KR101335680B1 - Condenser tube with high pressure resistance for heat-exchanger and their production method - Google Patents

Condenser tube with high pressure resistance for heat-exchanger and their production method Download PDF

Info

Publication number
KR101335680B1
KR101335680B1 KR1020120070255A KR20120070255A KR101335680B1 KR 101335680 B1 KR101335680 B1 KR 101335680B1 KR 1020120070255 A KR1020120070255 A KR 1020120070255A KR 20120070255 A KR20120070255 A KR 20120070255A KR 101335680 B1 KR101335680 B1 KR 101335680B1
Authority
KR
South Korea
Prior art keywords
condenser tube
pressure resistance
heat exchanger
alloy
aluminum alloy
Prior art date
Application number
KR1020120070255A
Other languages
Korean (ko)
Inventor
김병걸
구재관
김상수
김종배
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020120070255A priority Critical patent/KR101335680B1/en
Application granted granted Critical
Publication of KR101335680B1 publication Critical patent/KR101335680B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

The present invention relates to a condenser tube for a heat exchanger with the improved pressure resistance and a manufacturing method thereof and provides a condenser tube for a heat exchanger with the improved pressure resistance and a manufacturing method thereof that makes the total amount of the added alloy elements to be 0.6 wt% or less by selecting at least two materials of an alloy element group consisting of 0.05 to 0.5 wt% of iron (Fe), 0.1 to 0.5 wt% of zirconium (Zr), 0.01 to 0.5 wt% of misch metal (MM), 0.01 to 0.2 wt% of scandium (Sc), and 0.001 to 0.01 wt% of yttrium (Y), forms an aluminum alloy by melting and alloying pure aluminum by using the remainder of the materials, molds the aluminum alloy into a casting bar, forms an alloy rod by molding the casting bar into a rod by multiple-rolling the casing bar into the cross section surface with the constant size, and then forms a condenser tube by conform-extruding the alloy rod at a temperature of 350°C to 450°C by heating the mold with a mold preheater. Therefore, the present invention manufactures a condenser tube which has remarkably improved pressure resistance and more competitive thermal conductivity than the prior product and can make the condenser tube for a heat exchanger more thinner, more smaller, and more efficient. [Reference numerals] (AA) Aluminum alloy rod;(BB) Condenser tube;(CC) Extruding

Description

내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법{condenser tube with high pressure resistance for heat-exchanger and their production method}Condenser tube for heat exchanger with improved pressure resistance characteristics and its manufacturing method {condenser tube with high pressure resistance for heat-exchanger and their production method}

본 발명은 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법에 관한 것으로, 더욱 상세하게는, 강도강화용 합금원소를 첨가하여 새롭게 설계된 알루미늄 합금 로드를 형성하고, 그 로드를 사용하여 컨폼 압출 방식으로 열교환기용 콘덴서 튜브를 형성시킨 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법을 기술적 요지로 한다.The present invention relates to a condenser tube for a heat exchanger with improved pressure resistance characteristics and a method for manufacturing the same, and more particularly, to form a newly designed aluminum alloy rod by adding an alloy for strengthening strength, and using the rod Therefore, the technical subject of the heat exchanger condenser tube and its manufacturing method which improved the pressure-resistant characteristic which formed the condenser tube for heat exchanger is improved.

일반적으로 냉방기기인 냉동 공조기의 구성은 액체냉매를 운반하는 역할을 하는 압축기(compressor), 냉방기기의 바깥으로부터 유입되는 높은 온도의 공기를 제공받아 찬 공기를 실내에 배출시키는 역할을 하는 증발기(evaporator), 기체냉매를 액화시키는 역할을 하는 콘덴서(condenser)로 구성된다. In general, the configuration of a refrigeration air conditioner, which is a cooling device, includes a compressor that carries liquid refrigerant, and an evaporator that discharges cold air into a room by receiving high temperature air from the outside of the cooling device. And a condenser that serves to liquefy the gas refrigerant.

냉동기나 공조기의 작동유로 사용되고 있는 CFC계 및 HCFC계 냉매가 오존층 파괴의 주요 원인 물질로 밝혀짐에 따라 세계 각국은 새로운 대체 냉매를 개발하여 적용중에 있으며, 현재까지 개발되어 사용되고 있는 냉매로는 R-134a(CH2-FCF3), R-404(HFC125 44%, HFC143a 52%, HFC134a 4%), R-410a 등이 있으며 자동차의 냉동 공조기의 신냉매로는 R-134a를 사용하고 있다. As CFC-based and HCFC-based refrigerants used as operating oils for refrigerators and air conditioners have been identified as the main cause of ozone depletion, countries around the world are developing and applying new alternative refrigerants. 134a (CH 2 -FCF 3 ), R-404 (44% HFC125, 52% HFC143a, 4% HFC134a), R-410a, etc. R-134a is used as a new refrigerant in refrigeration air conditioners of automobiles.

