치 측정 수단으로서, 묘화면과 동일면에 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿을 형성함과 아울러 묘화점 형성 수단에 의해 변조되어 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 설치하고, 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 묘화면의 각 상대적 이동 위치 정보에 의거하여 묘화점의 위치를 측정하도록 할 수 있다.
또한, 위치 측정 수단을 복수개 사용하도록 할 수 있다.
또한, 슬릿을 유리판에 형성하도록 할 수 있다.
또한, 슬릿을 1장의 유리판에 형성하도록 할 수 있다.
본 발명의 제 1 묘화 위치 측정 장치는 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과, 묘화점 형성 수단과 묘화면을 상대적으로 이동시키는 이동 수단과, 이동 수단에 의한 상대적인 이동에 의해 묘화점 형성 수 단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 측정하는 위치 측정 수단을 구비한 묘화 위치 측정 장치에 있어서, 이동 수단에 의한 상대적 이동중에 있어서의 묘화점 형성 수단의 각 묘화점과 위치 측정 수단의 상대적인 위치를 측정하는 상대 위치 측정 수단과, 상대 위치 측정 수단에 의해 측정된 상대 위치에 의거하여 묘화점의 위치를 결정하는 연산 수단을 구비한 것을 특징으로 한다.
본 발명의 제 2 묘화 위치 측정 장치는 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과, 이 묘화점 형성 수단과 묘화면을 상대적으로 이동시키는 이동 수단과, 이 이동 수단에 의한 상대적인 이동에 의해 묘화점 형성 수단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 측정하는, 묘화면에 설치된 위치 측정 수단을 구비한 묘화 위치 측정 장치에 있어서, 이동 수단에 의한 상대적 이동중에 있어서의 묘화점 형성 수단의 각 묘화점과 위치 측정 수단의 상대적인 위치 편차를 측정하는 위치 편차 측정 수단과, 위치 편차 측정 수단에 의해 측정된 위치 편차에 의거하여 위치 측정 수단에 의해 측정된 묘화점의 위치를 보정하는 보정 수단을 구비한 것을 특징으로 한다.
또한, 본 발명의 제 1 및 제 2 묘화 위치 측정 장치는 위치 측정 수단을 묘화면과 동일면에 설치한, 서로 평행하지 않은 적어도 2개의 슬릿과, 묘화점 형성 수단에 의해 변조되어 적어도 2개의 슬릿을 통과한 광을 검출하는 검출 수단을 구비하는 것으로 하고, 적어도 2개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 묘화면의 각 상대적 이동 위치 정보에 의거하여 묘화점의 위치를 측정하는 것으로 할 수 있다.
또한, 위치 측정 수단을 묘화면과 동일면에 설치한, 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿과, 묘화점 형성 수단에 의해 변조되어 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 구비하는 것으로 하고, 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 묘화면의 각 상대적 이동 위치 정보에 의거하여 묘화점의 위치를 측정하는 것으로 할 수 있다.
또한, 위치 측정 수단을 복수개 구비하는 것으로 할 수 있다.
또한, 슬릿을 유리판에 형성하도록 할 수 있다.
또한, 슬릿을 1장의 유리판에 형성하도록 할 수 있다.
본 발명의 묘화 위치 측정 방법 및 장치에 의하면, 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 묘화점 형성 수단에 의해 묘화점을 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 묘화점의 위치를 묘화면에 설치된 위치 측정 수단에 의해 측정하는 묘화 위치 측정 방법에 있어서, 이동 수단에 의한 상대적 이동중에 있어서의 묘화점 형성 수단과 위치 측정 수단의 상대적인 위치 편차를 측정하고, 그 측정한 위치 편차에 의거하여 위치 측정 수단에 의해 측정된 묘화점의 위치를 보정하도록 했으므로, 예를 들면, 진동 등의 외란에 의해 위치 측정 수단과 묘화점 형성 수단의 상대적인 위치 관계가 벗어났을 경우에 있어서도, 그 위치 편차에 의거하여 묘화점의 위치를 보정하므로 정확한 묘화점의 위치를 측정할 수 있 고, 고정밀도의 화상의 묘화가 가능하게 된다.
이하, 도면을 참조해서 본 발명의 묘화 위치 측정 방법 및 장치의 제 1 실시형태를 이용한 노광 장치에 대해서 상세히 설명한다. 도 1은 본 발명의 제 1 실시형태를 이용한 노광 장치의 개략 구성을 나타내는 사시도이다.
도 1에 도시된 바와 같이, 노광 장치(10)는 소위 플랫 베드형으로 구성한 것이며, 4개의 다리 부재(12A)로 지지된 베이스(12)와, 이 베이스(12) 상에 형성되고 도면 중 Y 방향으로 이동하고, 감광 재료가 탑재 고정되어서 이동하는 이동 스테이지(14)와, 자외 파장 영역을 포함하고, 한 방향으로 연장된 멀티 빔을 레이저 광으로서 출사하는 광원 유닛(16)과, 이 멀티 빔을 소망하는 화상 데이터에 의거하여 멀티 빔의 위치에 따라서 공간 변조하고, 멀티 빔의 파장 영역에 감도를 갖는 감광 재료에 이 변조된 멀티 빔을 노광 빔으로서 조사하는 노광 헤드 유닛(18)과, 이동 스테이지(14)의 이동에 따라 노광 헤드 유닛(18)에 공급하는 변조 신호를 화상 데이터로 생성하는 제어 유닛(20)을 구비하고 있다.
이 노광 장치(10)에서는 이동 스테이지(14)의 상방에 감광 재료를 노광하기 위한 노광 헤드 유닛(18)이 배치되어 있다. 그리고, 이 노광 헤드 유닛(18)에는 복수의 노광 헤드(26)가 설치되어 있다. 각 노광 헤드(26)에는 광원 유닛(16)으로부터 각각 인출된 번들형 광 파이버(28)가 접속되어 있다.
이 노광 장치(10)에는 베이스(12)에 걸치도록 문형 프레임(22)이 설치되고, 그 편측의 면에 한쌍의 위치 검출 센서(24)가 배치되어 있다. 이 위치 검출 센 서(24)는 이동 스테이지(14)의 통과를 검지했을 때의 검출 신호를 제어 유닛(20)에 공급한다.
이 노광 장치(10)에서는 베이스(12)의 상면에 스테이지 이동 방향을 따라 연장된 2개의 가이드(30)가 설치되어 있다. 이 2개의 가이드(30) 상에는 이동 스테이지(14)가 왕복 이동 가능하게 장착되어 있다. 이 이동 스테이지(14)는 도시되지 않은 리니어 모터에 의해, 예를 들면, 1000㎜의 이동량을 40㎜/초로 한 비교적 저속의 일정 속도로 이동되도록 구성되어 있다.
이 노광 장치(10)에서는 고정된 노광 헤드 유닛(18)에 대하여 이동 스테이지(14)에 탑재된 피노광부재인 감광 재료(기판)(11)를 이동하면서 주사 노광한다.
도 2에 도시된 바와 같이, 노광 헤드 유닛(18)의 내부에는 m행 n열(예를 들면, 2행 4열)의 거의 매트릭스상으로 배열된 복수(예를 들면, 8개)의 노광 헤드(26)가 설치되어 있다.
노광 헤드(26)에 의한 노광 에어리어(32)는 예를 들면 주사 방향을 단변으로 하는 직사각형으로 구성된다. 이 경우, 감광 재료(11)에는 그 주사 노광의 이동 동작에 따라 노광 헤드(26)마다 밴드 형상의 노광된 영역(34)이 형성된다.
