WO2017065460A1 - Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same - Google Patents

Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same Download PDF

Info

Publication number
WO2017065460A1
WO2017065460A1 PCT/KR2016/011247 KR2016011247W WO2017065460A1 WO 2017065460 A1 WO2017065460 A1 WO 2017065460A1 KR 2016011247 W KR2016011247 W KR 2016011247W WO 2017065460 A1 WO2017065460 A1 WO 2017065460A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
alloy
aluminum
aluminum alloy
corrosion resistance
Prior art date
Application number
PCT/KR2016/011247
Other languages
French (fr)
Korean (ko)
Inventor
손희식
Original Assignee
(주)에프티넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티넷 filed Critical (주)에프티넷
Publication of WO2017065460A1 publication Critical patent/WO2017065460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding

Definitions

  • the present invention relates to an aluminum alloy, and more particularly, to an aluminum alloy having improved corrosion resistance by adding special elements such as rare earth elements (X element) to an aluminum alloy, and a method of manufacturing the alloy, in particular aluminum 1XXX and 3XXX for processing. And improved aluminum alloys for the 6XXX series.
  • X element rare earth elements
  • heat exchangers such as an evaporator, a condenser, and a pipe.
  • heat exchangers it consists of a condenser tube, fin, head pipe, and various piping of an aluminum alloy extrusion material.
  • These heat exchangers are generally constructed by brazing and joining tubes and fins (generally coated with cladding plates on a fin core material or cladding) in a predetermined structure, and then brazing in a heating furnace in an inert gas atmosphere. Is completed.
  • Al 1XXX series and Al 3XXX series materials are used, and when more strength is required, Al 6XXX series materials are partially used.
  • Al 4XXX series is widely used as a clad material for brazing tubes or pipes to pins and head pipes.
  • the extruded tube or the pipe of the heat exchanger is used as the refrigerant passage tube, when penetration occurs due to corrosion during use, the refrigerant leaks and cannot function as a heat exchanger.
  • Zn zinc
  • the Zn diffusion layer formed on the tube surface layer acts as a sacrificial anode to the core portion, thereby suppressing corrosion in the plate thickness direction and extending the corrosion penetration life.
  • the tube after extruded, the tube requires a process for attaching Zn of a Zn coating (sprayed or the like), resulting in an increase in manufacturing cost.
  • Japanese Patent Laid-Open No. 11-21649 discloses 0.15 to 0.35% by weight of iron, 0.15% by weight or less of silicon, less than 0.03% by weight of zinc, 0.55% by weight of copper, and 0.02 to 0.05% by weight of zirconium.
  • An aluminum alloy containing 0.003 to 0.010% by weight of titanium, iron / silicon ⁇ 2.5, and the remainder of which is inevitably added with aluminum has been proposed.
  • Korean Patent Laid-Open Publication No. 10-2011-0072237 has proposed a method of omitting the Zn spraying process outside the tube by adding Zr and B to an aluminum alloy containing 0.15 to 0.45% of copper. .
  • This document contains the technical idea that due to the addition effect of Zr and B, the crystals of aluminum alloys become finer and corrosion resistance is increased.
  • the copper content is more than 0.1% by weight, copper precipitates at the grain boundary during heat exchanger operation, and as a result, the sensitivity of grain boundary corrosion is increased, resulting in tube grain boundary corrosion, which shortens the corrosion penetration life of the tube. .
  • Korean Patent Laid-Open Publication No. 10-2014-0000406 due to the disadvantage of the addition of Cu to minimize the copper (Cu) to 0.01% or less, 0.50 to 1.0% by weight manganese (Mn) and 0.2% by weight or less Zirconium (Zr) was added 0.05 to 0.15 wt% in the composition of silicon (Si), but the corrosion potential of Cu is sacrificed due to the removal of Cu, and the potential design by contact during assembly of each part of the heat exchanger Given the limitations, it is difficult to adopt in heat exchanger systems.
  • the rare earth metals of atomic number 57 (La) to 71 (Lu) are currently undergoing extensive research and development because of their beneficial properties, but the development activities are mainly in the field of increasing the corrosion resistance and strength of magnesium (alloy), aluminum alloy for casting. It has been focused on increasing the strength of steel and increasing the corrosion resistance by conversion coating on aluminum alloy surface.
  • Korean Patent Nos. 10-1335680 and 10-1349359 the Al 1XXX series was modified and modified to add up to 0.6% of Sc, Y, MM (misch metal), etc. to increase the strength. By omitting the content of the alloy is difficult to manufacture and there is a problem that the production cost increases.
  • Korean Patent No. 10-1194970 has added up to 0.5% of Ce, La, and MM to brazing aluminum 4XXX series, but this is a result of approaching the brazing property from the viewpoint of corrosion resistance. There is a problem in that the addition content of the metal is not optimized and thus does not contribute significantly to improving the corrosion resistance.
  • An object of the present invention is excellent in strength and extrudability, corrosion resistance is improved, even in harsh environments heat exchanger and refrigerant tube or pipe life of the aluminum alloy composition and brazing alloy composition and heat exchanger system using the same to maintain the life of the tube or pipe To provide.
  • the element X is at least one of rare earth metals of atomic number 57 (La) to No. 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) by an aluminum alloy with improved corrosion resistance Is achieved.
  • the element X is at least one of rare earth metals of atomic number 57 (La) to No. 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) by an aluminum alloy with improved corrosion resistance Is achieved.
  • Si by weight of 0.25 to 1.4, Mg 0.4 to 1.3, Mn ⁇ 1.0, Zn ⁇ 0.25;
  • the element X is also an aluminum alloy having improved corrosion resistance, characterized in that at least one of rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf). Is achieved.
  • the X element may be in the range of 0.01 to 0.60 wt% or 0.05 to 0.50 wt%.
  • Cu may range from 0.002 to 0.45 weight percent or from 0.02 to 0.45 weight percent.
  • Another object of the invention is;
  • the element X is brazing with improved corrosion resistance, characterized in that at least one of rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) Is achieved by the aluminum alloy.
  • the aluminum alloy may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, and Y.
  • Another object of the invention is;
  • an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
  • the X element may be in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
  • Cu may range from 0.002 to 0.45 weight percent or from 0.02 to 0.45 weight percent.
  • the base material may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y.
  • the method for producing the molten alloy is an X metal of an individual element, an X mother alloy of two or more elements (a mother alloy made of an alloy of X elements when the X elements are two or more kinds) or an Al-X mother alloy (aluminum and X elements or aluminum). And the X element in a molten metal in the form of an alloy of an X element).
  • the above X element alloy or Al-X mother alloy is Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be , Ag, Pd, Sb and Y may further include one or more selected from the form of a ternary or more multi-base mother alloy.
  • the manufacturing method may be characterized by further performing any one of age hardening heat treatment, zinc coating, chemical coating, resin coating and combinations thereof.
  • Another object of the present invention is to provide a third object of the present invention.
  • an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
  • An aluminum tube or tubing having a composition of is achieved by a heat exchanger system, characterized in that it is coupled to a fin, a header or both having a lower corrosion potential than the tube or tubing.
  • the heat exchanger system the atomic number 57 (La) to 71 (Lu) of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of X element content of at least one selected from 0.51 ⁇ 5.0 Wt%, Cu content is 0.50 wt% or less;
  • An aluminum alloy having a composition of may be used as the brazing alloy to be bonded to the pin, the header or both.
  • the tube or tubing and the brazing alloy further added at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. It may include.
  • any one of the above tubes, pipes, fins, headers and combinations thereof may be further subjected to any one of age hardening heat treatment, zinc coating, chemical coating, resin coating, and combinations thereof.
  • the present invention in an aluminum alloy used for heat exchanger tubes or pipes, by improving the composition by adding a special element (denoted as "element” in the present invention) to improve the corrosion resistance, it is possible to improve the corrosion resistance and strength. This results in simplification and cost reduction of the manufacturing process due to increased component life, elimination of zinc coating and the elimination of additional post-treatment processes.
  • FIG. 1 is a conceptual diagram illustrating the improvement of corrosion resistance according to the present invention.
  • Figure 2 is another conceptual diagram illustrating the principle of improving corrosion resistance according to the present invention.
  • FIG. 3 is a photograph of an aluminum alloy tube produced by the present invention.
  • the corrosion-resistant aluminum alloy (henceforth "aluminum alloy”) which concerns on this invention contains element X based on aluminum essentially.
  • element refers to any one or more of rare earth metals of atomic numbers 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb), or hafnium (Hf). It is defined as meaning composed elements.
  • element X is contained in the range of 0.005 to 1.0% by weight based on the total weight of the aluminum alloy, and Cu is contained in the range of 0.50% by weight or less.
  • Aluminum alloy compositions for tubes or tubing in the present invention can be classified into three types.
  • the X element in the case of the aluminum alloy for brazing, the X element is increased in content than the above three cases contained in the range of 0.51 to 5.0% by weight relative to the total weight of the aluminum alloy, Cu is also in the range of 0.50% by weight or less
  • the content of Mn, Si, Mg and Zn is in the weight percent of Si 4.0-17.0, Mn ⁇ 0.5, Mg ⁇ 2.0, Zn ⁇ 2.0.
  • the alloy of the improved Al 4XXX series in which the X element is added to the commercial Al 4XXX series alloy is added.
  • All of the above cases additionally include alloying elements (Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y) and inevitable impurities. Can be.
  • alloying elements Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y
  • inevitable impurities Can be.
  • the aluminum alloy composition according to the present invention excludes 2XXX series of Al-Cu or Al-Cu-Mg alloys, 5XXXX of Al-Mg alloys, and 7XXX series of Al-Zn-Mg-Cu alloys. Except for the element X according to the present invention, the composition is 1XXX series of pure Al alloys, 3XXX series of Al-Mn alloys, 4XXX series of Al-Si alloys and 6XXX series of Al-Mg-Si alloys. Therefore, the aluminum alloy composition according to the present invention corresponds to an improved aluminum alloy composition in which element X is added to the alloys of the above series.
  • the alloying element Cu has a disadvantage in that the solid solution in the matrix (Matrix) increases the strength of the aluminum alloy, but greatly reduces the extrudability compared to Mn.
  • Motrix solid solution in the matrix
  • Cu increases the corrosion potential.
  • the potential raising effect by Cu is predominant.
  • the potential raising effect by Cu is more preferable than the potential lowering effect by the Zn diffusion layer.
  • the preferred content of Cu in the present invention is 0.50% by weight or less, more preferably in the range of 0.002 to 0.45% by weight or 0.02 to 0.45% by weight.
  • the preferable content of Zn in this invention is 4.0 weight% or less.
  • Alloying element Mn increases the strength of the aluminum alloy. If the Mn content is less than 0.5% by weight, the effect of increasing strength is small. Exceeding 1.7% by weight reduces the extrudability. The addition of Mn is significantly smaller in the extrudability, in particular the decrease in the limit extrusion speed, compared with the case where the same amount of Si, Cu or Mg is added. It also has the effect of increasing the corrosion potential of the alloy by precipitating with a fine intermetallic compound of Al 6 Mn. When it is made of a heat exchanger tube, when the corrosion potential of the heat exchanger tube is increased, the potential difference with the fin can be increased, thereby improving the corrosion resistance.
  • the preferred content of Mn in the present invention is 2.0% by weight or less of aluminum.
  • the alloying element Si is precipitated as an Al-Mn-Si-based intermetallic compound to suppress grain growth through interfering grain boundary movement, and to improve the extrudability by reducing the deformation resistance during extrusion. If it is less than 0.05% by weight, the manufacturing cost increases during casting, and if the amount of Si is 0.10% or more, the Al-Mn-Si-based intermetallic compound is formed in the alloy, thereby reducing the Mn solubility in the alloy. This can lead to a drop in corrosion potential. In addition, when the content exceeds 0.2% by weight, the strength of the alloy is increased to reduce the extrudability.
  • the preferred content of Si is 0.65 wt% or less when the composition base of the aluminum alloy is 3XXX series, and 0.25 to 1.40 wt% when the composition base of the aluminum alloy is 6XXX series.
  • the alloying element Mg increases the strength under the influence of solid solution hardening in the matrix, but decreases the extrudability as the amount is increased. If the amount is more than 2.0%, a high melting point compound is formed due to the flux and the reaction and the like, which tends to significantly reduce the bonding property. In addition, when the content exceeds 3.5% by weight, Mg 2 Al 3 is precipitated to increase the susceptibility to grain boundary corrosion and stress corrosion. Therefore, the preferred content of Mg in the present invention is 0.65% by weight or less when the composition base of the aluminum alloy is 3XXX series, 0.40 to 1.30% by weight or less when the composition base of the aluminum alloy is 6XXX series.
  • X metal may be added to the aluminum alloy to improve ductility and adhesion of the oxide film, and to suppress local corrosion effect due to Cu, thereby improving corrosion resistance.
  • the X metal since the X metal has an effect of raising the corrosion potential, it is possible to minimize the addition of Cu or replace Cu for the purpose of increasing the corrosion potential.
  • the element X changes the microstructure of the oxide film to increase the ductility of the oxide film (oxidation scale) to prevent the separation of the film, and to form a wedge shape inward to the oxide film to increase the adhesion between the matrix and the oxide film (that is, in Figure 1
  • the adhesion between the crystal grains 7 and the protective oxide film 3 is enhanced).
  • the vacancy collapse effect prevents the formation of pores and improves chemical bonding between the oxide film and the matrix. That is, by suppressing the formation of pores that can be formed between the oxide film and the base to prevent the space between the oxide film and the base and to form a wedge-shaped oxide film with the base to increase the adhesion of the oxide film.
  • element X reduces the local corrosion cathodic reaction of the copper-containing precipitates precipitated in the matrix, thereby reducing the local corrosion reaction of the surroundings, thereby reducing local corrosion due to Cu.
  • element X enhances corrosion resistance by reducing components such as Fe and Ni, which are fragile elements of corrosion resistance in molten metal during aluminum production.
  • the appropriate amount of element X is preferably in the range of 0.005 to 1.0% by weight, more preferably in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
  • the base of the aluminum alloy composition is preferably in the range of 0.51 to 5.0% by weight.
  • the side effects of local corrosion due to Cu can be minimized, and the ductility and adhesion of the oxide film formed at the grain boundaries can be improved to minimize side effects when the Cu content is increased.
  • the corrosion resistance is improved by extending the life of the oxide film even on the alloy surface other than grain boundaries. That is, as shown in FIG. 1, an excellent oxide film is formed at the corrosion site formed at the grain boundary, thereby suppressing the progress of corrosion.
  • the addition of the element X has the effect of increasing the strength and corrosion potential of the aluminum alloy can be used as a substitute for Cu, and the effect of improving the plastic formability of the metal by improving the fluidity of the aluminum alloy, improving the brazing characteristics There is also.
  • the corrosion potential of the ash is lower than that of the tube or pipe. This may be achieved through the selection of a suitable alloying material for the pin core member and the header material, and may also be achieved through the control of alloying element contents such as Cu, Mn and Zn.
  • the tube or tubing is brazed to the pin core member or the header member by the cladding material using a brazing process.
  • the cladding material contains a large amount of Si of 4% or more, Si diffuses to the fin core, header and tube surface.
  • Si forms an Al-Mn-Si-based intermetallic compound by combining with Mn present in the matrix to reduce Mn solid solubility in the alloy, thereby lowering the corrosion potential. That is, the corrosion resistance of the surface can be deteriorated.
  • the X element according to the present invention when added to the cladding material, the X element diffuses and penetrates the tube or the pipe and the pin core or the header surface, thereby increasing the corrosion potential of the surface of these materials to compensate for the effects of Si diffusion penetration.
  • the corrosion resistance of the tube, fin, and header surface is enhanced due to the increased ductility of the oxide film and the prevention of local corrosion due to Cu.
  • the corrosion resistance is enhanced at the brazing joint, and the wettability of the clad material is also improved to protect the joint, thereby improving the corrosion resistance of the entire heat exchanger system.
  • the material of the tube, pipe, header, etc. is improved even when using a common commercial aluminum alloy.
  • FIG. 2 is a conceptual diagram when the element X according to the present invention is added to an aluminum alloy for brazing.
  • the X element 11 present in the brazing zone 9 diffuses and penetrates the surfaces of the fin core 13 and the tube 15 to form a diffusion layer 17 to prevent corrosion of the fin and tube surfaces. Strengthen.
  • the fin core and the header are diffusely bonded to the tube.
  • the element X of the present invention present in the surface layer of the pipe is diluted by the diffusion layer to lower corrosion resistance and dislocation.
  • by adding the X element to the cladding material as in the present invention can be compensated for this.
  • the preferred X content of the 4XXX series brazing cladding material is in the range of 0.51 to 5.0% by weight in consideration of the X element that is diffused and lost, and Cu is preferably 0.50% by weight or less.
  • the composition of the preferred aluminum alloy is in the range of Si 4.0-17.0, Mn ⁇ 0.5, Mg ⁇ 2.0, Zn ⁇ 2.0 by weight.
  • it may further include additional alloying elements (Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y) and inevitable impurities.
  • the alloy of the improved Al 4XXX series in which the X element is added to the commercial Al 4XXX series alloy is added.
  • alloy element Fe 0.05-0.5% by weight, Zr 0.1-0.5% by weight, MM 0.01-0.5% by weight, Sc 0.01-0.2% by weight, Y 0.001-0.01% by weight
  • alloy element Fe 0.05-0.5% by weight, Zr 0.1-0.5% by weight, MM 0.01-0.5% by weight, Sc 0.01-0.2% by weight, Y 0.001-0.01% by weight
  • Manufacture of condenser tube for heat exchanger with improved pressure resistance by selecting two or more materials from the group of alloying elements so that the total amount of alloying elements is 0.6% by weight or less and the rest is dissolved and alloyed with pure aluminum to form aluminum alloy. I am suggesting a method.
  • This patent document contains the contents of addition of MM (a rare earth alloy) and Sc among the X elements in the present invention, but in order to increase the strength of the aluminum alloy, some of Zr, MM, Sc, Y, etc. are added to pure aluminum. Addition to improve the strength resistance characteristics, and corresponds to the Al composition of 99.4% or more, so it corresponds to the modified alloy of 1XXX series aluminum alloy. In general, 1XXX series aluminum alloy is added with silicon (Si), but the patent document is considered to replace Si with Zr, MM, Sc, Y and the like.
  • the main elements Cu, Mn, Si, and Mg in the present invention are not added as an alloying element, and in particular, Si, which is a characteristic of the modified 1XXX series alloy according to the present invention, does not include the present invention. It is also clearly distinguished from ideas. In addition, since the Si content is omitted, it is difficult to manufacture the alloy and there is a problem that the production cost increases significantly.
  • Patent document 10-1349359 of the same applicant is also the same as described above.
  • At least one surface of the aluminum alloy plate is 4% to 15% silicon, Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or misch metal (misch metal)
  • misch metal A method of assembling an aluminum alloy plate is disclosed which is coated with a brazing aluminum alloy containing 0.01% to 0.5% of at least one element selected from the group consisting of It is a 4XXX series modified alloy composition, X element is in the range of 0.51 to 1.50% by weight, the composition range is different from the present invention containing Cu, it is also distinguished from the technical idea of increased corrosion resistance.
  • the content of X element (at least one of rare earth metal, scandium (Sc), niobium (Nb), or hafnium (Hf)) of atomic number 57 (La) to 71 (Lu) 0.005 to 1.0% by weight
  • the content of Cu comprises 0.50% by weight or less
  • the base material may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. This may further include inevitable impurities.
  • the prepared base material that is, the aluminum alloy is formed in a molten state by a general aluminum alloy manufacturing method at a temperature range of 670 to 950 ° C.
  • the alloy molten metal may be formed by pouring into a molten metal in the form of an individual X element metal, an X mother alloy of two or more elements, or a master alloy (Al alloy) of Al-X.
  • the X-alloy of at least two elements or the Al-X master alloy is made of Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B , Pb, Bi, Ca, Be, Ag, Pd, Sb and Y may be added in the form of a ternary or more multi-element master alloy further comprising at least one selected from the inevitable impurities.
  • the molten metal formed as above is formed into a billet or wire rod by casting or as an ingot as necessary.
  • the billet or wire rod is then heat-treated for 5 to 25 hours at a temperature range of 450 to 650 ° C., and then the heat-treated billet or wire rod is extruded or drawn to produce a heat exchanger tube or tubing. At this time, it is preferable to extrude the heat exchanger tube in the case of the billet, preheating at a temperature range of 300 to 550 ° C., and starting at a temperature range of 300 to 550 ° C. and ending at 250 to 350 ° C.
  • the product may be manufactured by casting of a non-billet type metal casting method such as cold forging and hot forging. If the material is based on the Al 6XXX series, the aging hardening heat treatment, which is generally applied, may be additionally performed.
  • composition (wt%) of the material according to one preferred embodiment in the present invention may be as shown in Table 1 and Table 2.
  • Examples 1 to 7 An aluminum alloy according to the present invention (Examples 1 to 7) and an aluminum alloy (Comparative Examples 1 to 2) were prepared.
  • Table 3 shows the results of the component analysis of these alloy compositions. In Table 3, the composition of these alloys is expressed in weight percent, taking into account that each alloy may contain unavoidable impurities.
  • Examples 1 to 7 and Comparative Examples 1 to 2 were controlled by controlling the temperature of the molten alloy at a temperature range of 670 to 950 ° C. during casting of the alloy, and heat-treating the same after manufacturing them into billets. Thereafter, a heat exchanger tube was manufactured through extrusion.
  • brazing process temperature and treatment time is from 580 ⁇ 650 °C, minutes to several ten minutes in the present invention was carried out 10 minutes heat treatment at 600 °C.
  • Table 4 shows examples and comparative examples according to the present invention for the brazing aluminum alloy.
  • Al 3003 is used as the heat exchanger component tube, fin core and header, it shows the effect of adding X and Cu to the clad material. That is, the addition of element X improves the corrosion resistance, and the addition of Cu also shows the result of improving the corrosion resistance to some extent.
  • the heat exchanger tube or pipe has the advantage of increasing the corrosion resistance because the potential of the heat exchanger tube or pipe can be higher than the fin material or the cladding material.
  • the content tends to be small compared to other sites. This results in lower dislocations compared to other parts of the grain boundary, which results in intensive corrosion of the grain boundary and ultimately penetrates the tube or pipe, thereby losing the function of the heat exchanger.
  • the addition of the X element increases the corrosion potential of the alloy, prevents local corrosion of copper, and forms a protective ductility film 3 having good ductility at the grain boundary 1. . Since the protective oxide film 3 has good adhesion, corrosion through the grain boundary 1 can be minimized. In other words, even if corrosion occurs, the corrosion site 5 is prevented from penetrating into the crystal grains 7 by the protective oxide film 3.
  • the heat exchanger tube or the pipe using the aluminum alloy according to the present invention can be used for a long time without intergranular corrosion or pitting even under various corrosive environments.
  • the surface of the heat exchanger tube or pipe may be given a sacrificial anode effect by applying a zinc coating (spray, etc.), and additionally, a chemical coating may be applied. It may be.
  • a zinc coating spray, etc.
  • the corrosion potential of the pin and the head is preferably lower than the corrosion potential of the tube or pipe.
  • the zinc spray or coating treatment, chemical coating treatment and dislocation design technique may be applied at the same time.
  • by further applying a silicone or resin coating on the surface of the heat exchanger tube according to the present invention can further improve the corrosion resistance, it is also possible to perform an additional age hardening heat treatment if necessary to increase the strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Extrusion Of Metal (AREA)