가전용 및 자동차용 열교환기는 소형화, 고성능화가 추진되고 있으며 소형화되면 설치공간의 절약효과뿐만 아니라, 전기에너지를 절감할 수 있다. Miniaturization and high performance are being promoted for home appliances and automotive heat exchangers, and miniaturization can save electrical energy as well as saving installation space.

따라서 콘덴서 튜브의 박육화, 멀티셀(multi cell)화, 고효율화에 의한 성능 개선을 꾀하고 있다. 이러한 성능 개선을 위해서는 필연적으로 콘덴서 튜브의 내압성 증가가 필수적이다.Therefore, the performance of the capacitor tube is thinned, multi-celled, and highly efficient. In order to improve this performance, it is necessary to increase the pressure resistance of the condenser tube inevitably.

현재 시판되고 있는 가전용 냉방기기의 설계형식을 그대로 유지하면서 대체냉매를 사용한다면, 현재와 같은 냉방능력을 얻기 위해서는 냉방기기의 크기가 증가하여 소형화에 역행하게 된다. If alternative refrigerants are used while maintaining the design form of the currently-used domestic air conditioners, the size of the air conditioners increases to counteract miniaturization in order to obtain the current cooling capability.

콘덴서 튜브는 향후 더욱 소형화, 경량화하는 방향으로 개발되며, 소재적인 측면에서 우수한 강도 특성을 요구하게 된다. 또한 기체 냉매가 콘덴서를 구성하는 다공 알루미늄 튜브를 통과하는 동안에 튜브에 접촉되어 있는 핀(pin)재를 통하여 열전달에 의해 방열됨으로 튜브의 열전도도가 우수하여야 한다.The condenser tube will be developed in the direction of further miniaturization and light weight, and will require excellent strength characteristics in terms of materials. In addition, while the gas refrigerant passes through the porous aluminum tube constituting the condenser, the thermal conductivity of the tube should be excellent because it is radiated by heat transfer through the pin material in contact with the tube.

이와 같이, 콘덴서 튜브로 알루미늄 합금을 사용하기 위해서는 알루미늄 합금의 여러 물성 중에서 강도와 열전도도가 가장 중요하다. 그러나 이 두 가지는 서로 상반되는 물성이기 때문에 동시에 구현하는 것이 용이하지 않다.As such, in order to use the aluminum alloy as the condenser tube, strength and thermal conductivity are most important among various physical properties of the aluminum alloy. However, these two are not easy to implement at the same time because of the opposite properties.

특히, 알루미늄 합금을 이용하여 콘덴서 튜브를 형성하고, 열교환기는 콘덴서 튜브와 핀재, 헤드파이프(head-pipe) 등으로 구성되어 조립한 후, 브레이징(brazing) 처리를 거쳐 열교환기가 완성된다. 통상 브레이징 공정이 600℃~630℃의 온도에서 수 분 내지 수 십분 동안 이루어지기 때문에, 알루미늄의 용융온도가 660℃인 것을 감안할 때, 대단히 높은 고온에서 이루어진다. 즉 브레이징 처리가 알루미늄 용융온도 직하에서 이루어져 미세조직인 결정립과 재결정립이 조대화 되고, 전위(dislocation) 등이 급격히 소실되기 때문에, 소재의 강도가 현저히 감소할 수밖에 없다. In particular, a condenser tube is formed by using an aluminum alloy, and the heat exchanger is composed of a condenser tube, a fin material, a head pipe, and the like, and then assembled, followed by brazing to complete the heat exchanger. Since the brazing process is usually performed for a few minutes to several ten minutes at a temperature of 600 ℃ ~ 630 ℃, considering that the melting temperature of aluminum is 660 ℃, it is made at a very high temperature. That is, since the brazing treatment is performed directly under the melting temperature of aluminum, coarse grains and recrystallized grains are coarsened, and dislocations are rapidly lost, so that the strength of the material is inevitably reduced.

따라서, 본 발명은 상기 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 강도강화용 합금원소를 첨가하여 새롭게 설계된 알루미늄 합금 로드를 형성하고, 그 로드를 사용하여 컨폼 압출 방식으로 열교환기용 콘덴서 튜브를 형성시킨 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법을 제공하는 것을 목적으로 한다. Therefore, the present invention has been made to solve the problems of the prior art, to form a newly designed aluminum alloy rod by adding an alloying element for strength, and to form a condenser tube for heat exchanger by the conformal extrusion method using the rod. An object of the present invention is to provide a condenser tube for a heat exchanger with improved pressure resistance characteristics and a method of manufacturing the same.