또한, 도 2에 도시된 바와 같이, 밴드 형상의 노광된 영역(34)이 주사 방향과 직교하는 방향으로 간극 없이 늘어서도록 라인상으로 배열된 각 행의 노광 헤드(26)의 각각은 배열 방향으로 소정 간격(노광 에어리어의 장변의 자연수배) 벗어나게 배치되어 있다. 따라서, 예를 들면 제 1 행의 노광 에어리어(32)와 제 2 행의 노광 에어리어(32) 사이의 노광할 수 없는 부분은 제 2 행의 노광 에어리어(32)에 의해 노광된다.
도 3에 도시된 바와 같이, 각 노광 헤드(26)는 각각 입사된 광 빔을 화상 데이터에 따라 각 화소마다 변조하는 공간 광 변조 소자로서 디지털ㆍ마이크로미러ㆍ디바이스(DMD)(36)를 구비하고 있다. 이 DMD(36)는 데이터 처리 수단과 미러 구동 제어 수단을 구비한 제어 유닛(제어 수단)(20)에 접속되어 있다.
이 제어 유닛(20)의 데이터 처리 수단에서는 입력된 화상 데이터에 의거하여 각 노광 헤드(26)마다 DMD(36)의 제어해야 할 영역 내의 각 마이크로미러를 구동 제어하는 제어 신호가 생성된다. 또한, DMD 컨트롤러로서의 미러 구동 제어 수단은 데이터 처리 수단으로 생성한 제어 신호에 의거하여 각 노광 헤드(26)마다 DMD(36)에 있어서의 각 마이크로미러의 반사면의 각도를 제어한다. 또한, 이 반사면의 각도 제어에 대해서는 후술한다.
각 노광 헤드(26)에 있어서의 DMD(36)의 광입사측에는, 도 1에 도시된 바와 같이, 자외 파장 영역을 포함하는 한 방향으로 연장된 멀티 빔을 레이저 광으로서 출사하는 조명 장치인 광원 유닛(16)으로부터 각각 인출된 번들형 광 파이버(28)가 접속된다.
광원 유닛(16)은 도시되진 않았지만 그 내부에 복수의 반도체 레이저 칩으로부터 출사된 레이저 광을 콤바이닝(combining)해서 광 파이버에 입력하는 콤바이닝 모듈(combining module)이 복수개 설치되어 있다. 각 콤바이닝 모듈로부터 연장된 광 파이버는 콤바이닝된 레이저 광을 전파하는 콤바이닝 광 파이버이며, 복수의 광 파이버가 1개로 묶어진 번들형 광 파이버(28)로서 형성된다.
도 3에 도시된 바와 같이, 각 노광 헤드(26)에 있어서의 DMD(36)의 광입사측에는 번들형 광 파이버(28)의 접속 단부로부터 출사된 레이저 광을 DMD(36)를 향해서 반사하는 미러(42)가 배치되어 있다.
DMD(36)는, 도 4에 도시된 바와 같이, SRAM 셀(메모리 셀)(44) 상에 미소 미러(마이크로미러)(46)가 지주에 의해 지지되어서 배치된 것이며, 화소를 구성하는 다수(예를 들면, 600개×800개)의 미소 미러를 격자상으로 배열한 미러 디바이스로서 구성되어 있다. 각 화소에는 최상부에 지주로 지지된 마이크로미러(46)가 설치되어 있고, 마이크로미러(46)의 표면에는 알루미늄 등의 반사율이 높은 재료가 증착되어 있다.
또한, 마이크로미러(46)의 직하에는 도시되지 않은 힌지 및 요크를 포함하는 지주를 통해 통상의 반도체 메모리의 제조 라인으로 제조되는 실리콘-게이트의 CMOS의 SRAM 셀(44)이 배치되어 있다.
DMD(36)의 SRAM 셀(44)에 디지털 신호가 기록되면 지주로 지지된 마이크로미러(46)가 대각선을 중심으로 해서 DMD(36)가 배치된 기판측에 대하여 ±a도(예를 들면 ±10도)의 범위에서 기울어진다. 도 5(A)는 마이크로미러(46)가 온 상태인 +a도로 기울어진 상태를 나타내고, 도 5(B)는 마이크로미러(46)가 오프 상태인 -a도로 기울어진 상태를 나타낸다. 따라서, 화상 신호에 따라 DMD(36)의 각 화소에 있어서의 마이크로미러(46)의 경사를, 도 4에 도시된 바와 같이, 제어함으로써 DMD(36)로 입사된 광은 각각의 마이크로미러(46)의 경사 방향으로 반사된다.
또한, 도 4에는 DMD(36)의 일부를 확대하고, 마이크로미러(46)가 +a도 또는 -a도로 제어되어 있는 상태의 일례를 나타낸다. 각각의 마이크로미러(46)의 온, 오프(on/off)제어는 DMD(36)에 접속된 제어 유닛(20)에 의해 행해지는 것으로, 온 상태의 마이크로미러(46)에 의해 반사된 광은 노광 상태로 변조되어 DMD(36)의 광출사측에 형성된 투영 광학계(도 3참조)로 입사된다. 또한, 오프 상태의 마이크로미러(46)에 의해 반사된 광은 비노광 상태로 변조되어 광흡수체(도시 생략)로 입사된다.
또한, DMD(36)는 그 단변 방향이 주사 방향과 소정 각도(예를 들면, 0.1°∼ 0.5°)를 이루도록 약간 기울여서 배치하는 것이 바람직하다. 도 6(A)는 DMD(36)를 기울이지 않을 경우의 각 마이크로미러에 의한 반사광상(노광 빔)(48)의 주사 궤적을 나타내고, 도 6(B)는 DMD(36)를 기울였을 경우의 노광 빔(48)의 주사 궤적을 나타내고 있다.
DMD(36)에는 길이 방향(행 방향)을 따라 마이크로미러(46)가 다수개(예를 들면, 800개) 배열된 마이크로미러 열이 단변 방향으로 다수조(예를 들면, 600조) 배열되어 있지만, 도 6(B)에 도시된 바와 같이, DMD(36)를 기울임으로써 각 마이크로미러(46)에 의한 노광 빔(48)의 주사 궤적(주사선)의 피치(P2)가 DMD(36)를 기울이지 않을 경우의 주사선의 피치(P1)보다 좁아져서 해상도를 대폭 향상시킬 수 있다.한편, DMD(36)의 경사각은 미소하므로 DMD(36)를 기울였을 경우의 주사폭(W2)과 DMD(36)를 기울이지 않을 경우의 주사폭(W1)은 거의 동일하다.
또한, DMD(36)를 기울이는 대신에 각 마이크로미러 열을 주사 방향과 직교하는 방향으로 소정 간격 벗어나게 하여 배치해도 마찬가지의 효과를 얻을 수 있다.
이어서, 노광 헤드(26)에 있어서의 DMD(36)의 광반사측에 설치된 투영 광학계(결상 광학계)에 대해서 설명한다. 도 3에 도시된 바와 같이, 각 노광 헤드(26)에 있어서의 DMD(36)의 광반사측에 설치된 투영 광학계는 DMD(36)의 광반사측의 노광면에 있는 감광 재료(11) 상에 광원상을 투영하기 위해서 DMD(36)의 측으로부터 감광 재료(11)를 향하여 순서대로 렌즈계(50, 52), 마이크로렌즈 어레이(54), 대물 렌즈계(56, 58)의 각 노광용의 광학부재가 배치되어서 구성되어 있다.
여기서, 렌즈계(50, 52)는 확대 광학계로서 구성되어 있고, DMD(36)에 의해 반사되는 광선속의 단면적을 확대함으로써 감광 재료(11)상의 DMD(36)에 의해 반사된 광선속에 의한 노광 에어리어(32)(도 2에 도시됨)의 면적을 소망하는 크기로 확대하고 있다.
