JP2003119534A - Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger - Google Patents

Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger

Info

Publication number
JP2003119534A
JP2003119534A JP2001313140A JP2001313140A JP2003119534A JP 2003119534 A JP2003119534 A JP 2003119534A JP 2001313140 A JP2001313140 A JP 2001313140A JP 2001313140 A JP2001313140 A JP 2001313140A JP 2003119534 A JP2003119534 A JP 2003119534A
Authority
JP
Japan
Prior art keywords
heat exchanger
corrosion resistance
aluminum alloy
tube
extruded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001313140A
Other languages
Japanese (ja)
Other versions
JP3756439B2 (en
Inventor
Masakazu Edo
正和 江戸
Yasunori Hiyougo
靖憲 兵庫
Ken Toma
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001313140A priority Critical patent/JP3756439B2/en
Publication of JP2003119534A publication Critical patent/JP2003119534A/en
Application granted granted Critical
Publication of JP3756439B2 publication Critical patent/JP3756439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy extruded material with high strength and an adequate extrusion formability, which shows superior corrosion resistance without forming a Zn thermal sprayed layer on the tube surface, and to provide a manufacturing method therefor, and a heat exchanger using the same. SOLUTION: The aluminum alloy extruded material for the heat exchanger with high strength and excellent corrosion resistance comprises, by wt.%, 0.03-0.4% Cu, 0.03-0.5% Ti, 0.01-0.3% Mg, 0.3-0.8% Mn, 0.01-0.3% Zr, 0.15-1.0% Fe, and the balance Al with unavoidable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主にコンデンサな
どの自動車用アルミニウム合金製熱交換器に使用される
アルミニウム合金押出管あるいはヘッダーパイプなどの
押出材として、高強度かつ優れた耐食性を有するアルミ
ニウム合金押出材およびその製造方法、並びにそれらを
使用して製造された熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to aluminum having high strength and excellent corrosion resistance as an extruded material such as an aluminum alloy extruded tube or a header pipe mainly used for aluminum alloy heat exchangers for automobiles such as capacitors. The present invention relates to an alloy extruded material, a method for manufacturing the same, and a heat exchanger manufactured using them.

【0002】[0002]

【従来の技術】従来、この種の自動車用熱交換器として
は、ヘッダーパイプと称される左右一対の管体の間に多
数の偏平チューブを互いに平行に所定の間隔でヘッダー
パイプと直角に架設し、扁平チューブの端部をヘッダー
パイプの側面に接続してヘッダーパイプの内部空間と各
チューブ内部空間とを連通させ、複数のチューブ間にフ
ィン部材を配して熱交換性を高めた構成が広く知られて
いる。この種の熱交換器は、ヘッダーパイプおよび各チ
ューブの内部を冷媒が循環し、各チューブ間に配された
フィンを介して効率良く熱交換できるようになってい
る。これらの熱交換器は、チューブとフィン部材をろう
付けすることにより製造されるが、チューブに押出材を
使用する場合は、チューブ側にろう材層がないため、あ
らかじめAl合金芯材の両面にAl−Si系合金などの
ろう材層をクラッドしたフィン部材が一般的に用いられ
ており、このフィン部材のろう材層によりチューブとフ
ィン部材の接合が行われている。このような熱交換器の
使用部材は、軽量化のために年々薄肉化される傾向にあ
り、特にチューブ形状材では薄肉化によりさらなる強度
アップおよび耐食性の向上が求められてきており、高い
強度と耐食性を兼ね備えていることが必要となる。
2. Description of the Related Art Conventionally, as a heat exchanger for an automobile of this type, a large number of flat tubes, which are called header pipes, are installed between a pair of left and right pipe bodies in parallel to each other at a predetermined interval and at right angles to the header pipes. Then, the end portion of the flat tube is connected to the side surface of the header pipe to connect the inner space of the header pipe and each tube inner space, and fin members are arranged between the plurality of tubes to improve heat exchange performance. Widely known. In this type of heat exchanger, a refrigerant circulates inside the header pipe and each tube, and heat can be efficiently exchanged through fins arranged between the tubes. These heat exchangers are manufactured by brazing a tube and a fin member. However, when an extruded material is used for the tube, there is no brazing material layer on the tube side, so both sides of the Al alloy core material are prepared beforehand. A fin member in which a brazing material layer such as an Al-Si alloy is clad is generally used, and the tube and the fin member are joined by the brazing material layer of the fin member. The members used in such heat exchangers tend to be made thinner year by year to reduce the weight, and in particular, for tube-shaped materials, it has been required to further increase the strength and corrosion resistance by reducing the wall thickness, and thus the high strength and It is also necessary to have corrosion resistance.

【0003】自動車用熱交換器の中でも、コンデンサは
熱交換効率の関係から車両の最前部に取り付けられてい
るため、厳しい腐食環境に曝されやすい。特に海岸など
の空気中に塩分を含む環境や、空気中に腐食性のガスを
含む工業地帯、あるいは塩化物を主体とした融雪剤を散
布する地域などの過酷な腐食形態となることが知られて
おり、上記のような環境では特に腐食が促進され、短期
間でチューブに貫通孔が発生し冷媒が漏れることで熱交
換器の機能が失われる場合がある。また、前記構成の熱
交換器において、ろう付けフィレット部(ろう材が溶融
凝固した部分)とその周辺のチューブの耐食性を高める
ために、フィン部材のAl合金芯材にZn、In、Sn
等の電位を卑化する元素を添加してフィン部材の電位を
他の部分よりも卑とすることにより、いわゆる犠牲陽極
フィンを構成し、これによって仮に腐食環境に曝された
場合であっても、フィン部材を積極的に腐食させてチュ
ーブは腐食しないようにし、チューブの耐食性を確保し
てチューブ内を流れる冷却媒体の漏洩が生じないように
することがなされている。ところが、特定の腐食環境あ
るいは腐食条件においては、フィン部材の犠牲陽極防食
効果が十分に発揮されず、フィン部材のみによる防食機
構では十分な耐食性が得られないことが分かっている。
そこで、現在、これらの熱交換器には押出チューブ表面
にZn溶射を行い、チューブ内部とチューブ表面との間
に電位差を設け、チューブ表面に犠牲陽極層を形成させ
ることで、チューブに深い孔食が発生するのを抑制し、
耐食性の向上を図っている。
Among heat exchangers for automobiles, the condenser is attached to the forefront of the vehicle because of its heat exchange efficiency, and is therefore easily exposed to a severe corrosive environment. In particular, it is known to be severely corroded in environments such as coasts that contain salt in the air, industrial areas that contain corrosive gas in the air, or areas where chloride-based snow-melting agents are sprayed. Therefore, in the above-mentioned environment, corrosion may be promoted particularly, and the function of the heat exchanger may be lost due to the through hole generated in the tube and the leakage of the refrigerant in a short period of time. Further, in the heat exchanger having the above structure, in order to improve the corrosion resistance of the brazing fillet portion (the portion where the brazing material is melted and solidified) and the tubes around it, Zn, In, Sn is added to the Al alloy core material of the fin member.
By adding an element that makes the electric potential of the fin member base to make the electric potential of the fin member less base than the other portions, a so-called sacrificial anode fin is formed, and even if it is exposed to a corrosive environment. The fin member is positively corroded to prevent the tube from corroding, and the corrosion resistance of the tube is ensured to prevent the leakage of the cooling medium flowing in the tube. However, it has been found that the sacrificial anodic corrosion protection effect of the fin member is not sufficiently exerted in a specific corrosive environment or conditions, and a corrosion protection mechanism using only the fin member cannot provide sufficient corrosion resistance.
Therefore, these heat exchangers are currently subjected to Zn thermal spraying on the surface of the extruded tube to provide a potential difference between the inside of the tube and the surface of the tube to form a sacrificial anode layer on the surface of the tube, thereby forming deep pitting corrosion on the tube. Suppresses the occurrence of
We are trying to improve the corrosion resistance.