Abstract

The present invention relates to an aluminum alloy for a heat exchanger tube or pipe with improved corrosion resistance, and a manufacturing method therefor. The aluminum alloy is based on aluminum and comprises: 0.50 wt% or less of Cu; element X [at least one from among rare earth metals of atomic number 57 (La) to atomic number 71 (Lu), Sc, Nb, and Hf] of which the total amount is 0.005-1.0 wt%; and [0.01-2.0 wt% of Mn, (Si+Mg) < 0.65 wt%, and Zn < 4.0 wt%] or [Si ≥ 0.03 wt%, (Mn+Mg+Zn) < 1.0 wt%, and Al ≥ 98.97 wt%] or [0.25-1.4 wt% of Si, 0.4-1.3 wt% of Mg, Mn ≤ 1.0 wt%, and Zn ≤ 0.25 wt%]. In addition, the aluminum alloy may further comprise: at least one element selected from among Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, and Y; and other inevitable impurities. When manufacturing a heat exchanger tube or pipe by using the aluminum alloy, the corrosion resistance and strength are improved.

Description

내식성이 향상된 알루미늄 합금, 그 합금을 이용한 알루미늄 튜브 또는 배관의 제조방법 및 이를 이용한 열교환기 시스템Aluminum alloy with improved corrosion resistance, manufacturing method of aluminum tube or pipe using the alloy and heat exchanger system using the same
본 발명은 알루미늄 합금에 관한 것으로서, 보다 구체적으로는 알루미늄 합금에 희토류 원소 등 특수원소(X원소)를 첨가함으로써 내식성을 향상시킨 알루미늄 합금 및 그 합금의 제조방법에 관한 것이며, 특히 가공용 알루미늄 1XXX, 3XXX 및 6XXX 계열에 대한 개량 알루미늄 합금에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy, and more particularly, to an aluminum alloy having improved corrosion resistance by adding special elements such as rare earth elements (X element) to an aluminum alloy, and a method of manufacturing the alloy, in particular aluminum 1XXX and 3XXX for processing. And improved aluminum alloys for the 6XXX series.
증발기, 콘덴서, 배관 등의 열교환기에는, 일반적으로 경량성과 열전도성이 양호한 알루미늄 또는 알루미늄 합금 재질이 사용되고 있다. 이들 열교환기에서는, 알루미늄 합금 압출재의 콘덴서 튜브(tube)와 핀(fin), 헤드 파이프(head pipe) 및 각종 배관으로 구성된다. 이들 열교환기는 일반적으로 튜브와 핀(일반적으로 핀 core재에 브레이징용 판재가 피복 또는 클래딩된다) 등이 소정 구조로 조립된 후, 불활성 가스 분위기의 가열로 내에서 브레이징(brazing) 접합하는 방법으로 구조가 완성된다. In general, aluminum or an aluminum alloy material having good light weight and thermal conductivity is used for heat exchangers such as an evaporator, a condenser, and a pipe. In these heat exchangers, it consists of a condenser tube, fin, head pipe, and various piping of an aluminum alloy extrusion material. These heat exchangers are generally constructed by brazing and joining tubes and fins (generally coated with cladding plates on a fin core material or cladding) in a predetermined structure, and then brazing in a heating furnace in an inert gas atmosphere. Is completed.
튜브 또는 배관 재질로 널리 사용되는 것은 Al 1XXX 계열과 Al 3XXX 계열의 재질이며, 강도가 더 필요한 경우는 Al 6XXX 계열의 재질도 일부 사용되고 있다. 또한 튜브 또는 배관을 핀과 헤드 파이프에 브레이징(brazing)할 때 쓰이는 클래드(clad) 재질로는 Al 4XXX 계열이 널리 사용되고 있다.        Widely used as a tube or pipe material, Al 1XXX series and Al 3XXX series materials are used, and when more strength is required, Al 6XXX series materials are partially used. In addition, the Al 4XXX series is widely used as a clad material for brazing tubes or pipes to pins and head pipes.
열교환기의 압출 튜브 또는 배관은 냉매 통로관으로 사용되므로, 사용 중에 부식에 의한 관통이 생긴 경우, 냉매 누설이 발생하여 열교환기로서의 기능을 다할 수 없게 된다. 이 때문에, 종래에는 압출 튜브의 표면에 미리 용사 등에 의해 Zn(아연)을 부착시키고, 브레이징(납땜)에 의해 Zn을 확산시킨다. 이로 인해 튜브 표층에 형성된 Zn 확산층이 심부에 대하여 희생 양극으로서 작용하여, 판 두께 방향으로의 부식을 억제하여 부식 관통 수명을 연장시킨다. 이 경우, 튜브에는 압출된 후에 Zn 코팅(용사 등)의 Zn 부착 공정이 필요하게 되어 제조비용의 상승을 초래한다.Since the extruded tube or the pipe of the heat exchanger is used as the refrigerant passage tube, when penetration occurs due to corrosion during use, the refrigerant leaks and cannot function as a heat exchanger. For this reason, conventionally, Zn (zinc) is affixed on the surface of an extrusion tube by spraying etc., and Zn is diffused by brazing (brazing). As a result, the Zn diffusion layer formed on the tube surface layer acts as a sacrificial anode to the core portion, thereby suppressing corrosion in the plate thickness direction and extending the corrosion penetration life. In this case, after extruded, the tube requires a process for attaching Zn of a Zn coating (sprayed or the like), resulting in an increase in manufacturing cost.
특히 튜브의 내식성 관점에서 보면, 일본 특개평11-21649호는 철을 0.15 내지 0.35중량%, 규소를 0.15중량% 이하, 아연을 0.03중량% 미만, 구리를 0.55중량%, 지르코늄을 0.02 내지 0.05중량% 미만, 티타늄을 0.003 내지 0.010중량% 함유하고, 철/규소≥2.5 이고, 나머지가 알루미늄과 불가피하게 첨가되는 불순물로 이루어지는 알루미늄 합금을 제안한 바 있다. In particular, from the viewpoint of corrosion resistance of the tube, Japanese Patent Laid-Open No. 11-21649 discloses 0.15 to 0.35% by weight of iron, 0.15% by weight or less of silicon, less than 0.03% by weight of zinc, 0.55% by weight of copper, and 0.02 to 0.05% by weight of zirconium. An aluminum alloy containing 0.003 to 0.010% by weight of titanium, iron / silicon ≧ 2.5, and the remainder of which is inevitably added with aluminum has been proposed.
그러나 상기 특허문헌의 합금은 합금의 내식 특성을 확보하기 위하여 첨가원소로 구리를 첨가하였으나, 구리(0.55중량%)의 첨가량이 많아 Al-Cu계 금속간 화합물이 다수 형성되어 압출 특성이 저하되고, 금속간 화합물의 석출로 인하여 모재(재료)의 국부영역에서 부식전위가 낮아져 내식 특성이 열화되는 문제점이 있다. However, in the alloy of the patent document, copper was added as an additive element in order to secure corrosion resistance of the alloy, but a large amount of copper (0.55% by weight) was added, so that many Al-Cu-based intermetallic compounds were formed, thereby reducing extrusion characteristics. Due to the precipitation of the intermetallic compound, there is a problem that the corrosion potential is lowered in the local region of the base material (material) and thus the corrosion resistance is deteriorated.
이를 개선하기 위해 국내 공개특허 제10-2011-0072237호 에서는 0.15 내지 0.45 %의 구리를 함유한 알루미늄 합금에 Zr 과 B를 첨가하여, 튜브 외측의 Zn 용사공정을 생략할 수 있는 방법을 제안한 바 있다. 이 문헌에서는 Zr 및 B의 첨가효과로 인해 알루미늄 합금의 결정이 미세화하여 내식성이 증가한다는 기술 사상을 담고 있다. 그러나 구리의 함량이 0.1중량% 이상일 경우, 열교환기 작동 중 구리가 입계에 석출하고, 그 결과 입계 부식의 민감도가 증대되어 튜브의 입계부식이 발생하여 튜브의 부식 관통 수명이 짧아진다는 문제점이 있다. In order to improve this, Korean Patent Laid-Open Publication No. 10-2011-0072237 has proposed a method of omitting the Zn spraying process outside the tube by adding Zr and B to an aluminum alloy containing 0.15 to 0.45% of copper. . This document contains the technical idea that due to the addition effect of Zr and B, the crystals of aluminum alloys become finer and corrosion resistance is increased. However, when the copper content is more than 0.1% by weight, copper precipitates at the grain boundary during heat exchanger operation, and as a result, the sensitivity of grain boundary corrosion is increased, resulting in tube grain boundary corrosion, which shortens the corrosion penetration life of the tube. .
상기 문헌들의 경우 Cu를 주요원소로 첨가하여 내식성을 개선하고자 하였으나, Cu 첨가의 단점들은 충분히 극복하지 못한 상태이다.       In the above documents, Cu was added as a main element to improve corrosion resistance, but the disadvantages of Cu addition were not sufficiently overcome.
이후, Cu 첨가의 불리한 점 때문에 국내 공개특허 제10-2014-0000406에서는 내식성을 증가시키기 위하여 구리(Cu)를 0.01% 이하로 최소화하고, 0.50 내지 1.0중량% 망간(Mn)과 0.2중량% 이하의 실리콘(Si)의 조성에 지르코늄(Zr)을 0.05 내지 0.15중량%를 첨가한 바 있으나, Cu의 제거로 인하여 Cu의 부식전위 증가 장점이 희생되고 열교환기 각 부품의 조립시 접촉에 의한 전위 설계에 제한을 주고 있어 열교환기 시스템에서의 채택이 어려운 점이 있다.Then, in Korean Patent Laid-Open Publication No. 10-2014-0000406 due to the disadvantage of the addition of Cu to minimize the copper (Cu) to 0.01% or less, 0.50 to 1.0% by weight manganese (Mn) and 0.2% by weight or less Zirconium (Zr) was added 0.05 to 0.15 wt% in the composition of silicon (Si), but the corrosion potential of Cu is sacrificed due to the removal of Cu, and the potential design by contact during assembly of each part of the heat exchanger Given the limitations, it is difficult to adopt in heat exchanger systems.
한편, 원자번호57(La) 내지 71번(Lu)의 희토류금속은 그 유익한 성질 때문에 현재 광범위한 연구개발이 진행되고 있으나, 개발활동이 주로 마그네슘(합금)의 내식성 및 강도증가 분야, 주물용 알루미늄 합금의 강도증가 분야 그리고 알루미늄 합금 표면에 화성코팅(conversion coating)에 의한 내식성 증가 분야에 집중되어 왔다. (J. Alloys Compd., 2012, 538(0): 21., Mater. Des., 2009, 30(7): 2372., Mater. Des., 2010, 31(Supplement 1): S24., Mater. Sci . Eng ., A, 2012, 532: 606., J. Rare Earths, 2011, 29(10): 961.)On the other hand, the rare earth metals of atomic number 57 (La) to 71 (Lu) are currently undergoing extensive research and development because of their beneficial properties, but the development activities are mainly in the field of increasing the corrosion resistance and strength of magnesium (alloy), aluminum alloy for casting. It has been focused on increasing the strength of steel and increasing the corrosion resistance by conversion coating on aluminum alloy surface. (J. Alloys Compd ., 2012, 538 (0): 21., Mater. Des ., 2009, 30 (7): 2372., Mater. Des ., 2010, 31 (Supplement 1): S24., Mater. Sci . Eng ., A , 2012, 532: 606., J. Rare Earths , 2011, 29 (10): 961.)
극히 제한된 문헌에 따르면 AlCuMgAg 합금에 대하여 0.45% 까지의 Ce을 첨가하였을 때의 효과를 연구했으며, 이때 Ce의 첨가는 더 미세하고 조밀한 석출물을 형성시켜 상의 열적 안정성을 개선한다고 보고한 바 있다. (J. Alloys Compd. 352 (2003) 84.). 또한 Al 2XXX 계열인 Al-2519, T87 합금에서 0.2% Ce 의 첨가는 조밀하고 미세한 상의 석출을 조장하여 합금의 상온 강도를 증가시키고, 0.4% Ce 의 첨가는 300 ℃에서 열적 안정성을 강화한다고 보고한 바 있다. (Journal of Alloys and Compounds 491 (2010) 366371)     Very limited literature has reported the effect of adding up to 0.45% of Ce to AlCuMgAg alloys, which reported that the addition of Ce improves the thermal stability of the phase by forming finer and more dense precipitates. (J. Alloys Compd. 352 (2003) 84.). In addition, the addition of 0.2% Ce in Al-2519 and T87 alloys of Al 2XXX series promotes the deposition of dense and fine phases to increase the room temperature strength of the alloy and the addition of 0.4% Ce enhances the thermal stability at 300 ° C. There is a bar. Journal of Alloys and Compounds 491 (2010) 366371
희토류 금속 등의 첨가에 관한 위의 대부분 문헌들은 합금의 강도증가와 표면 코팅에 대한 연구개발이었으며, 현재까지 가공용 알루미늄 합금 중 튜브 또는 배관으로 널리 사용되는 1XXX, 3XXX 및 6XXX 계열과 브레이징용 4XXX 계열에 내식성 등의 특성을 개선하기 위해 희토류 원소 등을 합금에 직접 첨가한 관련 문헌은 찾아보기 힘들다. Most of the above documents on the addition of rare earth metals have been researched and developed on the increase of strength and surface coating of alloys, and have been applied to the 1XXX, 3XXX and 6XXX series, which are widely used as tubes or pipes, and 4XXX series for brazing. It is difficult to find related literatures in which rare earth elements are added directly to the alloy to improve properties such as corrosion resistance.
그러나 극히 일부 문헌에서는 Al 1XXX 계열과 Al 4XXX 계열에 대한 기록을 찾아볼 수 있다. 국내 등록특허 제10-1335680호, 국내 등록특허 제10-1349359호에서는 Al 1XXX 계열을 개량 변형하여 강도증가를 위해 Sc, Y, MM(misch metal) 등을 최대 0.6%까지 첨가한 바 있으나, Si의 함량을 생략하여 합금 제조가 어려워지고 생산 비용이 상승하는 문제점이 있었다. 또한 국내 등록특허 제10-1194970호에서는 브레이징(brazing)용 알루미늄 4XXX 계열을 대상으로 Ce, La, MM을 최대 0.5% 까지 첨가한 바 있으나, 이는 브레이징의 접합성 관점에서 접근한 결과로서 내식성 관점에서 희토류 금속 등의 첨가 함량이 최적화되지 못하여 내식성 개선에 크게 기여하지 못한다는 문제점이 있다.        However, in very few documents, records can be found for the Al 1XXX series and Al 4XXX series. In Korean Patent Nos. 10-1335680 and 10-1349359, the Al 1XXX series was modified and modified to add up to 0.6% of Sc, Y, MM (misch metal), etc. to increase the strength. By omitting the content of the alloy is difficult to manufacture and there is a problem that the production cost increases. In addition, Korean Patent No. 10-1194970 has added up to 0.5% of Ce, La, and MM to brazing aluminum 4XXX series, but this is a result of approaching the brazing property from the viewpoint of corrosion resistance. There is a problem in that the addition content of the metal is not optimized and thus does not contribute significantly to improving the corrosion resistance.
따라서 본 발명에서는 가공용 1XXX, 3XXX, 4XXX 및 6XXX 계열의 알루미늄 합금에 희토류 원소 등을 첨가하여 알루미늄 합금의 내식성 및 강도를 증가시키고, Cu 첨가시의 단점을 극복하고자 하였다.Therefore, in the present invention, by adding rare earth elements to the aluminum alloys of the 1XXX, 3XXX, 4XXX and 6XXX series for processing to increase the corrosion resistance and strength of the aluminum alloy, to overcome the disadvantages when adding Cu.
위와 같은 문제에 대한 본 발명의 목적은, 열교환기의 알루미늄 냉매 튜브 또는 배관과 관련하여, 전술한 문제점을 해결하려는 것이다. 본 발명의 목적은 강도 및 압출성이 우수하며, 내식성이 개선되어 가혹한 환경에서도 열교환기 및 냉매 튜브 또는 배관의 수명이 유지되는 튜브 또는 배관용 알루미늄 합금 조성과 브레이징용 합금 조성 그리고 이를 이용한 열교환기 시스템을 제공하는데 있다.An object of the present invention for the above problem, in connection with the aluminum refrigerant tube or tubing of the heat exchanger, to solve the above problems. An object of the present invention is excellent in strength and extrudability, corrosion resistance is improved, even in harsh environments heat exchanger and refrigerant tube or pipe life of the aluminum alloy composition and brazing alloy composition and heat exchanger system using the same to maintain the life of the tube or pipe To provide.
본 발명의 목적은, The object of the present invention,