도 3에 도시된 바와 같이, 마이크로렌즈 어레이(54)는 광원 유닛(16)으로부터 각 광 파이버(28)를 통해서 조사된 레이저 광을 반사하는 DMD(36)의 각 마이크로미러(46)에 1대1로 대응하는 복수의 마이크로렌즈(60)가 일체적으로 형성된 것이며, 각 마이크로렌즈(60)는 각각 렌즈계(50, 52)를 투과한 각 레이저 빔의 광축 상에 각각 배치되어 있다.
이 마이크로렌즈 어레이(54)는 직사각 평판 형상으로 형성되고, 각 마이크로렌즈(60)를 형성한 부분에는 각각 어퍼쳐(62)가 일체적으로 배치되어 있다. 이 어퍼쳐(62)는 각 마이크로렌즈(60)에 1대1로 대응해서 배치된 어퍼쳐 스톱(aperture stop)으로서 구성되어 있다.
도 3에 도시된 바와 같이, 대물 렌즈계(56, 58)는 예를 들면, 등배 광학계로 서 구성되어 있다. 또한, 감광 재료(11)는 대물 렌즈계(56, 58)의 후방 초점 위치에 배치된다. 또한, 투영 광학계에 있어서의 각 렌즈계(50, 52), 대물 렌즈계(56, 58)는 도 3에 있어서 각각 1장의 렌즈로 도시되어 있지만 복수장의 렌즈(예를 들면, 볼록 렌즈와 오목렌즈)를 조합시킨 것이어도 좋다.
상술한 바와 같이 구성된 노광 장치(10)에서는 노광 헤드(26)의 투영 광학계에 있어서의 각 렌즈계(50, 52)나 대물 렌즈계(56, 58) 등이 갖는 디스토션이나 노광 헤드(26)로 노광 처리할 때에 온도 등으로 변화되는 묘화의 디스토션량을 적절히 검출하기 위한 묘화의 디스토션량 검출 수단이 설치되어 있다.
이 묘화의 디스토션량 검출 수단의 일부로서, 도 1∼도 3에 도시된 바와 같이, 이 노광 장치(10)에는 그 이동 스테이지(14)의 반송 방향 상류측에 조사된 빔 위치를 측정하기 위한 빔 위치 측정 수단이 배치되어 있다.
이 빔 위치 측정 수단은 이동 스테이지(14)에 있어서의 반송 방향(주사 방향)에 직교하는 방향을 따라 상류측의 에지부에 일체적으로 부착된 슬릿판(70)과 이 슬릿판(70)의 후측에 각 슬릿마다 대응해서 설치된 포토 센서(72)를 구비한다.
이 슬릿판(70)에는 노광 헤드(26)로부터 출사된 레이저 빔을 투과하는 검출용 슬릿(74)이 천공되어 있다.
슬릿판(70)은 온도 변화에 의한 변형이 발생하기 어려운 석영 유리에 의해 형성하는 것이 바람직하다.
각 검출용 슬릿(74)은, 도 7에 도시된 바와 같이, 반송 방향 상류측에 위치하는 소정 길이를 갖는 직선상의 제 1 슬릿부(74a)와 반송 방향 하류측에 위치하는 소정 길이를 갖는 직선상의 제 2 슬릿부(74b)를 각각의 일단부에서 직각으로 접속한 것이다.
즉, 제 1 슬릿부(74a)와 제 2 슬릿부(74b)는 서로 직교함과 아울러 Y축(주행 방향)에 대하여 제 1 슬릿부(74a)는 135도, 제 2 슬릿부(74b)는 45도의 각도를 갖도록 구성되어 있다. 또한, 본 실시형태에서는 주사 방향을 Y축으로 하고, 이것에 직교하는 방향[노광 헤드(26)의 배열 방향]을 X축으로 한다.
또한, 제 1 슬릿부(74a)와 제 2 슬릿부(74b)는 서로 소정의 각도를 이루도록 배치하는 것이면 좋고, 양자가 교차하는 구성 이외에 따로따로 떨어져 배치하는 구성이어도 좋다.
또한, 이 노광 장치에서는 빔 위치 측정 수단에 의해 측정하는 대상이 되는 빔 스팟(BS)의 광량이 낮아도 S/N비를 양호하게 해서 고정밀도의 측정을 가능하게 하기 위해서 검출용 슬릿(74)에 있어서의 제 1 슬릿부(74a)와 제 2 슬릿부(74b)의 슬릿폭을 가우스 빔의 빔 스팟(BS) 직경보다도 포토 센서(72)가 광량을 충분히 얻을 수 있을만큼 넓게 형성한다. 요컨대, 검출용 슬릿(74)에 있어서의 제 1 슬릿부(74a)와 제 2 슬릿부(74b)의 슬릿폭을 가우스 빔의 빔 스팟(BS) 직경 이상으로 형성한다.
이렇게 검출용 슬릿(74)의 슬릿폭을 빔 스팟(BS) 직경보다도 포토 센서(72)가 광량을 충분히 얻을 수 있을만큼 넓게 형성했을 경우에는 빔 스팟(BS)에 조사되는 빔의 광량을 전면적으로 이용할 수 있기 때문에 포토 센서(72)가 수광하는 광량을 가능한 한 크게 하여, S/N비를 양호하게 할 수 있다.
여기서, 일반적으로 정의되어 있는 바와 같이, 가우스 빔으로서는 빔에 수직인 단면의 강도가 중심 대칭인 가우스 분포의 형태를 취한다.
또한, 가우스 빔에 있어서의 빔 스팟 직경은 강도가 중심축 상의 강도의 1/e2(약 13.5%)로 저하하는 주변부의 직경을 의미한다.
각 검출용 슬릿(74) 직하의 각 소정 위치에는 각각 노광 헤드(26)로부터의 광을 검출하는 포토 센서(72)(CCD, CMOS 또는 포토 디텍터 등으로도 좋음)가 배치되어 있다.
또한, 이 노광 장치(10)에 설치된 빔 위치 측정 수단은, 도 1에 도시된 바와 같이, 이동 스테이지(14)의 반송 방향에 따른 한쪽 측부에 이동 스테이지(14)의 위치를 검출하기 위한 리니어 엔코더(linear encoder)(76)를 구비하고 있다.
이 리니어 엔코더(76)는 일반적으로 시판되어 있는 리니어 엔코더를 이용할 수 있다. 이 리니어 엔코더(76)는 이동 스테이지(14)에 있어서의 반송 방향(주사 방향)에 따른 측부에 일체적으로 부착되고, 광을 투과하는 미세한 슬릿 형상의 눈금을 등간격으로 평면 부분에 형성한 눈금판(78)과, 이 눈금판(78)을 끼우도록 베이스(12)에 설치된 도시되지 않은 고정 프레임에 고착된 투광기(80) 및 수광기(82)를 구비한다.
이 리니어 엔코더(76)는 투광기(80)로부터 측정용의 빔을 출사하고, 눈금판(78)의 미세한 슬릿 형상의 눈금을 투과한 측정용의 빔을 후측에 배치된 수광기(82)로 검출하고, 그 검출 신호를 제어 유닛(20)에 송신하도록 구성한다.
이 리니어 엔코더(76)에서는 초기 위치에 있는 이동 스테이지(14)를 이동 조작했을 때에 이동 스테이지(14)와 일체로 이동하는 눈금판(78)에 의해 투광기(80)로부터 출사된 측정용의 빔이 단속적으로 차단되어서 수광기(82)로 입사된다.