【0004】[0004]

【発明が解決しようとする課題】前述の如く薄肉化の要
求により、押出材にはさらなる強度アップおよび耐食性
の向上が求められており、現行材より強度と耐食性がと
もに優れる材料の開発が望まれている。犠牲陽極フィン
を使用した熱交換器にあっては、チューブやろう付け部
よりもフィン部材が優先的に腐食することによってチュ
ーブやヘッダーパイプの腐食を防止するようになってい
るが、フィン部材の腐食速度が速く、比較的早期にフィ
ン部材の一部が失われることがあると、チューブの耐食
性や熱交換効率の低下などを引き起こしやすいという問
題があった。また、フィン部材のみの犠牲陽極防食機構
では耐食性が不十分なため、チューブ表面にZn溶射を
行い、チューブ表面に犠牲陽極層を形成することにより
耐食性の改善を行っている。しかし、ヘッダー部などは
Zn溶射ができないため、材料自体の耐食性の向上が非
常に重要であり、耐食性に優れ、さらに高強度の押出材
の開発が望まれている。
As mentioned above, due to the demand for thinning, the extruded material is required to have further increased strength and corrosion resistance, and it is desired to develop a material having both strength and corrosion resistance superior to those of the current material. ing. In heat exchangers that use sacrificial anode fins, the fin members preferentially corrode over the tubes and brazing parts to prevent corrosion of the tubes and header pipes. If the corrosion rate is high and a part of the fin member is lost relatively early, there is a problem that the corrosion resistance of the tube and the heat exchange efficiency are likely to decrease. Further, since the corrosion resistance is insufficient with the sacrificial anodic corrosion protection mechanism using only the fin member, Zn corrosion is performed on the tube surface to form a sacrificial anode layer on the tube surface to improve the corrosion resistance. However, since the header portion and the like cannot be sprayed with Zn, it is very important to improve the corrosion resistance of the material itself, and it is desired to develop an extruded material having excellent corrosion resistance and high strength.

【0005】そこで、本発明は前記課題を解決するため
になされたものであって、高強度でありかつ押出成形性
が良好で、さらに表面にZn溶射層を形成しなくとも優
れた耐食性を得ることができるアルミニウム合金押出材
およびその製造方法、並びにこれを用いた熱交換器を提
供することを目的とする。
Therefore, the present invention has been made in order to solve the above-mentioned problems, and has high strength and good extrusion moldability, and further obtains excellent corrosion resistance without forming a Zn sprayed layer on the surface. It is an object of the present invention to provide an aluminum alloy extruded material that can be used, a method for producing the same, and a heat exchanger using the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、重量%でCu:0.03〜0.4%、T
i:0.03〜0.5%、Mg:0.01〜0.3%、
Zr:0.01〜0.3%、Mn:0.3〜0.8%、
Fe:0.15〜1.0%を含み、残部がAlと不可避
不純物からなり、高強度、高耐食の特性を併せ持つ熱交
換器用アルミニウム合金押出材を提供する。
In order to solve the above-mentioned problems, the present invention provides Cu: 0.03 to 0.4% by weight and T.
i: 0.03 to 0.5%, Mg: 0.01 to 0.3%,
Zr: 0.01-0.3%, Mn: 0.3-0.8%,
Provided is an aluminum alloy extruded material for a heat exchanger, which contains Fe: 0.15 to 1.0%, the balance consisting of Al and inevitable impurities, and has high strength and high corrosion resistance.

【0007】本発明者は、AlにTiを含有させること
で、押し出し成型時に材料中にTi濃度が高い部分と低
い部分が層状に形成され、Ti濃度が低い部分は高い部
分に比べ電位が卑になり、優先的に腐食が進行するため
腐食形態が層状となり、深い孔食の発生が抑制され耐食
性を向上させること、さらにZrを添加することで、よ
り腐食形態が層状となり非常に耐食性が向上することを
見出した。以上のようにTi、Zrの相互作用により、
深い孔食の発生が抑制され、アルミニウム合金押出材の
耐食性が著しく向上することを発見した。さらに、C
u,Mg,Ti,Mn,Zrを添加することで材料強度
を向上させた。通常、Cuを添加すると腐食速度が増加
し、耐食性は低下するが、Cu等の添加元素を上記範囲
とすると、耐食性をほとんど低下させることなく強度を
向上させることができることを本発明者は知見した。ま
た、Mgの添加もろう付け性を低下させるためあまり好
ましくないが、本発明の記載範囲であれば、フラックス
塗布量の制御によりろう付け性を大きく低下させること
なくろう付けが可能で、かつ材料強度を向上させること
が確認された。従って、強度および耐食性ともに優れた
アルミニウム合金押出材として本発明では上記成分範囲
を定めた。
The present inventor has made Ti into Al by forming Ti into a layered portion having a high Ti concentration and a portion having a low Ti concentration during extrusion molding, and a portion having a low Ti concentration has a lower electric potential than a portion having a high Ti concentration. Since the corrosion progresses preferentially, the corrosion morphology becomes layered, the occurrence of deep pitting is suppressed and the corrosion resistance is improved, and by adding Zr, the corrosion morphology becomes more layered and the corrosion resistance is greatly improved. I found that As described above, due to the interaction between Ti and Zr,
It was discovered that the occurrence of deep pitting was suppressed and the corrosion resistance of the aluminum alloy extruded material was significantly improved. Furthermore, C
The material strength was improved by adding u, Mg, Ti, Mn, and Zr. Usually, when Cu is added, the corrosion rate is increased and the corrosion resistance is lowered, but when the additive element such as Cu is in the above range, the present inventors have found that the strength can be improved without substantially lowering the corrosion resistance. . Further, addition of Mg is also not preferable because it lowers the brazing property, but within the range described in the present invention, brazing can be performed without significantly lowering the brazing property by controlling the flux application amount, and the material It was confirmed that the strength was improved. Therefore, in the present invention, the above-mentioned range of components is defined as an aluminum alloy extruded material excellent in strength and corrosion resistance.

【0008】以下、本発明に係る熱交換器用アルミニウ
ム合金押出材を構成する各成分の含有範囲とその作用に
ついて説明するが、本発明に係るアルミニウム合金押出
材は、チューブ状に成形し、フィン部材とともに熱交換
器を構成する用途に好適なものであるので、以下では、
主に本発明に係る押出材を用いて熱交換器を構成した場
合の作用と効果について説明する。
Hereinafter, the content range of each component constituting the aluminum alloy extruded material for a heat exchanger according to the present invention and the action thereof will be described. The aluminum alloy extruded material according to the present invention is formed into a tubular shape to form a fin member. Since it is suitable for use together with a heat exchanger,
The action and effect when the heat exchanger is mainly composed of the extruded material according to the present invention will be described.

【0009】Cu(0.03%〜0.4%):Cuは、
材料の強度を向上させる作用を有する。また、チューブ
状に成形してフィン部材とともに熱交換器を構成した場
合、押出材からなるチューブの電位を貴にするため、フ
ィン部材の犠牲陽極効果を有効に働かせる効果を有す
る。前記範囲の上限値を越える含有量では、上記チュー
ブの腐食が速くなり耐食性が低下する。また、前記範囲
の下限値未満では強度を向上させる効果が十分に得られ
ない。Cu含有量のより好ましい範囲としては、0.1
〜0.3%であり、このような範囲とすることで、強度
と耐食性を兼ね備えた押出材とすることができる。
Cu (0.03% to 0.4%): Cu is
It has the effect of improving the strength of the material. Further, when the heat exchanger is formed together with the fin member by forming it into a tubular shape, the potential of the tube made of the extruded material is made noble, so that the sacrificial anode effect of the fin member is effectively exerted. If the content exceeds the upper limit of the above range, the corrosion of the tube will be accelerated and the corrosion resistance will be reduced. Further, if it is less than the lower limit of the above range, the effect of improving the strength cannot be sufficiently obtained. A more preferable range of Cu content is 0.1
It is up to 0.3%, and by setting it in such a range, an extruded material having both strength and corrosion resistance can be obtained.