0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
중량%로서 Mn 0.01~2.0, Si+Mg < 0.65 및 Zn < 4.0;를 포함하되,As weight percent Mn 0.01-2.0, Si + Mg <0.65 and Zn <4.0;
상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금에 의해 달성된다.The element X is at least one of rare earth metals of atomic number 57 (La) to No. 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) by an aluminum alloy with improved corrosion resistance Is achieved.
그리고 본 발명의 목적은, And the object of the present invention,
0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97;를 포함하되,As weight percent Si ≧ 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97;
상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금에 의해 달성된다.The element X is at least one of rare earth metals of atomic number 57 (La) to No. 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) by an aluminum alloy with improved corrosion resistance Is achieved.
그리고 본 발명의 목적은, And the object of the present invention,
0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0, Zn ≤ 0.25;를 포함하되,Si by weight of 0.25 to 1.4, Mg 0.4 to 1.3, Mn <1.0, Zn <0.25;
상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금에 의해서도 달성된다.The element X is also an aluminum alloy having improved corrosion resistance, characterized in that at least one of rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf). Is achieved.
본 발명의 특징에 의하면, According to a feature of the invention,
위에서 X 원소가 0.01~0.60중량% 또는 0.05~0.50중량% 범위일 수 있다. The X element may be in the range of 0.01 to 0.60 wt% or 0.05 to 0.50 wt%.
본 발명의 다른 특징에 의하면, According to another feature of the invention,
Cu가 0.002~0.45중량% 또는 0.02~0.45중량% 범위일 수 있다. Cu may range from 0.002 to 0.45 weight percent or from 0.02 to 0.45 weight percent.
본 발명의 다른 목적은;Another object of the invention is;
0.51~5.0중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.51% to 5.0% by weight of X element and 0.50% by weight or less of copper (Cu);
중량%로서 Si 4.0~17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0;를 포함하되, Si wt% to 17.0, Mn <0.5, Mg <2.0, Zn <2.0 as weight%;
상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 브레이징(brazing)용 알루미늄 합금에 의해 달성된다.The element X is brazing with improved corrosion resistance, characterized in that at least one of rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf) Is achieved by the aluminum alloy.
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 알루미늄 합금은 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함할 수 있다. The aluminum alloy may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, and Y.
본 발명의 다른 목적은; Another object of the invention is;
원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.005∼1.0중량%, Cu의 함량이 0.50중량%이하;0.005 to 1.0% by weight of an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
[중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0] 또는[% By weight of Mn 0.01 to 2.0, (Si + Mg) <0.65 and Zn <4.0] or
[중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97] 또는[Si% 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97 as weight percent] or
[중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0 및 Zn ≤ 0.25]; [Si 0.25-1.4, Mg 0.4-1.3, Mn <1.0 and Zn <0.25 as weight%];
의 조성을 가지는 알루미늄 합금 용탕을 670~950℃의 온도 범위로 준비하는 단계;Preparing an aluminum alloy molten metal having a composition of 670 ~ 950 ℃ temperature range;
상기 용탕을 주조하여 빌렛 또는 와이어 로드의 형태로 모재를 제작하는 단계;Casting the molten metal to prepare a base material in the form of a billet or a wire rod;
상기 모재를 450 ~ 650℃의 온도 범위에서 5 ~ 25 시간 동안 열처리를 시행하는 단계;Heat-treating the base material in a temperature range of 450 to 650 ° C. for 5 to 25 hours;
상기 모재를 압출 또는 인발하는 단계;Extruding or drawing the base material;
를 포함하는 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법에 의해 달성된다.It is achieved by a method for producing an aluminum tube or tubing comprising a.
본 발명의 특징에 의하면, 상기 X 원소가 0.01~0.60중량% 또는 0.05~0.50중량% 범위일 수 있다. According to a feature of the invention, the X element may be in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
본 발명의 다른 특징에 의하면, According to another feature of the invention,
Cu가 0.002~0.45중량% 또는 0.02~0.45중량% 범위일 수 있다. Cu may range from 0.002 to 0.45 weight percent or from 0.02 to 0.45 weight percent.
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 모재는 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함할 수 있다. The base material may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y.
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 합금 용탕의 제조방법은 개별 원소의 X금속, 2원소 이상의 X 모합금(X원소가 2종 이상일 때 X 원소들의 합금으로 된 모합금) 또는 Al-X의 모합금(알루미늄과 X원소 또는 알루미늄과 X원소들의 합금으로 된 모합금)의 형태로 용탕에 상기 X 원소를 투입하는 것일 수 있다. The method for producing the molten alloy is an X metal of an individual element, an X mother alloy of two or more elements (a mother alloy made of an alloy of X elements when the X elements are two or more kinds) or an Al-X mother alloy (aluminum and X elements or aluminum). And the X element in a molten metal in the form of an alloy of an X element).
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 2원소 이상의 X 모합금 또는 Al-X의 모합금은 Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함하여 3원계 이상의 다원계 모합금의 형태인 것일 수 있다. The above X element alloy or Al-X mother alloy is Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be , Ag, Pd, Sb and Y may further include one or more selected from the form of a ternary or more multi-base mother alloy.
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 제조방법은 시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 및 이들의 조합 중 어느 하나를 더 실시하는 것을 특징으로 할 수 있다. The manufacturing method may be characterized by further performing any one of age hardening heat treatment, zinc coating, chemical coating, resin coating and combinations thereof.
본 발명의 또 다른 목적은, Another object of the present invention,
원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.005∼1.0중량%, Cu의 함량이 0.50중량%이하;0.005 to 1.0% by weight of an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
[중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0] 또는[% By weight of Mn 0.01 to 2.0, (Si + Mg) <0.65 and Zn <4.0] or
[중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97] 또는[Si% 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97 as weight percent] or
[중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0 및 Zn ≤ 0.25]; [Si 0.25-1.4, Mg 0.4-1.3, Mn <1.0 and Zn <0.25 as weight%];
의 조성을 가지는 알루미늄 튜브 또는 배관이 상기 튜브 또는 배관보다 부식전위가 더 낮은 핀(fin), 헤더(header) 또는 양자 모두에 결합되는 것을 특징으로 하는 열교환기 시스템에 의해 달성된다.An aluminum tube or tubing having a composition of is achieved by a heat exchanger system, characterized in that it is coupled to a fin, a header or both having a lower corrosion potential than the tube or tubing.
상기 열교환기 시스템은, 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.51~5.0중량%, Cu의 함량이 0.50중량%이하;The heat exchanger system, the atomic number 57 (La) to 71 (Lu) of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of X element content of at least one selected from 0.51 ~ 5.0 Wt%, Cu content is 0.50 wt% or less;
중량%로서 Si 4.0~17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0;Si 4.0-17.0, Mn ≦ 0.5, Mg ≦ 2.0, Zn ≦ 2.0 as weight percent;
의 조성을 가지는 알루미늄 합금을 브레이징 합금으로 사용하여 핀, 헤더 또는 양자 모두에 결합되도록 할 수 있다. An aluminum alloy having a composition of may be used as the brazing alloy to be bonded to the pin, the header or both.
또한, 상기 튜브 또는 배관과 브레이징 합금이 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함할 수 있다. In addition, the tube or tubing and the brazing alloy further added at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. It may include.
본 발명의 또 다른 특징에 의하면, According to another feature of the invention,
상기 튜브, 배관, 핀, 헤더 및 이들의 조합 중 어느 하나에 시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 및 이들의 조합 중 어느 하나를 더 실시할 수 있다.Any one of the above tubes, pipes, fins, headers and combinations thereof may be further subjected to any one of age hardening heat treatment, zinc coating, chemical coating, resin coating, and combinations thereof.
본 발명에 따르면, 열교환기 튜브 또는 배관에 사용되는 알루미늄 합금에서, 내식성 개선을 위해 특수원소(본 발명에서는 “원소”라 표기)를 첨가하여 조성을 개선함으로써, 내식성 및 강도를 향상시킬 수 있다. 이로 인해 부품의 수명증가와 아연코팅 공정의 생략 및 추가적인 후처리 공정의 생략 등으로 인해 제조 공정의 단순화와 비용절감을 달성할 수 있다.According to the present invention, in an aluminum alloy used for heat exchanger tubes or pipes, by improving the composition by adding a special element (denoted as "element" in the present invention) to improve the corrosion resistance, it is possible to improve the corrosion resistance and strength. This results in simplification and cost reduction of the manufacturing process due to increased component life, elimination of zinc coating and the elimination of additional post-treatment processes.
도 1은 본 발명에 따른 내식성 향상을 설명하는 개념도이다.1 is a conceptual diagram illustrating the improvement of corrosion resistance according to the present invention.
도 2는 본 발명에 따른 내식성 향상 원리를 설명하는 또 다른 개념도이다. Figure 2 is another conceptual diagram illustrating the principle of improving corrosion resistance according to the present invention.
도 3은 본 발명에 의해 제조된 알루미늄 합금 튜브의 사진이다.3 is a photograph of an aluminum alloy tube produced by the present invention.
이하 첨부된 도면을 참조로 본 발명에 의한 알루미늄 합금 조성 및 그의 제조 공정에 관해서 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, an aluminum alloy composition and a manufacturing process thereof according to the present invention will be described with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application It should be understood that there may be water and variations.
본 발명에 따른 내식성 알루미늄 합금(이하, ‘알루미늄 합금’이라 한다)은, 알루미늄을 기저로 하여 X원소를 필수적으로 포함한다. 본 발명에서 사용되는 “원소”라 함은 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb), 또는 하프늄(Hf) 중 임의의 1종 이상으로 구성된 원소를 의미하는 것으로 정의한다. The corrosion-resistant aluminum alloy (henceforth "aluminum alloy") which concerns on this invention contains element X based on aluminum essentially. As used herein, the term "element" refers to any one or more of rare earth metals of atomic numbers 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb), or hafnium (Hf). It is defined as meaning composed elements.
본 발명에 의하면, 튜브 또는 배관용 알루미늄 합금의 경우 X원소는 알루미늄 합금 전체 중량에 대하여 0.005~1.0중량% 범위로 함유되며, Cu는 0.50중량% 이하의 범위로 함유된다. 본 발명에서의 튜브 또는 배관용 알루미늄 합금 조성은 3 가지 유형으로 분류할 수 있다. According to the present invention, in the case of an aluminum alloy for tubes or pipes, element X is contained in the range of 0.005 to 1.0% by weight based on the total weight of the aluminum alloy, and Cu is contained in the range of 0.50% by weight or less. Aluminum alloy compositions for tubes or tubing in the present invention can be classified into three types.
첫 번째로, 상기 X원소 및 Cu 외에, 중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0 인 경우이다. 이 경우는 상용의 Al 3XXX 계열 합금에 본 발명에 따른 X 원소가 첨가된 개량 Al 3XXX 계열의 합금이 된다. First, in addition to the X element and Cu, Mn 0.01 to 2.0, (Si + Mg) <0.65 and Zn <4.0 as the weight percent. In this case, an alloy of the improved Al 3XXX series in which the X element is added to the commercial Al 3XXX series alloy is added.
《 참고 : 본 명세서 및 청구범위 전체에 걸쳐 특정원소(A)의 함량과 관련하여 A < 4.0 라고 표현한 것은 A원소가 0 < A < 4.0 의 범위 내에 있는 것을 의미한다.》<< Note: Throughout this specification and claims, the expression A <4.0 in relation to the content of a particular element (A) means that element A is in the range of 0 <A <4.0. >>
두 번째로, 상기 X원소 및 Cu 외에, 중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) ≤ 1.0 및 Al ≥ 98.97인 경우이다. 이 경우 상용의 Al 1XXX 계열에 본 발명에 따른 X 원소가 첨가된 개량 Al 1XXX 계열의 합금이 된다. Secondly, in addition to the elements X and Cu, Si ≧ 0.03, (Mn + Mg + Zn) ≦ 1.0 and Al ≧ 98.97 in weight percent. In this case, it becomes an alloy of the improved Al 1XXX series in which the X element according to the present invention is added to the commercial Al 1XXX series.
세 번째로, 상기 X원소 및 Cu 외에, 중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0, 및 Zn ≤ 0.25 인 경우이다. 이 경우는 상용의 Al 6XXX 계열 합금에 본 발명에 따른 X 원소가 첨가된 개량 Al 6XXX 계열의 합금이 된다.Third, in addition to the X element and Cu, Si 0.25 ~ 1.4, Mg 0.4 ~ 1.3, Mn <1.0, and Zn <0.25 as the weight%. In this case, the alloy of the improved Al 6XXX series in which the X element is added to the commercial Al 6XXX series alloy is added.
또한 본 발명에 따르면, 브레이징용 알루미늄 합금의 경우, X원소는 위 세 가지 경우보다 함량이 증가하여 알루미늄 합금 전체 중량에 대하여 0.51∼5.0중량% 범위로 함유되고, Cu는 마찬가지로 0.50중량% 이하의 범위로 함유되며, Mn, Si, Mg 및 Zn의 함량은 중량%로서 Si 4.0~17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0 인 경우이다. 이 경우는 상용의 Al 4XXX 계열 합금에 본 발명에 따른 X 원소가 첨가된 개량 Al 4XXX 계열의 합금이 된다.In addition, according to the present invention, in the case of the aluminum alloy for brazing, the X element is increased in content than the above three cases contained in the range of 0.51 to 5.0% by weight relative to the total weight of the aluminum alloy, Cu is also in the range of 0.50% by weight or less The content of Mn, Si, Mg and Zn is in the weight percent of Si 4.0-17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0. In this case, the alloy of the improved Al 4XXX series in which the X element is added to the commercial Al 4XXX series alloy is added.