따라서, 이 노광 장치(10)에서는 수광기(82)로 수광된 회수를 제어 유닛(20)이 카운트함으로써 이동 스테이지(14)의 이동 위치를 제어 유닛(20)이 인식 가능하게 구성되어 있다.
이 노광 장치(10)에서는 제어 유닛(20)에 디스토션량 검출 수단의 일부가 되는 전기계의 구성이 형성되어 있다.
이 제어 유닛(20)은 제어 장치로서의 CPU 및 메모리를 구비한다. 이 제어 장치는 DMD(36)에 있어서의 각각의 마이크로미러(46)를 구동 제어 가능하게 구성되어 있다.
또한, 이 제어 장치는 리니어 엔코더(76)의 수광기(82)의 출력 신호를 수신하고, 각 포토 센서(72)로부터의 출력 신호를 수신하고, 이동 스테이지(14)의 위치와 포토 센서(72)로부터의 출력 상태를 관련되게 만든 정보에 의거하여 화상 데이터에 대하여 디스토션 보정 처리를 행하고, 적절한 제어 신호를 생성해서 DMD(36)를 제어함과 아울러 감광 재료(11)가 탑재된 이동 스테이지(14)를 주사 방향으로 구동 제어한다.
또한, 제어 장치는 노광 장치(10)로 노광 처리할 때에 필요한 광원 유닛(16)으로 한 노광 장치(10)의 노광 처리 동작 전반에 관한 각종 장치의 제어를 행한다.
이어서, 이 노광 장치(10)에 설치된 묘화의 디스토션량 검출 수단에 있어서, 검출용 슬릿(74)과 리니어 엔코더(76)를 이용해서 빔 위치를 측정하는 방법에 대해서 설명한다.
우선, 이 노광 장치(10)에 있어서, 피측정 화소인 하나의 특정 화소(Z1)를 점등했을 때의 노광면 상에 실제로 조사된 위치를 검출용 슬릿(74)과 리니어 엔코더(76)를 이용해서 특정할 때의 방법에 대해서 설명한다.
우선, 이동 스테이지(14)를 이동 조작해서 슬릿판(70)의 소정 노광 헤드(26)용의 소정 검출용 슬릿(74)을 노광 헤드 유닛(18)의 하방에 위치시킨다.
이어서, 소정의 DMD(36)에 있어서의 특정 화소(Z1)만을 온 상태(점등 상태)로 하도록 제어한다.
또한, 이동 스테이지(14)를 이동 제어함으로써, 도 8(A)에 실선으로 도시된 바와 같이, 검출용 슬릿(74)이 노광 에어리어(32)상의 소망하는 위치(예를 들면 원점으로 해야 할 위치)가 되도록 이동시킨다. 이때, 제어 장치는 제 1 슬릿부(74a)와 제 2 슬릿부(74b)의 교점을 (X0, Y0)으로 인식하고, 메모리에 기억한다.
이어서, 도 8(A)에 도시된 바와 같이, 제어 장치는 이동 스테이지(14)를 이동 제어함으로써 검출용 슬릿(74)을 Y축을 따라 도 8(A)를 향해서 우측으로 이동을 개시시킨다.
그리고, 제어 장치는 도 8(A)를 향해서 우측의 상상선으로 도시된 위치를 통과할 때에 도 8(B)에 예시하도록 점등하고 있는 특정 화소(Z1)로부터의 광이 제 1 슬릿부(74a)를 투과해서 포토 센서(72)로 검출되었을 때의 출력 신호와, 이동 스테이지(14)의 이동 위치의 관계로부터 특정 화소(Z1)의 위치 정보를 연산 처리하고, 이 때의 제 1 슬릿부(74a)와 제 2 슬릿부(74b)의 교점(X0, Y11)을 구한다.
이 빔 위치 측정 수단에서는 검출용 슬릿(74)의 슬릿폭을 빔 스팟(BS) 직경보다도 충분히 넓게 형성하고 있으므로, 도 9에 도시된 바와 같이, 포토 센서(72)의 검출값이 최대인 위치가 어떤 범위에 걸쳐 퍼져버리므로, 포토 센서(72)의 검출값이 최대가 되었을 때의 위치를 특정 화소(Z1)의 위치라고 할 수 없다.
따라서, 포토 센서(72)가 검출한 최대치의 반의 값인 반값을 산출한다. 그리고, 이 제어 장치는 이동 스테이지(14)를 연속적으로 이동하면서 포토 센서(72)의 출력이 반값이 되었을 때의 2개소의 위치[이동 스테이지(14)의 이동 위치]를 각각 리니어 엔코더(76)의 검출값으로부터 구한다.
이어서, 포토 센서(72)의 출력이 반값이 되었을 때의 제 1 위치(a)와, 제 2 위치(b)의 중앙의 위치를 산출한다. 그리고, 이 산출한 중앙의 위치를 특정 화소(Z1)의 위치 정보[제 1 슬릿부(74a)와 제 2 슬릿부(74b)의 교점(X0, Y11)]로서 구한다. 이에 따라, 빔 스팟(BS)의 중심 위치를 특정 화소(Z1)의 위치로서 구할 수 있다.
여기서, 상기한 바와 같이 해서 특정 화소(Z1)의 위치 정보(X0, Y11)를 구할 수 있지만, 예를 들면, 빔 위치 측정 수단에 의한 측정중에 외란 등에 의해 검출용 슬릿(74)과 노광 헤드(26)의 상대적인 위치 관계가 벗어났을 경우에는 그 위치 편차를 보정하지 않으면 특정 화소(Z1)의 정확한 위치 정보를 구할 수 없다. 따라서, 본 실시형태의 노광 장치에 있어서는 상기와 같은 외란에 의한 위치 편차의 보정을 행한다. 즉, 「검출용 슬릿에 의해 계측된 위치 정보」와 「이동 스테이지와 노광 헤드의 상대적 위치 이동값[측장기(測長器)에 의해 외부로부터 계측, 이동 스테이지의 반송, 외란 모두를 포함하고 있는 측정값]」을 동기시켜서 빔 위치를 산출함으로써 정확한 빔 위치를 결정한다.
구체적으로는 우선, 노광 헤드(26)와 검출용 슬릿(74)의 상대적인 위치 편차를 측정한다.
노광 헤드(26)와 검출용 슬릿(74)의 상대적인 위치 편차는 검출용 슬릿(74)이 형성된 이동 스테이지(14)의 위치 편차와 노광 헤드(26)의 위치 편차를 측정함으로써 측정된다. 이동 스테이지(14)의 Y방향의 위치 편차에 대해서는, 도 10에 도시된 바와 같이, 측장기(Y1, Y2)에 의해 계측되고, 이동 스테이지(14)의 X방향의 위치 편차에 대해서는 측장기(X)에 의해 계측된다. 그리고, 노광 헤드의 Y방향에 관한 위치 편차는 측장기(Yh1)에 의해 계측되고, X방향에 관한 위치 편차는 측장기(Xh)에 의해 계측된다.
그리고, 도 10에 도시된 측장기에 의해 계측된 위치 편차에 의거하여 상기 제 1 위치(a)가 보정된다. 구체적으로는 하기 식을 산출함으로써 보정된 제 1 위치(a)의 위치 좌표(Y11a')가 구해진다.
Y11a'=Y11a+(Y2a-Y1a)×m/n+(Xa-Xha)/tanθ-(Yh1a×s+Yh2a×r)/(r+s)
Y11a : 실제로 측정된 제 1 위치(a)의 Y방향에 관한 좌표값
Y2a : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(Y2)의 값
Y1a : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(Y1)의 값
Xa : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(X)의 값
Xha : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(Xh)의 값
Yh1a : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(Yh1)의 값
Yh2a : 제 1 위치(a)가 측정된 시점에 있어서의 측장기(Yh2)의 값
또한, 검출용 슬릿(74)은 X방향에 대해서 등간격으로 n+1개 나열되고, 측장기(Y1)의 측정점으로부터 m번째의 슬릿에서 제 1 위치(a)를 계측한 것으로 한다.