【0010】Ti(0.03%〜0.5%):Tiを添
加すると鋳造時にTi濃度(固溶度)が高い部分と低い
部分が形成され、このTi分布が押出成型時に材料中に
層状に分布する。Ti濃度が低い部分は高い部分に比べ
電位が卑になるため優先的に腐食が進行し、腐食形態が
層状となり、深い孔食の発生が抑制されるため耐食性が
向上する。また、材料の強度を向上させる効果もある。
前記範囲の上限値を越える量のTiを含む場合、合金の
融点が上昇して鋳造時に溶け残りが発生したり、巨大な
金属間化合物が生成しやすくなるため、材料の押出加工
性を低下させる。また、前記範囲の下限値未満では耐食
性を向上させる効果が十分に得られない。Ti含有量の
より好ましい範囲としては、0.1〜0.2%の範囲で
ある。
Ti (0.03% to 0.5%): When Ti is added, a portion having a high Ti concentration (solid solubility) and a portion having a low Ti concentration are formed during casting, and this Ti distribution is layered in the material during extrusion molding. Distributed in. The portion where the Ti concentration is low has a lower potential than the portion where the Ti concentration is high, so that the corrosion preferentially progresses, the corrosion form becomes layered, and the occurrence of deep pitting is suppressed, so that the corrosion resistance is improved. It also has the effect of improving the strength of the material.
When the amount of Ti contained exceeds the upper limit of the above range, the melting point of the alloy is increased, and unmelted residue is generated during casting, or a huge intermetallic compound is easily generated, which deteriorates the extrudability of the material. . Further, if it is less than the lower limit of the above range, the effect of improving the corrosion resistance cannot be sufficiently obtained. A more preferable range of the Ti content is 0.1 to 0.2%.

【0011】Zr(0.01〜0.3%):Zrは、T
iの層状腐食を促進させて耐食性を向上させる効果を有
するとともに、材料強度を向上させる効果を有する。前
記範囲の上限値を越えるZrを含む場合、Ti−Zr系
の巨大金属間化合物が生成して材料の押出加工性が低下
する。また、前記範囲の下限値未満では、耐食性を向上
させる効果が十分に得られない。Zr含有量の最適な範
囲は、0.05〜0.15%の範囲である。
Zr (0.01-0.3%): Zr is T
i has the effect of promoting the layered corrosion of i to improve the corrosion resistance and also has the effect of improving the material strength. When Zr exceeding the upper limit of the above range is contained, a Ti—Zr-based giant intermetallic compound is formed, and the extrudability of the material is deteriorated. Further, if it is less than the lower limit of the above range, the effect of improving the corrosion resistance cannot be sufficiently obtained. The optimum range of Zr content is 0.05 to 0.15%.

【0012】Mg(0.01〜0.3%):ろう付け時
に材料中に固溶し、その後析出することで材料の強度を
向上させる。また、Siが存在する場合には、Mg2
iの析出物を生成し、Mg単独の場合よりさらに強度が
向上する。前記範囲の上限値を越える場合には、フラッ
クスの効果を阻害し、ろう付け性を著しく低下させる。
ろう付け性を阻害しない範囲のMg添加量は0.1%ま
でだが、それ以上添加してもフラックス塗布量を増量す
ればろう付け性をある程度改善することが可能である。
また、前記範囲の下限値未満では、材料強度を向上させ
る効果が十分に得られない。Mg含有量の最適な範囲
は、0.01〜0.1%の範囲であり、Mg含有量をこ
の範囲とすることで、高強度でろう付け性に優れたアル
ミニウム合金押出材を構成することができる。
Mg (0.01-0.3%): Improves the strength of the material by forming a solid solution in the material during brazing and then depositing. If Si is present, Mg 2 S
A precipitate of i is formed, and the strength is further improved as compared with the case of Mg alone. If it exceeds the upper limit of the above range, the effect of the flux is hindered and the brazing property is remarkably lowered.
The amount of Mg added is within the range that does not hinder the brazing property, but even if it is added more, the brazing property can be improved to some extent by increasing the flux coating amount.
Further, if it is less than the lower limit of the above range, the effect of improving the material strength cannot be sufficiently obtained. The optimum range of the Mg content is 0.01 to 0.1%, and by setting the Mg content in this range, an aluminum alloy extruded material having high strength and excellent brazability can be configured. You can

【0013】Mn(0.3〜0.8%):MnはAlと
の金属間化合物を形成して金属組織中に晶出又は析出
し、ろう付け後の強度を向上させる効果を有する。さら
に、アルミニウム合金押出材からなるチューブの電位を
フィン部材に対して貴にするため、フィン部材との電位
差を大きくすることができ、フィン部材の犠牲陽極効果
をより有効に作用させて耐食性を向上させる。前記範囲
の上限値を超える場合には、Al−Mn系化合物として
材料中に分散し、高温での変形抵抗が大きくなるため、
押出加工性を著しく低下させる。偏平多穴管のように成
形後の形状が複雑な場合はMn添加量は少なくする方が
好ましい。Mn含有量の最適な範囲は、0.3〜0.6
%の範囲であり、Mn含有量をこの範囲とすることで、
強度と耐食性を兼ね備えたアルミニウム合金押出材を構
成することができる。
Mn (0.3 to 0.8%): Mn forms an intermetallic compound with Al and crystallizes or precipitates in the metal structure, and has the effect of improving the strength after brazing. Further, since the potential of the tube made of extruded aluminum alloy is noble with respect to the fin member, the potential difference between the fin member and the fin member can be increased, and the sacrificial anode effect of the fin member can be more effectively applied to improve the corrosion resistance. Let If it exceeds the upper limit of the above range, it is dispersed in the material as an Al-Mn-based compound, and the deformation resistance at high temperature increases,
Extrudability is significantly reduced. When the shape after molding is complicated, such as a flat multi-hole tube, it is preferable to reduce the amount of Mn added. The optimum range of Mn content is 0.3 to 0.6.
%, And by setting the Mn content in this range,
An aluminum alloy extruded material having both strength and corrosion resistance can be constructed.

【0014】Fe(0.15〜1.0%):FeもMn
と同様にAlとの金属間化合物を形成して金属組織中に
晶出又は析出し、さらにろう付け後の結晶粒を細かくす
る作用によりろう付け後の強度を向上させる効果を有す
る。前記範囲の上限値を超える含有量では、粗大なAl
−Fe系化合物として材料中に分散するため、高温での
変形抵抗が上昇し、押出加工性を著しく低下させる。ま
た、上記範囲の下限値未満では、上述の効果が得られな
い。
Fe (0.15-1.0%): Fe is also Mn
Similarly to the above, it forms an intermetallic compound with Al and crystallizes or precipitates in the metal structure, and further has the effect of improving the strength after brazing by the action of making the crystal grains after brazing finer. If the content exceeds the upper limit of the above range, coarse Al
Since it is dispersed in the material as a —Fe-based compound, the deformation resistance at high temperature increases, and the extrudability is remarkably reduced. Further, if it is less than the lower limit of the above range, the above effect cannot be obtained.

【0015】さらに、本発明に係る熱交換器用アルミニ
ウム合金押出材においては、Si:0.3〜1.0%を
含む組成とすることもできる。以下に、Siの作用と含
有範囲について説明する。
Furthermore, the aluminum alloy extruded material for a heat exchanger according to the present invention may have a composition containing Si: 0.3 to 1.0%. Hereinafter, the function and content range of Si will be described.