상기의 모든 경우는 추가적으로 합금원소(Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y)와 불가피한 불순물을 더 포함할 수 있다. All of the above cases additionally include alloying elements (Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y) and inevitable impurities. Can be.
결국 본 발명에 따른 알루미늄 합금 조성은 가공용 알루미늄 합금 종류 중 Al-Cu 또는 Al-Cu-Mg 합금인 2XXX 계열, Al-Mg 합금계열인 5XXXX 및 Al-Zn-Mg-Cu 합금인 7XXX 계열을 제외하는 조성에 해당하고, 본 발명에 따른 X원소를 제외하면 순 Al 합금계열인 1XXX 계열, Al-Mn 합금계열인 3XXX 계열, Al-Si 합금인 4XXX계열 및 Al-Mg-Si 합금계열인 6XXX 계열에 해당하므로 본 발명에 따른 알루미늄 합금 조성은 위 계열들의 합금에 X원소가 첨가된 개량 알루미늄 합금 조성에 해당한다.Eventually, the aluminum alloy composition according to the present invention excludes 2XXX series of Al-Cu or Al-Cu-Mg alloys, 5XXXX of Al-Mg alloys, and 7XXX series of Al-Zn-Mg-Cu alloys. Except for the element X according to the present invention, the composition is 1XXX series of pure Al alloys, 3XXX series of Al-Mn alloys, 4XXX series of Al-Si alloys and 6XXX series of Al-Mg-Si alloys. Therefore, the aluminum alloy composition according to the present invention corresponds to an improved aluminum alloy composition in which element X is added to the alloys of the above series.
알루미늄 합금에서 주요 합금원소인 Cu, Mn, Mg, Si, Zn가 합금의 특성에 미치는 영향은 다음과 같다. The effects of Cu, Mn, Mg, Si, and Zn, which are the main alloying elements, on the alloy properties in aluminum alloys are as follows.
합금원소 Cu는 기지(Matrix)에 고용하여 알루미늄 합금의 강도를 증가시키나, Mn과 비교하여 압출성을 크게 저하시키는 단점이 있다. 일반적으로 Zn을 첨가하면 부식전위는 낮아지고, Cu를 첨가하면 부식전위가 높아진다고 알려져 있다. Zn과 Cu가 공존하는 경우에는, 특히 Zn 함유량이 적은 경우에는 Cu에 의한 전위 상승효과가 우세하다. 즉 Cu 함유량이 많으면, Zn 확산층에 의한 전위 저하효과보다도 Cu에 의한 전위 상승효과 쪽이 우세해지고, 그 함량이 0.12중량% 미만일 경우 내식성 등 구리를 첨가한 효과가 나타나기 어려우며, 그 함량이 0.45중량%를 초과할 경우에는 압출성과 내식성이 동시에 저하된다. 본 발명에서 Cu의 바람직한 함량은 0.50중량% 이하이며, 더욱 바람직한 범위는 0.002∼0.45중량% 또는 0.02~0.45중량%의 범위이다. 또한 본 발명에서의 Zn의 바람직한 함량은 4.0중량% 이하이다.The alloying element Cu has a disadvantage in that the solid solution in the matrix (Matrix) increases the strength of the aluminum alloy, but greatly reduces the extrudability compared to Mn. In general, it is known that the addition of Zn lowers the corrosion potential, and the addition of Cu increases the corrosion potential. In the case where Zn and Cu coexist, in particular, when the Zn content is small, the potential raising effect by Cu is predominant. In other words, when the Cu content is large, the potential raising effect by Cu is more preferable than the potential lowering effect by the Zn diffusion layer. When the content is less than 0.12% by weight, the effect of adding copper, such as corrosion resistance, is less likely to occur, and the content is 0.45% by weight. When exceeding, extruding property and corrosion resistance fall simultaneously. The preferred content of Cu in the present invention is 0.50% by weight or less, more preferably in the range of 0.002 to 0.45% by weight or 0.02 to 0.45% by weight. In addition, the preferable content of Zn in this invention is 4.0 weight% or less.
합금원소 Mn은 알루미늄 합금의 강도를 증가시킨다. Mn 함유량이 0.5중량% 미만이면 강도 증가 효과는 작고, 1.7중량%를 넘어서면 압출성이 저하된다. Mn의 첨가는 동일한 양의 Si, Cu 또는 Mg을 첨가한 경우와 비교하여, 압출성, 특히 한계 압출 속도의 저하가 현저하게 작다. 또한 Al6Mn의 미세한 금속간 화합물로 석출하여 합금의 부식 전위를 높이는 효과도 있다. 이는 열교환기 튜브로 제조되었을 때, 열교환기 튜브의 부식 전위를 높이면 핀(fin)과의 전위차를 크게 할 수 있어 내식성을 향상시키는 작용을 한다. 그 함량이 0.6중량% 미만일 경우 내식성 등 망간을 첨가한 효과가 적은 편이고, 그 함량이 1.2중량%를 초과할 경우에는 압출성이 저하된다. 본 발명에서의 Mn의 바람직한 함량은 알루미늄 2.0중량% 이하이다. Alloying element Mn increases the strength of the aluminum alloy. If the Mn content is less than 0.5% by weight, the effect of increasing strength is small. Exceeding 1.7% by weight reduces the extrudability. The addition of Mn is significantly smaller in the extrudability, in particular the decrease in the limit extrusion speed, compared with the case where the same amount of Si, Cu or Mg is added. It also has the effect of increasing the corrosion potential of the alloy by precipitating with a fine intermetallic compound of Al 6 Mn. When it is made of a heat exchanger tube, when the corrosion potential of the heat exchanger tube is increased, the potential difference with the fin can be increased, thereby improving the corrosion resistance. If the content is less than 0.6% by weight, the effect of adding manganese, such as corrosion resistance is less, and when the content exceeds 1.2% by weight, the extrudability is reduced. The preferred content of Mn in the present invention is 2.0% by weight or less of aluminum.
합금원소 Si는 Al-Mn-Si계 금속간 화합물로 석출되어 입계 이동의 방해를 통하여 결정립 성장을 억제하고, 압출시 변형저항을 작게 하여 압출성을 향상시킨다. 0.05중량% 미만일 경우에는 주조 시 제조비용이 상승하게 되고, Si량이 0.10% 이상이면, 합금 속에 Al-Mn-Si계 금속간 화합물을 형성하므로 합금 속의 Mn 고용도를 저하시키는 효과를 나타낸다. 이로 인해 부식전위의 강하가 나타날 수 있다. 또한 그 함량이 0.2중량%를 초과할 경우에는 합금의 강도를 높이게 되어 압출성이 저하된다. 본 발명에서 Si의 바람직한 함량은 알루미늄 합금의 조성기반이 3XXX 계열인 경우는 0.65중량% 이하이며, 알루미늄 합금의 조성 기반이 6XXX 계열인 경우는 0.25~1.40중량% 범위이다. The alloying element Si is precipitated as an Al-Mn-Si-based intermetallic compound to suppress grain growth through interfering grain boundary movement, and to improve the extrudability by reducing the deformation resistance during extrusion. If it is less than 0.05% by weight, the manufacturing cost increases during casting, and if the amount of Si is 0.10% or more, the Al-Mn-Si-based intermetallic compound is formed in the alloy, thereby reducing the Mn solubility in the alloy. This can lead to a drop in corrosion potential. In addition, when the content exceeds 0.2% by weight, the strength of the alloy is increased to reduce the extrudability. In the present invention, the preferred content of Si is 0.65 wt% or less when the composition base of the aluminum alloy is 3XXX series, and 0.25 to 1.40 wt% when the composition base of the aluminum alloy is 6XXX series.
합금원소 Mg는 기지내에서 고용경화의 영향에 의하여 강도를 증가시키나 양이 증가할수록 압출성을 저하시킨다. 첨가량이 2.0%를 초과하면 플럭스와 반응 등으로 인하여 고융점의 화합물을 형성하기 때문에 현저하게 접합성을 저하시키는 경향이 있다. 또한 3.5중량%를 초과할 경우, Mg2Al3가 석출하여 입계부식이나 응력부식에 대한 감수성이 커지게 된다. 따라서 본 발명에서의 바람직한 Mg의 함량은 알루미늄 합금의 조성기반이 3XXX 계열인 경우는 0.65중량% 이하이며, 알루미늄 합금의 조성 기반이 6XXX 계열인 경우는 0.40 내지 1.30중량% 이하이다. The alloying element Mg increases the strength under the influence of solid solution hardening in the matrix, but decreases the extrudability as the amount is increased. If the amount is more than 2.0%, a high melting point compound is formed due to the flux and the reaction and the like, which tends to significantly reduce the bonding property. In addition, when the content exceeds 3.5% by weight, Mg 2 Al 3 is precipitated to increase the susceptibility to grain boundary corrosion and stress corrosion. Therefore, the preferred content of Mg in the present invention is 0.65% by weight or less when the composition base of the aluminum alloy is 3XXX series, 0.40 to 1.30% by weight or less when the composition base of the aluminum alloy is 6XXX series.
한편, 금속의 경우, 표면에 산화막이 형성되어 부식으로부터 내부를 보호하지만, 이러한 산화막은 박리 또는 파괴가 일어나 점차적으로 재료의 부식이 진행된다. On the other hand, in the case of metal, an oxide film is formed on the surface to protect the interior from corrosion, but such an oxide film is peeled off or destroyed, and the corrosion of the material gradually proceeds.
알루미늄 합금에서 Cu가 적정함량 이상일 경우 입계에 석출물이 형성되는 경향이 있어 입계 부식 및 국부 부식에 대한 민감성이 높아진다. 그 이유는 Cu 석출물의 전위가 높고 그 주변은 거꾸로 Cu의 함량이 낮아져서 국부적인 부식 마이크로 셀(corrosion micro-cell)이 형성되기 때문이다.        In the aluminum alloy, when Cu is more than the proper content, precipitates tend to form at the grain boundaries, thereby increasing sensitivity to grain boundary corrosion and local corrosion. The reason for this is that the potential of Cu precipitates is high and the periphery of Cu is lowered to form local corrosion micro-cells.
따라서 이러한 문제점을 해결하기 위해서 본 발명에서는 알루미늄 합금에 추가적으로 X 금속을 첨가하여 산화막의 연성과 밀착성을 개선하고, Cu 로 인한 국부 부식 효과를 억제하여 내식 특성을 개선할 수 있다. 또한 X 금속은 부식전위를 상승시키는 효과가 있으므로, 부식전위 상승 목적을 위한 Cu 첨가를 최소화시키거나 Cu를 대체하는 것도 가능하다.       Therefore, in order to solve this problem, in the present invention, X metal may be added to the aluminum alloy to improve ductility and adhesion of the oxide film, and to suppress local corrosion effect due to Cu, thereby improving corrosion resistance. In addition, since the X metal has an effect of raising the corrosion potential, it is possible to minimize the addition of Cu or replace Cu for the purpose of increasing the corrosion potential.
이때 X 원소가 첨가 되면 다음과 같은 효과를 나타낸다.At this time, when the element X is added, the following effects are obtained.
X 원소는 산화막의 미세구조를 변화시켜 산화막(oxidation scale)의 연성을 증가시켜 막의 이탈을 방지하고, 산화막에 내부쪽으로의 쐐기 형태를 형성시켜 기지와 산화막의 밀착성을 증가시킨다(즉, 도 1에서 결정립(7)과 보호 산화막(3)의 밀착성이 증진되는 것이다). 또한 vacancy(공동) 붕괴효과가 생김으로써 기공의 형성이 억제되고, 산화막과 기지사이의 화학적 결합을 개선시킨다. 즉, 산화막과 기지 사이에 형성될 수 있는 기공의 형성을 억제하여 산화막과 기지사이의 공간을 방지하고 기지와의 쐐기모양의 산화막을 형성시켜 산화막의 밀착성을 증가시키다. The element X changes the microstructure of the oxide film to increase the ductility of the oxide film (oxidation scale) to prevent the separation of the film, and to form a wedge shape inward to the oxide film to increase the adhesion between the matrix and the oxide film (that is, in Figure 1 The adhesion between the crystal grains 7 and the protective oxide film 3 is enhanced). In addition, the vacancy collapse effect prevents the formation of pores and improves chemical bonding between the oxide film and the matrix. That is, by suppressing the formation of pores that can be formed between the oxide film and the base to prevent the space between the oxide film and the base and to form a wedge-shaped oxide film with the base to increase the adhesion of the oxide film.
또한 X 원소는 기지 내에 석출된 구리 함유 석출물의 국부부식 음극반응을 감소시켜 결과적으로 주변의 국부부식 양극반응을 감소시키는 효과가 있으므로 Cu 로 인한 국부부식을 완화시키는 작용을 한다. 그 외에도 X원소는 알루미늄 제조시 용탕내의 내식성 취약 원소인 Fe, Ni 등의 성분을 감소시켜 내식성을 강화한다. In addition, the element X reduces the local corrosion cathodic reaction of the copper-containing precipitates precipitated in the matrix, thereby reducing the local corrosion reaction of the surroundings, thereby reducing local corrosion due to Cu. In addition, element X enhances corrosion resistance by reducing components such as Fe and Ni, which are fragile elements of corrosion resistance in molten metal during aluminum production.
본 발명에서는 알루미늄 합금이 국부부식 및 입계부식에 취약해지는 것을 방지하기 위해 상기 X원소를 첨가함으로써 우수한 내식성을 얻을 수 있었다. 이때 X원소의 적정 첨가량은 0.005~1.0중량%의 범위가 바람직하고, 더욱 바람직한 함량은 0.01~0.60중량% 또는 0.05~0.50중량%의 범위이다. 그러나 알루미늄 합금조성의 기반이 브레이징용 4XXX 계열인 경우는 0.51~5.0중량%의 범위가 바람직하다.In the present invention, in order to prevent the aluminum alloy from becoming susceptible to local corrosion and grain boundary corrosion, excellent corrosion resistance was obtained by adding the X element. At this time, the appropriate amount of element X is preferably in the range of 0.005 to 1.0% by weight, more preferably in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight. However, in the case of 4XXX series for brazing, the base of the aluminum alloy composition is preferably in the range of 0.51 to 5.0% by weight.
즉, 도 1에서와 같이, 알루미늄 합금에서 Cu의 함량이 높을 때, 특히 0.10중량% 이상인 경우, 입계에서 Cu의 석출이 심해져서 부식에 대한 민감성이 높아진다. 이러한 이유는 입계에서 Cu가 석출되면 주변 기지부위에서 Cu의 고용도(기지내의 Cu함량)이 낮아지고 이 결과로 Cu의 부식전위 상승효과가 작아진다. 따라서 입계(grain boundary) 주변의 기지내 Cu 함량이 다른 부위의 기지내 Cu 함량보다 낮아지므로 입계 주위가 집중적으로 부식되는 결과를 초래하고 입계부식 또는 국부부식이 가속화된다. That is, as shown in Figure 1, when the content of Cu in the aluminum alloy is high, especially 0.10% by weight or more, the precipitation of Cu in the grain boundary becomes severe, thereby increasing the sensitivity to corrosion. This is because when Cu is precipitated at grain boundaries, the solid solubility (Cu content in the base) of Cu is lowered at the surrounding sites and as a result, the effect of increasing the corrosion potential of Cu is reduced. Therefore, the in-base Cu content around the grain boundary is lower than the in-site Cu content in other parts, resulting in intensive corrosion around the grain boundary and accelerating the grain boundary corrosion or local corrosion.