또한, θ는, 도 11에 도시된 바와 같이, 검출용 슬릿(74)과 X방향이 이루는 각이다. 또한, 도 11에 있어서의 점선은 외란이 없었을 경우의 슬릿을 나타내고 있다. 그리고, 도 11에 있어서의 ΔY'가 외란에 의해 발생된 모든 위치 편차의 합이다.
그리고, 상기와 마찬가지로 하여 제 2 위치(b)에 대해서도 하기식을 구함으로써 보정된 위치 좌표(Y11b')가 산출된다.
Y11b'=Y11b+(Y2b-Y1b)×m/n+(Xb-Xhb)/tanθ-(Yh1b×s+Yh2b×r)/(r+s)
Y11b : 실제로 측정된 제 1 위치(b)의 Y방향에 관한 좌표값
Y2b : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(Y2)의 값
Y1b : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(Y1)의 값
Xb : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(X)의 값
Xhb : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(Xh)의 값
Yh1b : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(Yh1)의 값
Yh2b : 제 1 위치(b)가 측정된 시점에 있어서의 측장기(Yh2)의 값
그리고, 상기한 바와 같이 하여 구해진 위치 좌표(Y11a')와 위치 좌 표(Y11b')의 중앙의 위치를 보정된 특정 화소(Z1)의 위치 정보(X0, Y11')로서 메모리에 기억한다.
이어서, 이동 스테이지(14)를 이동 조작하고, 검출용 슬릿(74)을 Y축을 따라 도 8(A)를 향해서 좌측으로 이동을 개시시킨다. 그리고, 제어 장치는 도 8(A)를 향해서 좌측의 상상선으로 도시된 위치에서 도 8(B)에 예시하도록 점등하고 있는 특정 화소(Z1)로부터의 광이 제 2 슬릿부(74b)를 투과해서 포토 센서(72)로 검출되었을 때의 출력 신호와 이동 스테이지(14)의 이동 위치의 관계로부터, 전술한 도 9로 설명한 바와 같은 수법으로 제 1 위치(c)와 제 2 위치(d)를 구한다. 그리고, 더욱이, 측장기에 의해 계측된 위치 편차에 의거하여 상기와 마찬가지로 해서, 제 1 위치(c)의 위치 좌표(Y11c)와 제 2 위치(d)의 1좌표(11d)를 보정하고, 보정된 제 1 위치(c)의 위치 좌표(Y11c')와 제 2 위치(d)의 위치 좌표(Y11d')를 구하고, 이것들의 중앙 위치를 보정된 특정 화소(Z1)의 위치 정보(X0, Y12')로서 메모리에 기억한다.
이어서, 제어 장치는 메모리에 기억된 좌표(X0, Y11')와 (X0, Y12')를 판독하여 특정 화소(Z1)의 좌표를 구하기 위해서, 하기식으로 연산을 행한다. 여기서, 특정 화소(Z1)의 좌표를 (X1,Y1)이라고 하면, X1=X0+(Y11'-Y12')/2로 표시되고, Y1=(Y11'+Y12')/2로 표시된다.
또한, 상기 실시형태에 있어서는 제 1 슬릿부(74a)와 제 2 슬릿부(74b)로 이루어지는 검출용 슬릿(74)을 이용하여 특정 화소(Z1)의 좌표(X1, Y1)를 구하도록 했지만, 이것에 한정되지 않고, 예를 들면, 검출용 슬릿(74)을, 도 12에 도시된 바 와 같은 제 1 슬릿부(74a), 제 2 슬릿부(74b) 및 제 3 슬릿부(74c)의 3개의 슬릿으로 구성하고, 예를 들면, 제 1 슬릿부(74a)와 제 2 슬릿부(74b)를 이용하여 상기와 마찬가지로 해서, 특정 화소(Z1)의 좌표(X1A, Y1B)를 구하고, 또한, 제 1 슬릿부(74a)와 제 3 슬릿부(74c)를 이용하여 상기와 마찬가지로 해서, 특정 화소(Z1)의 좌표(X1B, Y1B)를 구하고, 이것들의 평균을 구함으로써 특정 화소(Z1)의 좌표(X1, Y1)를 구하도록 해도 좋다.
또한, 검출용 슬릿(74)을 도 13에 도시된 바와 같은 제 1 슬릿부(74a), 제 2 슬릿부(74b), 제 3 슬릿부(74c), 제 4 슬릿부(74d), 제 5 슬릿부(74e) 및 제 6 슬릿부(74f)의 6개의 슬릿으로 구성하고, 예를 들면, 제 1 슬릿부(74a)와 제 6 슬릿부(74f)를 이용하여 상기와 마찬가지로 해서 특정 화소(Z1)의 좌표(X1A, Y1B)를 구하고, 또한, 제 2 슬릿부(74b)와 제 5 슬릿부(74e)를 이용하여 상기와 마찬가지로 해서, 특정 화소(Z1)의 좌표(X1B, Y1B)를 구하고, 또한, 제 3 슬릿부(74c)와 제 4 슬릿부(74d)를 이용하여 상기와 마찬가지로 해서, 특정 화소(Z1)의 좌표(X1C, Y1C)를 구하고, 좌표(XA1, XB1, XC1)의 평균을 구함으로써 특정 화소(Z1)의 좌표(X1)를 구하고, 좌표(YA1, YB1, YC1)의 평균을 구함으로써 특정 화소(Z1)의 좌표(Y1)를 구하도록 해도 좋다.
이어서, 이 노광 장치(10)에 있어서, 하나의 노광 헤드(26)에 의한 노광 에어리어(32)의 묘화의 디스토션량을 검출하는 방법에 대해서 설명한다.
노광 에어리어(32)의 디스토션량을 검출하기 위해서 이 노광 장치(10)에서는, 도 7에 도시된 바와 같이, 하나의 노광 에어리어(32)에 대하여 복수, 본 실시 형태에서는 5개의 검출용 슬릿(74A∼74E)이 동시에 위치 검출하도록 구성되어 있다.
따라서, 하나의 노광 헤드(26)에 의한 노광 에어리어(32) 내에는 측정 대상이 되는 노광 에어리어내에서 평균적으로 분산되어서 점재(點在)하는 복수의 피측정 화소를 설정한다. 본 실시형태에서는 피측정 화소를 5조 설정한다. 이 복수의 피측정 화소는 노광 에어리어(32)의 중심에 대하여 대상 위치(對象位置)에 설정한다. 도 14에 도시된 노광 에어리어(32)에서는 그 길이 방향 중앙 위치에 배치한 1조(여기서는 피측정 화소 3개로 1조)의 피측정 화소(Zc1, Zc2, Zc3)에 대하여 좌우 대칭으로 2조씩의 피측정 화소(Za1, Za2, Za3, Zb1, Zb2, Zb3)의 쌍과 (Zd1, Zd2, Zd3, Ze1, Ze2, Ze3) 쌍을 설정한다.
또한, 도 12에 도시된 바와 같이, 슬릿판(70)에는 각 피측정 화소의 쌍을 검출 가능하게 각각 대응하는 위치에 5개의 검출용 슬릿(74A, 74B, 74C, 74D 및 74E)을 배치한다.