【0016】Si(0.3〜1.0%):Siは材料中
に固溶あるいは析出物として微細に分布され、ろう付け
後の強度を向上させる効果を有する。さらに、固溶した
Siは、フィン部材に対してチューブの電位を貴にする
ため、フィン部材との電位差が大きくとれ、フィン部材
の犠牲陽極効果を有効に働かせることができ、チューブ
の耐食性を向上させることができる。また、チューブの
ろう付け性を向上させる効果も有する。Siは上記範囲
の上限値を越える含有量では、材料の融点が低下するた
め押出時に局所融解が生じたり、高温強度の低下により
チューブの変形が起こりやすい。また、粒界腐食の発生
により耐食性が低下するおそれもある。また、前記範囲
の下限値未満では、上記ろう付け強度の向上効果が十分
に得られない。
Si (0.3 to 1.0%): Si is finely distributed as a solid solution or a precipitate in the material and has the effect of improving the strength after brazing. Furthermore, since solid solution Si makes the electric potential of the tube noble with respect to the fin member, the potential difference with the fin member can be made large, and the sacrificial anode effect of the fin member can be effectively exerted, and the corrosion resistance of the tube is improved. Can be made. It also has the effect of improving the brazability of the tube. When the content of Si exceeds the upper limit of the above range, the melting point of the material decreases, so that local melting occurs during extrusion, or the deformation of the tube easily occurs due to the decrease in high temperature strength. In addition, the occurrence of intergranular corrosion may reduce the corrosion resistance. On the other hand, if it is less than the lower limit of the above range, the effect of improving the brazing strength cannot be sufficiently obtained.

【0017】また、本発明に係る熱交換器用アルミニウ
ム合金押出材は、Ce、La、Ndの希土類元素のうち
1種または2種以上を含有し、その総量(Ce+La+
Nd)が重量%で0.005〜0.2%の範囲とされた
構成としても良い。以下にこれの希土類元素を含有した
場合の作用とその含有範囲について説明する。
The aluminum alloy extruded material for a heat exchanger according to the present invention contains one kind or two or more kinds of rare earth elements of Ce, La and Nd, and its total amount (Ce + La +).
Nd) may be in the range of 0.005 to 0.2% by weight. The action and content range of the rare earth element when it is contained will be described below.

【0018】Ce,La,Nb(総量0.005〜0.
2%):これらの希土類元素は、Al−X系(X=C
e,La,Nb)、あるいはAl−Fe−X系の晶析出
物を形成し、これらの晶析出物が素地中に微細均一に分
布することで材料の強度を向上させる効果を有する。含
有量が前記範囲の上限値を越える場合には、粗大な金属
間化合物が生成し、押出加工性及び切削加工性が低下す
る。また、前記範囲の下限値未満では、材料の強度を向
上させる効果が不十分なものとなる。これらCe,L
a,Nbは、それぞれの純金属を必要量添加することも
できるが、これら希土類元素の混合物として算出される
ミッシュメタルを添加しても良い。このミッシュメタル
は、前記元素の純金属よりも割安であり、アルミニウム
合金押出材のコスト削減に非常に有効である。ミッシュ
メタルには、前記Ce,La,Nb以外の元素として数
%のPrやごく微量のPb,P,S等が含まれることが
あるが、これらの不純物が含まれることによる本発明の
アルミニウム合金押出材への影響は殆ど無い。従って、
実用的にはミッシュメタルの添加量を制御することで、
極めて容易に希土類元素の総量を調整することができ
る。尚、ミッシュメタルの典型的な組成は、Ce:約5
0%、La:約25%、Nd:約10%である。
Ce, La, Nb (total amount 0.005 to 0.
2%): These rare earth elements are Al-X type (X = C
e, La, Nb) or Al—Fe—X type crystal precipitates are formed and these crystal precipitates are finely and uniformly distributed in the matrix, which has the effect of improving the strength of the material. If the content exceeds the upper limit of the above range, a coarse intermetallic compound is formed, and the extrudability and machinability deteriorate. Further, if it is less than the lower limit of the above range, the effect of improving the strength of the material becomes insufficient. These Ce, L
For a and Nb, the required amount of each pure metal can be added, but misch metal calculated as a mixture of these rare earth elements may be added. This misch metal is cheaper than the pure metal of the above elements, and is very effective in reducing the cost of the aluminum alloy extruded material. The misch metal may contain several% of Pr as elements other than Ce, La, and Nb, and a very small amount of Pb, P, and S, but the aluminum alloy of the present invention containing these impurities. There is almost no effect on the extruded material. Therefore,
Practically by controlling the amount of misch metal added,
The total amount of rare earth elements can be adjusted very easily. The typical composition of misch metal is Ce: about 5
0%, La: about 25%, Nd: about 10%.

【0019】次に、本発明に係る熱交換器用アルミニウ
ム合金押出材の製造方法は、先のいずれかに記載の合金
組成のビレットを鋳造し、その後均質化処理を実施せず
に押出成形することを特徴とする。
Next, in the method for producing an aluminum alloy extruded material for a heat exchanger according to the present invention, a billet having an alloy composition as described above is cast, and then extruded without performing homogenization treatment. Is characterized by.

【0020】すなわち、本発明に係る熱交換器用アルミ
ニウム合金押出材の製造方法は、重量%で、Cu:0.
03〜0.4%、Ti:0.03〜0.5%、Mg:
0.01〜0.3%、Mn:0.3〜0.8%、Zr:
0.01〜0.3%、Fe:0.15〜1.0%を含有
し、残部がAlと不可避不純物とからなる合金組成のビ
レットを鋳造し、その後均質化処理を実施せずに押出成
形することを特徴とするものである。
That is, the manufacturing method of the aluminum alloy extruded material for the heat exchanger according to the present invention is Cu: 0.
03-0.4%, Ti: 0.03-0.5%, Mg:
0.01-0.3%, Mn: 0.3-0.8%, Zr:
A billet having an alloy composition containing 0.01 to 0.3%, Fe: 0.15 to 1.0%, and the balance being Al and inevitable impurities is cast, and then extruded without performing homogenization treatment. It is characterized by being molded.

【0021】また、本発明においては、重量%で、C
u:0.03〜0.4%、Ti:0.03〜0.5%、
Mg:0.01〜0.3%、Mn:0.3〜0.8%、
Zr:0.01〜0.3%、Fe:0.15〜1.0
%、Si:0.3〜1.0%を含有し、残部がAlと不
可避不純物とからなる合金組成のビレットを鋳造し、そ
の後均質化処理を実施せずに押出成形することを特徴と
する熱交換器用アルミニウム合金押出材の製造方法も適
用することができる。
Further, in the present invention, in% by weight, C
u: 0.03 to 0.4%, Ti: 0.03 to 0.5%,
Mg: 0.01 to 0.3%, Mn: 0.3 to 0.8%,
Zr: 0.01-0.3%, Fe: 0.15-1.0
%, Si: 0.3 to 1.0%, and the balance is characterized in that a billet having an alloy composition of Al and inevitable impurities is cast and then extruded without homogenization treatment. A method for manufacturing an aluminum alloy extruded material for a heat exchanger can also be applied.

