JP2004084015A - Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength - Google Patents

Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength Download PDF

Info

Publication number
JP2004084015A
JP2004084015A JP2002247539A JP2002247539A JP2004084015A JP 2004084015 A JP2004084015 A JP 2004084015A JP 2002247539 A JP2002247539 A JP 2002247539A JP 2002247539 A JP2002247539 A JP 2002247539A JP 2004084015 A JP2004084015 A JP 2004084015A
Authority
JP
Japan
Prior art keywords
fin material
heat exchanger
brazing
strength
erosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247539A
Other languages
Japanese (ja)
Inventor
Shohei Iwao
岩尾 祥平
Shu Kuroda
黒田 周
Akira Watabe
渡部 晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002247539A priority Critical patent/JP2004084015A/en
Publication of JP2004084015A publication Critical patent/JP2004084015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fin material for a heat exchanger which has increased erosion resistance on brazing, also has high strength, and can be subjected to thinning. <P>SOLUTION: An Al alloy comprising 0.1 to 1.5% Si, 0.6 to 2.5% Mn and >1.0 to 5.0% Ni, if required, comprising 0.05 to 0.3% Zr and 0.01 to 5.0% Zn, further, if required, comprising one or more of metals selected from 0.01 to 0.5% Cr, 0.01 to 0.5% V and 0.01 to 0.5% Co is subjected to continuous casting and rolling, and is thereafter subjected to cold rolling. At this time, process annealing is performed for at least one time, and the final cold rolling ratio in the range from a sheet thickness at the final process annealing to a final sheet thickness is controlled to 20 to 50%. Thus, the fin material for a heat exchanger having excellent erosion resistance on brazing and strength before and after brazing can be obtained, to make the fin material thin and lightweight. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ろう付法によって製造されるアルミニウム合金熱交換器に用いられる熱交換器用アルミニウム合金フィン材の製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車熱交換器の多くは軽量化、熱伝達率等の観点からアルミ化されており、熱交換器は所定の形状にコルゲート加工したフィンをチューブ間に組付けて、ろう付により接合している。上記熱交換器用のフィン材としては、通常1000系や3000系合金が用いられている。ろう付に際しては、上記フィン材、チューブ等を加熱炉に配し、600℃付近の高温に加熱して、ろう材を溶融させ、該ろう材が流れて形成されるフィレットによって各部材を互いに接合している。
【0003】
【発明が解決しようとする課題】
しかし、1000系や3000系合金からなるフィン材をろう付する際には、ろう付熱処理時に著しいろうの侵食(エロージョン)が生じ、フィンが座屈等を引き起こし、ろう付後、熱交換器としての強度が低下する問題がある。特に、フィン材は軽量化及びコスト低減のため、近年薄肉化の要求が高まる一方であり、より高強度化が求められている。
【0004】
ろう付時のエロージョンに関しては、フィン材の結晶粒界がろうの侵食経路となりやすく、フィン材のろう付時の再結晶粒が微細な場合、結果として材料中に結晶粒界が多く存在することとなり、その後のろう溶融により、エロージョンが生じやすくなる。このことから、フィン材の耐エロージョン性を向上させるためには、ろう付加熱時の再結晶粒を粗大化させる必要がある。しかし、一方で従来のフィン材を用いて、薄肉・高強度化の特性を得るには、ろう付時の再結晶粒を微細化させる必要(結晶粒微細化硬化)が生じる。このように強度及び耐エロージョン性の両特性は相反する側面があり、これら両特性に優れるAl合金フィン材が求められている。
【0005】
本発明は、上記事情を背景としてなされたものであり、ろう付時にエロージョンが生じにくく、しかも高強度で一層の薄肉化が可能な熱交換器用アルミニウム合金フィン材の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法のうち、請求項1記載の発明は、質量%で、Si:0.1〜1.5%、Mn:0.6〜2.5%、Ni:1.0超〜5.0%を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を、溶湯より連続鋳造圧延した後、冷間圧延を行う際に、中間焼鈍を少なくとも1回行い、最終冷間圧延の圧延率を20〜50%で行うことを特徴とする。
【0007】
請求項2記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法は、請求項1記載の発明において、前記Al合金組成に、さらに質量%で、Zr:0.05〜0.3%を含有することを特徴とする。
【0008】
請求項3記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法は、請求項1または2に記載の発明において、前記Al合金組成に、さらに質量%で、Zn:0.01〜5.0%を含有することを特徴とする。
【0009】
請求項4記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法は、請求項1〜3のいずれかに記載の発明において、前記Al合金組成に、さらに質量%で、Cr:0.01〜0.5%、V0.01〜0.5%、Co:0.01〜0.5%のうちの1種または2種以上を含有することを特徴とする。
【0010】
本発明の製造方法により得られる熱交換器用アルミニウム合金フィン材は、ろう付時に、エロージョンに対し優れた防止効果を発揮し、座屈による強度低下を回避することができ、さらに素材として高い強度を備えている。
【0011】
以下に、本願発明に用いられるアルミニウム合金の成分の限定理由を説明する。以下に示す含有量はいずれも質量%で表されている。
【0012】
Si:0.1〜1.5%
SiはAl−Mn−Si系の微細な析出物を生じ、再結晶粒を粗大化させ、ろう付加熱時の耐座屈性を向上させる働きと、フィン材の強度を向上させる働きがある。Si含有量を0.1〜1.5%に限定したのは、0.1%未満の含有であると、その効果が小さく、一方、1.5%を超えると、融点の低下により、ろう付時にフィン材が溶融する可能性があるためである。なお、同様の理由で下限を0.6%超、上限を1.2%未満とするのが望ましい。
【0013】
Mn:0.6〜2.5%
Mnは合金の強度を向上させるとともにAl−Mn(AlMn)あるいはAl−Mn−Si等の微細な析出物を生じ、再結晶粒を粗大化させ、ろう付加熱時の高温耐座屈性を向上させる働きと、フィン材の強度を向上させる働きがあり、その含有量を0.6〜2.5%と限定したのは、0.6%未満の含有ではその効果が小さく、2.5%を超えると、鋳造時の晶出物が粗大化し、加工性およびフィン材の諸特性が低下するためである。なお、同様の理由で、下限を0.75%に限定するのが望ましく、さらに下限を1.0%、上限を2.0%に定めるのが一層望ましい。
【0014】
Ni:1.0超〜5.0%
Niは微細析出物を形成し、耐高温座屈性を向上させる。Ni含有量を1.0超〜5.0%と限定したのは、1.0%以下の含有では、その効果が小さく、一方、5.0%を超えると、鋳造時の晶出物が粗大化しやすく、加工性およびフィン材の諸特性を低下させるためである。なお、同様の理由で上限を2.0%に定めるのが望ましい。
【0015】
Zr:0.01〜0.3%
Zrはろう付時に生じる再結晶粒を粗大化させて、耐エロージョン性を向上させるので、所望により含有させる。Zrの含有量を0.01〜0.3%と限定したのは、0.01%未満ではその効果が小さく、0.3%を超えると、鋳造時の晶出物が粗大化しやすく加工性を低下させるためである。なお、所望により添加する場合の含有量は下限をさらに0.05%とするのが望ましい。
【0016】
Zn:0.01〜5.0%
Znは電位を卑にし、フィン材の犠牲陽極効果をもたらすので所望により含有させる。Znの含有量を0.01〜5.0%としたのは、0.01%未満の含有ではその効果が小さく、一方、5.0%を超えるとフィン材の自己耐食性が低下するためである。Znを所望により添加する場合の含有量は下限をさらに1.0%超とするのが望ましい。また、犠牲陽極効果を付与するには、In,Sn等の添加も有効であり、それぞれ0.3%以下添加することが可能であり、その場合、下限を0.05%とするのが望ましい。
【0017】
Cr,V,Co:0.01〜0.5%
Cr,V,Coは固溶硬化により強度を向上させるので所望により一種以上を含有させる。Cr,V,Coの含有量をそれぞれ0.01〜0.5%と限定したのは、0.01%未満の含有ではその効果が小さく、一方、0.5%を超えると、鋳造時の晶出物が粗大化しやすく、加工性およびフィン材の諸特性を低下させるためである。
【0018】
Cu:0.05%以下
Cuは電位を貴にし、フィン材の犠牲陽極効果を低下させるので不可避不純物として、その含有量を規制するのが望ましい。Cuの含有量が0.05%以下が望ましいのは、0.05%を超えると、フィン材の電位が貴になり、チューブとの電位差が小さくなるため、期待の犠牲陽極効果が得られないとともに、鋳造時に割れ等が生じやすくなるためである。
【0019】
Fe:0.2%以下
FeはMn,Si等と粗大な金属間化合物(Al−Mn−Fe、Al−Fe−Si等)を作りやすく、それらの粗大晶出物が再結晶の核となるため、ろう付熱処理後の再結晶粒が微細となり、耐エロージョン性が低下する問題がある。このためFeは、不可避不純物として、その含有量を0.2%以下に規制するのが望ましい。Fe0.2%以下の場合、粗大晶出物の生成が抑制され、より優れた耐エロージョン性が期待できる。なお、同様の理由でFe含有量は、さらに0.10%以下であるのが一層望ましい。
【0020】
次に、本発明の製造工程を規定した理由を説明する。
本願発明では、上記組成のAl合金を溶湯より連続鋳造圧延する。連続鋳造圧延法には3C法、ハンター法等があるが、連続鋳造圧延は、通常の半連続鋳造法に比べて凝固速度が大きく、上記成分のアルミニウム合金では特に晶出物が微細化するため高い強度が期待され、ろう付時のエロージョンの防止効果も大きくなる。このため、本願発明では、上記アルミニウム合金成分の特定に加えて連続鋳造圧延法を採用するものとした。この際の板厚は、5〜15mm厚とするのが望ましい。板厚を5〜15mm厚とすることにより晶出物の粗大化の抑制効果は一層顕著になる。
【0021】
上記連続鋳造圧延後、冷間圧延を行う。この冷間圧延に際しては、中途で少なくとも1回の中間焼鈍を行う。本発明としては、当然に2回または3回以上の中間焼鈍を行うこともでき、1回のみの中間焼鈍であってもよい。
中間焼鈍は、熱間圧延および冷間圧延によって材料中に導入された歪みを除去し、その後の圧延性を向上させる目的で行う。最終の中間焼鈍は、最終製品での調質を制御することも目的とする。
【0022】
中間焼鈍の温度に関しては、特に規定はしないが、圧延による歪みを除去するためには、連続焼鈍炉では350〜500℃、バッチ炉では350〜400℃×3h程度の焼鈍により、完全に再結晶させるのが望ましい。
【0023】
最終中間焼鈍後の冷延率(最終冷延率):20〜50%
本発明フィン材は、連続鋳造法にて晶出物を微細化しているため、ろう付加熱時の再結晶の生成が阻害されやすい。最終の中間焼鈍時の板厚から最終の板厚に至るまでの圧延率(最終冷延率という)が、20%未満である圧下では再結晶の駆動力となるべき歪み量が不足し、その後のろう付時に完全に再結晶せず、亜結晶粒が残存し、耐エロージョン性が大きく低下する。一方、50%を越えると、ろう付時の再結晶粒が微細化し、耐エロージョン性が低下するため、上記最終冷延率を20〜50%とする。
【0024】
【発明の実施の形態】
本発明のフィン材に用いるアルミニウム合金は、上記組成に従って常法により溶製することができる。本発明では目的とする特性を確実かつ十分に導き出すために、連続鋳造圧延法が採用されている。該連続鋳造圧延法の内容は、本発明としては特定のものに限定されるものではなく、既知の方法を採用することができる。
【0025】
連続鋳造圧延後には、望ましくは1回以上の中間焼鈍を含むようにして、冷間圧延を行う。中間焼鈍、冷間圧延ともに周知の焼鈍炉、冷間圧延機装置を用いて行うことができる。
また、上記冷間圧延では、本発明の製造方法に従って最終中間焼鈍後の冷延率を20〜50%とする。
【0026】
上記により得られたフィン材は、所定の形状に加工し、通常はコルゲート加工を施してフィンとする。該フィンは、単独で製造してもよく、またろう材をクラッドしたブレージングシートとして製造することもできる。上記フィンは、チューブ間に設置するなどして組み付けれられ、加熱炉にてろう付処理が行われる。ろう材の配置は、フィンをブレージングシートとしたり、チューブをブレージングシートとしたり、また、置きろうや粉末ろうの塗布などにより行うことができ、本発明としては、その方法は特に限定されない。上記加熱炉は、所定の雰囲気に調整して加熱処理を行うものであってもよい。上記ろう付によってフィンはチューブ等に接合され、アルミニウムフィンを備えた熱交換器が得られる。該熱交換器は、自動車用等の各種の用途に使用することができる。該熱交換器では、フィンにおけるろう付時エロージョンが効果的に防止されて高い強度が維持されており、薄肉化においても十分な強度を発揮し、熱交換器の軽量化に寄与する。
【0027】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
表1に示すアルミニウム合金供試材を3C法による連続鋳造圧延(冷却速度約250℃/s)により6mm厚の連続鋳造圧延材を得た。また、比較のため、表1に示すアルミニウム合金供試材を半連続鋳造により溶製し、得られた鋳塊(20×52×125mm)を片面につき1/4インチずつ面削した後、530℃×4時間の均質化処理を行い、その後、熱間圧延(仕上温度350℃)により厚さ6mmの熱間圧延材を得た。
【0028】
上記各供試材に対し、一部を除き冷間圧延により1.3mm厚まで圧延した後、1回目の中間焼鈍として、連続焼鈍炉(CAL)にて500℃で連続焼鈍し、さらに所定板厚まで冷間圧延後、2回目の中間焼鈍として、360℃×3hのバッチ焼鈍を行った。その後、0.060mm厚まで冷間圧延を行った。2回目の中間焼鈍後、最終板厚に至る冷間圧延では、表に示すように、最終冷延率を変化させた。
次いで、上記各供試材に対し以下の特性試験を行った。
【0029】
耐エロージョン性
0.3mm厚のブレージングシート(JIS A 7072/3003/4343Al合金:犠牲陽極材/芯材/ろう材)のろう材面に、コルゲート加工した本発明フィン材および比較フィン材を組付け、これにフラックスを塗布した後、上記ろう付熱処理を実施した。なお、ろう付熱処理は、窒素ガス雰囲気中で600℃×3min保持後、−100℃/minで冷却を行った。
上記ろう付後、フィレットの形成状態で耐エロージョン性を評価した。すなわち、ろう侵食が認められないものを○印、著しいろう侵食あるものを×印で示した。
【0030】
強度
ろう付相当の熱処理を行った本発明フィン材および比較フィン材を用いて、引張試験片を作製し、これらの試験片を用いて、引張試験を行うことにより、強度を評価した。なお、評価は、170MPa以上のものを◎印、160〜170MPa未満のものを○印、160MPa未満のものを×印で示した。
【0031】
犠牲陽極効果
犠牲陽極効果は、チューブ芯材を想定した3003合金と各フィン材との電位差で評価した。なお、電位差100mV以上のものを◎印、電位差50〜100mV未満のものを○印、電位差50mV未満のものを×印で示した。
【0032】
【表1】

Figure 2004084015
【0033】
【表2】
Figure 2004084015
【0034】
上記特性試験の結果を表2に示す。表から明らかなように、本発明の製造方法により製造したフィン材は、耐エロージョン性、強度および犠牲陽極効果に優れていた。
【0035】
【発明の効果】
以上説明したように、本発明の熱交換器用アルミニウム合金フィン材の製造方法によれば、質量%で、Si:0.1〜1.5%、Mn:0.6〜2.5%、Ni:1.0超〜5.0%を含有し、所望によりZr:0.05〜0.3%を含有し、さらに所望によりZn:0.01〜5.0%を含有し、さらに所望によりCr:0.01〜0.5%、V0.01〜0.5%、Co:0.01〜0.5%のうちの1種以上を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を、溶湯より連続鋳造圧延した後、冷間圧延を行う際に、中間焼鈍を少なくとも1回行い、最終の中間焼鈍時の板厚から最終板厚に至る最終冷延率を20〜50%で行うので、ろう付時の耐エロージョン性およびろう付前後の強度に優れたフィン材が得られる。したがって、本発明の製造方法は、フィン材の薄肉・軽量化に大きく貢献するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy fin material for a heat exchanger used in an aluminum alloy heat exchanger produced by a brazing method.
[0002]
[Prior art]
In recent years, most automotive heat exchangers have been aluminized from the viewpoint of weight reduction, heat transfer coefficient, etc., and heat exchangers are assembled by fitting corrugated fins into tubes between tubes and joining them by brazing. ing. As the fin material for the heat exchanger, a 1000 series or 3000 series alloy is usually used. At the time of brazing, the above-mentioned fin material, tube, etc. are arranged in a heating furnace and heated to a high temperature of about 600 ° C. to melt the brazing material, and each member is joined together by a fillet formed by flowing the brazing material. are doing.
[0003]
[Problems to be solved by the invention]
However, when brazing a fin material made of a 1000 series or 3000 series alloy, remarkable erosion of the brazing occurs during brazing heat treatment, and the fins cause buckling and the like, and after brazing, the fin is used as a heat exchanger. However, there is a problem that the strength of the steel is reduced. In particular, the demand for thinner fin materials has been increasing in recent years for weight reduction and cost reduction, and higher strength has been demanded.
[0004]
Regarding erosion during brazing, the crystal grain boundaries of the fin material are likely to become erosion routes for the brazing material, and if the recrystallized grains during brazing of the fin material are fine, there will be many grain boundaries in the material as a result. Then, erosion is likely to occur due to the subsequent brazing. For this reason, in order to improve the erosion resistance of the fin material, it is necessary to coarsen the recrystallized grains during the heating with the addition of brazing. However, on the other hand, in order to obtain thinner and higher strength characteristics using a conventional fin material, it is necessary to refine recrystallized grains during brazing (crystal grain refinement hardening). As described above, both properties of strength and erosion resistance have contradictory aspects, and there is a demand for an Al alloy fin material excellent in both properties.
[0005]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of manufacturing an aluminum alloy fin material for a heat exchanger, which hardly causes erosion at the time of brazing, and which can be further thinned with high strength. And
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the method for producing an aluminum alloy fin material for a heat exchanger having excellent erosion resistance and strength according to the present invention, the invention according to claim 1 is characterized in that Si: 0.1 to 1. An Al alloy containing 5%, Mn: 0.6-2.5%, Ni: more than 1.0-5.0%, and having the balance of Al and unavoidable impurities, was continuously cast and rolled from molten metal. Thereafter, when performing the cold rolling, the intermediate annealing is performed at least once, and the final cold rolling is performed at a rolling reduction of 20 to 50%.
[0007]
The method for producing an aluminum alloy fin material for a heat exchanger having excellent erosion resistance and strength according to claim 2 is the method according to claim 1, wherein the Al alloy composition further contains, by mass%, Zr: 0.05 to It is characterized by containing 0.3%.
[0008]
According to a third aspect of the present invention, there is provided a method for producing an aluminum alloy fin material for a heat exchanger having excellent erosion resistance and strength. 0.11 to 5.0%.
[0009]
The method for producing an aluminum alloy fin material for a heat exchanger having excellent erosion resistance and strength according to claim 4 is the method according to any one of claims 1 to 3, wherein the aluminum alloy composition further includes It is characterized by containing one or more of Cr: 0.01 to 0.5%, V 0.01 to 0.5%, and Co: 0.01 to 0.5%.
[0010]
The aluminum alloy fin material for a heat exchanger obtained by the production method of the present invention exerts an excellent prevention effect against erosion at the time of brazing, and can prevent a decrease in strength due to buckling. Have.
[0011]
The reasons for limiting the components of the aluminum alloy used in the present invention will be described below. The contents shown below are all expressed in mass%.
[0012]
Si: 0.1 to 1.5%
Si forms fine Al-Mn-Si-based precipitates, coarsens recrystallized grains, and has a function of improving buckling resistance at the time of heat applied by brazing and a function of improving the strength of the fin material. The reason why the Si content is limited to 0.1 to 1.5% is that if the content is less than 0.1%, the effect is small. This is because the fin material may melt at the time of attachment. For the same reason, it is desirable to set the lower limit to more than 0.6% and the upper limit to less than 1.2%.
[0013]
Mn: 0.6-2.5%
Mn improves the strength of the alloy and generates fine precipitates such as Al-Mn (Al 6 Mn) or Al-Mn-Si, coarsens recrystallized grains, and has a high buckling resistance at the time of heating with brazing. There is a function of improving the strength of the fin material and a function of improving the strength of the fin material. The reason why the content is limited to 0.6 to 2.5% is that the effect is small when the content is less than 0.6%. If the content exceeds 5%, the crystallized product at the time of casting becomes coarse, and workability and various characteristics of the fin material deteriorate. For the same reason, it is preferable to set the lower limit to 0.75%, and it is more preferable to set the lower limit to 1.0% and the upper limit to 2.0%.
[0014]
Ni: more than 1.0 to 5.0%
Ni forms fine precipitates and improves high-temperature buckling resistance. The reason why the Ni content is limited to more than 1.0 to 5.0% is that the effect is small when the content is 1.0% or less, and when the content exceeds 5.0%, the crystallized product at the time of casting is reduced. This is because the material is easily coarsened and the workability and various characteristics of the fin material are reduced. For the same reason, it is desirable to set the upper limit to 2.0%.
[0015]
Zr: 0.01-0.3%
Zr is included as desired because Zr coarsens recrystallized grains generated during brazing and improves erosion resistance. The reason that the content of Zr is limited to 0.01 to 0.3% is that if the content is less than 0.01%, the effect is small, and if it exceeds 0.3%, the crystallized product at the time of casting tends to be coarse and workability is increased. It is for reducing. In addition, it is desirable that the lower limit of the content when added as desired is further 0.05%.
[0016]
Zn: 0.01-5.0%
Zn makes the potential lower and brings about a sacrificial anode effect of the fin material, so that Zn is optionally contained. The reason why the content of Zn is set to 0.01 to 5.0% is that if the content is less than 0.01%, the effect is small, while if it exceeds 5.0%, the self-corrosion resistance of the fin material is reduced. is there. When Zn is added as desired, the content is desirably set to a lower limit of more than 1.0%. Further, in order to impart the sacrificial anode effect, addition of In, Sn, or the like is also effective, and it is possible to add 0.3% or less of each, in which case the lower limit is preferably set to 0.05%. .
[0017]
Cr, V, Co: 0.01 to 0.5%
Since Cr, V, and Co improve the strength by solid solution hardening, one or more of them may be contained as desired. The content of Cr, V, and Co is limited to 0.01 to 0.5%, respectively, because the effect is small when the content is less than 0.01%, and when it exceeds 0.5%, the effect at the time of casting is reduced. This is because the crystallized product is likely to be coarsened, and the workability and various characteristics of the fin material are reduced.
[0018]
Cu: 0.05% or less Cu makes the potential noble and lowers the sacrificial anode effect of the fin material. Therefore, it is desirable to regulate the content of inevitable impurities as Cu. The Cu content is desirably 0.05% or less. If the Cu content exceeds 0.05%, the potential of the fin material becomes noble and the potential difference from the tube becomes small, so that the expected sacrificial anode effect cannot be obtained. At the same time, cracks and the like are likely to occur during casting.
[0019]
Fe: 0.2% or less Fe easily forms coarse intermetallic compounds (Al-Mn-Fe, Al-Fe-Si, etc.) with Mn, Si, etc., and these coarse crystals become nuclei for recrystallization. Therefore, there is a problem that the recrystallized grains after the brazing heat treatment become fine and the erosion resistance is reduced. Therefore, the content of Fe as an inevitable impurity is desirably regulated to 0.2% or less. When the content of Fe is 0.2% or less, generation of coarse crystals is suppressed, and more excellent erosion resistance can be expected. For the same reason, the Fe content is more preferably 0.10% or less.
[0020]
Next, the reason for defining the manufacturing process of the present invention will be described.
In the present invention, the Al alloy having the above composition is continuously cast and rolled from a molten metal. The continuous casting and rolling method includes the 3C method and the Hunter method. However, continuous casting and rolling has a higher solidification rate than a normal semi-continuous casting method. High strength is expected and the effect of preventing erosion during brazing is also increased. For this reason, in the present invention, a continuous casting and rolling method is adopted in addition to the specification of the aluminum alloy component. The plate thickness at this time is desirably 5 to 15 mm. By setting the plate thickness to 5 to 15 mm, the effect of suppressing the coarsening of the crystallized product becomes more remarkable.
[0021]
After the continuous casting and rolling, cold rolling is performed. During this cold rolling, at least one intermediate annealing is performed halfway. In the present invention, of course, the intermediate annealing may be performed twice, three or more times, or may be performed only once.
Intermediate annealing is performed for the purpose of removing the strain introduced into the material by hot rolling and cold rolling and improving the subsequent rollability. The final intermediate anneal also aims to control the tempering in the final product.
[0022]
The temperature of the intermediate annealing is not particularly specified, but in order to remove distortion due to rolling, complete annealing is performed at 350 to 500 ° C. in a continuous annealing furnace and about 350 to 400 ° C. for 3 hours in a batch furnace. It is desirable to make it.
[0023]
Cold rolling rate after final intermediate annealing (final cold rolling rate): 20 to 50%
In the fin material of the present invention, since the crystallized material is refined by a continuous casting method, the generation of recrystallization at the time of heating with brazing is easily inhibited. When the rolling reduction (final cold rolling reduction) from the sheet thickness at the time of the final intermediate annealing to the final sheet thickness is less than 20%, the amount of strain to be the driving force for recrystallization is insufficient. Does not completely recrystallize during brazing, subcrystal grains remain, and the erosion resistance is greatly reduced. On the other hand, if it exceeds 50%, the recrystallized grains at the time of brazing become finer and the erosion resistance decreases, so the final cold rolling reduction is set to 20 to 50%.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
The aluminum alloy used for the fin material of the present invention can be produced by a conventional method according to the above composition. In the present invention, a continuous casting and rolling method is employed to reliably and sufficiently derive desired properties. The content of the continuous casting and rolling method is not limited to a specific one as the present invention, and a known method can be adopted.
[0025]
After the continuous casting and rolling, cold rolling is preferably performed so as to include one or more intermediate annealings. Both the intermediate annealing and the cold rolling can be performed using a well-known annealing furnace and a known cold rolling mill.
In the cold rolling, the cold rolling ratio after the final intermediate annealing is set to 20 to 50% according to the production method of the present invention.
[0026]
The fin material obtained as described above is processed into a predetermined shape, and is usually subjected to corrugation to form a fin. The fins may be manufactured alone, or may be manufactured as a brazing sheet clad with a brazing material. The fins are assembled by, for example, being installed between tubes, and brazing is performed in a heating furnace. The brazing material can be arranged by using a brazing sheet for the fins, a brazing sheet for the tube, or by applying a wax or a powdered wax. The method of the present invention is not particularly limited. The heating furnace may be one that performs heat treatment by adjusting to a predetermined atmosphere. The fins are joined to a tube or the like by the above brazing, and a heat exchanger having aluminum fins is obtained. The heat exchanger can be used for various uses such as for automobiles. In the heat exchanger, erosion during brazing of the fins is effectively prevented, and high strength is maintained. Even when the thickness is reduced, sufficient strength is exhibited, which contributes to weight reduction of the heat exchanger.
[0027]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
The aluminum alloy test material shown in Table 1 was continuously cast and rolled by the 3C method (cooling rate: about 250 ° C./s) to obtain a 6 mm-thick continuously cast and rolled material. For comparison, the aluminum alloy test materials shown in Table 1 were melted by semi-continuous casting, and the obtained ingot (20 × 52 × 125 mm) was chamfered by 4 inch per side, and then 530 A homogenization treatment at 4 ° C. × 4 hours was performed, and then a hot-rolled material having a thickness of 6 mm was obtained by hot rolling (finish temperature: 350 ° C.).
[0028]
Except for a part, each of the test materials was rolled to a thickness of 1.3 mm by cold rolling, and then, as a first intermediate annealing, continuously annealed at 500 ° C. in a continuous annealing furnace (CAL), and furthermore, a predetermined plate. After cold rolling to a thickness, batch annealing at 360 ° C. for 3 hours was performed as the second intermediate annealing. Thereafter, cold rolling was performed to a thickness of 0.060 mm. In the cold rolling to the final sheet thickness after the second intermediate annealing, the final cold rolling rate was changed as shown in the table.
Next, the following characteristic tests were performed on each of the test materials.
[0029]
Erosion resistance A 0.3 mm thick brazing sheet (JIS A 7072/3003/4343 Al alloy: sacrificial anode material / core material / brazing material) is assembled with a corrugated fin material of the present invention and a comparative fin material. After applying a flux thereto, the above-mentioned brazing heat treatment was performed. Note that the brazing heat treatment was performed at a temperature of 600 ° C. for 3 minutes in a nitrogen gas atmosphere and then cooled at −100 ° C./min.
After the brazing, the erosion resistance was evaluated in the state where the fillet was formed. That is, those where no wax erosion was observed were marked with ○, and those with significant wax erosion were marked with x.
[0030]
Tensile test pieces were prepared using the fin material of the present invention and the comparative fin material that had been subjected to heat treatment corresponding to the strength brazing, and the tensile strength was evaluated by performing a tensile test using these test pieces. In the evaluation, those with 170 MPa or more were marked with ◎, those with 160 to less than 170 MPa were marked with ○, and those with less than 160 MPa were marked with x.
[0031]
Sacrificial anode effect The sacrificial anode effect was evaluated by the potential difference between the 3003 alloy assuming a tube core material and each fin material. In addition, those with a potential difference of 100 mV or more were marked with ◎, those with a potential difference of 50 to less than 100 mV were marked with ○, and those with a potential difference of less than 50 mV were marked with x.
[0032]
[Table 1]
Figure 2004084015
[0033]
[Table 2]
Figure 2004084015
[0034]
Table 2 shows the results of the characteristic test. As is clear from the table, the fin material manufactured by the manufacturing method of the present invention was excellent in erosion resistance, strength and sacrificial anode effect.
[0035]
【The invention's effect】
As described above, according to the method for manufacturing an aluminum alloy fin material for a heat exchanger of the present invention, Si: 0.1 to 1.5%, Mn: 0.6 to 2.5%, Ni : More than 1.0 to 5.0%, optionally containing 0.05 to 0.3% of Zr, further optionally containing 0.01 to 5.0% of Zn, further optionally A composition containing at least one of Cr: 0.01 to 0.5%, V 0.01 to 0.5%, and Co: 0.01 to 0.5%, with the balance being Al and unavoidable impurities. After continuous casting and rolling of the Al alloy having the molten metal, when performing cold rolling, intermediate annealing is performed at least once, and the final cold rolling rate from the final intermediate annealing thickness to the final thickness is 20 to Since it is performed at 50%, a fin material having excellent erosion resistance during brazing and strength before and after brazing can be obtained. Therefore, the manufacturing method of the present invention greatly contributes to the reduction in thickness and weight of the fin material.

Claims (4)

質量%で、Si:0.1〜1.5%、Mn:0.6〜2.5%、Ni:1.0超〜5.0%を含有し、残部がAlと不可避不純物からなる組成を有するAl合金を、溶湯より連続鋳造圧延した後、冷間圧延を行う際に、中間焼鈍を少なくとも1回行い、最終の中間焼鈍時の板厚から最終板厚に至る最終冷延率を20〜50%で行うことを特徴とする耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法。Composition containing, by mass%, Si: 0.1 to 1.5%, Mn: 0.6 to 2.5%, and Ni: more than 1.0 to 5.0%, with the balance being Al and unavoidable impurities. After performing continuous casting and rolling of an Al alloy having the following characteristics from the molten metal, when cold rolling is performed, intermediate annealing is performed at least once, and the final cold rolling ratio from the final intermediate annealing thickness to the final thickness is 20%. A method for producing an aluminum alloy fin material for a heat exchanger, which is excellent in erosion resistance and strength, characterized in that the fin material is used at a concentration of 50% to 50%. 前記Al合金組成に、さらに質量%で、Zr:0.05〜0.3%を含有することを特徴とする請求項1記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法。The aluminum alloy fin material for a heat exchanger according to claim 1, wherein the Al alloy composition further contains, by mass%, Zr: 0.05 to 0.3%. Production method. 前記Al合金組成に、さらに質量%で、Zn:0.01〜5.0%を含有することを特徴とする請求項1または2記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法。The aluminum alloy fin for a heat exchanger having excellent erosion resistance and strength according to claim 1 or 2, wherein the Al alloy composition further contains, by mass%, 0.01 to 5.0% of Zn. The method of manufacturing the material. 前記Al合金組成に、さらに質量%で、Cr:0.01〜0.5%、V0.01〜0.5%、Co:0.01〜0.5%のうちの1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の耐エロージョン性および強度に優れた熱交換器用アルミニウム合金フィン材の製造方法。One or more of Cr: 0.01 to 0.5%, V: 0.01 to 0.5%, and Co: 0.01 to 0.5% by mass% in the Al alloy composition. The method for producing an aluminum alloy fin material for a heat exchanger according to any one of claims 1 to 3, wherein the fin material is excellent in erosion resistance and strength.
JP2002247539A 2002-08-27 2002-08-27 Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength Pending JP2004084015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247539A JP2004084015A (en) 2002-08-27 2002-08-27 Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247539A JP2004084015A (en) 2002-08-27 2002-08-27 Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength

Publications (1)

Publication Number Publication Date
JP2004084015A true JP2004084015A (en) 2004-03-18

Family

ID=32055157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247539A Pending JP2004084015A (en) 2002-08-27 2002-08-27 Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength

Country Status (1)

Country Link
JP (1) JP2004084015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
CN116891964A (en) * 2023-09-11 2023-10-17 山东三源铝业有限公司 Composite layer-free self-brazing aluminum alloy material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142002A1 (en) * 2006-06-07 2007-12-13 Nippon Light Metal Company, Ltd. Clad aluminum alloy material for heat exchanger and process for producing the same
CN116891964A (en) * 2023-09-11 2023-10-17 山东三源铝业有限公司 Composite layer-free self-brazing aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008500453A (en) Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
CA2721747A1 (en) Sandwich material for brazing with high strength at high temperature
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP3505825B2 (en) Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing
EP2791378A1 (en) Aluminium fin alloy and method of making the same
JP5214899B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and method for producing the same
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JPH027382B2 (en)
JP2003138356A (en) Method for manufacturing high-strength aluminum-alloy brazing sheet for heat exchanger, having excellent brazability, formability and erosion resistance
JPH0811814B2 (en) Rolled aluminum alloy plate for heat exchanger fin and method for manufacturing the same
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP2004084015A (en) Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP4326906B2 (en) Manufacturing method of brazing sheet
JP2002256403A (en) Method of producing fin material for use in heat exchanger
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP2003027165A (en) Aluminum alloy clad plate for heat exchanger having excellent erosion resistance and formability