따라서 본 발명에서의 X원소 성분을 소량 첨가할 경우, Cu로 인한 국부부식의 부작용을 최소화하고, 입계에서 형성된 산화막의 연성과 밀착성을 개선하여 Cu의 함량이 높아질 때의 부작용을 최소화할 수 있어 내식성을 개선하고, 입계 이외의 합금 표면에서도 산화막의 수명을 연장하여 내식성을 개선한다. 즉, 도 1에서와 같이 입계에서 일어난 부식부위에서 우수한 산화막이 형성되어 부식의 진행을 억제하게 된다. 또한 부수적으로 X 원소의 첨가는 알루미늄 합금의 강도와 부식전위를 증가시키는 효과가 있으므로 Cu 의 대체재로 활용가능하며, 알루미늄 합금의 유동성을 증가시켜 금속의 소성 가공성을 개선하며, 브레이징 특성을 개선하는 효과도 있다. Therefore, when a small amount of the X element component in the present invention is minimized, the side effects of local corrosion due to Cu can be minimized, and the ductility and adhesion of the oxide film formed at the grain boundaries can be improved to minimize side effects when the Cu content is increased. The corrosion resistance is improved by extending the life of the oxide film even on the alloy surface other than grain boundaries. That is, as shown in FIG. 1, an excellent oxide film is formed at the corrosion site formed at the grain boundary, thereby suppressing the progress of corrosion. Incidentally, the addition of the element X has the effect of increasing the strength and corrosion potential of the aluminum alloy can be used as a substitute for Cu, and the effect of improving the plastic formability of the metal by improving the fluidity of the aluminum alloy, improving the brazing characteristics There is also.
한편, 열교환기의 튜브 또는 배관의 내식성을 최대화하기 위해서는 튜브 또는 배관과 결합되는 이웃 부품의 내식성도 최적화가 필요하며, 이를 위해서는 튜브 또는 배관과 결합되는 핀 심부(fin core)재와 헤더(header)재의 부식전위가 튜브 또는 배관의 부식전위보다 낮은 것이 바람직하다. 이는 핀 심부재와 헤더재에 대한 적절한 합금재료의 선택을 통해 달성될 수도 있고, Cu, Mn 및 Zn 등과 같은 합금원소 함량의 제어를 통해서도 달성될 수 있다.On the other hand, in order to maximize the corrosion resistance of the tube or pipe of the heat exchanger, it is necessary to optimize the corrosion resistance of the neighboring parts to be combined with the tube or the pipe. It is desirable that the corrosion potential of the ash is lower than that of the tube or pipe. This may be achieved through the selection of a suitable alloying material for the pin core member and the header material, and may also be achieved through the control of alloying element contents such as Cu, Mn and Zn.
한편, 열교환기 튜브 또는 배관을 시스템으로 결합할 때 튜브 또는 배관은 브레이징(brazing)공정을 이용하여 클래드재에 의해 핀 심부재 또는 헤더재와 브레이징 접합된다. 클래드재는 Si가 4% 이상 다량 함유되므로 Si 가 핀 심부, 헤더 및 튜브 표면에 확산한다. 이때 Si은 기지내에 존재하는 Mn과 결합하여 Al-Mn-Si계 금속간 화합물을 형성하여 합금 속의 Mn 고용도를 저하시키는 효과를 나타내고, 이로 인해 부식전위의 낮아질 수 있다. 즉 표면의 내식성을 악화시킬 수 있다. On the other hand, when joining the heat exchanger tube or tubing into the system, the tube or tubing is brazed to the pin core member or the header member by the cladding material using a brazing process. Since the cladding material contains a large amount of Si of 4% or more, Si diffuses to the fin core, header and tube surface. In this case, Si forms an Al-Mn-Si-based intermetallic compound by combining with Mn present in the matrix to reduce Mn solid solubility in the alloy, thereby lowering the corrosion potential. That is, the corrosion resistance of the surface can be deteriorated.
따라서 클래드재에 본 발명에 따른 X 원소를 첨가하면 X 원소가 튜브 또는 배관과 핀 심부 또는 헤더 표면에 확산 침투되므로 이들 재료 표면의 부식전위가 상승하여 Si 확산 침투에 따른 영향을 보완하고, 전술한 바와 같이 추가적으로 산화막의 연성 증가, Cu로 인한 국부부식의 방지 등의 효과로 인하여 튜브, 핀, 헤더 표면에서의 내식성이 강화된다. 특히 브레이징 접합부위에서 내식성이 강화되며 클래드재의 젖음성도 개선되어 접합부위를 보호할 수 있어 전체적인 열교환기 시스템의 내식성이 개선된다. 이때 튜브, 배관, 헤더 등의 재질은 일반적인 상용 알루미늄 합금을 사용하여도 개선효과가 나타난다. Therefore, when the X element according to the present invention is added to the cladding material, the X element diffuses and penetrates the tube or the pipe and the pin core or the header surface, thereby increasing the corrosion potential of the surface of these materials to compensate for the effects of Si diffusion penetration. As described above, the corrosion resistance of the tube, fin, and header surface is enhanced due to the increased ductility of the oxide film and the prevention of local corrosion due to Cu. In particular, the corrosion resistance is enhanced at the brazing joint, and the wettability of the clad material is also improved to protect the joint, thereby improving the corrosion resistance of the entire heat exchanger system. At this time, the material of the tube, pipe, header, etc. is improved even when using a common commercial aluminum alloy.
도 2는 브레이징용 알루미늄 합금에 본 발명에 따른 X 원소를 첨가하였을 때의 개념도이다. 브레이징 영역(9:brazing zone)내에 존재하는 X 원소(11)가 핀 심부(13)와 튜브(15)의 표면에 확산 침투하여 확산층(17:diffusion layer)을 형성하여 핀과 튜브 표면의 내식성을 강화한다. 2 is a conceptual diagram when the element X according to the present invention is added to an aluminum alloy for brazing. The X element 11 present in the brazing zone 9 diffuses and penetrates the surfaces of the fin core 13 and the tube 15 to form a diffusion layer 17 to prevent corrosion of the fin and tube surfaces. Strengthen.
또한 브레이징 공정의 특성상 클래드재가 용융되어 핀 심부와 헤더를 튜브에 확산 접합시키는 것이므로, 본 발명에 따른 X 원소가 첨가된 튜브 또는 배관과 일반적인 상용의 클래드재를 사용하였을 경우, 클래드재에 의해 튜브 또는 배관의 표면층에 존재하는 본 발명의 X 원소가 확산층에 의해 희석되어 내식성 및 전위가 낮아진다. 이때 본 발명에서와 같이 클래드재에 X 원소를 첨가하면 이를 보완할 수 있다. In addition, since the cladding material is melted due to the characteristics of the brazing process, the fin core and the header are diffusely bonded to the tube. Thus, when a tube or pipe to which the X element is added according to the present invention and a commercially available cladding material are used, The element X of the present invention present in the surface layer of the pipe is diluted by the diffusion layer to lower corrosion resistance and dislocation. At this time, by adding the X element to the cladding material as in the present invention can be compensated for this.
본 발명에 따르면, 4XXX 계열인 브레이징용 클래드재의 바람직한 X 원소의 함량은 확산되어 소실되는 X 원소를 고려하여 0.51∼5.0중량% 의 범위이고, Cu 는 마찬가지로 0.50중량%이하가 바람직하다. 이때 바람직한 알루미늄 합금의 조성은 중량%로 Si 4.0∼17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0 의 범위이다. 그리고 추가적인 합금원소(Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb , Y)와 불가피한 불순물을 더 포함할 수 있다. 이 경우는 상용의 Al 4XXX 계열 합금에 본 발명에 따른 X 원소가 첨가된 개량 Al 4XXX 계열의 합금이 된다.According to the present invention, the preferred X content of the 4XXX series brazing cladding material is in the range of 0.51 to 5.0% by weight in consideration of the X element that is diffused and lost, and Cu is preferably 0.50% by weight or less. At this time, the composition of the preferred aluminum alloy is in the range of Si 4.0-17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0 by weight. And it may further include additional alloying elements (Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y) and inevitable impurities. In this case, the alloy of the improved Al 4XXX series in which the X element is added to the commercial Al 4XXX series alloy is added.
한편, 등록특허 제10-1335680호의 청구항 1에서는, 합금원소 Fe 0.05~0.5중량%, Zr 0.1~0.5중량%, MM 0.01~0.5중량%, Sc 0.01~0.2중량%, Y 0.001~0.01중량%로 구성된 합금원소 군 중에서 두 개 이상의 물질을 선택하여 합금원소들의 첨가 총량이 0.6중량% 이하가 되게 하고 나머지는 순 알루미늄을 용해하고 합금화하여 알루미늄 합금을 형성시킴으로써, 내압특성을 향상시킨 열교환기용 콘덴서 튜브 제조 방법을 제안하고 있다. On the other hand, in Claim 1 of Patent No. 10-1335680, alloy element Fe 0.05-0.5% by weight, Zr 0.1-0.5% by weight, MM 0.01-0.5% by weight, Sc 0.01-0.2% by weight, Y 0.001-0.01% by weight Manufacture of condenser tube for heat exchanger with improved pressure resistance by selecting two or more materials from the group of alloying elements so that the total amount of alloying elements is 0.6% by weight or less and the rest is dissolved and alloyed with pure aluminum to form aluminum alloy. I am suggesting a method.
이 특허문헌은 본 발명에서의 X 원소 중 MM(희토류 합금의 일종)과 Sc 첨가의 내용을 포함하고 있으나, 알루미늄 합금의 강도를 증가시키기 위해 순수 알루미늄에 Zr, MM, Sc, Y 등 중에서 일부를 첨가하여 내압강도 특성을 개선한 것으로 99.4% 이상의 Al 조성에 해당하므로 1XXX 계열의 알루미늄 합금의 변형 합금에 해당한다. 일반적으로 1XXX 계열의 알루미늄 합금은 실리콘(Si)이 첨가되나, 상기 특허 문헌은 Si를 Zr, MM, Sc, Y 등으로 대체한 것으로 판단된다. This patent document contains the contents of addition of MM (a rare earth alloy) and Sc among the X elements in the present invention, but in order to increase the strength of the aluminum alloy, some of Zr, MM, Sc, Y, etc. are added to pure aluminum. Addition to improve the strength resistance characteristics, and corresponds to the Al composition of 99.4% or more, so it corresponds to the modified alloy of 1XXX series aluminum alloy. In general, 1XXX series aluminum alloy is added with silicon (Si), but the patent document is considered to replace Si with Zr, MM, Sc, Y and the like.
상기 특허 문헌에서는 본 발명에서의 주요원소인 Cu, Mn, Si, Mg가 합금원소로 첨가되지 않고, 특히 본 발명에 따른 변형 1XXX 계열 합금의 특징인 Si이 포함되지 않으며, 내식성 증가라는 본 발명 기술적 사상과도 명확히 구별된다. 또한 Si 함량을 생략하고 있어 합금 제조가 어렵고 생산비용이 크게 상승하는 문제점이 있다. 같은 출원인의 특허문헌 등록특허 제10-1349359호도 상기한 바와 마찬가지다.In the above patent document, the main elements Cu, Mn, Si, and Mg in the present invention are not added as an alloying element, and in particular, Si, which is a characteristic of the modified 1XXX series alloy according to the present invention, does not include the present invention. It is also clearly distinguished from ideas. In addition, since the Si content is omitted, it is difficult to manufacture the alloy and there is a problem that the production cost increases significantly. Patent document 10-1349359 of the same applicant is also the same as described above.
또한 등록특허 10-1194970의 청구항 1에서는, 알루미늄 합금 플레이트의 한 면 이상은 규소를 4 % 내지 15 %, Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y 또는 미슈 금속(misch metal)으로 이루어진 그룹으로부터 선택되는 1종 이상의 원소를 0.01 % 내지 0.5 % 함유하는 브레이징 알루미늄 합금으로 코팅되는 것인 알루미늄 합금 플레이트 조립 방법을 제시하고 있다. 이는 4XXX 계열의 변형 합금조성으로서 X 원소가 0.51∼1.50중량% 범위이고, Cu가 함유되는 본 발명과는 조성범위가 다르며, 내식성 증가라는 기술적 사상과도 차별화 되어 있다.       Further, in claim 1 of claim 10, at least one surface of the aluminum alloy plate is 4% to 15% silicon, Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or misch metal (misch metal A method of assembling an aluminum alloy plate is disclosed which is coated with a brazing aluminum alloy containing 0.01% to 0.5% of at least one element selected from the group consisting of It is a 4XXX series modified alloy composition, X element is in the range of 0.51 to 1.50% by weight, the composition range is different from the present invention containing Cu, it is also distinguished from the technical idea of increased corrosion resistance.
최근 마그네슘 합금 분야에서 희토류 금속을 첨가하는 연구가 활발하게 진행되고 있으며, 알루미늄 합금분야에서는 내식성의 개선을 위해서 알루미늄합금 표면에 희토류 원소를 응용한 화성 코팅(conversion coating) 개발 등 코팅분야에 집중되고 있다. Recently, studies on adding rare earth metals in the magnesium alloy field have been actively conducted, and in the aluminum alloy field, focusing on coating areas such as the development of conversion coatings in which rare earth elements are applied to the surface of aluminum alloys to improve corrosion resistance. .
따라서 기존 상용의 알루미늄 합금에 추가적으로 X 원소를 직접 합금원소로 첨가한 문헌은 주물용 알루미늄 합금에 대한 것, 2XXX 계열에 대한 것, 1XXX 계열 일부 및 4XXX 계열 일부 등 극히 제한적이다. 특히 본 발명에서와 같이 가공용 알루미늄 합금인 3XXX 및 6XXX 계열을 대상으로 한 문헌은 없는 것으로 판단되고, 1XXX 및 4XXX 계열의 경우도 본 발명과는 조성범위와 기술의 원리가 차별화되고 있다. 특히 구리(Cu)와의 연관성, 모재의 전위 상승 및 산화막 수명증가, 내식성의 향상 및 강도 증가를 응용한 문헌은 없는 것으로 판단되고 있다. Therefore, literatures in which the X element is directly added as an alloying element in addition to the existing commercial aluminum alloys are extremely limited, such as those related to casting aluminum alloys, 2XXX series, 1XXX series, and 4XXX series. In particular, it is judged that there is no literature for the 3XXX and 6XXX series, which is an aluminum alloy for processing, as in the present invention, and in the case of the 1XXX and 4XXX series, the composition range and the principle of technology are differentiated from the present invention. In particular, it is judged that there is no literature applying the correlation with copper (Cu), raising the potential of the base material, increasing the oxide film life, improving the corrosion resistance and increasing the strength.
다음으로는 본 발명에 따른 알루미늄 합금으로 제조되는 열교환기 튜브 또는 배관의 제조방법에 대하여 설명하기로 한다. Next, a method of manufacturing a heat exchanger tube or pipe made of an aluminum alloy according to the present invention will be described.
본 발명에 따른 열교환기 튜브 또는 배관의 제조방법은, Method for producing a heat exchanger tube or pipe according to the present invention,
알루미늄을 기저로 하여 중량%로 X원소(원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb), 또는 하프늄(Hf) 중 1종 이상) 함량이 0.005∼1.0중량% 범위, Cu의 함량이 0.50중량% 이하를 포함하고,Based on aluminum, the content of X element (at least one of rare earth metal, scandium (Sc), niobium (Nb), or hafnium (Hf)) of atomic number 57 (La) to 71 (Lu) 0.005 to 1.0% by weight, the content of Cu comprises 0.50% by weight or less,
[중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0] 또는 [중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97] 또는 [중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0 및 Zn ≤ 0.25]를 함유하는 모재를 준비한다. 그리고 모재는 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함할 수 있다. 여기에 불가피한 불순물이 더 포함될 수는 있을 것이다. 이후 이 준비된 모재, 즉 알루미늄 합금을 670 내지 950℃의 온도 범위에서 일반적인 알루미늄 합금 제조 방법으로 용탕의 상태로 형성시킨다.  [Mn 0.01 to 2.0 as weight%, (Si + Mg) <0.65 and Zn <4.0] or [Si% as weight%, (Mn + Mg + Zn) <1.0 and Al ≥ 98.97] or [Si as weight% 0.25-1.4, Mg 0.4-1.3, Mn <1.0, and Zn <0.25] are prepared. And the base material may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. This may further include inevitable impurities. Then, the prepared base material, that is, the aluminum alloy is formed in a molten state by a general aluminum alloy manufacturing method at a temperature range of 670 to 950 ° C.