이어서, 제어 장치가 노광 에어리어(32)의 디스토션량을 검출할 경우에는 제어 장치가 DMD(36)를 제어하고, 소정 일군의 피측정 화소(Za1, Za2, Za3, Zb1, Zb2, Zb3, Zc1, Zc2, Zc3, Zd1, Zd2, Zd3, Ze1, Ze2, Ze3)를 온 상태로서 슬릿판(70)을 설치한 이동 스테이지(14)를 각 노광 헤드(26)의 직하에서 이동시킴으로써 이 피측정 화소의 각각에 대하여 각각 대응하는 검출용 슬릿(74A, 74B, 74C, 74D 및 74E)을 이용해서 좌표를 구한다. 이때, 소정 일군의 피측정 화소는 각각 온 상태로서도 좋고, 또한 모두를 온 상태로서 검출해도 좋다.
이어서, 제어 장치는 DMD(36)에 있어서의 각 피측정 화소에 대응한 소정 마이크로미러(46)의 반사면의 위치 정보와, 검출용 슬릿(74)과 리니어 엔코더(76)를 이용해서 검출된 소정 마이크로미러(46)로부터 노광면[노광 에어리어(32)]에 투사된 소정광 빔의 노광점 위치 정보로부터 이것들의 상대적인 위치 편차를 각각 연산함으로써 도 15에 예시하는 바와 같은 노광 에어리어(32) 내에 있어서의 묘화의 디스토션량(왜곡 상태)을 구한다.
본 실시형태의 노광 장치(10)에 있어서는 검출용 슬릿(74)을 X방향으로 복수 나열되도록 했으므로, 상기한 바와 같이 해서 하나의 노광 헤드(26)의 노광 에어리어(32)의 묘화의 디스토션량을 검출할 수 있다. 또한, 인접하는 노광 헤드(26)의 위치 관계를 구할 수 있다.
도 16에는 하나의 헤드 내에 있어서의 묘화의 왜곡과 보정 방법, 화상으로의 영향을 나타낸다.
도 16(A)에 도시된 바와 같이, 광학계나 감광 재료에 왜곡이 없는 상태이면, DMD(36)에 입력되는 화상 데이터는, 도 16(B)와 같이, 특히 보정되지 않고, 그대로 감광 재료(11) 상에 출력됨으로써, 도 16(A)와 같이, 이상적인 화상이 묘화된다.
그러나, 출사된 빔에 의해 노광 처리할 때에 온도나 진동이라는 요인으로 변화되는 묘화의 왜곡을 하나의 헤드 내의 화상에 있어서 발생하는 경우에는 노광 에어리어(32)에 노광된 화상(99)은(보정하지 않는 화상을 그대로 DMD(36)에 입력하면) 도 16(C)와 같이 변형되어 버려 이것 때문에 보정이 필요하게 된다.
여기서, 도 16(F)와 같이, DMD(36)에 입력되는 화상 데이터를 보정하고, 감 광 재료(11) 상에 출력되는 화상 그 자체를 빔 위치 측정 수단으로 측정한 위치 정보로부터 디스토션량 연산 수단에 의해 묘화의 디스토션량을 구하고, 이 검출된 묘화의 디스토션량에 대응해서 적절하게 보정하면 최종적으로 왜곡이 없는 올바른 화상(99')이 얻어진다.
이어서, 상술한 바와 같이 구성한 노광 장치(10)의 동작에 대해서 설명한다.
이 노광 장치(10)에 설치된 파이버 어레이 광원인 광원 유닛(16)은 도시되진 않았지만, 레이저 발광 소자의 각각으로부터 발산광 상태로 출사된 자외선 등의 레이저 빔을 콜리메이터 렌즈(collimator lens)에 의해 평행광화하여 집광 렌즈에 의해 집광하고, 멀티 모드 광 파이버의 코어의 입사 단면으로부터 입사시켜 광 파이버내를 전파시키고, 레이저 출사부에서 1개의 레이저 빔으로 콤바이닝시켜서 멀티 모드 광 파이버의 출사 단부에 결합시킨 광 파이버(28)로부터 출사한다.
이 노광 장치(10)에서는 노광 패턴에 따른 화상 데이터가 DMD(36)에 접속된 제어 유닛(20)에 입력되고, 제어 유닛(20)내의 메모리에 일단 기억된다. 이 화상 데이터는 화상을 구성하는 각 화소의 농도를 2값(도트 기록의 유무)으로 나타낸 데이터이다. 이 화상 데이터는 제어 장치에 의해 전술한 묘화의 디스토션량 검출 수단으로 검출한 묘화의 디스토션량(왜곡 상태)에 의거하여 적절히 보정된다.
감광 재료(11)를 표면에 흡착한 이동 스테이지(14)는 도시되지 않은 구동장치에 의해 가이드(30)를 따라 반송 방향 상류측으로부터 하류측으로 일정 속도로 이동된다. 이동 스테이지(14)가 문형 프레임(22) 아래를 통과할 때에 문형 프레임(22)에 부착된 위치 검출 센서(24)에 의해 감광 재료(11)의 선단이 검출되면 메 모리에 기억된 묘화의 디스토션량 검출 수단으로 검출한 묘화의 디스토션량에 의거하여 보정된 화상 데이터가 복수 라인씩 순차 판독되고, 데이터 처리부로서의 제어 장치로 판독된 화상 데이터에 의거하여 각 노광 헤드(26)마다 제어 신호가 생성된다. 또한, 제어 장치로 판독된 미보정의 화상 데이터에 의거하여 각 노광 헤드(26)마다 제어 신호를 생성할 때에 전술한 묘화의 디스토션량 검출 수단으로 검출한 묘화의 디스토션량(왜곡 상태)에 의거하여 보정하는 처리를 행하도록 해도 좋다. 그리고, 이 생성된 제어 신호에 의거하여 각 노광 헤드(26)마다 공간 광 변조 소자(DMD)(36)의 마이크로미러의 각각이 온 오프 제어된다.
광원 유닛(16)으로부터 공간 광 변조 소자(DMD)(36)에 레이저 광이 조사되면 DMD(36)의 마이크로미러가 온 상태인 때에 반사된 레이저 광은 적정하게 보정된 묘화를 위한 노광 위치에 결상된다. 이와 같이 하여 광원 유닛(16)으로부터 출사된 레이저 광이 화소마다 온 오프되어서 감광 재료(11)가 노광 처리된다.
또한, 감광 재료(11)가 이동 스테이지(14)와 함께 일정 속도로 이동됨으로써 감광 재료(11)가 노광 헤드 유닛(18)에 의해 스테이지 이동 방향의 반대 방향으로 주사되어 각 노광 헤드(26)마다 밴드 형상의 노광된 영역(34)(도 2에 도시됨)이 형성된다.
노광 헤드 유닛(18)에 의한 감광 재료(11)의 주사가 종료되고, 위치 검출 센서(24)로 감광 재료(11)의 후단이 검출되면 이동 스테이지(14)는 도시되지 않은 구동장치에 의해 가이드(30)를 따라 반송 방향 최상류측에 있는 원점으로 복귀되고, 다시, 가이드(30)를 따라 반송 방향 상류측으로부터 하류측으로 일정 속도로 이동 된다.
또한, 본 실시형태에 의한 노광 장치(10)에서는 노광 헤드(26)로 이용하는 공간 광 변조 소자로서 DMD를 이용했지만, 예를 들면, MEMS(Micro Electro Mechanical Systems) 타입의 공간 광 변조 소자(SLM : Special Light Modulator)나, 전기 광학 효과에 의해 투과광을 변조하는 광학 소자(PLZT 소자)나 액정 광 셧터(FLC) 등, MEMS 타입 이외의 공간 광 변조 소자를 DMD 대신 이용할 수 있다.