상기한 목적을 달성하기 위한 본 발명은, 합금원소 Fe 0.05~0.5wt%, Zr 0.1~0.5wt%, MM(misch metal) 0.01~0.5wt%, Sc 0.01~0.2wt%, Y 0.001~0.01wt% 로 구성된 합금원소 군 중에서 두 개 이상의 물질을 선택하여 합금원소들의 첨가 총량이 0.6wt% 이하가 되게 하고 나머지는 순 알루미늄을 용해하고 합금화 하여 알루미늄 합금을 형성시키고, 상기 알루미늄 합금을 주조바로 성형하고, 상기 주조바를 일정한 크기의 단면으로 다단 압연하여 로드로 성형하여 합금 로드를 형성시키고, 금형예열기를 이용하여 금형을 가열시켜 350℃~450℃의 온도에서 합금 로드를 컨폼 압출하여 콘덴서 튜브를 형성시키는 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법을 기술적 요지로 한다.The present invention for achieving the above object, alloy element Fe 0.05 ~ 0.5wt%, Zr 0.1 ~ 0.5wt%, MM (misch metal) 0.01 ~ 0.5wt%, Sc 0.01 ~ 0.2wt%, Y 0.001-0.01wt Select two or more materials from the alloy element group consisting of% so that the total amount of alloying elements is 0.6wt% or less, and the rest is dissolved and alloyed with pure aluminum to form an aluminum alloy, and the aluminum alloy is molded into a casting bar. Forming an alloy rod by multi-stage rolling the casting bar into a cross section of a predetermined size to form an alloy rod, and heating the mold using a mold preheater to conform-extrude the alloy rod at a temperature of 350 ° C. to 450 ° C. to form a condenser tube. The condenser tube for heat exchanger which improved the breakdown voltage characteristic, and its manufacturing method are technical viewpoint.

상기 합금화는 780℃~850℃에서 이루어지는 것이 바람직하다. It is preferable that the said alloying is performed at 780 degreeC-850 degreeC.

상기 주조바 성형은 450℃~550℃에서 이루어지며, 상기 주조바는 490℃~550℃로 유지된 상태로 다단압연기로 공급되는 것이 바람직하다.The casting bar molding is made at 450 ℃ ~ 550 ℃, the casting bar is preferably supplied to the multi-stage rolling in a state maintained at 490 ℃ ~ 550 ℃.

상기 다단 압연은 시작은 450℃~550℃, 종료는 250℃~350℃에서 이루어지는 것이 바람직하다.The multi-stage rolling is preferably carried out at 450 ℃ ~ 550 ℃, the end is 250 ℃ ~ 350 ℃.

이에 따라, 제조되는 알루미늄 합금 로드는 용해 주조 시, 첨가된 합금원소의 종류에 따라 조대한 금속간화합물(Al3Fe, Al3Zr, Al3Sc, Al3MM, Al3Y)들이 주조바 내에 존재하게 되고, 이 주조바가 다단 압연과정 중에 금속간화합물들이 잘게 쪼개지고 분쇄되어 로드의 입내 또는 입계에 균일하게 분포하게 된다.Accordingly, the aluminum alloy rod is manufactured by casting coarse intermetallic compounds (Al 3 Fe, Al 3 Zr, Al 3 Sc, Al 3 MM, Al 3 Y) according to the type of alloying element added during melt casting. In the multi-stage rolling process, the cast bar is divided into finely divided and crushed to be uniformly distributed in the grain or grain boundary of the rod.

나아가, 로드를 컨폼 압출하게 되면 석출물들이 압출 압력에 의해 더욱 미세하게 분쇄되어 조직의 결정입내 또는 입계에 분산되어 진다. 이렇게 미세하고 균일하게 분산된 석출물들로 인해 강도특성이 증가하게 된다.Further, when conformally extruded the rods, the precipitates are more finely pulverized by the extrusion pressure and dispersed in the grains or grain boundaries of the tissue. Such fine and uniformly dispersed precipitates increase the strength characteristics.

또한 상기한 바와 같이, 최종적인 제품은 열교환기 형성 시 브레이징 공정을 반드시 거쳐야 하기 때문에, 즉, 고온에서 상당 시간 열처리하여야 하기 때문에, 이 처리 후, 강도의 현저한 열화는 피할 수 없다.Further, as described above, since the final product must undergo a brazing process during heat exchanger formation, that is, heat treatment at a high temperature for a considerable time, after this treatment, significant deterioration in strength is inevitable.

그러나 본 발명에서 이루고자 하는 것은 브레이징 처리 후, 인장강도의 감소는 피할 수 없으나, 항복강도의 저하는 최대한 저지시키고자 함이다. 콘덴서 튜브에서 내압성을 향상시키기 위해선 높은 항복강도가 가장 중요한 핵심 물성이다. However, what is to be achieved in the present invention is to reduce the tensile strength after brazing, but to reduce the decrease in yield strength as much as possible. In order to improve the pressure resistance in the condenser tube, high yield strength is the most important core property.

즉, 본 발명의 목적을 달성하기 위해 새로운 합금 조성을 설계하고, 이를 연속주조와 다단 압연을 거쳐 알루미늄 합금 로드를 만들고, 이를 컨폼 압출 방식으로 콘덴서 튜브를 제조함으로써, 첨가원소에 따라 다양한 종류의 미세 금속간 화합물들을 미세조직의 결정립 내 또는 입계에 균일하게 분포시켜, 열처리에 의해서도 항복강도가 저하되지 않는다는 이점이 있다. That is, in order to achieve the object of the present invention, by designing a new alloy composition, through the continuous casting and multi-stage rolling to make an aluminum alloy rod, and manufacturing a condenser tube by the conformal extrusion method, various kinds of fine metals depending on the added element The liver compounds are uniformly distributed in the grains or grain boundaries of the microstructure, there is an advantage that the yield strength does not decrease even by heat treatment.