X 원소의 첨가방법으로는 개별 X 원소 금속 또는 2원소 이상의 X 모합금 또는 Al-X의 모합금(master alloy, 중간합금)의 형태로 용탕에 투입하여 합금 용탕을 형성시킬 수 있다. 또한 제조의 편리성을 높이기 위해서 상기 2원소 이상의 X 모합금 또는 Al-X의 모합금은 Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상과 불가피한 불순물을 더 포함하는 3원계 이상의 다원계 모합금의 형태로 투입할 수도 있다.  In the method of adding X element, the alloy molten metal may be formed by pouring into a molten metal in the form of an individual X element metal, an X mother alloy of two or more elements, or a master alloy (Al alloy) of Al-X. In addition, in order to increase the convenience of manufacturing, the X-alloy of at least two elements or the Al-X master alloy is made of Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B , Pb, Bi, Ca, Be, Ag, Pd, Sb and Y may be added in the form of a ternary or more multi-element master alloy further comprising at least one selected from the inevitable impurities.
위와 같이 형성된 용탕을 주조(casting)에 의한 빌렛(billet) 또는 와이어 로드(wire rod)를 형성하거나 필요에 따라 잉곳(ingot)으로 형성시킨다. The molten metal formed as above is formed into a billet or wire rod by casting or as an ingot as necessary.
그 후 상기 빌렛 또는 와이어 로드를 450 내지 650℃의 온도 범위에서 5 내지 25시간 동안 열처리한 후, 열처리된 빌렛 또는 와이어 로드를 압출 또는 인발을 통해 열교환기 튜브 또는 배관을 제조한다. 이 때, 빌렛의 경우에는 300 내지 550℃의 온도 범위에서 예열하고, 압출 온도 300 내지 550℃의 온도 범위에서 시작하여 종료는 250 내지 350℃로 하여 열교환기 튜브를 압출하는 것이 바람직하다.The billet or wire rod is then heat-treated for 5 to 25 hours at a temperature range of 450 to 650 ° C., and then the heat-treated billet or wire rod is extruded or drawn to produce a heat exchanger tube or tubing. At this time, it is preferable to extrude the heat exchanger tube in the case of the billet, preheating at a temperature range of 300 to 550 ° C., and starting at a temperature range of 300 to 550 ° C. and ending at 250 to 350 ° C.
필요에 따라서는 빌렛이 아닌 형태의 주조품으로 제작하여 냉간단조, 열간단조 등의 금속소성 방법으로 제품을 제작할 수도 있을 것이다. 재질이 Al 6XXX 계열을 기반일 경우는 일반적으로 적용되고 있는 시효경화 열처리도 추가 실시할 수 있다. If necessary, the product may be manufactured by casting of a non-billet type metal casting method such as cold forging and hot forging. If the material is based on the Al 6XXX series, the aging hardening heat treatment, which is generally applied, may be additionally performed.
본 발명에서 하나의 바람직한 실시예에 따른 재료의 조성(중량%)은 다음의 표 1 및 표 2와 같을 수 있다. The composition (wt%) of the material according to one preferred embodiment in the present invention may be as shown in Table 1 and Table 2.
합금 조성  Alloy composition Cu  Cu X  X Mn  Mn Si+Mg  Si + Mg Zn  Zn Al  Al
바람직한 실시예  Preferred Embodiment ≤0.5≤0.5 0.005~1.00.005-1.0 0.01~2.00.01 ~ 2.0 <0.65<0.65 <4.0<4.0 bal.  bal.
합금 조성  Alloy composition Cu  Cu X  X Mn  Mn Si+Mg  Si + Mg Zn  Zn Al  Al
바람직한 실시예  Preferred Embodiment ≤0.5≤0.5 0.005~1.00.005-1.0 ≤1.0≤1.0 0.65~2.70.65-2.7 ≤0.25≤0.25 bal.  bal.
이하, 본 발명의 이해를 돕기 위하여 표3의 구체적인 실시예(1~7)와 이에 대비되는 비교예(1~2)를 통하여 보다 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, specific examples (1 to 7) and comparative examples (1 to 2) of Table 3 will be described in more detail to help understand the present invention. However, the following examples are merely examples of the present invention, and the scope of the present invention is not limited thereto.
본 발명에 따른 알루미늄 합금(실시예1~7)과 이에 대비되는 알루미늄 합금(비교예 1~2)을 제작하였다. 이들 합금 조성의 성분분석 결과를 표 3에 나타내었다. 표 3에서, 이들 합금의 조성은 중량%로 나타내었으며, 각 합금에는 불가피한 불순물을 함유할 수 있다는 점을 고려하였다.An aluminum alloy according to the present invention (Examples 1 to 7) and an aluminum alloy (Comparative Examples 1 to 2) were prepared. Table 3 shows the results of the component analysis of these alloy compositions. In Table 3, the composition of these alloys is expressed in weight percent, taking into account that each alloy may contain unavoidable impurities.
전술한 알루미늄 합금(실시예1~7 및 비교예1~2)들은 합금의 주조시 합금 용탕의 온도를 670 내지 950℃의 온도범위에서 제어하고 주조를 통하여 빌렛으로 제조한 후 열처리하였다. 이 후 압출을 통해 열교환기 튜브를 제조하였다.The above-described aluminum alloys (Examples 1 to 7 and Comparative Examples 1 to 2) were controlled by controlling the temperature of the molten alloy at a temperature range of 670 to 950 ° C. during casting of the alloy, and heat-treating the same after manufacturing them into billets. Thereafter, a heat exchanger tube was manufactured through extrusion.
그 후, 열교환기 튜브는 브레이징 처리후의 결과를 반영하기 위하여 일반적인 통용되는 브레이징 처리온도 및 처리시간으로 열처리를 행하였다. 통상적인 브레이징 공정온도와 처리시간은 580~650℃에서, 수분 내지 수십분이므로 본 발명에서는 600℃에서 10분 열처리를 시행하였다. Thereafter, the heat exchanger tube was subjected to heat treatment at a general commonly used brazing treatment temperature and treatment time to reflect the result after the brazing treatment. Conventional brazing process temperature and treatment time is from 580 ~ 650 ℃, minutes to several ten minutes in the present invention was carried out 10 minutes heat treatment at 600 ℃.
이렇게 제조된 열교환기 튜브의 내식 특성을 평가하기 위해 ASTM 규격에 따른 SWAAT 평가를 실시하였으며 그 결과를 표 3에 함께 나타내었다. SWAAT 평가는 ASTM 표준 G85에 따른 시험으로 4.2중량%의 NaCl 용액에 Glacial Acetic acid를 첨가하여 pH2.8 내지 3.0이 유지되도록 하여 49℃의 온도 분위기 하에서 0.07MPa 압력으로 분사하는 시험을 수행하였다. 이때, 분무량은 1 내지 2㎖/hr를 유지하였다.In order to evaluate the corrosion resistance characteristics of the heat exchanger tube thus manufactured, SWAAT evaluation according to ASTM standard was performed and the results are shown in Table 3. SWAAT evaluation was performed in accordance with ASTM standard G85 test by adding Glacial Acetic acid to 4.2% by weight of NaCl solution to maintain a pH of 2.8 to 3.0 to spray at 0.07MPa pressure under a temperature of 49 ℃. At this time, the spray amount was maintained at 1-2 ml / hr.
  Cu  Cu X  X Mn Mn Fe  Fe Si  Si Zn  Zn Mg,Cr,TiMg, Cr, Ti Al  Al SWAAT Leak Time (hr)  SWAAT Leak Time (hr)
실시예  Example      
1 One 0.30 0.30 Ce 0.02Ce 0.02 0.50 0.50 0.25 0.25 0.15 0.15 0.10 0.10 0.15max0.15max bal.  bal. 780 780
2 2 0.30 0.30 Ce 0.10Ce 0.10 0.50 0.50 0.25 0.25 0.15 0.15 0.10 0.10 0.15max0.15max bal.  bal. 930 930
3 3 0.30 0.30 Ce 0.30Ce 0.30 0.50 0.50 0.25 0.25 0.15 0.15 0.10 0.10 0.15max0.15max bal.  bal. 880 880
4 4 0.30 0.30 Hf 0.30Hf 0.30 0.50 0.50 0.25 0.25 0.15 0.15 0.05 0.05 0.15max0.15max bal.  bal. 860 860
5 5 0.30 0.30 Nb 0.30Nb 0.30 0.50 0.50 0.25 0.25 0.15 0.15 0.05 0.05 0.15max0.15max bal.  bal. 840 840
6 6 0.30 0.30 La 0.50La 0.50 0.50 0.50 0.25 0.25 0.15 0.15 0.050.05 0.15max0.15max bal.  bal. 900900
7 7 0.30 0.30 Sc 0.30Sc 0.30 0.50 0.50 0.25 0.25 0.15 0.15 0.05 0.05 0.15max0.15max bal.  bal. 860 860
88 0.05 0.05 La 0.35La 0.35 -- 0.25 0.25 0.15 0.15 -- 0.15max0.15max bal. bal. 750750
99 0.30 0.30 La 0.80La 0.80 0.05 0.05 0.25 0.25 0.60 0.60 0.05 0.05 Mg 1.00Mg 1.00 bal.  bal. 730730
비교예Comparative example                  
1 One 0.30 0.30 -- 0.50 0.50 0.25 0.25 0.15 0.15 0.10 0.10 0.15max0.15max bal.  bal. 480 480
2 2 0.12 0.12 -- 1.20 1.20 0.25 0.25 0.40 0.40 0.10 0.10 0.15max0.15max bal.  bal. 350350
33 0.05 0.05 -- -- 0.25 0.25 0.15 0.15 -- 0.15max0.15max bal. bal. 360360
44 0.30 0.30 -- 0.05 0.05 0.25 0.25 0.60 0.60 0.05 0.05 Mg 1.00Mg 1.00 bal.  bal. 340340
상기 표 3를 통해 확인할 수 있는 바와 같이, 실시예 1 내지 9은 비교예 1 내지 4에 비하여 매우 우수한 성능을 나타내고 있음을 알 수 있다. As can be seen through Table 3, it can be seen that Examples 1 to 9 show very excellent performance compared to Comparative Examples 1 to 4.
또한 표 4에는 브레이징용 알루미늄 합금에 대하여 본 발명에 따른 실시예와 비교예를 나타낸 것이다. 열교환기 구성 부품인 튜브, 핀 심부 및 헤더의 재질을 Al 3003으로 사용하였을 경우, 클래드 재료에 X 원소와 Cu를 첨가하였을 때의 첨가효과를 보여주고 있다. 즉 X 원소의 첨가는 내식성을 개선하고, Cu의 첨가도 내식성을 어느 정도 개선하는 결과를 보여주고 있다. In addition, Table 4 shows examples and comparative examples according to the present invention for the brazing aluminum alloy. When Al 3003 is used as the heat exchanger component tube, fin core and header, it shows the effect of adding X and Cu to the clad material. That is, the addition of element X improves the corrosion resistance, and the addition of Cu also shows the result of improving the corrosion resistance to some extent.
  Cu  Cu X  X Mn Mn Fe  Fe Si  Si Zn  Zn Mg,Cr,TiMg, Cr, Ti Al  Al SWAAT Leak Time (hr)  SWAAT Leak Time (hr)
실시예  Example      
1 One - - La 1.20La 1.20 - - -- 8.0 8.0 - - 0.15max0.15max bal.  bal. 730 730
2 2 0.120.12 La 1.20La 1.20 - - - - 8.0 8.0 - - 0.15max0.15max bal.  bal. 770 770
33 0.120.12 La 3.60La 3.60 - - - - 8.0 8.0 - - 0.15max0.15max bal.  bal. 840 840
비교예Comparative example                  
1 One - - -- -- - - 8.0 8.0 - - 0.15max0.15max bal.  bal. 420 420
2 2 0.12 0.12 -- -- - - 8.0 8.0 - - 0.15max0.15max bal.  bal. 460460
열교환기 튜브 또는 배관은 구리의 첨가로 핀재, 클래드재에 비해 전위가 높아질 수 있어 내식성이 증가하는 장점이 있으나, 구리함량이 많아질수록 특히 0.1% 이상일 경우 입계에서의 구리 석출로 입계에서 구리의 함량이 다른 부위에 비해 적어지는 경향이 있다. 이는 입계부위가 다른 부위에 비해 전위가 낮아지는 결과를 초래하여 입계가 집중적으로 부식되고 결국 튜브 또는 배관에 관통부식이 일어나 열교환기의 기능이 상실된다. The heat exchanger tube or pipe has the advantage of increasing the corrosion resistance because the potential of the heat exchanger tube or pipe can be higher than the fin material or the cladding material. The content tends to be small compared to other sites. This results in lower dislocations compared to other parts of the grain boundary, which results in intensive corrosion of the grain boundary and ultimately penetrates the tube or pipe, thereby losing the function of the heat exchanger.
본 발명에 의하면, 도 1에 표현된 바와 같이 X 원소를 첨가함으로써 합금의 부식전위가 증가하고, 구리의 국부부식이 방지되며, 입계(1)에서 연성이 좋은 보호 산화막(3)이 형성되게 된다. 이 보호 산화막(3)은 밀착성이 좋으므로 입계(1)를 통한 부식을 최소화 할 수 있다. 즉 부식이 발생하더라도 이 부식 부위(5)는 보호 산화막(3)에 의해 결정립(7)으로 침투하지 못하게 된다. According to the present invention, as shown in FIG. 1, the addition of the X element increases the corrosion potential of the alloy, prevents local corrosion of copper, and forms a protective ductility film 3 having good ductility at the grain boundary 1. . Since the protective oxide film 3 has good adhesion, corrosion through the grain boundary 1 can be minimized. In other words, even if corrosion occurs, the corrosion site 5 is prevented from penetrating into the crystal grains 7 by the protective oxide film 3.
따라서 본 발명에 따른 알루미늄 합금을 이용한 열교환기 튜브 또는 배관은 다양한 부식 환경 하에서도 입계부식 또는 공식(孔蝕;pitting) 없이 장기간 사용할 수 있다.Therefore, the heat exchanger tube or the pipe using the aluminum alloy according to the present invention can be used for a long time without intergranular corrosion or pitting even under various corrosive environments.
한편, 본 발명에서의 튜브 또는 배관에 더욱 큰 내식성이 요구되는 경우에는 열교환기 튜브 또는 배관 표면에 아연 코팅(용사 등) 처리를 시행하여 희생양극 효과를 부여할 수도 있으며, 추가적으로 화성코팅을 적용할 수도 있다. 또한 거시적인 내식성 향상을 위해 튜브 이외의 열교환기 구성 부품인 핀 심부재, 헤드재 및 클래드재를 적절히 선택하여 열교환기 튜브 또는 배관의 부식 전위를 최적화 설계함으로써 튜브 또는 배관의 내식성을 더욱 향상 시킬 수 있다. 이때 핀과 헤드의 부식전위가 튜브 또는 배관의 부식전위보다 낮은 것이 바람직하다. 또한 상기 아연 용사 또는 코팅 처리, 화성코팅처리 및 전위의 설계기법이 동시에 적용될 수 도 있다. 또한, 본 발명에 따른 열교환기 튜브 표면에 추가적으로 실리콘 또는 수지 코팅을 더 시행하여 내식성을 더욱 향상 시킬 수 있으며, 강도증가를 위해 필요시 추가적인 시효경화 열처리를 실시할 수도 있다. On the other hand, when greater corrosion resistance is required for the tube or pipe in the present invention, the surface of the heat exchanger tube or pipe may be given a sacrificial anode effect by applying a zinc coating (spray, etc.), and additionally, a chemical coating may be applied. It may be. In addition, it is possible to further improve the corrosion resistance of tubes or pipes by optimizing the corrosion potential of heat exchanger tubes or pipes by appropriately selecting fin core members, head materials, and clad materials, which are heat exchanger components other than tubes, to improve macroscopic corrosion resistance. have. At this time, the corrosion potential of the pin and the head is preferably lower than the corrosion potential of the tube or pipe. In addition, the zinc spray or coating treatment, chemical coating treatment and dislocation design technique may be applied at the same time. In addition, by further applying a silicone or resin coating on the surface of the heat exchanger tube according to the present invention can further improve the corrosion resistance, it is also possible to perform an additional age hardening heat treatment if necessary to increase the strength.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by means of limited embodiments and drawings, the present invention is not limited thereto and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.
[부호의 설명]  [Description of the code]
1 : 입계(grain boundary) 3 : 보호 산화막1: grain boundary 3: protective oxide film
5 : 부식 부위 7 : 결정립(grain) 5: corrosion part 7: grain
9 : 브레이징 영역(brazing zone) 11 : X 원소 9 brazing zone 11 element X
13 : 핀 심부(fin core) 15 : 튜브(tube)13 fin core 15 tube
17 : 확산층(diffusion layer)17: diffusion layer