또한, MEMS는 IC 제조 프로세스를 기반으로 한 마이크로 머시닝 기술에 의한 마이크로 사이즈의 센서, 액츄에이터, 그리고 제어 회로를 집적화한 미세 시스템의 총칭이며, MEMS 타입의 공간 광 변조 소자는 정전기력을 이용한 전기 기계 동작에 의해 구동되는 공간 광 변조 소자를 의미한다.
또한, 본 실시형태에 의한 노광 장치(10)에서는 노광 헤드(26)로 이용하는 공간 광 변조 소자(DMD)(14)를 복수의 화소를 선택적으로 온/오프하는 수단(복수의 화소를 선택적으로 변조하는 수단)으로 치환하여 구성해도 좋다. 이 복수의 화소를 선택적으로 온/오프하는 수단은, 예를 들면, 각 화소에 대응한 레이저 빔을 선택적으로 온/오프해서 출사 가능하게 한 레이저 광원으로 구성하고, 또는, 각 미소 레이저 발광면을 각 화소에 대응해서 배치함으로써 면발광 레이저 소자를 형성하고, 각 미소 레이저 발광면을 선택적으로 온/오프해서 발광 가능하게 한 레이저 광원으로 구성할 수 있다.
또한, 본 실시형태에 의한 노광 장치(10)에서는 검출용 슬릿(74)을 투과한 빔을 포토 센서(72)에 의해 검출함으로써 빔 위치를 측정하도록 했지만, 이것에 한 정되지 않고, 예를 들면, CCD나 4분할 포토 디텍터 등을 이용해서 빔 위치를 측정하도록 해도 좋다.
도 1은 본 발명의 묘화 위치 측정 장치의 제 1 실시형태를 이용한 노광
장치의 전체 개략사시도이다.
도 2는 노광 헤드 유닛의 각 노광 헤드에 의해 감광 재료에 노광하는 상태를 나타내는 개략사시도이다.
도 3은 노광 헤드에 관한 광학계의 개략구성도이다.
도 4는 DMD의 구성을 나타내는 확대 사시도이다.
도 5는 DMD의 동작을 설명하기 위한 도면이다.
도 6(A)는 DMD를 기울이지 않을 경우의 각 마이크로미러에 의한 반사광상(노광 빔)의 주사 궤적을 나타낸 평면도이고, 도 6(B)는 DMD를 기울였을 경우의 노광 빔의 주사 궤적을 나타낸 평면도이다.
도 7은 하나의 노광 헤드에 의한 노광 에어리어에 대한 검출용 슬릿을 나타내는 도면이다.
도 8(A)는 검출용 슬릿을 이용해서 점등하고 있는 특정 화소의 위치를 검출하는 상태를 나타내는 설명도이고, 도 8(B)는 점등하고 있는 특정 화소를 포토 센서가 검지했을 때의 신호를 나타내는 도면이다.
도 9는 검출용 슬릿을 이용해서 점등하고 있는 특정 화소를 검출하는 방법을 설명하기 위한 도면이다.
도 10은 노광 헤드와 검출용 슬릿의 상대적 위치 편차를 측정하는 방법을 설명하기 위한 도면이다.
도 11은 검출용 슬릿과 X방향이 이루는 각(θ)을 나타내는 도면이다.
도 12는 검출용 슬릿의 다른 실시형태를 나타내는 도면이다.
도 13은 검출용 슬릿의 다른 실시형태를 나타내는 도면이다.
도 14는 복수의 검출용 슬릿을 이용해서 복수 점등하고 있는 특정 화소를 검출하는 상태를 나타내는 도면이다.
도 15는 디스토션량 검출 수단으로 검출한 묘화의 디스토션량(왜곡 상태)을 설명하기 위한 도면이다.
도 16은 묘화의 왜곡 보정을 설명하기 위한 도면이다.
[부호의 설명]
10 : 노광 장치 11 : 감광 재료
12 : 베이스 14 : 이동 스테이지
18 : 노광 헤드 유닛 20 : 제어 유닛
24 : 위치 검출 센서 26 : 노광 헤드
32 : 노광 에어리어 46 : 마이크로미러
70 : 슬릿판 72 : 포토 센서
74 : 검출용 슬릿 74a : 제 1 슬릿부
74b : 제 2 슬릿부 76 : 리니어 엔코더

Claims (18)

  1. 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 상기 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 상기 묘화점 형성 수단에 의해 상기 묘화점을 상기 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 상기 묘화점의 위치를 위치 측정 수단에 의해 측정하는 묘화 위치 측정 방법에 있어서:
    상기 상대적 이동중에 있어서의 상기 묘화점 형성 수단의 각 묘화점과 상기 위치 측정 수단의 상대적인 위치를 측정하고,
    이 측정한 상대 위치에 의거하여 상기 묘화점의 위치를 결정하며,
    상기 위치 측정 수단으로서, 상기 묘화면과 동일면에 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿을 형성함과 아울러 상기 묘화점 형성 수단에 의해 변조되어 상기 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 설치하고,
    상기 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 상기 묘화면의 각 상대적 이동 위치 정보에 의거하여 상기 묘화점의 위치를 측정하는 것을 특징으로 하는 묘화 위치 측정 방법.
  2. 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과 상기 묘화면을 상대적으로 이동시키고, 이 상대적인 이동에 의해 상기 묘화점 형성 수단에 의해 상기 묘화점을 상기 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 상기 묘화점의 위치를 위치 측정 수단에 의해 측정하는 묘화 위치 측정 방법에 있어서:
    상기 상대적 이동중에 있어서의 상기 묘화점 형성 수단의 각 묘화점과 상기 위치 측정 수단의 상대적인 위치 편차를 측정하고,
    이 측정한 위치 편차에 의거하여 상기 위치 측정 수단에 의해 측정된 상기 묘화점의 위치를 보정하며,
    상기 위치 측정 수단으로서, 상기 묘화면과 동일면에 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿을 형성함과 아울러 상기 묘화점 형성 수단에 의해 변조되어 상기 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 설치하고,
    상기 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 상기 묘화면의 각 상대적 이동 위치 정보에 의거하여 상기 묘화점의 위치를 측정하는 것을 특징으로 하는 묘화 위치 측정 방법.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제 1 항에 있어서,
    상기 위치 측정 수단을 복수개 사용하는 것을 특징으로 하는 묘화 위치 측정 방법.
  8. 제 1 항에 있어서,
    상기 슬릿을 유리판에 형성하는 것을 특징으로 하는 묘화 위치 측정 방법.
  9. 제 8 항에 있어서,
    상기 슬릿을 1장의 유리판에 형성하는 것을 특징으로 하는 묘화 위치 측정 방법.
  10. 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과, 이 묘화점 형성 수단과 상기 묘화면을 상대적으로 이동시키는 이동 수단과, 이 이동 수단에 의한 상대적인 이동에 의해 상기 묘화점 형성 수단에 의해 상기 묘화점을 상기 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 상기 묘화점의 위치를 측정하는 위치 측정 수단을 구비한 묘화 위치 측정 장치에 있어서:
    상기 이동 수단에 의한 상대적 이동중에 있어서의 상기 묘화점 형성 수단의 각 묘화점과 상기 위치 측정 수단의 상대적인 위치를 측정하는 상대 위치 측정 수단과,
    이 상대 위치 측정 수단에 의해 측정된 상대 위치에 의거하여 상기 묘화점의 위치를 결정하는 연산 수단을 구비하며,
    상기 위치 측정 수단은 상기 묘화면과 동일면에 설치된 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿과, 상기 묘화점 형성 수단에 의해 변조되어 상기 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 구비하고,
    상기 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 상기 묘화면의 각 상대적 이동 위치 정보에 의거하여 상기 묘화점의 위치를 측정하는 것을 특징으로 하는 묘화 위치 측정 장치.