【0022】あるいはまた、本発明においては、重量%
で、Cu:0.03〜0.4%、Ti:0.03〜0.
5%、Mg:0.01〜0.3%、Mn:0.3〜0.
8%、Zr:0.01〜0.3%、Fe:0.15〜
1.0%を含有し、Ce,La,Ndの希土類元素のう
ち1種又は2種以上を、その総量が重量%で0.005
〜0.2%となるように含有し、残部がAlと不可避不
純物とからなる合金組成のビレットを鋳造し、その後均
質化処理を実施せずに押出成形することを特徴とする熱
交換器用アルミニウム合金押出材の製造方法も適用可能
である。
Alternatively, in the present invention, wt%
And Cu: 0.03 to 0.4%, Ti: 0.03 to 0.
5%, Mg: 0.01 to 0.3%, Mn: 0.3 to 0.
8%, Zr: 0.01 to 0.3%, Fe: 0.15
1.0%, and one or more of rare earth elements such as Ce, La, and Nd whose total amount is 0.005% by weight.
Aluminum for a heat exchanger, characterized in that a billet having an alloy composition containing Al and unavoidable impurities, the balance of which is contained in an amount of 0.2% to 0.2%, is extruded without homogenization treatment. A method for manufacturing an alloy extruded material is also applicable.

【0023】上記熱交換器用アルミニウム合金押出材の
製造方法の特徴的な点は、合金ビレットの鋳造後、従来
実施されていた均質化処理を施すことなく鋳造ままで押
出成形を行うことにある。均質化処理は、鋳造凝固時に
偏析した元素あるいは金属間化合物を安定化(均一化)
させるために、通常はほぼ全ての材料で実施されてい
る。本発明に係るアルミニウム合金においては、Ti及
びZrの材料中の不均一分布により腐食形態を層状にす
ることで耐食性の向上を図っている。このTi及びZr
の不均一分布は鋳造時に形成されるため、その後均質化
処理を行うと前記Ti,Zrの不均一分布が若干解消さ
れ、層状腐食の効果が弱まり、押出材の耐食性が低下す
ることが分かった。本発明に係る合金組成を備えたアル
ミニウム合金においては、均質化処理をしなくとも押出
加工性や特性上の問題は発生しないことが本発明者らに
より確認されており、耐食性向上の面から、本発明に係
る製造方法では、均質化処理を実施せずに押出成形を行
うこととした。
A characteristic feature of the method for producing the aluminum alloy extruded material for heat exchangers described above is that after the alloy billet is cast, extrusion molding is performed as it is without performing the homogenization treatment which has been conventionally performed. The homogenization process stabilizes (homogenizes) the elements or intermetallic compounds that segregate during casting and solidification.
To this end, it is usually implemented in almost all materials. In the aluminum alloy according to the present invention, the corrosion resistance is improved by layering the corrosion morphology due to the non-uniform distribution of Ti and Zr in the material. This Ti and Zr
Since the non-uniform distribution of Ti is formed during casting, it was found that if the homogenization treatment is performed thereafter, the non-uniform distribution of Ti and Zr is slightly eliminated, the effect of layered corrosion is weakened, and the corrosion resistance of the extruded material is reduced. . In the aluminum alloy having the alloy composition according to the present invention, it has been confirmed by the present inventors that the problem of extrusion processability and characteristics does not occur without homogenization treatment, from the viewpoint of improving corrosion resistance, In the manufacturing method according to the present invention, extrusion molding is performed without performing homogenization treatment.

【0024】次に、本発明に係る熱交換器は、先のいず
れかに記載の本発明の熱交換器用アルミニウム合金押出
材からなる押出チューブ又は押出ヘッダーパイプと、フ
ィン部材とを備えたことを特徴とする。係る構成とする
ことで、高強度で耐食性に優れる熱交換器を提供するこ
とができる。
Next, the heat exchanger according to the present invention comprises a fin member and an extruded tube or an extruded header pipe made of the aluminum alloy extruded material for a heat exchanger according to the present invention. Characterize. With such a configuration, it is possible to provide a heat exchanger having high strength and excellent corrosion resistance.

【0025】[0025]

【発明の実施の形態】以下、図面を参照して本発明の実
施例について説明する。図1は本発明に係る熱交換器の
一例を示すもので、この例の熱交換器Aは、左右に離間
して配置されて上下方向に伸びるヘッダーパイプ1、2
と、これらのヘッダーパイプ1、2の間に相互の間に間
隙をあけて互いに平行に、かつ、ヘッダーパイプ1、2
に対して直角に接合された複数のチューブ3と、チュー
ブ3にそれぞれろう付けされた波形の複数のフィン部材
4を主体として構成されている。前記ヘッダーパイプ
1、2とチューブ3とフィン部材4は、それぞれ熱伝導
性に優れたAlまたはAl合金から構成されているが、
これらの中でチューブ3は本発明に係るAl合金押出材
を用いて作製された押出チューブから構成され、フィン
部材4は、Al合金の芯材4aと、この芯材4aの表面
と裏面を覆って設けられたAl合金からなるろう材層4
bとからなるブレージングシートをフィン状に加工する
ことで構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a heat exchanger according to the present invention. A heat exchanger A of this example has header pipes 1 and 2 which are arranged apart from each other in the left-right direction and extend in the vertical direction.
And the header pipes 1, 2 are parallel to each other with a gap between them and the header pipes 1, 2
It is mainly composed of a plurality of tubes 3 joined at a right angle to and a plurality of corrugated fin members 4 brazed to the tubes 3, respectively. The header pipes 1 and 2, the tube 3 and the fin member 4 are made of Al or Al alloy having excellent thermal conductivity, respectively.
Among these, the tube 3 is composed of an extruded tube produced using the Al alloy extruded material according to the present invention, and the fin member 4 covers the Al alloy core material 4a and the front and back surfaces of the core material 4a. Brazing material layer 4 made of Al alloy
It is constituted by processing a brazing sheet composed of b and b into a fin shape.

【0026】前記押出チューブ3は、Cu,Ti,M
g,Mn,Zr及びFeを添加したAl合金押出材から
なるチューブであり、各添加元素の含有量は、重量%で
Cu:0.03〜0.4%、Ti:0.03〜0.5
%、Mg:0.01〜0.3%、Zr:0.01〜0.
3%、Mn:0.3〜0.8%、Fe:0.15〜1.
0%とされる。前記フィン部材4の芯材4aは、例えば
MnとSiとFeとZrとZnを添加したAl合金から
形成される。また、前述のチューブ3の組成に加えて、
Siを、重量%で0.3%≦Si≦1.0%の割合で添
加してもよい。あるいはまた、前記のいずれかの組成に
加えて、Ce,La,Nbから選ばれる1種又は2種以
上の希土類元素を、その総量が重量%で0.005〜
0.2%の範囲となるように加えても良い。これらの元
素をさらに添加することによる効果は、上記(課題を解
決するための手段)の項で述べた通りである。
The extruded tube 3 is made of Cu, Ti, M.
It is a tube made of an Al alloy extruded material to which g, Mn, Zr and Fe are added, and the content of each additive element is Cu: 0.03 to 0.4% and Ti: 0.03 to 0. 5
%, Mg: 0.01 to 0.3%, Zr: 0.01 to 0.
3%, Mn: 0.3 to 0.8%, Fe: 0.15 to 1.
It is set to 0%. The core material 4a of the fin member 4 is formed of, for example, an Al alloy to which Mn, Si, Fe, Zr, and Zn are added. In addition to the composition of the tube 3 described above,
Si may be added in a proportion of 0.3% ≦ Si ≦ 1.0% by weight. Alternatively, in addition to any of the above-mentioned compositions, one or more rare earth elements selected from Ce, La, and Nb are contained in a total amount of 0.005% by weight.
You may add so that it may become 0.2% of range. The effect of further adding these elements is as described in the above section (means for solving the problem).