상기의 구성에 의한 본 발명은, 종래의 제품에 비해 열전도성이 전혀 뒤지지 않으면서도 내압성을 획기적으로 향상시킨 콘덴서 튜브를 제조하여, 소형화, 박육화, 고효율화가 가능한 열교환기용 콘덴서 튜브로 활용할 수 있는 효과가 있다. According to the present invention, the condenser tube can be utilized as a condenser tube for a heat exchanger that can be miniaturized, thinned, and highly efficient, by producing a condenser tube that significantly improves the pressure resistance without compromising thermal conductivity at all compared to a conventional product. have.

도 1 - 본 발명에 따른 알루미늄 합금의 제조장치에 대한 모식도.
도 2 - 본 발명에 따라 제조된 컨덴서 튜브의 요부 종단면도.
1-schematic diagram of a manufacturing apparatus of an aluminum alloy according to the present invention.
Figure 2-A longitudinal section of the main part of a condenser tube made in accordance with the invention.

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조로 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 알루미늄 합금의 제조장치에 대한 모식도이고, 도 2는 본 발명에 따라 제조된 컨덴서 튜브의 요부 종단면도이다. 1 is a schematic view of a manufacturing apparatus of an aluminum alloy according to the present invention, Figure 2 is a longitudinal sectional view of the main portion of the capacitor tube manufactured according to the present invention.

도시된 바와 같이, 본 발명은 내압성을 향상시킨 콘덴서 튜브를 제조하기 위한 것으로, 콘덴서 튜브용 알루미늄 합금을 제조하기 위해 Fe 0.05~0.5wt%, Zr 0.1~0.5wt%, MM(misch metal) 0.01~0.5wt%, Sc 0.01~0.2wt%, Y 0.001~0.01wt%로 구성된 합금군 중에서, 두 개 이상의 물질이 선택되고, 가능한 합금원소들의 첨가 총량이 0.6wt%를 넘지 않게 제어하며, 나머지 알루미늄을 용해하여 합금화 하고, 주조기에 상기 알루미늄 합금을 주조바로 성형한 후, 다단 압연기를 통해 상기 주조바를 9.5㎜~12.5㎜ 직경으로 열간 다단 압연하여, 코일기를 통해 알루미늄 합금 로드 형태로 권취하는 공정인 연속주조에 의해 제조된다. 상기의 형상으로 제조된 알루미늄 합금 로드는 컨폼 압출을 통하여 콘덴서 튜브로 압출되어 진다. 그리고, 상기 컨덴서 튜브를 이용하여 조립하고 브레이징 처리하여 최종적으로 열교환기를 형성시키게 된다. As shown, the present invention is to produce a condenser tube with improved pressure resistance, in order to produce an aluminum alloy for the condenser tube Fe 0.05 ~ 0.5wt%, Zr 0.1 ~ 0.5wt%, MM (misch metal) 0.01 ~ From the alloy group consisting of 0.5wt%, Sc 0.01 ~ 0.2wt%, Y 0.001 ~ 0.01wt%, two or more materials are selected and the total amount of possible alloying elements is controlled not to exceed 0.6wt%, and the remaining aluminum is controlled. Melting and alloying, forming the aluminum alloy into a casting bar in a casting machine, followed by hot multi-stage rolling of the casting bar to a diameter of 9.5 mm to 12.5 mm through a multi-stage rolling mill, and winding it in the form of an aluminum alloy rod through a coil machine Is prepared by. The aluminum alloy rod manufactured in the above shape is extruded into a condenser tube through conformal extrusion. Then, the capacitor tube is assembled and brazed to finally form a heat exchanger.

Fe, Zr, MM(Misch metal), Sc 및 Y은 용해과정 또는 열처리 중에 알루미늄과 함께 Al3Fe, Al3Zr, Al3Sc, Al3MM, Al3Y로 알루미늄과 함께 석출이 되어 미세입자를 형성하는 분산질 형성원소이다. 이러한 석출물 형성은 종래기술로 공지되어 있으며, 미세 석출물 형성은 연속주조 및 다단 압연과정에서 형성되며, 통상적으로 주조 과정에서 형성된 석출물은 다단 압연과정에서 더욱 미세하게 분쇄되어 미세조직의 결정립내 및 입계에 분포한다. Fe, Zr, MM (Misch metal), Sc and Y are precipitated together with aluminum as Al 3 Fe, Al 3 Zr, Al 3 Sc, Al 3 MM, Al 3 Y together with aluminum during melting or heat treatment. It is a dispersoid forming element which forms. Such precipitate formation is known in the prior art, the fine precipitate formation is formed during the continuous casting and multi-stage rolling process, the precipitate formed in the casting process is usually finely pulverized in the multi-stage rolling process to the grains and grain boundaries of the microstructure Distributed.