  11. 입사된 광을 변조해서 묘화면 상에 묘화점을 형성하는 묘화점 형성 수단과, 이 묘화점 형성 수단과 상기 묘화면을 상대적으로 이동시키는 이동 수단과, 이 이동 수단에 의한 상대적인 이동에 의해 상기 묘화점 형성 수단에 의해 상기 묘화점을 상기 묘화면에 순차 형성해서 화상을 묘화할 때에 있어서의 상기 묘화점의 위치를 측정하는 상기 묘화면에 설치된 위치 측정 수단을 구비한 묘화 위치 측정 장치에 있어서:
    상기 이동 수단에 의한 상대적 이동중에 있어서의 상기 묘화점 형성 수단의 각 묘화점과 상기 위치 측정 수단의 상대적인 위치 편차를 측정하는 위치 편차 측정 수단과,
    이 위치 편차 측정 수단에 의해 측정된 위치 편차에 의거하여 상기 위치 측정 수단에 의해 측정된 상기 묘화점의 위치를 보정하며,
    상기 위치 측정 수단은 상기 묘화면과 동일면에 설치된 적어도 2개가 서로 평행하지 않은 적어도 3개의 슬릿과, 상기 묘화점 형성 수단에 의해 변조되어 상기 적어도 3개의 슬릿을 통과한 광을 검출하는 검출 수단을 구비하고,
    상기 적어도 3개의 슬릿을 통과한 광의 각 검출 시점에 대응하는 상기 묘화면의 각 상대적 이동 위치 정보에 의거하여 상기 묘화점의 위치를 측정하는 것을 특징으로 하는 묘화 위치 측정 장치.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 제 10 항에 있어서,
    상기 위치 측정 수단을 복수개 구비하는 것을 특징으로 하는 묘화 위치 측정 장치.
  17. 제 10 항에 있어서,
    상기 슬릿은 유리판에 형성되어 있는 것을 특징으로 하는 묘화 위치 측정 장치.
  18. 제 17 항에 있어서,
    상기 슬릿은 1장의 유리판에 형성되어 있는 것을 특징으로 하는 묘화 위치 측정 장치.
KR1020070082674A 2006-08-17 2007-08-17 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치 KR101391672B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00222187 2006-08-17
JP2006222187A JP5000948B2 (ja) 2006-08-17 2006-08-17 描画位置測定方法および装置並びに描画方法および装置

Publications (2)

Publication Number Publication Date
KR20080016494A KR20080016494A (ko) 2008-02-21
KR101391672B1 true KR101391672B1 (ko) 2014-05-07

Family

ID=39101084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070082674A KR101391672B1 (ko) 2006-08-17 2007-08-17 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치

Country Status (5)

Country Link
US (1) US20080043250A1 (ko)
JP (1) JP5000948B2 (ko)
KR (1) KR101391672B1 (ko)
CN (1) CN101140427A (ko)
TW (1) TW200817824A (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064862B2 (ja) * 2007-03-30 2012-10-31 富士フイルム株式会社 アライメントマーク測定方法および装置並びに描画方法および装置
KR101095549B1 (ko) * 2010-04-29 2011-12-19 삼성전자주식회사 마스크리스 노광 장치와 이를 이용한 스티칭 노광 방법
JP2011237684A (ja) * 2010-05-12 2011-11-24 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP6148135B2 (ja) * 2013-09-24 2017-06-14 株式会社オーク製作所 露光装置
US10008364B2 (en) * 2015-02-27 2018-06-26 Kla-Tencor Corporation Alignment of multi-beam patterning tool
CN106527056B (zh) * 2016-12-20 2019-03-12 湖北凯昌光电科技有限公司 一种单台面直写式曝光机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162068A (ja) * 2001-11-29 2003-06-06 Dainippon Screen Mfg Co Ltd レーザ描画方法とその装置
JP2005316409A (ja) * 2004-03-29 2005-11-10 Fuji Photo Film Co Ltd 露光装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486323B2 (ja) * 2003-06-10 2010-06-23 富士フイルム株式会社 画素位置特定方法、画像ずれ補正方法、および画像形成装置
EP1486826A3 (en) * 2003-06-10 2006-12-13 Fuji Photo Film Co., Ltd. Pixel position specifying method, method of correcting image offset, and image forming device
JP4322564B2 (ja) * 2003-06-10 2009-09-02 富士フイルム株式会社 画素位置特定方法、画像ずれ補正方法、および画像形成装置
JP2005234113A (ja) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd 露光装置
TW200602814A (en) * 2004-03-29 2006-01-16 Fuji Photo Film Co Ltd Exposure device
JP4450739B2 (ja) * 2005-01-21 2010-04-14 富士フイルム株式会社 露光装置
JP2006349945A (ja) * 2005-06-15 2006-12-28 Fujifilm Holdings Corp 露光装置
US20080220344A1 (en) * 2005-07-29 2008-09-11 Daisuke Nakaya Drawing Method and Apparatus
JP4919378B2 (ja) * 2005-09-29 2012-04-18 富士フイルム株式会社 描画点データ取得方法および装置並びに描画方法および装置
JP4741396B2 (ja) * 2006-03-31 2011-08-03 富士フイルム株式会社 描画位置測定方法および装置並びに描画方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162068A (ja) * 2001-11-29 2003-06-06 Dainippon Screen Mfg Co Ltd レーザ描画方法とその装置
JP2005316409A (ja) * 2004-03-29 2005-11-10 Fuji Photo Film Co Ltd 露光装置

Also Published As

Publication number Publication date
CN101140427A (zh) 2008-03-12
JP5000948B2 (ja) 2012-08-15
KR20080016494A (ko) 2008-02-21
TW200817824A (en) 2008-04-16
US20080043250A1 (en) 2008-02-21
JP2008046383A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
KR100737875B1 (ko) 노광장치
JP4401308B2 (ja) 露光装置
KR101373643B1 (ko) 묘화 위치 측정 방법과 장치 및 묘화 방법과 장치
JP4450739B2 (ja) 露光装置
JP2006349945A (ja) 露光装置
KR101391672B1 (ko) 묘화 위치 측정 방법 및 장치, 그리고 묘화 방법 및 장치
JP4533785B2 (ja) アライメントセンサの位置校正方法、基準パターン校正方法、露光位置補正方法、校正用パターン及びアライメント装置
KR101067729B1 (ko) 프레임 데이타 작성 장치, 작성 방법, 작성 프로그램, 그프로그램을 격납한 기억 매체, 및 묘화 장치
WO2006137486A1 (ja) 画像露光装置
US20090251676A1 (en) Exposure apparatus and exposure method
JP2006337873A (ja) 露光装置及び露光方法
JP2006337878A (ja) 露光装置及び露光方法
JP2005294373A (ja) マルチビーム露光装置
JP2006337874A (ja) 露光装置及び露光方法
US20080123072A1 (en) Projection Head Focus Position Measurement Method And Exposure Method
JP4323335B2 (ja) 画像露光方法および装置
JP5064862B2 (ja) アライメントマーク測定方法および装置並びに描画方法および装置
JP2005202226A (ja) 感光材料の感度検出方法および装置並びに露光補正方法
JP4208141B2 (ja) 画像露光方法および装置
JP2008076590A (ja) 描画位置測定方法および装置
KR101459642B1 (ko) 노광빔 위치 측정 방법 및 측정 장치
JP2006308997A (ja) 露光装置
JP2005217338A (ja) 画像露光方法および装置
JP2006330574A (ja) 投影ヘッドピント位置測定方法および露光方法
JP2008233006A (ja) 描画位置取得方法および装置並びに描画方法および装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190328

Year of fee payment: 6