【0027】次に、フィン部材4の折曲部4Aとチュー
ブ3のろう付け部を図2に拡大して示すが、フィン部材
4の折曲部4Aがチューブ3の外周部に当接され、この
当接部まわりの、例えばSiとZnを添加したAl合金
からなるろう材層4bが、ろう付け時の熱により溶融凝
固されて折曲部分4Aの先端部周りを覆ってろう付け部
6が形成され、このろう付け部6においてろう材が拡が
った部分がフィレット部6aとされ、このフィレット部
6aにはZnの濃縮部が形成されている。前記ろう付け
部6のフィレット部6aとその周囲部分の構造におい
て、フィレット部6aとろう材層4bと芯材4aとチュ
ーブ3の順に次第に電気化学的に貴になるように各部材
が設けられている。
Next, the bent portion 4A of the fin member 4 and the brazed portion of the tube 3 are enlarged and shown in FIG. 2. The bent portion 4A of the fin member 4 is brought into contact with the outer peripheral portion of the tube 3, The brazing material layer 4b made of, for example, an Al alloy to which Si and Zn are added is melted and solidified by the heat at the time of brazing, and the brazing portion 6 is covered around the tip of the bent portion 4A. A portion of the brazing portion 6 formed and in which the brazing material spreads is a fillet portion 6a, and a Zn enriched portion is formed in the fillet portion 6a. In the structure of the fillet portion 6a of the brazing portion 6 and its surrounding portion, the fillet portion 6a, the brazing material layer 4b, the core material 4a, and the tube 3 are provided in order of electrochemically noble members. There is.

【0028】上記構成の熱交換器に用いられているチュ
ーブ3は、所定の組成を有するAl合金のビレットを鋳
造し、このビレットに均質化処理を実施せずに押出成形
することで製造することができる。このようにビレット
への均質化処理を実施しないのは、ビレット鋳造時に金
属組織中に形成されるTi及びZrの不均一分布を保持
するためである。均質化処理を行うと、この不均一分布
が解消されて、チューブの耐食性が低下するため好まし
くない。図2に示すチューブ3の表面には、溶射により
Znからなる層を形成しても良い。このようにして形成
されたZn層は、チューブ3の表面と内部とに電位差を
生じさせてチューブ3の表面に犠牲陽極層を形成する。
これにより、深い孔食がチューブ3に生じるのを効果的
に防止することができる。また、前記チューブ3の表面
に、Si粉末、あるいはAl−Si系又はAl−Si−
Zn系の粉末ろう材を含有するフラックスを塗布するこ
ともできる。このような構成とすることで、フィン部材
4とチューブ3あるいはヘッダーパイプ1,2を一括的
にろう付け接合して製造することができるので、熱交換
器Aの製造コストを低減することができる。特に、Si
粉末は安価で塗布量が少なくてすむため、幅広い使用が
期待できる。従来、Si粉末やAl−Si粉末をろう材
として使用する場合、押出チューブの耐食性が問題とな
っていたが、本発明に係る合金組成を備えた押出チュー
ブは、優れた耐食性を備えているので、これらの粉末を
含むフラックスをも用いる場合にも、腐食の心配がな
い。
The tube 3 used in the heat exchanger having the above structure is manufactured by casting a billet of an Al alloy having a predetermined composition and extruding the billet without performing homogenization treatment. You can The reason why the billet is not homogenized in this way is to maintain the non-uniform distribution of Ti and Zr formed in the metal structure during billet casting. Homogenization is not preferable because this non-uniform distribution is eliminated and the corrosion resistance of the tube decreases. A layer made of Zn may be formed on the surface of the tube 3 shown in FIG. 2 by thermal spraying. The Zn layer thus formed forms a sacrificial anode layer on the surface of the tube 3 by causing a potential difference between the surface and the inside of the tube 3.
This effectively prevents deep pitting from occurring in the tube 3. Further, on the surface of the tube 3, Si powder, Al-Si system or Al-Si-
A flux containing a Zn-based brazing filler metal can also be applied. With such a configuration, the fin member 4 and the tube 3 or the header pipes 1 and 2 can be collectively brazed and manufactured, so that the manufacturing cost of the heat exchanger A can be reduced. . In particular, Si
Since powder is inexpensive and requires only a small coating amount, it can be expected to be used widely. Conventionally, when using Si powder or Al-Si powder as a brazing filler metal, the corrosion resistance of the extruded tube has been a problem, but the extruded tube having the alloy composition according to the present invention has excellent corrosion resistance. Even when a flux containing these powders is used, there is no fear of corrosion.

【0029】[0029]

【実施例】以下に、本発明の実施例について比較例ある
いは従来例と対比して説明する。 (実施例1)表1に示す合金組成を有するアルミニウム
合金の直径8インチ(203.2mm)のビレットを、
常法に基づき溶解鋳造を行って作製した。次いで、この
ビレットを押出成形して、成形直後に水冷することによ
り、図3に示す一穴のアルミニウム合金押出チューブ1
3を作製した。図3に示す押出チューブ13は、断面が
長方形状の管状に形成されており、その内部の空間が冷
媒流路である通孔13Bとされている。本例では、押出
チューブ13として長辺40mm、短辺30mm、肉厚
1mmのものを作製した。次に、JIS3003合金を
芯材とし、JIS4045合金を芯材の両面にクラッド
した板厚0.1mmの板材を、高さ10mm、フィンピ
ッチ3mmのコルゲート状に加工してフィン部材を作製
した。そして、上記押出チューブ13及びフィン部材を
脱脂後、ステンレスワイヤで拘束してフッ化フラックス
を均一に塗布した後、100℃で5分間加熱乾燥して、
これを窒素ガス雰囲気中で600℃×3分間加熱するろ
う付け熱処理にてろう付けし、評価用の模擬コアを作製
した。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples or conventional examples. Example 1 An aluminum alloy billet having an alloy composition shown in Table 1 and having a diameter of 8 inches (203.2 mm) was used.
It was produced by melting and casting according to a conventional method. Next, this billet is extrusion-molded and water-cooled immediately after the molding, whereby the one-hole aluminum alloy extruded tube 1 shown in FIG.
3 was produced. The extruded tube 13 shown in FIG. 3 is formed in a tubular shape having a rectangular cross section, and the space inside is formed as a through hole 13B that is a refrigerant channel. In this example, the extruded tube 13 having a long side of 40 mm, a short side of 30 mm, and a wall thickness of 1 mm was manufactured. Next, a plate member having a plate thickness of 0.1 mm in which JIS3004 alloy was used as a core material and JIS4045 alloy was clad on both sides of the core material was processed into a corrugated shape having a height of 10 mm and a fin pitch of 3 mm to produce a fin member. Then, after degreasing the extruded tube 13 and the fin member, restrained with a stainless wire to uniformly apply the fluorinated flux, and then heat-dried at 100 ° C. for 5 minutes,
This was brazed by a brazing heat treatment of heating at 600 ° C. for 3 minutes in a nitrogen gas atmosphere to produce a simulated core for evaluation.

【0030】[0030]

【表1】 [Table 1]