상기의 알루미늄 합금 로드를 이용하여 컨폼 압출하게 되면, 입내 및 입계에 분산되어 있던 석출물이 컨폼하는 과정에서 인가되는 압출력에 의해 더욱 미세하게 분쇄되어 석출되어 진다. 이런 석출물들은 브레이징 처리 후, 항복강도의 저하를 방지하는 중요한 요인으로 작용하게 된다. When conformal extrusion using the aluminum alloy rod, the precipitates dispersed in the mouth and grain boundaries are further finely ground and precipitated by the extrusion force applied during the conforming process. These precipitates act as an important factor to prevent a drop in yield strength after the brazing treatment.

Fe는 알루미늄 합금내에서 강도를 증가시키는 역할을 하는 것으로 그 함유 량을 0.05~0.5wt%로 한정한다.Fe plays a role of increasing the strength in the aluminum alloy, and its content is limited to 0.05 ~ 0.5wt%.

Zr은 미세 석출물 형성 원소로 항복강도, 인장강도 증가와 더불어 내열성을 향상시키는 원소로 주조 및 열처리 과정에서 미세한 Al3Zr 석출물이 생성되는 것으로 그 함유량을 0.1~0.5wt%로 한정한다. Zr is a fine precipitate forming element that increases yield strength and tensile strength and improves heat resistance. As a result, fine Al 3 Zr precipitates are formed during casting and heat treatment, and the content thereof is limited to 0.1 to 0.5 wt%.

MM(misch metal)은 La, Ce, Pr, Nd, Sm 등의 희토류 원소의 구성체로 항복강도, 인장강도와 더불어 내열성을 향상시키는 원소로 주조 및 열처리 과정에서 미세한 석출물이 생성되는 원소이며 그 함유량을 0.01~0.5wt%로 한정한다. MM (misch metal) is a constituent of rare earth elements such as La, Ce, Pr, Nd, and Sm. It is an element that improves yield strength, tensile strength and heat resistance. It is an element that produces fine precipitates during casting and heat treatment. It is limited to 0.01 to 0.5wt%.

Sc는 미세 석출물 형성원소로 항복강도, 인장강도 증가와 더불어 내열성을 향상시키는 원소로 주조 및 열처리 과정에서 미세한 Al3Sc 석출물이 생성되는 것으로 그 함유량을 0.01~0.2wt%로 한정한다. Sc is a fine precipitate forming element that increases yield strength and tensile strength, and improves heat resistance. Sc is a fine Al 3 Sc precipitate formed during casting and heat treatment. The content is limited to 0.01 to 0.2 wt%.

Y는 Al-Zr 합금에서 0.001wt% 만의 첨가로 열전도도를 감소시키지 않고, 재결정온도를 285℃에서 305℃까지 높여 준다.Y increases the recrystallization temperature from 285 ° C to 305 ° C without decreasing the thermal conductivity by adding only 0.001wt% in the Al-Zr alloy.

상기에 나타난 각 원소들을 적정량 두 가지 또는 복수로 첨가하여, 강도 증가 측면에서 상승 효과를 제공하게 된다.Each of the elements shown above is added in an appropriate amount of two or plural to provide a synergistic effect in terms of increasing strength.

또한 합금 원소의 첨가 총량을 0.6wt% 이하로 제어하는 것이 필요하며, 이는 합금원소 첨가량에 비례하여 감소하게 되는 열전도특성의 열화를 최소화시키기 위함이다.In addition, it is necessary to control the total amount of the alloying element to be 0.6wt% or less, in order to minimize the deterioration of the thermal conductivity characteristic that decreases in proportion to the alloying element addition amount.

하나의 바람직한 실시예에 따르면 본 발명에 따른 재료의 조성은 다음을 포함한다. According to one preferred embodiment the composition of the material according to the invention comprises:

Figure 112012051910294-pat00001
Figure 112012051910294-pat00001

상기 표1에서 Fe, Zr, MM(misch metal), Sc 및 Y를 제외한 원소들은 불순물로 간주해도 무방하다.
In Table 1, elements other than Fe, Zr, MM (misch metal), Sc, and Y may be regarded as impurities.

이하 본 발명의 구체적인 실시예를 상세히 설명하기로 한다.Hereinafter, specific embodiments of the present invention will be described in detail.

본 발명에 따라 아래의 조성을 갖는 알루미늄 합금에 대하여 용해 및 합금화하여 구체적인 재료의 조성은 아래의 표2와 같다. According to the present invention, the aluminum alloy having the following composition is dissolved and alloyed, and the specific material composition is shown in Table 2 below.

Figure 112012051910294-pat00002
Figure 112012051910294-pat00002

상기 표2에서 Fe, Zr, MM(misch metal), Sc 및 Y를 제외한 원소들은 불순물로 첨가된 원소이다.In Table 2, elements except Fe, Zr, MM (misch metal), Sc, and Y are elements added as impurities.

다음으로 콘덴서 튜브용 알루미늄 합금의 제조방법에 대해 설명하고자 한다.Next, a method of manufacturing an aluminum alloy for a condenser tube will be described.

본 발명에 따른 콘덴서 튜브용 알루미늄 합금 로드는 강도 강화 합금원소들을 미량 첨가할 때, 성분의 편석을 최소화시킬 수 있는 연속주조법에 의해 제조된다.The aluminum alloy rod for a condenser tube according to the present invention is manufactured by a continuous casting method which can minimize segregation of components when a small amount of strength-enhanced alloying elements are added.

도 1은 상기 연속주조법에 의한 본 발명에 따른 알루미늄 합금의 제조장치에 대한 모식도를 나타낸 것으로, 먼저, 용해로(100)를 통해 Fe 0.05~0.5wt%, Zr 0.1~0.5wt%, MM(misch metal) 0.01~0.5wt%, Sc 0.01~0.2wt%, Y 0.001~0.01wt%로 구성된 합금군 중에서, 두 개 이상의 물질이 선택되고, 가능한 합금원소들의 첨가 총량이 0.6wt%를 넘지 않게 제어하며, 나머지 알루미늄을 용해하여 합금화 하고, 주조기(200)를 통해 상기 알루미늄 합금을 주조바로 응고시킨 후, 다단압연기(300)를 통해 상기 주조바를 일정한 크기의 단면으로 압연하여, 코일기(400)를 통해 상기 압연된 알루미늄 합금 로드를 감는 과정으로 크게 이루어진다. 각 공정 단계에서 알루미늄 주조바의 온도구배, 응고속도, 첨가원소 등의 응고 해석에 따라 연속주조공정을 최적화한다. 이렇게 제조된 알루미늄 합금 로드는 컨폼 압출공정을 거쳐 콘덴서 튜브로 최종 제작된다.Figure 1 shows a schematic diagram of the apparatus for producing an aluminum alloy according to the present invention by the continuous casting method, first, Fe 0.05 ~ 0.5wt%, Zr 0.1 ~ 0.5wt%, MM (misch metal) through the melting furnace 100 ) From the alloy group consisting of 0.01 ~ 0.5wt%, Sc 0.01 ~ 0.2wt%, Y 0.001 ~ 0.01wt%, two or more materials are selected, and the total amount of possible alloying elements is controlled not to exceed 0.6wt%, The remaining aluminum is melted and alloyed, and the aluminum alloy is solidified into a casting bar through the casting machine 200, and then the casting bar is rolled into a cross section of a predetermined size through a multi-stage rolling machine 300, and the coil machine 400 It is largely made by winding a rolled aluminum alloy rod. In each process step, the continuous casting process is optimized according to the solidification analysis such as temperature gradient, solidification rate, and added element of aluminum casting bar. The aluminum alloy rod thus manufactured is finally fabricated into a condenser tube through a conform extrusion process.

알루미늄 합금 로드 제조는 알루미늄 용해, 첨가원소의 합금화, 교반(agitation), 출탕으로 이루어지는 바, 800℃~850℃에서 이루어진다. 이는 알루미늄 중에 Fe, Zr, MM(Misch metal), Sc, Y 등의 첨가원소를 강제 고용시켜 강도, 이들의 편석을 최소화시키기 위한 것이며, 출탕 시 주조기의 온도는 490℃로 조절하여 주조바(cast bar)를 제작한다.The aluminum alloy rod is manufactured at 800 ° C. to 850 ° C. as it consists of aluminum melting, alloying of additive elements, agitation, and tapping. This is to minimize the strength and segregation by forcibly solidifying additional elements such as Fe, Zr, MM (Misch metal), Sc, and Y in aluminum, and casting temperature is adjusted to 490 ℃ during casting. bar).

제작된 주조바는 다단압연기를 통해 일정한 크기의 단면으로 압연시키며, 압연 시작온도는 490℃, 종료온도는 280℃로 한다. The cast bar is rolled into a cross section of a predetermined size through a multi-stage rolling machine, the rolling start temperature is 490 ℃, the end temperature is 280 ℃.

3방향롤에 의한 연속 13단 내지 15단의 다단 압연기로 공급되며, 각 단계의 가공율은 20%, 최종 가공율은 93.4%로 실행되며, 열간압연은 주조 조직을 파괴하고 응고 중에 형성된 금속간화합물들을 분쇄하여 균일하고 미세하게 조직 내에 분포시키게 된다. It is supplied with continuous multi-stage rolling mills of 15 to 15 stages by three-way rolls, each stage has a processing rate of 20% and a final machining rate of 93.4%. The compounds are ground and distributed evenly and finely in the tissue.

최종 압연가공이 완료되면 직경 9.5㎜~12.5㎜ 정도의 로드로 압연된다.When the final rolling process is completed, it is rolled into a rod having a diameter of about 9.5 mm to 12.5 mm.

본 발명의 연속 주조공정으로 제조된 알루미늄 합금 로드를 이용하여 콘덴서 튜브를 컨폼 압출방식에 의해 제조하였으며, 금형의 맨드릴(Mandrel)은 초경합금을 사용한다. 금형예열기를 통하여 금형을 충분히 예열한 다음 400℃에서 컨폼 압출을 하여 도2와 같은 콘덴서 튜브를 제조한다. The condenser tube was manufactured by the conformal extrusion method using the aluminum alloy rod manufactured by the continuous casting process of the present invention, and the mandrel of the mold uses cemented carbide. Preheat the mold sufficiently through a mold preheater, and then conform molded at 400 ° C. to produce a condenser tube as shown in FIG. 2.

주조 및 다단 압연과정에서 미세조직의 결정입내 또는 입계에 형성된 Al3Fe, Al3Zr, Al3Sc, Al3MM, Al3Y과 같은 미세 석출물이 컨폼 압출하게 되면, 인가되는 압출력에 의해 더욱 미세하게 분쇄되어 조직 내에 분산하게 된다. 즉 미세한 석출물들이 결정입내와 입계에 균일하게 분포됨에 따라 콘덴서 튜브의 강도특성이 향상되어 내압특성이 크게 개선되는 효과를 나타나게 된다.In the casting and multi-stage rolling process, when fine precipitates such as Al 3 Fe, Al 3 Zr, Al 3 Sc, Al 3 MM, Al 3 Y formed in the grains or grain boundaries of the microstructure are conform-extruded, It is more finely ground and dispersed in the tissue. That is, as the fine precipitates are uniformly distributed in the grains and grain boundaries, the strength characteristics of the condenser tube are improved, and the breakdown voltage characteristics are greatly improved.

앞에서도 기술한 바와 같이, 최종적인 제품인 열교환기를 제조하기 위해서는 브레이징 공정을 반드시 거쳐야 하기 때문에, 콘덴서 튜브를 브레이징 처리 조건에서 열처리한 후의 내압성을 측정 검증하는 것이 필요하다. As described above, in order to manufacture the final heat exchanger, it is necessary to go through a brazing process, so it is necessary to measure and verify the pressure resistance after heat treatment of the condenser tube under brazing treatment conditions.

이를 위해 현재 범용으로 사용되고 있는 16 cell 콘덴서 튜브(A1050)와 내압 강도를 측정하여 비교하였으며, 그 결과를 표3에 나타내었다. 즉, 기존의 제품보다 3배 가까이 뛰어난 성능을 확인할 수 있다. To this end, 16 cell condenser tubes (A1050), which are currently used for general purposes, were measured and compared with pressure resistance, and the results are shown in Table 3. In other words, it can confirm the performance close to 3 times that of the existing products.

Figure 112012051910294-pat00003
Figure 112012051910294-pat00003

100 : 용해로 200 : 주조기
300 : 다단압연기 400 : 코일기
100: melting furnace 200: casting machine
300: multi-stage rolling mill 400: coil machine

Claims (5)

합금원소 Fe 0.05~0.5wt%, Zr 0.1~0.5wt%, MM(misch metal) 0.01~0.5wt%, Sc 0.01~0.2wt%, Y 0.001~0.01wt% 로 구성된 합금원소 군 중에서 두 개 이상의 물질을 선택하여 합금원소들의 첨가 총량이 0.6wt% 이하가 되게 하고 나머지는 순 알루미늄을 용해하고 합금화 하여 알루미늄 합금을 형성시키고, 상기 알루미늄 합금을 주조바로 성형하고, 상기 주조바를 일정한 크기의 단면으로 다단 압연하여 로드로 성형하여 합금 로드를 형성시키고, 금형예열기를 이용하여 금형을 가열시켜 350℃~450℃의 온도에서 합금 로드를 컨폼 압출하여 콘덴서 튜브를 형성시키는 것을 특징으로 하는 내압특성을 향상시킨 열교환기용 콘덴서 튜브 제조 방법.At least two materials in the alloy element group consisting of Fe 0.05 ~ 0.5wt%, Zr 0.1 ~ 0.5wt%, MM (misch metal) 0.01 ~ 0.5wt%, Sc 0.01 ~ 0.2wt%, Y 0.001 ~ 0.01wt% The total amount of the alloying elements is selected to be 0.6wt% or less, and the rest is dissolved and alloyed with pure aluminum to form an aluminum alloy, the aluminum alloy is formed into a casting bar, and the casting bar is multistage rolled into a cross section of a constant size. To form an alloy rod by forming a rod, and using a mold preheater to heat the mold to conform-extrude the alloy rod at a temperature of 350 ° C. to 450 ° C. to form a condenser tube. How to make a condenser tube. 제1항에 있어서,
상기 합금화는 780℃~850℃에서 이루어지는 것을 특징으로 하는 내압특성을 향상시킨 열교환기용 콘덴서 튜브 제조 방법.
The method of claim 1,
The alloying method is a manufacturing method of a condenser tube for heat exchanger with improved pressure resistance characteristics, characterized in that made at 780 ℃ ~ 850 ℃.
제1항에 있어서,
상기 주조바 성형은 450℃~550℃에서 이루어지며, 상기 주조바는 490℃~550℃로 유지된 상태로 다단압연기로 공급되는 것을 특징으로 하는 내압성을 향상시킨 열교환기용 콘덴서 튜브 제조방법.
The method of claim 1,
The casting bar forming is made at 450 ℃ ~ 550 ℃, the casting bar is a condenser tube manufacturing method for heat resistance with improved pressure resistance, characterized in that supplied to the multi-stage rolling in a state maintained at 490 ℃ ~ 550 ℃.
제1항에 있어서,
상기 다단 압연은 시작은 450℃~550℃, 종료는 250℃~350℃에서 이루어지는 것을 특징으로 하는 내압성을 향상시킨 열교환기용 콘덴서 튜브 제조방법.
The method of claim 1,
The multi-stage rolling is the start of 450 ℃ ~ 550 ℃, the end is 250 ℃ ~ 350 ℃ heat exchanger condenser tube manufacturing method for improving heat resistance, characterized in that the made.
제1항 내지 제4항 중 어느 하나의 제조 방법에 의해 제조됨을 특징으로 하는 내압특성을 향상시킨 열교환기용 콘덴서 튜브.A condenser tube for heat exchanger with improved pressure resistance characteristics, characterized in that it is manufactured by the manufacturing method of any one of Claims 1-4.
KR1020120070255A 2012-06-28 2012-06-28 Condenser tube with high pressure resistance for heat-exchanger and their production method KR101335680B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120070255A KR101335680B1 (en) 2012-06-28 2012-06-28 Condenser tube with high pressure resistance for heat-exchanger and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120070255A KR101335680B1 (en) 2012-06-28 2012-06-28 Condenser tube with high pressure resistance for heat-exchanger and their production method

Publications (1)

Publication Number Publication Date
KR101335680B1 true KR101335680B1 (en) 2013-12-03

Family

ID=49986984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120070255A KR101335680B1 (en) 2012-06-28 2012-06-28 Condenser tube with high pressure resistance for heat-exchanger and their production method

Country Status (1)

Country Link
KR (1) KR101335680B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115662A (en) 2015-03-25 2016-10-06 주식회사 에프티넷 Corrosion resistant aluminium alloy, manufacturing method for tube or pipe using the aluminium alloy, and heat exchanger using the same
KR20170116726A (en) 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
WO2018216832A1 (en) 2017-05-25 2018-11-29 손희식 Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119534A (en) 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger
KR100723630B1 (en) 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
JP2008308760A (en) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd High-strength aluminum alloy material for automobile heat-exchanger excellent in formability and erosion resistance used for member for high-strength automobile heat exchanger produced by brazing, and method for production thereof
KR101198323B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119534A (en) 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger
KR100723630B1 (en) 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
JP2008308760A (en) 2006-12-21 2008-12-25 Mitsubishi Alum Co Ltd High-strength aluminum alloy material for automobile heat-exchanger excellent in formability and erosion resistance used for member for high-strength automobile heat exchanger produced by brazing, and method for production thereof
KR101198323B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115662A (en) 2015-03-25 2016-10-06 주식회사 에프티넷 Corrosion resistant aluminium alloy, manufacturing method for tube or pipe using the aluminium alloy, and heat exchanger using the same
KR20170116726A (en) 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
WO2018216832A1 (en) 2017-05-25 2018-11-29 손희식 Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential

Similar Documents

Publication Publication Date Title
CN100572577C (en) Aluminum alloy for air conditioner tube and manufacture method thereof
CN101265536A (en) High-strength high-conductivity copper alloy and preparation method thereof
KR101773319B1 (en) High corrosion resistive aluminum alloy and the pipe for heat exchanger prepared from the same
KR101335680B1 (en) Condenser tube with high pressure resistance for heat-exchanger and their production method
KR101650653B1 (en) Heat exchanger tube with high strength and high corrosion-resistance and method of preparing the same
CA2919662C (en) High strength aluminum alloy fin stock for heat exchanger
JP5534777B2 (en) Copper alloy seamless pipe
JP6541583B2 (en) Copper alloy material and copper alloy pipe
KR101198323B1 (en) Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
KR101349359B1 (en) manufacturing method for condenser tube increased tensile strength
JP2017082301A (en) Manufacturing method of copper alloy tube and heat exchanger
KR101198324B1 (en) Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
JP2008240128A (en) Copper alloy tube
KR101310167B1 (en) Copper alloy material for pipe of high strength and high conductivity and the method for production same
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
JP3414294B2 (en) ERW welded copper alloy tube for heat exchanger with excellent 0.2% proof stress and fatigue strength
JP2008255382A (en) Copper alloy tube
JP2015140475A (en) Copper tube for heat exchanger
KR100896217B1 (en) Aluminium alloy for heat exchanger fin in vehicle
CN113737066A (en) Aluminum conductor rail section bar and preparation method thereof
KR20150073555A (en) High corrosion-resistant aluminum alloy for heat exchanger tube and heat exchanger tube prepared from the same
KR102261090B1 (en) High corrosion-resistant heat exchanger tube and method for preparing the same
JP2017036468A (en) Copper alloy tube
WO2014142048A1 (en) Copper alloy seamless tube for cold and hot water supply
KR20140000816A (en) Alumimum alloy rod for condenser tube using properzi precess and their manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 7