Claims (18)

  1. 0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
    중량%로서 Mn 0.01~2.0, Si+Mg < 0.65 및 Zn < 4.0;를 포함하되,As weight percent Mn 0.01-2.0, Si + Mg <0.65 and Zn <4.0;
    상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.The element X is an aluminum alloy with improved corrosion resistance, characterized in that at least one of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of the atomic number 57 (La) to 71 (Lu).
  2. 0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
    중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97;를 포함하되,As weight percent Si ≧ 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97;
    상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.The element X is an aluminum alloy with improved corrosion resistance, characterized in that at least one of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of the atomic number 57 (La) to 71 (Lu).
  3. 0.005~1.00중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.005% to 1.00% by weight of X element and 0.50% by weight or less of copper (Cu);
    중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0, Zn ≤ 0.25;를 포함하되,Si by weight of 0.25 to 1.4, Mg 0.4 to 1.3, Mn <1.0, Zn <0.25;
    상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.The element X is an aluminum alloy with improved corrosion resistance, characterized in that at least one of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of the atomic number 57 (La) to 71 (Lu).
  4. 제1항 내지 제3항 중 어느 하나에 있어서,The method according to any one of claims 1 to 3,
    X 원소가 0.01~0.60중량% 또는 0.05~0.50중량% 범위인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.An aluminum alloy with improved corrosion resistance, characterized in that the X element is in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
  5. 제1항 내지 제3항 중 어느 하나에 있어서,The method according to any one of claims 1 to 3,
    Cu가 0.002~0.45중량% 또는 0.02~0.45중량% 범위인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.An aluminum alloy with improved corrosion resistance, wherein Cu is in the range of 0.002 to 0.45% by weight or 0.02 to 0.45% by weight.
  6. 0.51~5.0중량%의 X 원소 및 0.50중량% 이하의 구리(Cu);0.51% to 5.0% by weight of X element and 0.50% by weight or less of copper (Cu);
    중량%로서 Si 4.0~17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0;를 포함하되, Si wt% to 17.0, Mn <0.5, Mg <2.0, Zn <2.0 as weight%;
    상기 X 원소는 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 1종 이상인 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.The element X is an aluminum alloy with improved corrosion resistance, characterized in that at least one of rare earth metal, scandium (Sc), niobium (Nb) or hafnium (Hf) of the atomic number 57 (La) to 71 (Lu).
  7. 제1항, 제2항, 제3항 또는 제6항 중 어느 하나에 있어서,The method according to any one of claims 1, 2, 3 or 6,
    상기 알루미늄 합금은 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 내식성이 향상된 알루미늄 합금.The aluminum alloy further comprises at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. Aluminum alloy with improved corrosion resistance.
  8. 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.005∼1.0중량%, Cu의 함량이 0.50중량%이하;0.005 to 1.0% by weight of an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
    [중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0] 또는[% By weight of Mn 0.01 to 2.0, (Si + Mg) <0.65 and Zn <4.0] or
    [중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97] 또는[Si% 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97 as weight percent] or
    [중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0 및 Zn ≤ 0.25]; [Si 0.25-1.4, Mg 0.4-1.3, Mn <1.0 and Zn <0.25 as weight%];
    의 조성을 가지는 알루미늄 합금 용탕을 670~950℃의 온도 범위로 준비하는 단계;Preparing an aluminum alloy molten metal having a composition of 670 ~ 950 ℃ temperature range;
    상기 용탕을 주조하여 빌렛 또는 와이어 로드의 형태로 모재를 제작하는 단계;Casting the molten metal to prepare a base material in the form of a billet or a wire rod;
    상기 모재를 450 ~ 650℃의 온도 범위에서 5 ~ 25 시간 동안 열처리를 시행하는 단계;Heat-treating the base material in a temperature range of 450 to 650 ° C. for 5 to 25 hours;
    상기 모재를 압출 또는 인발하는 단계;Extruding or drawing the base material;
    를 포함하는 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법.Method for producing an aluminum tube or tubing comprising a.
  9. 제8항에 있어서,The method of claim 8,
    X 원소가 0.01~0.60중량% 또는 0.05~0.50중량% 범위인 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법.A method for producing an aluminum tube or tubing, characterized in that the X element is in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
  10. 제8항에 있어서,The method of claim 8,
    Cu가 0.002~0.45중량% 또는 0.02~0.45중량% 범위인 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법.Cu is 0.002 ~ 0.45% by weight or 0.02 ~ 0.45% by weight of the manufacturing method of the aluminum tube or tubing.
  11. 제8항에 있어서,The method of claim 8,
    상기 모재는 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법.The base material may further include at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb, and Y. Method of making tubes or tubing.
  12. 제8항에 있어서,The method of claim 8,
    상기 합금 용탕의 제조방법은 개별 원소의 X금속, 2원소 이상의 X 모합금(X원소가 2종 이상일 때 X 원소들의 합금으로 된 모합금) 또는 Al-X의 모합금(알루미늄과 X원소 또는 알루미늄과 X원소들의 합금으로 된 모합금)의 형태로 용탕에 상기 X 원소를 투입하는 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법.The method for producing the molten alloy is an X metal of an individual element, an X mother alloy of two or more elements (a mother alloy made of an alloy of X elements when the X elements are two or more kinds) or an Al-X mother alloy (aluminum and X elements or aluminum). And a mother alloy made of an alloy of X elements).
  13. 제12항에 있어서,The method of claim 12,
    상기 2원소 이상의 X 모합금 또는 Al-X의 모합금은 Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함하여 3원계 이상의 다원계 모합금의 형태인 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법. The above X element alloy or Al-X mother alloy is Cu, Mn, Si, Mg, Zn, Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be , Ag, Pd, Sb and Y further comprising at least one selected from the group consisting of three or more types of multi-alloy master alloy, characterized in that the aluminum tube or pipe manufacturing method.
  14. 제8항에 있어서,The method of claim 8,
    시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 및 이들의 조합 중 어느 하나를 더 실시하는 것을 특징으로 하는 알루미늄 튜브 또는 배관의 제조방법. A method for producing an aluminum tube or pipe further comprising any one of age hardening heat treatment, zinc coating, chemical coating, resin coating, and combinations thereof.
  15. 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.005∼1.0중량%, Cu의 함량이 0.50중량%이하;0.005 to 1.0% by weight of an element X containing at least one selected from rare earth metals of atomic number 57 (La) to 71 (Lu), scandium (Sc), niobium (Nb) or hafnium (Hf), and Cu content Less than or equal to 0.50% by weight;
    [중량%로서 Mn 0.01~2.0, (Si+Mg) < 0.65 및 Zn < 4.0] 또는[% By weight of Mn 0.01 to 2.0, (Si + Mg) <0.65 and Zn <4.0] or
    [중량%로서 Si ≥ 0.03, (Mn+Mg+Zn) < 1.0 및 Al ≥ 98.97] 또는[Si% 0.03, (Mn + Mg + Zn) <1.0 and Al ≧ 98.97 as weight percent] or
    [중량%로서 Si 0.25~1.4, Mg 0.4~1.3, Mn ≤ 1.0 및 Zn ≤ 0.25]; [Si 0.25-1.4, Mg 0.4-1.3, Mn <1.0 and Zn <0.25 as weight%];
    의 조성을 가지는 알루미늄 튜브 또는 배관이 상기 튜브 또는 배관보다 부식전위가 더 낮은 핀(fin), 헤더(header) 또는 양자 모두에 결합되는 것을 특징으로 하는 열교환기 시스템.An aluminum tube or tubing having a composition of heat exchanger system characterized in that it is coupled to a fin, header or both having a lower corrosion potential than the tube or tubing.
  16. 원자번호57(La) 내지 71번(Lu)의 희토류금속, 스칸듐(Sc), 나이오븀(Nb) 또는 하프늄(Hf) 중 선택된 1종 이상인 X원소의 함량이 0.51~5.0중량%, Cu의 함량이 0.50중량%이하;A rare earth metal of atomic number 57 (La) to 71 (Lu), X element having at least one selected from the group consisting of scandium (Sc), niobium (Nb) or hafnium (Hf) is 0.51 to 5.0% by weight, and the content of Cu Less than or equal to 0.50% by weight;
    중량%로서 Si 4.0~17.0, Mn ≤ 0.5, Mg ≤ 2.0, Zn ≤ 2.0;Si 4.0-17.0, Mn ≦ 0.5, Mg ≦ 2.0, Zn ≦ 2.0 as weight percent;
    의 조성을 가지는 알루미늄 합금을 브레이징 합금으로 사용하여 핀, 헤더 또는 양자 모두에 결합되는 것을 특징으로 하는 열교환기 시스템. Heat exchanger system, characterized in that bonded to the fin, the header or both using an aluminum alloy having a composition of brazing alloy.
  17. 제15항 내지 제16항 중 어느 하나에 있어서,The method according to any one of claims 15 to 16,
    상기 튜브 또는 배관과 브레이징 합금이 Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb 및 Y 중 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 열교환기 시스템.The tube or tubing and the brazing alloy further comprises at least one selected from Fe, Ti, Zr, Cr, V, Ni, Co, In, B, Pb, Bi, Ca, Be, Ag, Pd, Sb and Y. Heat exchanger system, characterized in that.
  18. 제15항 내지 제16항 중 어느 하나에 있어서,The method according to any one of claims 15 to 16,
    상기 튜브, 배관, 핀, 헤더 및 이들의 조합 중 어느 하나에 시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 및 이들의 조합 중 어느 하나를 더 실시하는 것을 특징으로 하는 열교환기 시스템.Heat treatment system, characterized in that any one of the tube, tubing, fins, headers and combinations thereof further subjected to age hardening heat treatment, zinc coating, chemical coating, resin coating and combinations thereof.
PCT/KR2016/011247 2015-03-25 2016-10-07 Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same WO2017065460A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20150041798 2015-03-25
KR10-2015-0144696 2015-10-16
KR1020150144696A KR101811332B1 (en) 2015-03-25 2015-10-16 Corrosion resistant aluminium alloy for heat exchanger tube, manufacturing method for tube or pipe using the aluminium alloy, and heat exchanger using the same

Publications (1)

Publication Number Publication Date
WO2017065460A1 true WO2017065460A1 (en) 2017-04-20

Family

ID=57165027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011247 WO2017065460A1 (en) 2015-03-25 2016-10-07 Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same

Country Status (2)

Country Link
KR (1) KR101811332B1 (en)
WO (1) WO2017065460A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315602A (en) * 2018-01-09 2018-07-24 北京有色金属研究总院 A kind of railway rare earth aluminium alloy cable conductor and preparation method
CN109943796A (en) * 2019-03-21 2019-06-28 珠海弘德表面技术有限公司 A kind of thermal spraying material and preparation method thereof of resistance to molten aluminum etch
CN110358955A (en) * 2019-08-07 2019-10-22 安庆市泽烨新材料技术推广服务有限公司 A kind of high conductivity aluminium alloy and preparation method thereof
RU2716568C1 (en) * 2019-12-24 2020-03-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Deformed welded aluminum-calcium alloy
CN111041388A (en) * 2019-12-31 2020-04-21 安徽科蓝特铝业有限公司 Aluminum alloy section's luggage rack for car
CN111500906A (en) * 2020-06-04 2020-08-07 福建祥鑫股份有限公司 High-strength corrosion-resistant aluminum alloy and preparation method thereof
US11137745B2 (en) 2017-05-01 2021-10-05 Fisher-Rosemount Systems, Inc. Open architecture industrial control system
US11471984B2 (en) 2018-06-28 2022-10-18 Scandium International Mining Corporation Control of recrystallization in cold-rolled AlMn(Mg)ScZr sheets for brazing applications
WO2023004862A1 (en) * 2021-07-28 2023-02-02 广东铭利达科技有限公司 High-strength rare earth-reinforced aluminum alloy and preparation method therefor
CN116024508A (en) * 2022-12-24 2023-04-28 江苏信轮美合金发展有限公司 High-strength corrosion-resistant aluminum alloy section bar

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106811626A (en) * 2016-12-12 2017-06-09 佛山市尚好门窗有限责任公司 A kind of rare-earth aluminum alloy lead wire
EP3339791A1 (en) 2016-12-23 2018-06-27 KELVION Sp. z o.o. Lightweight exchangers for heat recovery: a gas-gas recuperator and a gas-fluid economizer, and a method of protection particularly an exchanger casing
EP3339466A1 (en) 2016-12-23 2018-06-27 KELVION Sp. z o.o. Method of production innovative heat exchangers working in extreme conditions
EP3633310A4 (en) * 2017-05-25 2020-07-08 SP Tech Co., Ltd Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential
CN113699393A (en) * 2021-08-30 2021-11-26 大冶市兴进铝业有限公司 Manufacturing method of aluminum profile
KR102607048B1 (en) 2021-10-27 2023-11-29 한국생산기술연구원 High strength and high corrosion resistant aluminum die casting alloy
KR102410400B1 (en) * 2022-02-07 2022-06-22 주식회사 엠에프테크 Manufacturing Method of Aluminum Gas Line
KR102410394B1 (en) * 2022-02-07 2022-06-22 주식회사 엠에프테크 Manufacturing Method of VCR fitting Unit Using Aluminum Tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117796A (en) * 1991-10-28 1993-05-14 Nippon Light Metal Co Ltd Aluminum alloy for brazing sheet
JP2000212668A (en) * 1999-01-25 2000-08-02 Mitsubishi Alum Co Ltd Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP2003119534A (en) * 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger
KR20070004545A (en) * 2003-11-28 2007-01-09 알칸 레날루 Method for welding strips of aluminium alloy
KR20140048886A (en) * 2011-06-21 2014-04-24 포르슝스젠트룸 율리히 게엠베하 Heat-resistant iron-chromium-aluminium alloy with low chromium vaporization rate and elevated thermal stability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097642B2 (en) 1997-12-15 2000-10-10 日本軽金属株式会社 Aluminum alloy for heat exchanger extruded tube with microstructure cross section and method for producing heat exchanger extruded tube with microstructure cross section
KR20110072237A (en) 2009-12-22 2011-06-29 엘에스전선 주식회사 Aluminum alloy with high corrosion resistance for heat exchanger tube and method for manufactured of heat exchanger tube using thereof
KR101349359B1 (en) 2012-06-12 2014-01-17 한국전기연구원 manufacturing method for condenser tube increased tensile strength
KR20140000406A (en) 2012-06-22 2014-01-03 현대자동차주식회사 Aluminium alloy composition, extrution tube for intercooler with improved corrosion resistance comprising the same and method for manufacturing thereof
KR101335680B1 (en) 2012-06-28 2013-12-03 한국전기연구원 Condenser tube with high pressure resistance for heat-exchanger and their production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117796A (en) * 1991-10-28 1993-05-14 Nippon Light Metal Co Ltd Aluminum alloy for brazing sheet
JP2000212668A (en) * 1999-01-25 2000-08-02 Mitsubishi Alum Co Ltd Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP2003119534A (en) * 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd Aluminum alloy extruded material with high strength and high corrosion resistance for heat exchanger, manufacturing method therefor, and heat exchanger
KR20070004545A (en) * 2003-11-28 2007-01-09 알칸 레날루 Method for welding strips of aluminium alloy
KR20140048886A (en) * 2011-06-21 2014-04-24 포르슝스젠트룸 율리히 게엠베하 Heat-resistant iron-chromium-aluminium alloy with low chromium vaporization rate and elevated thermal stability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137745B2 (en) 2017-05-01 2021-10-05 Fisher-Rosemount Systems, Inc. Open architecture industrial control system
CN108315602A (en) * 2018-01-09 2018-07-24 北京有色金属研究总院 A kind of railway rare earth aluminium alloy cable conductor and preparation method
US11471984B2 (en) 2018-06-28 2022-10-18 Scandium International Mining Corporation Control of recrystallization in cold-rolled AlMn(Mg)ScZr sheets for brazing applications
CN109943796A (en) * 2019-03-21 2019-06-28 珠海弘德表面技术有限公司 A kind of thermal spraying material and preparation method thereof of resistance to molten aluminum etch
CN110358955A (en) * 2019-08-07 2019-10-22 安庆市泽烨新材料技术推广服务有限公司 A kind of high conductivity aluminium alloy and preparation method thereof
RU2716568C1 (en) * 2019-12-24 2020-03-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Deformed welded aluminum-calcium alloy
CN111041388A (en) * 2019-12-31 2020-04-21 安徽科蓝特铝业有限公司 Aluminum alloy section's luggage rack for car
CN111500906A (en) * 2020-06-04 2020-08-07 福建祥鑫股份有限公司 High-strength corrosion-resistant aluminum alloy and preparation method thereof
WO2023004862A1 (en) * 2021-07-28 2023-02-02 广东铭利达科技有限公司 High-strength rare earth-reinforced aluminum alloy and preparation method therefor
CN116024508A (en) * 2022-12-24 2023-04-28 江苏信轮美合金发展有限公司 High-strength corrosion-resistant aluminum alloy section bar

Also Published As

Publication number Publication date
KR20160115662A (en) 2016-10-06
KR101811332B1 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2017065460A1 (en) Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same
KR100323375B1 (en) Aluminum Alloy Leaded Sheets
CA2299449C (en) High strength al-mg-zn-si alloy for welded structures and brazing application
EP2741889B1 (en) Cooler for heat-generating device, and method of producing cooler for heat-generating device
EP0938594B1 (en) Aluminium alloy for use as core material in brazing sheet
EP2791378B1 (en) Aluminium fin alloy and method of making the same
WO2017159749A1 (en) Copper alloy plate for heat-dissipation component
WO2018216832A1 (en) Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential
KR102282585B1 (en) Corrosion resistant heat exchanger using the control of alloy composition and potential
KR20210019495A (en) Manufacturing method of Al-Mg-Mn alloy plate product with improved corrosion resistance
KR20220026401A (en) Aluminum alloy for flux-free brazing and brazing method using the same
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
KR20090045981A (en) Al-alloy for bumper back beam
EP1435397A1 (en) High strength aluminium fin material for brazing
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
WO2015099247A1 (en) Highly corrosion-resistant aluminum alloy for heat exchanger tubing, and heat exchanger tubing manufactured from same
JPH06145930A (en) Production of precipitation type copper alloy
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same
JP3006446B2 (en) Heat-treated thin aluminum extruded profile and method for producing the same
JP3414436B2 (en) Aluminum alloy for extrusion
JP2002256403A (en) Method of producing fin material for use in heat exchanger
CN118207450A (en) 4XXX series aluminium alloy, aluminium alloy product, method for manufacturing aluminium alloy product and heat sink
JP3802796B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH0249371A (en) Material for terminal and connector made of copper alloy
JP2004084015A (en) Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855677

Country of ref document: EP

Kind code of ref document: A1