【0031】以上の工程により得られた本発明材(N
o.1〜16)及び比較材(No.17〜24)につい
て、以下の評価を行った。その結果を表2に示す。ま
ず、押出加工性の評価は、押出成形後の押出チューブの
断面形状を観察することにより行った。この観察におい
て、割れやくびれ等の異常が無く、良好な断面形状が得
られたものには、○(良好)を付し、異常が見られたも
のには×(不良)を付して評価した。次に、フィン部材
と押出チューブとのろう付け性の評価は、押出チューブ
とフィン部材との接合を確認することにより行い、その
接合部におけるろう付け状態を○(良好)、×(不良)
とに分類して表2に併記する。次に、耐食性の評価は、
上記のコアに対し、塩水噴霧4時間→乾燥2時間→湿潤
2時間の乾湿サイクルを付加するサイクル試験を行い、
この腐食サイクル試験条件に500時間暴露して腐食さ
せた後、押出チューブに生じた孔食の最大腐食深さを測
定することにより行った。次に、材料強度の評価は、断
面積及び断面形状を同じくした押出チューブを一定長さ
に切断し、窒素ガス雰囲気中で600℃×3分間加熱す
るろう付け相当の熱処理を行った後に、引張試験を行っ
て機械的性質を測定し、この引張強さを比較することに
より行った。
The material of the present invention (N
o. The following evaluations were performed on the comparative materials (Nos. 1 to 16) and the comparative materials (Nos. 17 to 24). The results are shown in Table 2. First, the extrudability was evaluated by observing the cross-sectional shape of the extruded tube after extrusion molding. In this observation, if there are no abnormalities such as cracks or constrictions and a good cross-sectional shape is obtained, ○ (good) is marked, and if abnormalities are found, x (bad) is marked. did. Next, the brazing property between the fin member and the extruded tube is evaluated by confirming the joint between the extruded tube and the fin member, and the brazing state at the joint is ○ (good), × (poor)
It is classified into and and listed in Table 2. Next, the evaluation of corrosion resistance is
A cycle test of adding a dry-wet cycle of salt spray 4 hours → drying 2 hours → wet 2 hours was performed on the above core,
This was carried out by exposing the sample to the corrosion cycle test condition for 500 hours for corrosion, and then measuring the maximum corrosion depth of pitting corrosion generated in the extruded tube. Next, the material strength was evaluated by cutting an extruded tube having the same cross-sectional area and cross-sectional shape into a certain length, performing heat treatment equivalent to brazing by heating at 600 ° C for 3 minutes in a nitrogen gas atmosphere, and then pulling. The tests were carried out by measuring the mechanical properties and comparing the tensile strengths.

【0032】[0032]

【表2】 [Table 2]

【0033】表2に示すように、本発明の要件を満たす
No.1〜16の本発明材は、本発明の要件を満たさな
いNo.17〜27の比較材に比して、強度が高く、か
つ押出加工性、ろう付け性も良好であり、その腐食形態
が層状あるいは面状であるために孔食の深さが浅く、優
れた耐食性を有していた。一方、比較材においては、そ
の腐食形態が孔食型であるために、深い孔食が形成され
て短期間に貫通孔が発生し、特性は明らかに劣ってい
た。また、貫通孔が発生しない場合でも、引張強さが9
0MPa以下となり強度が不足するか、またはろう付け
性、押出加工性において劣るものであった。
As shown in Table 2, No. 1 which satisfies the requirements of the present invention. The material of the present invention of Nos. 1 to 16 is No. Compared with the comparative materials of Nos. 17 to 27, the strength was high, and the extrusion processability and the brazing property were also good, and the pitting corrosion was shallow because the corrosion form was layered or planar, which was excellent. It had corrosion resistance. On the other hand, in the comparative material, since the corrosion form was pitting type, deep pitting was formed and through holes were generated in a short period of time, and the characteristics were obviously inferior. Even if no through hole is generated, the tensile strength is 9
The strength was 0 MPa or less, and the strength was insufficient, or the brazability and extrusion processability were poor.

【0034】(実施例2)本例では、本発明に係る製造
方法における均質化処理の有無による耐食性への影響を
より明らかにするために、表1に示す試料No.2の組
成のアルミニウム合金のビレットを作製後、均質化処理
を行った後に押出成形を行ったコアを作製した。このコ
アと、No.2のコアについて、上記実施例1と同様に
押出加工性と、耐食性の評価を行った。その結果を表3
に示す。表3に示すように、均質化処理を行った後に押
出成形を行ったコアは、均質化処理を実施しない以外は
同等の構成のNo.2のコアに比して耐食性に劣る結果
となった。これは、均質化処理によりTi及びZrの不
均一分布が一部解消され、深い孔食が生じ易くなったた
めであると考えられる。
(Example 2) In this example, in order to further clarify the influence on the corrosion resistance by the presence or absence of the homogenization treatment in the manufacturing method according to the present invention, the sample No. 1 shown in Table 1 was used. After the aluminum alloy billet having the composition of 2 was produced, homogenization treatment was performed, and then extrusion molding was performed to produce a core. With this core, The core No. 2 was evaluated for extrusion processability and corrosion resistance in the same manner as in Example 1 above. The results are shown in Table 3.
Shown in. As shown in Table 3, the cores extruded after the homogenization treatment had the same composition except that the homogenization treatment was not performed. The result was inferior in corrosion resistance to the core of No. 2. It is considered that this is because the non-uniform distribution of Ti and Zr was partially eliminated by the homogenization treatment, and deep pitting was likely to occur.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】以上、詳細に説明したように、重量%
で、Cu:0.03〜0.4%、Ti:0.03〜0.
5%、Mg:0.01〜0.3%、Mn:0.3〜0.
8%、Zr:0.01〜0.3%、Fe:0.15〜
1.0%を含有し、残部がAlと不可避不純物とからな
る構成とされた本発明のアルミニウム合金押出材は、高
強度で耐食性に優れており、また押出加工性及びろう付
け性にも優れていることから、コンデンサなどのアルミ
ニウム合金からなる押出チューブを使用する自動車の熱
交換器に好適に使用することができ、熱交換器の寿命や
品質向上に大いに貢献し得るものである。次に、本発明
に係る製造方法によれば、上記優れた強度を耐食性を兼
ね備えたアルミニウム合金押出材を、容易に製造するこ
とができる。
As described above in detail, the weight% is
And Cu: 0.03 to 0.4%, Ti: 0.03 to 0.
5%, Mg: 0.01 to 0.3%, Mn: 0.3 to 0.
8%, Zr: 0.01 to 0.3%, Fe: 0.15
The aluminum alloy extruded material of the present invention containing 1.0% and the balance of Al and unavoidable impurities has high strength and excellent corrosion resistance, and also has excellent extrudability and brazability. Therefore, it can be suitably used for a heat exchanger of an automobile using an extruded tube made of an aluminum alloy such as a condenser, and can greatly contribute to the improvement of life and quality of the heat exchanger. Next, according to the manufacturing method of the present invention, it is possible to easily manufacture the aluminum alloy extruded material having the above-described excellent strength and corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明に係る熱交換器の一例を示す
構成図である。
FIG. 1 is a configuration diagram showing an example of a heat exchanger according to the present invention.

【図2】 図2は、図1に示すチューブ及びフィン部材
を拡大して示す図である。
2 is an enlarged view of the tube and fin members shown in FIG. 1. FIG.

【図3】 図3は、実施例において作製された押出チュ
ーブの断面図である。
FIG. 3 is a cross-sectional view of an extruded tube made in an example.

【符号の説明】[Explanation of symbols]

A 熱交換器 1,2 ヘッダーパイプ 13 チューブ(アルミニウム合金押出材) 4 フィン部材 A heat exchanger 1,2 header pipe 13 tube (aluminum alloy extruded material) 4 fin members

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22F 1/00 612 C22F 1/00 612 626 626 630 630A 640 640A 651 651A 683 683 (72)発明者 当摩 建 静岡県裾野市平松85番地 三菱アルミニウ ム株式会社技術開発センター内 Fターム(参考) 4E029 AA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C22F 1/00 612 C22F 1/00 612 626 626 626 630 630A 640 640A 651 651A 683 683 (72) Inventor Tomaken 85 Hiramatsu, Susono City, Shizuoka Prefecture F-Term (Reference) in the Technology Development Center of Mitsubishi Aluminum Co., Ltd. 4E029 AA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Cu:0.03〜0.4%、 Ti:0.03〜0.5%、 Mg:0.01〜0.3%、 Mn:0.3〜0.8%、 Zr:0.01〜0.3%、 Fe:0.15〜1.0%を含有し、 残部がAlと不可避不純物とからなることを特徴とする
高強度で耐食性に優れる熱交換器用アルミニウム合金押
出材。
1. By weight%, Cu: 0.03 to 0.4%, Ti: 0.03 to 0.5%, Mg: 0.01 to 0.3%, Mn: 0.3 to 0. 8%, Zr: 0.01 to 0.3%, Fe: 0.15 to 1.0%, the balance consisting of Al and unavoidable impurities, high-strength and excellent corrosion resistance heat exchange Aluminum alloy extruded material for ware.
【請求項2】 重量%で、Si:0.3%〜1.0%を
含有することを特徴とする請求項1に記載の高強度で耐
食性に優れた熱交換器用アルミニウム合金押出材。
2. The aluminum alloy extruded material for a heat exchanger according to claim 1, which contains Si: 0.3% to 1.0% by weight.
【請求項3】 Ce、La、Ndの希土類元素のうち1
種または2種以上を含有し、その総量(Ce+La+N
d)が重量%で0.005〜0.2%の範囲とされたこ
とを特徴とする請求項1又は2に記載の高強度で耐食性
に優れた熱交換器用アルミニウム合金押出材。
3. One of rare earth elements of Ce, La and Nd.
Or two or more of them, and the total amount (Ce + La + N
The aluminum alloy extruded material for a heat exchanger having high strength and excellent corrosion resistance according to claim 1 or 2, wherein d) is in the range of 0.005 to 0.2% by weight.
【請求項4】 請求項1〜3のいずれか1項に記載の合
金組成のビレットを鋳造し、 その後均質化処理を実施せずに押出成形することを特徴
とする熱交換器用アルミニウム合金押出材の製造方法。
4. An aluminum alloy extruded material for a heat exchanger, characterized in that a billet having the alloy composition according to any one of claims 1 to 3 is cast and then extruded without performing homogenization treatment. Manufacturing method.
【請求項5】 請求項1〜3のいずれか1項に記載の熱
交換器用アルミニウム合金押出材からなる押出チューブ
又は押出ヘッダーパイプと、フィン部材とを備えたこと
を特徴とする高強度高耐食性の熱交換器。
5. A high-strength, high-corrosion resistance, comprising an extruded tube or extruded header pipe made of the aluminum alloy extruded material for a heat exchanger according to claim 1, and a fin member. Heat exchanger.
JP2001313140A 2001-10-10 2001-10-10 High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger Expired - Fee Related JP3756439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313140A JP3756439B2 (en) 2001-10-10 2001-10-10 High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313140A JP3756439B2 (en) 2001-10-10 2001-10-10 High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger

Publications (2)

Publication Number Publication Date
JP2003119534A true JP2003119534A (en) 2003-04-23
JP3756439B2 JP3756439B2 (en) 2006-03-15

Family

ID=19131680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313140A Expired - Fee Related JP3756439B2 (en) 2001-10-10 2001-10-10 High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger

Country Status (1)

Country Link
JP (1) JP3756439B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083424A (en) * 2004-09-15 2006-03-30 Mitsubishi Alum Co Ltd Header tank for heat exchanger using aluminum alloy extruded material, and heat exchanger equipped with the same
EP1647607A1 (en) * 2004-10-13 2006-04-19 Erbslöh Aluminium GmbH Wrought aluminium alloy suitable for a heat exchanger.
KR101198324B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
KR101198323B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
KR101335680B1 (en) 2012-06-28 2013-12-03 한국전기연구원 Condenser tube with high pressure resistance for heat-exchanger and their production method
WO2015046942A1 (en) * 2013-09-27 2015-04-02 성균관대학교 산학협력단 Perforation resistance improved aluminum alloy for heat exchanger, perforation resistance improved aluminum extrusion tube and fin material comprising aluminum alloy, and heat exchanger formed of extrusion tube and fin material
KR101514265B1 (en) 2013-02-22 2015-04-22 한국전기연구원 Low electrical resistance and high strength aluminum alloy manufacturing methods
WO2017065460A1 (en) * 2015-03-25 2017-04-20 (주)에프티넷 Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same
KR20170116726A (en) * 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
WO2018216832A1 (en) * 2017-05-25 2018-11-29 손희식 Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential
US10465265B2 (en) 2013-09-27 2019-11-05 Research & Busines Foundation Sungkyunkwan University Perforation resistance improved aluminum alloy for heat exchanger, perforation resistance improved aluminum extrusion tube and fin material comprising aluminum alloy, and heat exchanger formed of extrusion tube and fin material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977699A (en) * 2018-08-17 2018-12-11 江苏亨通电力特种导线有限公司 A kind of preparation method of extrusion forming aluminium and corresponding aluminum alloy materials

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083424A (en) * 2004-09-15 2006-03-30 Mitsubishi Alum Co Ltd Header tank for heat exchanger using aluminum alloy extruded material, and heat exchanger equipped with the same
EP1647607A1 (en) * 2004-10-13 2006-04-19 Erbslöh Aluminium GmbH Wrought aluminium alloy suitable for a heat exchanger.
KR101198324B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
KR101198323B1 (en) 2010-07-07 2012-11-06 한국전기연구원 Aluminum Alloys for Condenser Tube with High Strength and High Thermal Conductivity
KR101335680B1 (en) 2012-06-28 2013-12-03 한국전기연구원 Condenser tube with high pressure resistance for heat-exchanger and their production method
KR101514265B1 (en) 2013-02-22 2015-04-22 한국전기연구원 Low electrical resistance and high strength aluminum alloy manufacturing methods
WO2015046942A1 (en) * 2013-09-27 2015-04-02 성균관대학교 산학협력단 Perforation resistance improved aluminum alloy for heat exchanger, perforation resistance improved aluminum extrusion tube and fin material comprising aluminum alloy, and heat exchanger formed of extrusion tube and fin material
US10465265B2 (en) 2013-09-27 2019-11-05 Research & Busines Foundation Sungkyunkwan University Perforation resistance improved aluminum alloy for heat exchanger, perforation resistance improved aluminum extrusion tube and fin material comprising aluminum alloy, and heat exchanger formed of extrusion tube and fin material
WO2017065460A1 (en) * 2015-03-25 2017-04-20 (주)에프티넷 Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same
KR101811332B1 (en) * 2015-03-25 2018-01-30 주식회사 에프티넷 Corrosion resistant aluminium alloy for heat exchanger tube, manufacturing method for tube or pipe using the aluminium alloy, and heat exchanger using the same
KR20170116726A (en) * 2016-04-12 2017-10-20 손희식 Corrosion resistant heat exchanger using the control of alloy composition and potential
KR102282585B1 (en) * 2016-04-12 2021-07-28 주식회사 에스피텍 Corrosion resistant heat exchanger using the control of alloy composition and potential
WO2018216832A1 (en) * 2017-05-25 2018-11-29 손희식 Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential

Also Published As

Publication number Publication date
JP3756439B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP5750237B2 (en) Method for producing aluminum alloy heat exchanger
EP2447662B1 (en) Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
JP5670100B2 (en) Method for producing aluminum alloy heat exchanger
JP2005060790A (en) Aluminum alloy brazing fin material for heat exchanger
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
US7781071B2 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP3756439B2 (en) High strength and high corrosion resistance aluminum alloy extruded material for heat exchanger, method for producing the same, and heat exchanger
JP7107690B2 (en) Aluminum alloy fin material for heat exchangers and heat exchangers with excellent strength, electrical conductivity, corrosion resistance, and brazeability
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3759441B2 (en) High strength and high corrosion resistance aluminum alloy extruded tube for heat exchanger, method for producing the same, and heat exchanger
WO2010150728A1 (en) Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP5019797B2 (en) Sacrificial anode material and aluminum alloy composite
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP5635806B2 (en) Aluminum alloy extruded material for connectors with excellent extrudability and sacrificial anode properties
JP2002275565A (en) Aluminum alloy extrusion header tank for heat exchanger and heat exchanger using the header tank
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP2005126761A (en) Extruded header tank made of aluminum alloy for heat exchanger, and heat exchanger using the header tank
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2000212667A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees