KR101312829B1 - HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법 - Google Patents

HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법 Download PDF

Info

Publication number
KR101312829B1
KR101312829B1 KR1020100090543A KR20100090543A KR101312829B1 KR 101312829 B1 KR101312829 B1 KR 101312829B1 KR 1020100090543 A KR1020100090543 A KR 1020100090543A KR 20100090543 A KR20100090543 A KR 20100090543A KR 101312829 B1 KR101312829 B1 KR 101312829B1
Authority
KR
South Korea
Prior art keywords
gene
human
cells
somatic
tnfr1
Prior art date
Application number
KR1020100090543A
Other languages
English (en)
Other versions
KR20110079485A (ko
Inventor
안규리
이병천
황종익
양재석
장구
조범래
구옥재
강정택
권대기
Original Assignee
한화엘앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화엘앤씨 주식회사 filed Critical 한화엘앤씨 주식회사
Priority to EP10841175.2A priority Critical patent/EP2520164B1/en
Priority to PCT/KR2010/009172 priority patent/WO2011081343A2/ko
Priority to US13/520,056 priority patent/US9018439B2/en
Publication of KR20110079485A publication Critical patent/KR20110079485A/ko
Application granted granted Critical
Publication of KR101312829B1 publication Critical patent/KR101312829B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7151Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/054Animals comprising random inserted nucleic acids (transgenic) inducing loss of function
    • A01K2217/056Animals comprising random inserted nucleic acids (transgenic) inducing loss of function due to mutation of coding region of the transgene (dominant negative)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • A01K2267/025Animal producing cells or organs for transplantation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20051Methods of production or purification of viral material

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 인간 HO-1 유전자 및 TNFR1-Fc 융합 유전자를 동시에 발현하는 면역거부 반응이 억제된 형질전환 돼지의 제조 방법, 상기 방법에 의해 제조된 면역거부 반응이 억제된 장기 이식용 형질전환 돼지, 상기 형질전환 돼지를 제조하기 위한 체세포 공여 세포주 및 상기 형질전환 돼지로부터 면역거부 반응이 억제된 장기를 제조하는 방법에 관한 것이다.

Description

HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법{Transgenic pig expressing HO-1 and TNFR1-Fc and the method of producing thereof}
본 발명은 인간 HO-1 유전자 및 TNFR1-Fc 융합 유전자를 동시에 발현하는 면역거부 반응이 억제된 형질전환 돼지의 제조 방법에 관한 것으로서, 상세하게는 a) 돼지로부터 체세포를 분리하는 단계; b) 인간 HO-1 (Heme oxygenase-1) 유전자 및 인간 TNFR1-Fc (Tumor necrosis factor receptor 1-Fc) 융합 유전자를 상기 체세포에 도입시키는 단계; c) 상기 유전자들이 도입된 체세포를 선별한 후 배양하는 단계; d) 돼지 난자의 핵을 제거하고 상기 선별된 체세포와 융합하여 체세포 핵이 이식된 수정란을 제조하는 단계; 및 e) 상기 수정란을 착상시키는 단계를 포함하는, 면역거부 반응이 억제된 형질전환 돼지의 제조 방법에 관한 것이다. 또한, 본 발명은 상기 방법에 의해 제조된 면역거부 반응이 억제된 장기 이식용 형질전환 돼지, 상기 형질전환 돼지를 제조하기 위한 체세포 공여 세포주, 및 상기 형질전환 돼지로부터 면역거부 반응이 억제된 장기를 제조하는 방법에 관한 것이다.
췌도 이식은 당뇨병을 치료하는 획기적인 치료방법이다. 그러나 폭발적인 당뇨병 환자의 증가는 심각한 공여 췌도의 부족을 야기하였다. 장기의 기능이 상실되어 더 이상 약물 치료 등과 같은 치료가 불가능할 때 타인의 장기 일부분이나 전부를 옮겨 심는 장기 이식의 경우, 대부분 살아 있는 사람으로부터 장기를 이식하는 방법을 많이 이용하고 있으며, 이에 따라 상기와 같은 폭발적인 당뇨병 환자의 증가에 따른 공여 췌도의 부족에 대한 문제를 해결하기 위한 여러 가지 시도가 이루어지고 있다. 그 예로 줄기세포를 이용한 방법과 이종(異種) 간에 장기를 이식하는 방법 등이 있다. 줄기세포는 필요한 수만큼 세포를 분화 증식시켜 손상된 세포를 대신하여 치료할 수 있는 방법이나, 여러 가지 세포로 구성된 장기로 발달시킬 수 없는 한계가 있다. 따라서 장기를 필요로 하는 경우는 직접적으로 장기를 교체시킬 수 있는 방법으로 이종장기를 이용하는 방법이 있다.
충분한 공여 췌도의 확보가 가능한 동물을 이용한 이종 간의 이식은 인간의 장기를 대체할 수 있는 여러 가지 방법 중 하나의 대안으로 떠오르고 있으며, 대체장기를 공급하는 동물로서 원숭이, 돼지 등 여러 동물이 시도되었다. 그 중 돼지는 해부학적 및 생리학적으로 사람과 매우 유사한 구조로 장기가 사람과 유사한 크기이고, 사육이 쉽고 임신기간 (112일)이 짧으면서도 한꺼번에 많은 수의 새끼 (6~12마리)를 낳을 수 있는 장점이 있어서 돼지의 췌도 세포를 이용하고자 하는 연구가 활발히 진행되고 있다.
췌도 이식을 위해 췌도를 분리하게 되면 시험관내 (in vitro) 상태에서 일정 시간 배양 후 췌도 이식을 시행하게 된다. 하지만 췌도 분리 과정 동안에 산화적 스트레스 (oxidative stress)와 다른 세포 손상의 원인들이 발생하게 되면 이들은 췌도 세포를 시험관내 (in vitro) 상태에서 배양을 할 때 세포사를 유도하게 된다. 따라서 인슐린을 분비하는 세포를 산화적 스트레스로부터 보호하는 것이 췌도 이식 후 초기 이식 거부를 예방하는 중요한 접근법이라 할 수 있다 (Biarnes et al., Diabetes 2002; 51: 66-72.). 뿐만 아니라 이식 후 일어나는 염증 반응은 이식 췌도의 생존율을 감소시킬 수 있기 때문에 염증 반응의 조절 역시 매우 중요하다.
HO-1 (Heme oxygenase-1)은 헴 (heme)을 최종적으로 빌리루빈 (bilirubin)과 Fe2 +으로 분해하는 효소이며, 또한 항산화 효소로써 라디칼 소거 (radical scavenging)나 아폽토시스 억제를 통해 세포 보호 기능을 하는 것으로 알려져 있다.
TNF-α는 대표적인 염증 유발성 사이토카인으로써 단핵구/대식세포 및 자연살해 세포 등에서 주로 발현되어 염증 반응을 유발하는 매개체이다. 이전의 많은 연구들에서 TNF-α는 동종 이식 (allotransplantation) 뿐만 아니라 이종 이식 (xenotransplantation)에서도 면역 거부 반응을 유도하는 원인 중 하나라고 보고하였다 (Carel JC. et al., Transplantation, 1993, 55(2):456-458; Rosenblum MG. et al., Cancer . Immunol . Immunother ., 1995,40(5):322-328; Lin Y. et al., Transplantation, 1997,64(12):1677-1683; Lin H. et al., J. Surg . Res, 1997, 72(1):84-88; Jorgensen C. et al., Immunology, 1998, 93(4):518-523; Nagy T. et al., APMIS, 1999, 107(10):903-912; Benda B et al., Xenotransplantation, 2000, 7(3):206-213; Kirkiles-Smith NC. et al., J. Immunol ., 2000, 164(12):6601-6609).
그러나, 인간의 HO-1 유전자와 인간의 TNF-α를 억제할 수 있는 TNFR1-Fc 융합 유전자를 동시에 돼지에 도입시켜 형질전환 돼지를 제조함으로서, 이로부터 췌도 세포 분리시 산화적 스트레스로부터 췌도 세포를 보호할 수 있으며 동시에 이식 후 나타나는 염증 반응으로부터 췌도 세포를 보호함으로써 췌도 세포 이식의 성공률을 높여 줄 수 있다는 기술적 아이디어는 어디에도 개시된 바가 없다.
이에 본 발명자들은 면역 거부 반응이 억제되고 산화적 스트레스로부터 췌도 세포를 보호하고 이식 후 나타나는 염증 반응으로부터 췌도 세포를 보호하기 위한 방법을 개발하기 위해 예의 노력한 결과, 인간의 HO-1 유전자 및 인간의 TNFR1 외역 부위와 IgG Fc 부위를 결합한 TNFR1-Fc 융합 단백질 발현 유전자, 두 유전자를 도입한 돼지 세포, 및 이를 공여 세포로 하는 핵이식을 통해 형질전환 돼지의 제조 방법을 개발하여 본 발명을 완성하였다.
본 발명의 하나의 목적은 인간 HO-1 (Heme oxygenase-1) 유전자 및 인간 TNFR1-Fc (Tumor necrosis factor receptor 1-Fc) 융합 유전자가 도입되어, 면역거부 반응이 억제된 형질전환 돼지의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 방법으로 제조된 면역거부 반응이 억제된 형질전환 돼지를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 형질전환 돼지를 제조하기 위한 체세포 공여 세포주를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 방법에 의해 형질전환 돼지를 제조하는 단계; 및 상기 형질전환 돼지로부터 이식용 장기를 분리하는 단계를 포함하는, 면역거부 반응이 억제된 장기를 제조하는 방법을 제공하는 것이다.
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 a) 돼지로부터 체세포를 분리하는 단계; b) 인간 HO-1 (Heme oxygenase-1) 유전자 및 인간 TNFR1-Fc (Tumor necrosis factor receptor 1-Fc) 융합 유전자를 상기 체세포에 도입시키는 단계; c) 상기 유전자들이 도입된 체세포를 선별한 후 배양하는 단계; d) 돼지 난자의 핵을 제거하고 상기 선별된 체세포와 융합하여 체세포 핵이 이식된 수정란을 제조하는 단계; 및 e) 상기 수정란을 착상시키는 단계를 포함하는, 면역거부 반응이 억제된 형질전환 돼지의 제조 방법에 관한 것이다.
본 발명에서 사용된 용어 "HO-1 (Heme oxygenase-1) 유전자"란 중금속, 내독소 (endotoxin), 자외선, 열충격 (heat shock), 활성산소 및 저산소 상태 등과 같은 각종 스트레스원에 의해 세포 내에서 유도 발현되는 효소를 코딩하는 유전자를 의미한다. HO-1은 헴 (heme)을 최종적으로 빌리루빈 (bilirubin)과 Fe2 +으로 분해하는 효소이며, 또한 항산화 효소로써 라디칼 소거 (radical scavenging)나 아폽토시스 억제를 통한 세포 보호 기능을 함으로써 이식된 췌도의 기능을 향상시킨다. 본 발명에서 HO-1은 CD4+ T-세포 증식을 억제하고 동시에 내피세포 증식을 활성화하여 생체 내의 면역세포들을 정상화시킴으로써 이종 면역 거부 반응 억제 및 췌도 세포 분리시 산화적 스트레스에 대한 저항성을 보이며 아폽토시스 억제를 통해 췌도 세포를 보호한다.
바람직하게 상기 인간 HO-1 유전자는 공지의 유전자 데이터 베이스에서 그 서열을 얻을 수 있으며, 돼지의 체세포에 도입되어 HO-1의 기능을 나타낼 수 있는 서열을 제한 없이 사용할 수 있으나 바람직하게는 서열번호 1로 기재되는 인간 HO-1 유전자를 사용할 수 있다.
본 발명에서 사용된 용어, "TNFR1-Fc (Tumor necrosis factor receptor 1-Fc) 융합 유전자"란 TNF-α와 결합할 수 있는 TNFR1의 세포외역 부위와 면역 글로불린의 Fc 영역이 융합된 형태를 의미한다. 본 발명에서 용어 "TNFR1-Fc 융합 유전자"와 "TNFR1-Fc 유전자"는 구별 없이 사용된다. 본 발명에서 TNFR1-Fc 형태는 TNF-α에 결합하여 TNF-α를 억제할 수 있는 형태는 제한 없이 사용할 수 있으나, 바람직하게는 수용성 (soluble) 형태인 수용성 종양괴사인자 수용체1 (soluble TNFR1, sTNFR1) 및 면역 글로불린의 Fc 영역이 융합된 형태를 사용할 수 있다.
본 발명에서 사용된 용어, "면역글로불린 Fc 영역"은 면역글로불린의 중쇄와 경쇄 가변영역, 중쇄 불변영역 1(CH1)과 경쇄 불변영역 1(CL1)을 제외한, 중쇄 불변영역 2(CH2) 및 중쇄 불변영역 3(CH3)부분을 의미하며, 중쇄 불변영역에 힌지(hinge) 부분을 포함하기도 한다. 또한 본 발명의 면역글로불린 Fc 영역은 천연형과 실질적으로 동등하거나 향상된 효과를 갖는 한, 면역글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄 불변영역 1(CL1)을 포함한 확장된 Fc 영역일 수 있다. 또한, CH2 및/또는 CH3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수도 있다. 즉, 본 발명의 면역글로불린 Fc 영역은 1)CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인, 2)CH1 도메인 및 CH2 도메인, 3)CH1 도메인 및 CH3 도메인, 4)CH2 도메인 및 CH3 도메인, 5)1개 또는 2개의 이상의 도메인과 면역글로불린 힌지 영역(또는 힌지 영역의 일부)과 조합, 6)중쇄 불변영역 각 도메인과 경쇄 불변영역의 이량체일 수 있다. 또한, 본 발명의 면역글로불린 Fc 영역은 천연형 아미노산 서열뿐만 아니라 이의 서열 유도체(mutant)를 포함한다. 아미노산 서열 유도체란 천연 아미노산 서열 중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다. 예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다. 또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가될 수도 있는 등 다양한 종류의 유도체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예로 C1q 결합부위가 제거될 수도 있고, ADCC 부위가 제거될 수도 있다. 이러한 면역글로불린 Fc 영역의 서열 유도체를 제조하는 기술은 국제특허공개 제 97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation), 아밀화(amidation) 등으로 수식(modification)될 수도 있다. 상기 기술한 Fc 유도체는 본 발명의 Fc 영역과 동일한 생물학적 활성을 나타내나 Fc 영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 유도체다.
한편, 면역글로불린 Fc 영역은 인간 또는 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물기원일 수 있으며, 바람직하게는 인간기원이다. 또한, 면역글로불린 Fc 영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 Fc 영역일 수 있다. 바람직하게는 인간 혈액에 가장 풍부한 IgG 또는 IgM 유래이며 가장 바람직하게는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래이다.
한편, 본 발명에서 용어,“조합(combination)”이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 Fc 영역을 암호화하는 폴리펩타이드가 상이한 기원의 단쇄 폴리펩타이드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
본 발명에서 용어, "하이브리드(hybrid)"란 단쇄의 면역글로불린 Fc 영역 내에 2개 이상의 상이한 기원의 면역글로불린 Fc 단편에 해당하는 서열이 존재함을 의미하는 용어이다. 본 발명의 경우 여러 형태의 하이브리드가 가능하다. 즉, IgG Fc, IgM Fc, IgA Fc, IgE Fc 및 IgD Fc의 CH1, CH2, CH3 및 CH4로 이루어진 그룹으로부터 1개 내지 4개 도메인으로 이루어진 도메인의 하이브리드가 가능하며, 힌지를 포함할 수 있다. 한편, IgG 역시 IgG1, IgG2, IgG3 및 IgG4의 서브클래스로 나눌 수 있고 본 발명에서는 이들의 조합 또는 이들의 혼성화도 가능하다.
본 발명에서 사이토카인의 수용성 수용체와 면역 글로블린 (이하 'Ig'라 함)의 융합체는 원래 분자의 단일체 (monomer) 또는 Ig와 융합되지 않은 분자에 비해 다음과 같은 장점을 가질 수 있다:
1) 이량체 (dimer) 형태에서 융합 단백질은 이가화 (bivalency)가 되므로 리간드에 대한 총 친화력 (avidity)이 증가;
2) 혈청 내에서 파괴되지 않고 존재할 수 있는 기간의 증가, 즉 분자의 안정성 증가;
3) 면역 글로블린 중쇄의 Fc (Fragment crystallizable)를 통한 효과세포(effector cell)의 활성화; 및
4) 단백질 분리 정제의 편리성[예, 프로테인 A를 이용한 분리 정제].
본 발명의 융합체는 중쇄부위의 CH1 도메인을 제외한 형태로 제작되며 그 결과 면역 글로블린의 경쇄(light chain)와 결합하지 않은 이량체로 제조될 수 있다.
바람직하게 상기 인간 TNFR1 및 Fc 각각의 유전자에 관한 서열을 공지의 데이터 베이스에서 얻을 수 있으며, 돼지의 체세포에 도입되어 TNFR1-Fc 융합 단백질의 기능을 나타낼 수 있는 서열은 제한 없이 사용할 수 있으나, 바람직하게는 서열번호 8로 기재되는 TNFR1-Fc 융합 유전자를 사용할 수 있다.
본 발명에서 용어, "형질전환 돼지"란 외부에서 도입된 유전자를 재조합하여, 이를 돼지의 염색체 상에 인공적으로 삽입시킴으로써 그 형질의 일부가 변화된 돼지를 의미하며, 동물의 종류는 돼지가 바람직하지만 자연계의 포유류로써 인간에게 장기를 이식할 수 있는 동물에도 본 발명의 방법을 적용하여 면역거부 반응이 억제된 형질전환 동물을 제조할 수 있다.
바람직한 일 실시태양으로, 상기 a) 단계의 돼지로부터 체세포를 분리하는 단계에 있어서, 상기 돼지로부터 분리한 체세포는 돼지의 태아 또는 성돈 유래의 체세포를 제한 없이 사용할 수 있다. 돼지 태아를 사용할 경우, 돼지 태아는 임신 20 내지 40일령의 태아인 것이 바람직하며, 더욱 바람직하게는 임신 25 내지 35일 경일 수 있다. 본 발명의 구체적인 일 실시예에서는 임신 25 내지 35일 경의 태아를 사용하여 돼지 체세포를 분리하였다. 체세포를 분리하기 위한 방법으로는 종래의 공지된 방법이 제한 없이 사용될 수 있으며, 본 발명의 구체적인 일 실시예에서는 수술용 칼로 돼지 태아의 등부분족 피부를 분리하여 섬유아세포를 수득하여 사용하였다.
바람직한 일 실시태양으로, 상기 b) 단계의 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자를 상기 체세포에 도입시키는 단계에 있어서, 바람직하게는 상기 인간 HO-1 유전자는 서열번호 1로 기재되는 유전자이며, 상기 인간 TNFR1-Fc 융합 유전자는 서열번호 8로 기재되는 유전자일 수 있다.
바람직한 일 실시태양으로 상기 b) 단계의 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자를 도입시키는 방법은 상기 유전자를 포함하는 발현 벡터를 도입하거나, 유전체상에서 당해 유전자의 카피수를 증가시키거나, 당해 유전자의 프로모터 서열을 치환 또는 변형에 의해 도입 또는 과발현시킬 수 있다.
상기 유전자를 세포 내로 형질도입시키는 방법으로는 생화학적 방법, 물리적 방법 또는 바이러스 매개로 한 형질도입 방법이 사용될 수 있으며, 바람직하게는 생화학적 방법으로 FuGene6 (Roche, USA), 리포펙타민 (LipofectamineTM2000, Invitrogen, USA) 또는 ExGen 500 (MBI Fermentas International Inc. CANADA)를 이용할 수 있으며, 보다 바람직하게는 리포펙타민을 이용한 지질 매개법을 사용할 수 있다. 또한, 상기 유전자를 포함하는 발현벡터는 돼지 체세포 주에서 발현시킬 수 있는 모든 발현벡터를 사용할 수 있으며, 본 발명의 구체적인 실시예에서는 인간 HO-1 유전자를 포함하는 발현벡터로서 pcDNA 3.1 벡터를 사용하였고 인간 TNFR1-Fc 융합 유전자를 포함하는 발현벡터로서 pcDNA6를 사용하였다.
바람직한 일 실시태양으로 상기 b) 단계의 인간 HO-1 유전자를 포함하는 단일 벡터, 바람직하게는 도 1의 개열지도를 갖는 벡터, 및 인간 TNFR1-Fc 융합 유전자를 포함하는 단일 벡터, 바람직하게는 도 4의 개열지도롤 갖는 벡터를 순차적으로 또는 동시에 체세포에 도입시키는 방법에 의해 이루어질 수 있다. 본 발명의 구체적인 일 실시예에서는 네오마이신 저항성 유전자를 포함하는 발현 벡터인 pcDNA3.1 벡터에 인간 HO-1 유전자를 삽입하여 도 1의 개열지도를 갖는 벡터를 제작하였고, 삽입된 유전자의 발현 여부를 HEK239 세포주에서 확인하였다 (도 3). 또한 블라스티사이딘 (blasticidine) 저항성 유전자를 포함하는 유전자 발현 벡터인 pcDNA6에 인간 TNFR1-Fc 융합 유전자를 삽입하여 도 4의 개열지도를 갖는 벡터를 제작하였고, 삽입된 유전자의 발현 여부를 HEK239 세포주에서 확인하였다 (도 6).
본 발명에서 용어, "벡터"란 상기 벡터가 도입된 세포에서 목적 유전자를 발현할 수 있는 발현 벡터로서, 벡터 내에 도입된 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 말한다. 바람직하게 본 발명은 인간 HO-1 유전자 또는 인간 TNFR1-Fc 융합 유전자를 포함하는 재조합 벡터를 제조할 수 있으며, 상기 제조된 재조합 벡터를 이용하여 이를 체세포에 도입함으로써, 형질전환된 수정란을 제조하기 위한 공여 세포주를 제작할 수 있게 된다.
바람직하게 본 발명에서 사용되는 프로모터는 당업계에서 통상적으로 사용되는 발현벡터를 제조하기 위한 프로모터 서열을 제한 없이 사용할 수 있다. 사용될 수 있는 프로모터의 예로는 CMV 프로모터, SV40 프로모터 또는 CAG 프로모터 등이 있으나, 상기 예에 의해 본 발명에서 사용 가능한 프로모터 서열이 제한되는 것은 아니다. 이러한 프로모터는 필요에 따라 조직 특이적으로 발현시키기 위하여 특정 프로모터를 사용할 수 있다.
또한 바람직하게 본 발명의 폴리아데닐화 서열은 통상적으로 사용되는 폴리아데닐화 서열, 예를 들면 SV40 폴리아데닐화 서열, 인간 성장호르몬 폴리아데닐화 서열, 마우스 프로타민-1 유전자 폴리아데닐화 서열 (protamine-1 poly A signal), 라지 T 항원 폴리 A 영역 (large T antigen poly A region)으로 부터 유래된 폴리아데닐화 서열, 토끼 β-글로빈 (β-globin)으로부터 유래된 폴리아데닐화 서열 또는 소태아 성장 호르몬 폴리아데닐화 서열 등이 제한 없이 사용될 수 있다.
인간 HO-1 유전자 또는 인간 TNFR1-Fc 융합 유전자가 발현되었는지를 확인하기 위하여, 본 발명의 벡터 내에는 단백질 분리 정제 또는 확인용 태그 서열을 추가적으로 포함할 수 있다. 태그 서열의 예로는 GFP, GST (Glutathione S-transferase)-tag, HA, His-tag, Myc-tag, T7-tag 등이 있으나, 상기 예들에 의해 본 발명의 태그 서열이 제한되는 것은 아니다.
바람직한 일 실시태양으로 상기 c) 단계에 있어서, b) 단계의 발현벡터가 도입된 체세포는 선별마커가 도입된 발현벡터를 사용함으로써 용이하게 선별할 수 있다. 선별마커로는 항생제 내성 유전자가 사용될 수 있다. 상기 항생제 내성 유전자에는 bsdr, neor, pacr, bsrr, hphr 등이 사용될 수 있으나, 반드시 여기에 제한되는 것은 아니다. 본 발명의 구체적인 일 실시예에서는 neor를 사용하여 세포 배양액에 네오마이신을 처리해서 인간 HO-1 유전자를 포함하는 발현 벡터가 도입된 체세포를 선별하였고 (도 9), bsdr를 사용하여 세포 배양액에 블라스티사이딘을 처리해서 인간 TNFR1-Fc 융합 유전자를 포함하는 발현 벡터가 도입된 체세포를 선별하였다 (도 10).
바람직한 일 실시태양으로 상기 d) 단계에 있어서, 본 발명의 난자로 미경산돈의 난소에서 체취된 미성숙 난자를 배양하여 사용할 수 있다.
본 발명에서 용어, "핵이식 (nuclear transfer)"이란 세포의 핵을 이미 핵을 제거한 난자에 넣어 이식시키는 것을 의미하며, 이런 핵이식된 수정란을 착상시켜서 태어난 개체는 핵공여 세포의 유전적 물질이 핵수여 세포질로 그대로 전달되었기 때문에 유전적으로 완전히 동일한 복제 개체이다.
난자의 유전 물질을 제거하는 방법에는, 물리적인 방법, 화학적인 방법, Cytochalasin B 를 사용한 원심분리법 등이 있다 (Tatham et al., Hum Reprod., 11(7);1499-1503, 1996). 본 발명에서는, 미세조작기를 이용하여, 물리적인 핵 제거 방법을 사용하였다. 유전자 타겟팅된 체세포는 세포막융합법, 세포질내미세주입법 등을 이용하여 핵이 제거된 난자내로 도입된다. 세포막융합법은 간단하며 대규모 수정란 생산에 적합하다는 장점이 있으며, 세포질내 미세주입법은 핵과 난자내 물질들과의 접촉을 극대화시킨다는 장점이 있다. 체세포와 핵이 제거된 난자와의 융합은 전기자극을 통하여 세포막의 점도를 변화시켜 융합시키는 방법을 통하여 재조합한다. 이때, 미세전류ㆍ전압을 자유롭게 조정할 수 있는 전기융합기를 이용하면 편리하다. 본 발명의 구체적인 실시예에서는 미세조작에 의해 물리적으로 상기 난자의 핵을 제거하고, 핵이 제거된 난자와 상기 선별된 체세포인 공여 세포주를 전기적 자극으로 융합시켜 수정란을 제조하였다.
바람직한 일 실시태양으로, 상기 e) 단계에 있어서, 체세포 핵이 이식된 수정란의 이식을 위한 대리 모돈은 발정이 시작된 개체를 선별하는 것이 바람직하다.
핵이식된 수정란은 활성화시켜 이식 가능한 단계까지 발생시킨 후 대리모로 착상된다. 복제 수정란의 활성화는 수정란이 분열할 수 있도록 성숙과정에서 일시적으로 정지되어진 세포주기를 다시 가동시키는 것을 의미한다. 복제수정란 활성화를 위하여서는 세포주기 정지요소인 MPF, MAP 키나제 등의 세포신호전달물질의 활성을 저하시켜야만 하는데, 이를 위하여서는 복제 수정란 내 칼슘 이온 증가가 필수적이다. 크게 전기적 자극에 의하여 세포막 투과도를 변형하여, 세포 외로부터 칼슘유입을 급격히 증가시키는 방법과 이노마이신(ionomycin) 및 6-DMAP 등의 화학적 물질을 이용하여 세포주기 정지요소의 활성을 직접적으로 저해시키는 방법 등이 단독 또는 병용되어지고 있다.
본 발명의 구체적인 실시예에서는 TNFR1-Fc 융합 유전자의 생체 외 기능을 평가하기 위해, 돼지 혈관 내피 세포주가 TNF-α자극에 의해 VCAM-1의 발현이 증가함을 확인하고 (도 7), 본 발명의 TNFR1-Fc 융합 유전자를 포함하는 벡터로 형질전환된 돼지 혈관 내피 세포주에서는 TNF-α자극에 의해서도 VCAM-1의 발현의 변화가 없음을 확인하여 (도 8), TNFR1-Fc 융합 유전자에 의해 TNF-α를 효과적으로 억제할 수 있음을 확인하였다 (실시예 2). 이는 본 발명에 의해 제작된 TNFR1-Fc 융합 유전자를 발현하는 형질전환 돼지가 TNF-α에 의한 염증 반응을 감소시킬 수 있을 뿐만 아니라 이종 이식의 면역 거부 반응을 억제할 수 있다는 것을 암시하는 결과이다.
또한, 본 발명의 구체적인 실시예에서는 공여 핵 세포주에서 HO-1 유전자의 발현을 RT-PCR을 통해 확인하였고 (도 9), TNFR1-Fc 융합 단백질의 발현을 웨스턴 블랏을 통해 확인하였다 (도 10). 이는 본 발명에 의해 제작된 형질전환 돼지의 췌도 분리시 산화적 스트레스에 저항성을 보이며 아폽토시스 억제를 통해 췌도 세포를 보호할 수 있고 이식 후 일어나는 TNF-α 매개의 염증 반응을 감소시킬 수 있으며, 수지상 세포의 성숙을 억제하고 T 세포의 증식과 활성화를 조절함으로써 이식 거부 반응을 감소 시킬 수 있어서 면역 거부반응이 억제됨과 동시에 이식된 이종 췌도 세포의 초기 생착을 촉진시킬 수 있다는 것을 암시하는 결과이다.
본 발명의 구체적인 실시예에서는 본 발명의 방법으로 제조된 형질전환돼지가 안정적으로 HO-1 유전자 및 TNFR1-Fc 융합 유전자를 발현하는 것을 PCR을 통해 확인하였다 (도 11).
아울러, 본 발명의 구체적인 실시예에서는 신생 돼지의 췌도에 GFP, sTNFR1-Fc, HO-1을 발현하는 아데노바이러스 (Ad-GFP, Ad-sTNFR1-Fc, Ad-HO1)를 각각 감염시킨 후, Normaia (정상산소 상황) 및 Hypoxia (저산소 상황)에서 생존율을 MTT 분석으로 분석한 결과, Hypoxia 상황에서 Ad-HO-1 감염군과 Ad-sTNFR1-Fc 및 Ad-HO1의 동시 감염군에서 아데노바이러스를 감염시키지 않은 군에 비해 각각 약 40%와 약 60%의 세포 생존율이 증가하는 것을 확인하였다 (도 12). 이는 일반적으로 장기 이식시 일어나는 Hypoxia (저산소 상황)에서 면역반응이 증가함으로 인해 면역거부반응이 증가하며 산화적 스트레스를 받아서 췌도 등의 이식에서 문제가 있는 기존의 상황하에서, sTNFR1-Fc 및 HO-1을 발현하는 본 발명의 돼지를 이용할 경우 이식 세포 또는 조직의 생존율이 보통의 돼지 세포보다 증가하여 면역이식 시 일어나는 거부반응 억제는 물론 산화적 스트레스로부터 장기를 보호할 수 있음을 시사하는 것이다.
이로써, 본 발명의 형질전환 돼지의 제조 방법을 이용하면 안정적으로 인간 HO-1 유전자 및 TNFR1-Fc 융합 유전자를 발현하며 이는 당뇨병의 치료를 위한 췌도 이식 뿐 아니라 장기 이식시 산화적 스트레스로부터 세포 또는 조직을 보호하고, 장기 이식시 면역 거부 반응이 억제된 돼지를 제조할 수 있음을 나타낸다.
또 하나의 양태로서, 본 발명은 상기 제조 방법으로 제조된 면역 거부 반응이 억제된 장기 이식용 형질전환 돼지에 관한 것이다.
바람직한 일 실시태양으로, 상기 장기는 인간에게 이식할 수 있는 돼지의 모든 장기를 제한 없이 포함하나 바람직하게는 췌도일 수 있다.
본 발명에서 사용된 용어 "췌도"란 랑게르한스섬(Langerhans islets)을 의미하며, 췌도 이식은 제1형 당뇨병의 개선을 위한 실용적인 치료법이다. 그러나, 임상적인 췌도 이식 과정은 다수의 요인에 의해 그 실시가 까다롭다. 한가지 요인은 이식편의 1차적 비기능성(PNF)이다. 또 다른 요인은 성공적인 당뇨병 반전을 위해서는 공여자의 췌도가 다수 필요하다는 것이다. 상기 두가지 상황은 동일한 병태생리 현상을 반영한다: 즉, 이식 후 첫주 내로 이식편의 대부분의 세포가 상실된다. 이식 후 췌도는 2차 혈관형성 전에 저산소증과 같은 다양한 스트레스 인자에 노출되며, 이식편의 미소환경 하의 대식세포 및 상재 췌도 대식세포로부터 방출된 전구염증성 사이토카인 및 자유 라디칼에 노출된다. 면역억제성 약물의 독성 효과뿐 아니라 거부반응 역시 췌도 세포 손실에 기여한다. 실험적 상승작용성 췌도 이식 후의 PNF의 존재는 비특이적 염증이 이러한 시나리오에서 주요 역할을 한다는 것을 암시한다.
이에 바람직하게 본 발명의 방법에 의해 제조된 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자 발현을 하는 형질전환 돼지로부터 추출한 장기는 상기와 같은 문제점을 해결하여 당뇨병의 치료에 획기적인 방법을 제공할 수 있다.
또 하나의 양태로서, 본 발명은 상기 형질전환 돼지를 생산하기 위한 체세포 공여 세포주에 관한 것이다.
바람직한 일 실시태양으로, 상기 체세포 공여 세포주는 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자를 안정적으로 발현하는 세포주는 제한 없이 사용할 수 있으나, 바람직하게는 기탁번호 KCLRF-BP-00225인 체세포 공여 세포주일 수 있다.
본 발명의 상기 방법으로 돼지 체세포에 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자를 효율적으로 주입하여 인간 HO-1 유전자 및 인간 TNFR1-Fc 융합 유전자를 발현하는 돼지 체세포 공여 세포주를 선별하였다. 체세포 공여 세포주는 유전체에 주입된 발현 벡터의 위치가 동일하다는 특징이 있다. 발현 벡터가 도입된 체세포 공여 세포주를 만들지 않으면 유전자는 도입되어 있지만 유전자의 삽입부위가 각각의 체세포마다 다르게 된다. 유전자가 염색체의 어느 부위에 삽입되었는지 여부에 따라 세포마다 단백질 발현 양상이 조금씩 다를 수 있기 때문에, 이러한 세포를 이용하여 돼지를 생산하게 되면 도입된 유전자의 발현양상이 개체에 따라 조금씩 다르게 나타나게 된다. 본 발명의 구체적인 실시예에서는 상기와 같은 문제점을 해결하여 체세포 공여 세포주를 확립하고, 2009년 12월 28일자로 한국세포주연구재단(서울시 종로구 연건동 28번지 서울대학교 의과대학 암연구소 7층)에 기탁하고, 기탁번호 KCLRF-BP-00225를 부여받았다.
또 하나의 양태로서, 본 발명은 상기 형질전환 돼지를 제조하는 방법에 의해 형질전환 돼지를 제조하는 단계; 및 상기 형질전환 돼지로부터 이식용 장기를 분리하는 단계를 포함하는, 면역거부 반응이 억제된 장기를 제조하는 방법에 관한 것이다.
바람직한 일 실시태양으로 상기 장기는 인간에게 이식할 수 있는 모든 장기를 제한 없이 포함하나, 바람직하게는 췌도일 수 있다. 또한, 상기 장기를 인간에게 이식했을 때 면역거부 반응이 일어나지 않음으로써, 목적하는 장기의 종류에 따른 질환을 치료할 수 있으며 바람직하게는 췌도 이식에 의한 당뇨병의 치료일 수 있다.
췌도 세포 이식시 나타나는 산화적 스트레스에 의한 췌도 세포의 손상 및 이식 초기의 염증반응은 이식된 췌도 세포의 초기 생착에 매우 큰 영향을 준다. 그러므로 췌도 세포의 초기 생착을 촉진하는 방법의 하나로 산화적 스트레스와 초기 염증 반응에 저항성을 가지는 췌도 세포를 제조하는 것을 필요로 한다. 본 발명의 인간 HO-1과 TNFR1-Fc 융합 유전자를 동시 발현하는 형질전환 돼지는 HO-1 유전자의 항산화 작용 및 세포 보호 기능 등에 의해 췌도 분리 및 체외 배양 시에 산화적 스트레스를 감소시킬 수 있으며 TNFR1-Fc 발현에 의해 이식 초기에 일어나는 TNF-α 매개의 염증 반응도 감소시킬 수 있으므로 결국 췌도 세포의 초기 생착을 촉진할 수 있다. 또한 수지상 세포의 성숙을 억제하고 T 세포의 증식과 활성화를 조절하여 면역 거부 반응을 감소시킬 수 있으므로 췌도 세포의 생존율 증가에도 영향을 주어 췌도 세포 이식을 통한 당뇨병 치료에 유용하게 이용될 수 있다.
도 1은 인간 HO-1 유전자가 삽입된 발현 벡터의 개열지도를 개략적으로 나타낸 것이다.
도 2는 인간 HO-1 유전자의 염기 서열과 아미노산 서열을 나타낸 것이다.
도 3은 인간 HO-1 유전자가 발현되도록 삽입된 발현 벡터에서 인간 HO-1 유전자의 단백질 발현을 웨스턴 블랏 방법을 이용하여 확인한 결과를 나타낸다.
도 4는 인간 sTNFR1-Fc 융합 유전자가 삽입된 발현 벡터의 개열지도를 개략적으로 나타낸 것이다.
도 5는 인간 sTNFR1-Fc 융합 유전자의 염기 서열과 아미노산 서열을 나타낸 것이다.
도 6은 인간 sTNFR1-Fc 융합 유전자가 발현되도록 삽입된 발현 벡터에서 인간 sTNFR1-Fc의 단백질 발현을 웨스턴 블랏 방법을 이용하여 확인한 결과를 나타낸다.
도 7은 TNF-α 처리 후 유세포 분석 방법을 이용한 돼지 혈관 내피 세포주에서 VCAM-1 분자의 발현의 증가를 확인한 결과이다.
도 8은 TNF-α 처리 후 유세포 분석 방법을 이용한 인간 sTNFR1-Fc 융합 유전자의 발현 세포에서 VCAM-1 분자의 발현 억제 효과를 확인한 결과이다.
도 9는 PCR 방법을 이용하여 체세포 공여 세포주에서의 인간 HO-1 유전자 삽입을 확인한 결과이다.
도 10은 웨스턴 블랏 방법을 이용하여 체세포 공여 세포주의 sTNFR1-Fc 발현을 확인한 결과이다.
도 11은 형질전환된 돼지에서의 HO-1 유전자 및 sTNFR1-Fc 유전자의 발현을 PCR로 확인한 결과이다.
도 12는 신생돼지 췌도에 GFP, sTNFR1-Fc, HO-1을 발현하는 아데노바이러스를 감염시킨 후, Normoxia (정상산소 상황) 및 Hypoxia (저산소 상황)으로 나누어 배양한 후 MTT 분석 결과를 나타낸다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: HO -1 유전자 및 sTNFR1 - Fc 유전자 발현 벡터 제작 및 발현 확인
1-1. HO -1 유전자 발현 벡터 제작 및 유전자 발현 확인
NCBI 웹사이트 (http://www.ncbi.nlm.nih.gov/) 와 ExPASy 웹사이트 (http://expasy.org/)를 이용하여 인간의 Heme oxygenase-1 (HO-1) 유전자의 서열을 분석하고 이를 이용하여 HO-1의 정방향 프라이머 (서열번호 2) 및 역방향 프라이머 (서열번호 3)을 제작하였다. 상기 프라이머 세트를 이용하여 중합효소 연쇄 반응법 (PCR)으로 HO-1 유전자 (서열번호 1 및 도 2)를 확보하였다. 유전자를 발현시키기 위하여 네오마이신 (neomycin) 저항성 유전자를 포함하는 유전자 발현 벡터인 pcDNA3.1 벡터 (Invitrogen, CA, USA)를 NheI과 EcoRI 제한 효소로 처리하여 절단된 부위에 상기 확보된 HO-1 유전자를 삽입하여, HO-1 유전자 발현 벡터를 제작하였다.
삽입된 유전자의 발현 여부를 확인하기 위하여 HEK293 세포주에 HO-1 유전자 발현 벡터를 리포펙타민TM2000 (LipofectamineTM2000, Invitrogen, CA, USA)을 이용하여 트랜스펙션하였다. HEK293 세포주를 35mm 플라스틱 배양용 접시 (Becton Dickinson, NJ, USA)에 3 X105 세포를 접종 (seeding)하고 다음 날 오전 1㎍ HO-1 발현 벡터를 50㎕ Opti-MEM I Reduced Serum Medium (Invitrogen, CA, USA)로 희석하고 또한 HO-1 발현 벡터와 동일한 부피의 리포펙타민TM2000을 50㎕ Opti-MEM I 배지로 희석한 후 상온에서 5분간 배양하였다. 배양 후 희석된 HO-1 발현 벡터와 희석된 리포펙타민TM2000을 혼합하고 상온에서 20분간 배양하였다. 상기 배양 후 혼합액을 세포가 접종된 35mm 세포 배양 접시에 첨가하고 37℃ CO2 배양기에서 배양하였다. 4시간 후 10% FBS와 페니실린/스트렙토마이신이 포함된 DMEM (Invitrogen, CA, USA)으로 배양액을 교체하고 37℃ CO2 배양기에서 배양하였다. 48시간 후 세포를 용출 완충용액 (lysis buffer: 1% Triton X-100, 50mM TrisHCl, 20mM NaF, 150mM NaCl, protease inhibitors)로 수확하여, 30㎍의 세포 추출물을 전기영동한 후 PVDF 막으로 전기이동시켰다. PVDF 막은 블로킹 완충용액 (blocking buffer: TBST 내 5% skim milk)로 1시간 블로킹하였고 항-HO-1 항체 (래빗 단클론 항체, Abcam, Cambridge, UK)를 1:2000으로 희석하여 상온에서 1시간 반응시켰다. 반응 후 TBST 완충용액으로 30분간 3회 세척한 후 HRP가 연결된 항-래빗 IgG 항체 (Santa Cruz Biotechnology, CA, USA)를 1:5000으로 희석하여 상온에서 1시간 반응시켰다. 반응 후 TBST 완충용액으로 30분간 3회 세척한 후 화학발광기질 (Chemiluminescent substrates, WestSaveUp™, Abfrontier, Seoul, Korea)을 처리하여 반응시킨 후 X-ray film에 노출시켜서 현상하였다 (도 3).
그 결과, 33kDa의 인간 HO-1 유전자가 벡터 내에 삽입되어 발현되는 것을 확인하였다 (도 3).
1.2. sTNFR1 - Fc 융합 유전자 발현 벡터 제작 및 유전자 발현 확인
NCBI 웹사이트 (http://www.ncbi.nlm.nih.gov/) 와 ExPASy 웹사이트 (http://expasy.org/)를 이용하여 인간의 종양괴사인자 수용체1 (TNFR1) 유전자의 서열을 분석하고 이를 이용하여 종양괴사인자 수용체1의 외역부위 (extracellular domain)의 sTNFR1의 정방향 프라이머 (서열번호 4) 및 역방향 프라이머 (서열번호 5)를 제작하였다. 또한, 인간의 면역 글로불린G1의 유전자 서열 분석을 통하여 Fc 부위의 정방향 프라이머 (서열번호 6) 및 역방향 프라이머 (서열번호 7)을 제작하였다. 제작된 각각의 프라이머를 이용한 중합효소 연쇄반응법 (PCR)을 수행하여 수용성 종양괴사인자 수용체1 (soluble TNFR1) 및 면역 글로불린G1-Fc (IgG1-Fc) 융합 유전자를 확보하였다 (sTNFR1-Fc, 서열번호 8 및 도 5). 상기 확보된 유전자를 발현시키기 위하여 블라스티사이딘 (blasticidine) 저항성 유전자를 포함하는 유전자 발현 벡터인 pcDNA6 (Invitrogen, CA, USA)를 HindIII와 XhoI 제한 효소로 처리하여 절단하고 절단된 부위에 확보된 sTNFR1 유전자 및 IgG1-Fc 융합 유전자를 삽입하여 sTNFR1-Fc 유전자 발현 벡터를 제작하였다.
삽입된 유전자의 발현 여부를 확인하기 위하여 HEK293 세포주에 sTNFR1-Fc 유전자 발현 벡터를 리포펙타민TM2000 (Invitrogen, CA, USA)을 이용하여 ㅌ트렌스펙션하였다. HEK293 세포주를 35mm 플라스틱 배양용 접시 (Becton Dickinson, NJ, USA)에 3 X105 세포로 접종하고 다음 날 오전 1㎍ sTNFR1-Fc 발현 벡터를 50㎕ Opti-MEM I Reduced Serum Medium (Invitrogen, CA, USA)으로 희석하고 또한 sTNFR1-Fc 발현 벡터와 동일한 부피의 리포펙타민TM2000 을 50㎕ Opti-MEM I 배지로 희석한 후 상온에서 5분간 배양하였다. 배양 후 희석된 sTNFR1-Fc 발현 벡터와 희석된 리포펙타민TM2000을 혼합하고 상온에서 20분간 배양하였다. 배양 후 혼합액을 상기 세포가 접종된 35mm 세포 배양 접시에 첨가하고 37℃ CO2 배양기에서 배양하였다. 4시간 후 혈청이 없는 DMEM (페니실린/스트렙토마이신이 포함)(Invitrogen, CA, USA)으로 배양액을 교체하고 37℃ CO2 배양기에서 배양하였다. 48시간 후 배양액과 세포 lysates에서 항-hIgG 항체 (Santa Cruz Biotechnology, CA, USA)를 이용하여 웨스턴 블랏을 수행하였다. 세포 lysate와 배양액으로 전기영동을 수행하고. 전기영동 후 PVDF 막으로 전기이동시켰다. 전기이동 후 PVDF 막을 블로킹 완충용액 (TBST 내 5% 스킴 밀크)으로 1시간 블로킹하였다. 블로킹 후 HRP가 연결된 항-인간 IgG 항체 (Santa Cruz Biotechnology, CA, USA)를 1:5000으로 희석하여 상온에서 1시간 반응시켰다. 반응 후 TBST 완충용액으로 3회 세척한 후 화학발광기질 (WestSaveUp™, Abfrontier, Seoul, Korea)을 처리하여 반응 시킨 후 X-ray film에 노출시켜서 현상하였다 (도 6).
그 결과, 배양액 및 세포 lysate에서 각각 IgG에 결합하는 50 kDa의 밴드를 확인하여 수용성 TNFR1-Fc의 단백질 발현이 된다는 것을 확인하였다 (도 6).
실시예 2. sTNFR1 - Fc 융합 유전자의 생체 외 기능 평가
발현이 확인된 sTNFR1-Fc 융합 유전자의 TNF-α의 억제 효과를 확인하기 위하여, TNF-α 자극에 의하여 발현이 증가된다고 알려진 VCAM-1 단백질의 발현을 확인하였다. 혈관 내피 세포주 (MPN3 cell)에 TNF-α를 20ng/ml 농도로 자극한 후, 12 시간과 24 시간 후 VCAM-1 항체를 이용하여 유세포 분석을 수행하였다.
유세포 분석은 트립신 처리된 세포를 PBS (Phosphate Buffered Saline)로 3회 세척하고 항-VCAM-1 항체 (rabbit polyclonal)를 10 ㎍/ml 농도로 처리하여 얼음에서 30분간 반응시켰다. 반응 후 PBS로 3회 세척하고 이차 항체로 FITC (fluorescein isothiocyanate)가 결합된 rabbit IgG 항체를 1:500 농도로 처리하여 얼음에서 빛을 차단한 후 30분간 반응시켰다. 반응 후 PBS로 3회 세척하고 FACS Calibur (Becton-Dickinson, CA, USA)에서 CELLQUEST 소프트웨어를 이용하여 분석하였다.
그 결과, TNF-α 자극에 의해 돼지 혈관 내피 세포주에서 VCAM-1의 발현이 자극 시간에 따라 증가하는 것을 확인하였다 (도 7).
돼지 혈관 내피 세포주에 sTNFR1-Fc 와 공 (empty) 벡터 (pcDNA3.1-Hygro(+))를 전기 천공법으로 세포내 도입하고 48시간 배양 후 TNF-α를 처리하였다. TNF-α 처리 후 24 시간 뒤에 VCAM-1 항체를 이용하여 유세포 분석을 수행하였다.
그 결과, 유전자를 도입하지 않은 군과 공 벡터를 도입한 군에서는 TNF-α 자극 24시간 후 VCAM-1 단백질의 발현이 증가하고 있음을 확인하였다. 반면에 sTNFR1-Fc 유전자를 도입한 군에서는 TNF-α 자극 24 시간 후에도 VCAM-1의 단백질 발현이 큰 차이 없음을 확인하였고, 이러한 결과는 sTNFR1-Fc를 발현하는 세포가 TNF-α 자극을 효과적으로 억제할 수 있음을 의미한다 (도 8).
실시예 3: 공여 핵 세포 분리·배양
공여 핵 세포로는 돼지의 태아로부터 수득한 섬유아세포 (fibroblast)를 사용하였다. 이를 위해 먼저 임신 25~35일령 경의 모돈을 제왕절개 하여 돼지 태아를 수득하였다. 돼지 태아의 등부분쪽 피부를 수술용 칼로 분리한 후 이를 DPBS(Dulbecco's Phosphate Buffered Saline)로 3회 세척하고 잘게 조각내었다. 상기 조각낸 피부조직을 0.25% 트립신 및 1mM EDTA가 포함된 DMEM (Dulbecco's modified Eagle's medium) 배지 (Gibco Life Technologies, MD, USA)에 넣고 37℃로 1시간 동안 처리하였다. 트립신으로 처리된 세포를 Ca2 + 및 Mg2 + 무첨가 DPBS로 1회 세척하고 300 x g로 2분간 원심분리한 후 60mm 플라스틱 배양용 접시 (Becton Dickinson, NJ, USA)에 접종하였다. 그 다음 상기 세포를 10% (v/v) FBS, 1mM 글루타민, 25mM NaHCO3 및 1% (v/v) 최소 필수 배지(MEM) 비필수 아미노산 용액 (Invitrogen, CA, USA)이 첨가된 DMEM 배지에서 39℃, 5% CO2 및 95% 공기로 가습된 조건으로 3~4일간 배양하였다. 세포가 거의 포화상태로 자랄 때까지 배양한 후, 배양 접시에 부착되지 않은 세포는 제거하고 부착된 나머지 세포는 0.1% 트립신 및 0.02% EDTA가 포함된 배지 내에서 1분간 처리하여 배양 접시에서 떼어낸 후, 추가 계대를 위해 3개의 새로운 배양 접시로 옮겨 4 내지 6일 간격으로 계대 배양하였다.
세포의 동결을 위해서는, 세포를 0.1% 트립신 및 0.02% EDTA가 포함된 배지 내에서 1분간 처리하여 배양접시에서 떼어낸 후, 80%(v/v) DMEM, 10% (v/v) DMSO 및 10% (v/v) FBS로 이루어진 동결 배지에 넣고 동결용 cryotube에 분주하여 -196℃의 액체 질소에 보관하였다.
실시예 4: 체세포 공여 세포주 제작
돼지 섬유아세포 (fibroblast)를 35mm 플라스틱 배양용 접시 (Becton Dickinson, NJ, USA)에 3 X105 세포/웰로 접종하고, 다음날 오전 제한 효소 ScaI으로 선형화된 실시예 1에서 제작한 각 유전자 발현 벡터 (pcDNA3.1/HO1, pcDNA6/sTNFR1-Fc) 1㎍을 50㎕ Opti-MEM I Reduced Serum Medium (Invitrogen, CA, USA)으로 희석하고 또한 각 유전자 발현 벡터와 동일한 부피의 리포펙타민™2000을 50ul Opti-MEM I 배지로 희석한 후, 상온에서 5분간 배양하였다. 배양 후 희석된 sTNFR1-Fc 발현 벡터와 희석된 리포펙타민™2000을 혼합하고 상온에서 20분간 배양하였다. 배양 후 혼합액을 세포가 접종된 35mm 세포 배양 접시에 첨가하고 37℃ CO2 배양기에서 배양하였다. 4시간 후 10% FBS와 페니실린/스트렙토마이신이 포함된 DMEM (Invitrogen, CA, USA)으로 배양액을 교체하고 37℃ CO2 배양기에서 배양하였다. 2일 후 세포를 트립신 (Sigma, MO, USA) 처리하여 100mm 배양 접시 (Becton Dickinson, NJ, USA)로 옮기고 2일 후 G418(Invitrogen, CA, USA) 1500㎍/ml이 든 DMEM (10% FBS, 페니실린/스트렙토마이신) 배지로 교체하여 37℃ CO2 배양기에서 배양하였다. 2일마다 상기 배양액을 교체하며 죽은 세포를 제거하면서 1-2주 동안 배양하였다. 다음으로 G418 100㎍/ml과 블라스티사이딘 (Sigma, MO, USA) 5㎍/ml이 든 배양액 (DMEM, 10% FBS, 페니실린/스트렙토마이신)으로 2일마다 교체하면서 1주일 배양하였다. 그 후 세포는 G418 100㎍/ml과 블라스티사이딘 1㎍/ml이 포함된 배양액에서 배양하였다. 콜로니가 눈으로 보일 정도로 자라면 실험용 팁 (yellow tip)을 이용하여 50개 이상의 콜로니를 취하고 48 웰 플레이트 (Becton Dickinson, NJ, USA)에 옮겨 배양하였다. 세포가 자라는 상태에 따라 12 웰 플레이트, 6 웰 플레이트, 60mm 배양 접시로 각 콜로니들을 옮겼다. 6 웰 플레이트로 옮길 때 약간의 세포를 얻어서 용출하여 DNA를 분리한 후, HO-1 특이적 프라이머인 HO-1 정방향 프라이머 (서열번호 2) 및 역방향 프라이머 (서열번호 9)와 세포에서 분리한 게놈 DNA를 주형으로 Taq 중합효소 (Cosmogentech, Seoul, Korea)를 이용하여 95℃에서 5분간 변성하고 95℃에서 30초, 58℃에서 30초 72℃에서 30초를 30회 반복하고 72℃에서 10분간 연장시켜 반응을 종결하는 조건의 중합효소 연쇄반응법으로 HO-1의 삽입 여부를 확인하였다 (도 9).
또한, SDS-PAGE 후 항-인간 IgG 항체(Santa Cruz Biotechnology, CA, USA)를 이용한 웨스턴 블랏으로 sTNFR1-Fc 단백질의 발현을 확인하였다 (도 10).
웨스턴 블랏을 수행하기 위해서 세포 lysate로 전기영동을 수행하였다. 전기영동 후 PVDF 막으로 전기이동하였다. 전기이동 후 PVDF 막을 블로킹 완충용액 (TBST 내 5% 스킴 밀크)로 1시간 블로킹하였다. 블로킹 후 HRP가 연결된 항-인간 IgG 항체 (Santa Cruz Biotechnology, CA, USA)를 1:5000으로 희석하여 상온에서 1시간 반응시켰다. 반응 후 TBST 완충용액으로 3회 세척 후 화학발광기질 (WestSaveUp™, Abfrontier, Seoul, Korea)을 처리하여 반응시킨 후 X-ray film에 노출시켜서 현상하였다 (도 10).
그 결과, 발현이 확인된 세포는 100mm 배양 접시로 옮겨서 증식시킨 후 10개의 동결 바이얼로 분주하여 세포를 동결하였다. 상기 확립된 세포주를 HO-1/sTNFRI-Fc line 1으로 명명한 후, 2009년 12월 28일에 한국세포주연구재단에 기탁번호 KCLRF-BP-00225로 기탁하였다.
실시예 5: 돼지 미성숙 난자의 수집 및 체외성숙
도축장에서 도살 직후 미경산돈의 난소들을 적출하고 30-35℃의 0.9% 생리식염수에 담아 실험실로 운반하였다. 난포액과 난구세포 (cumulus cell)가 부착된 미성숙 난자를 10 ml 주사기에 18게이지 바늘을 장착하여 2-6 mm 직경의 난포로부터 흡입하여 채취하였다. 흡입된 난포액을 37℃ 수조에 정치시키고, 가라앉은 침전물만을 0.1% PVA (polyvinyl alcohol)이 포함된 TLHEPES-PVA (114 mM NaCl, 3.2 mM KCl, 2 mM NaHCO3, 0.4 mM NaH2PO4, 0.27 mM 글루코스, 10 mM 젖산 나트륨 (sodium lactate), 2 mM CaCl22H2O, 0.5 mM MgCl26H2O, 10 mM HEPES, 0.03 mM 페놀 레드, 0.25 mM 피루브산 나트륨 (sodium pyruvate), 0.3% BSA (bovine serum albumin) , 75㎍/ml 페니실린 G 및 25㎍/ml 젠타마이신 설페이트 (gentamycin sulfate))에 취하여 미성숙 난자만을 골랐다. 미성숙 난자는 난구세포가 치밀하게 부착된 것만을 선택하여 TL-HEPES-PVA로 두 번 세척하고 하기 성숙 배지로 다시 두 번 세척하였다. 체외성숙에는 TCM (tissue culture medium) 199 배양 배지 (Sigma, St.Louis, MO, USA)를 기본 배지로 사용하였고, 여기에 26.19 mM NaHCO3, 0.2 mM 피루브산 나트륨, 75㎍/ml 페니실린 나트륨 G (sodium penicillin G), 그리고 50㎍/ml 스트렙토마이신 설페이트 (streptomycin sulfate) 를 첨가하여 사용하였다. 4 웰 플레이트 (NUNC)에 5㎍/ml 인슐린, 0.5㎍/ml LH (luteinizing hormone), 0.5㎍/ml FSH (follicular stimulating hormone), 10ng/ml EGF (epidermal growth factor), 0.57 mM 시스테인 및 10% 의 난포액 (porcine follicular fluids, pFF)이 첨가된 체외성숙배지를 준비하고 미성숙 난자를 이에 옮겨 38.5℃ 5% CO2의 배양기에서 22시간 배양하고, 그 후 FSH와 LH를 제외한 성숙 배지에서 추가로 22시간 배양하였다. 상기 난포액은 도축장에서 수집된 난소에서 채취한 후 여과 후 동결시켜 둔 것을 사용하였다.
실시예 6: 체세포 복제
1 내지 44시간 성숙된 난자를 0.1% 히알루로니다제 (hyaluronidase)를 첨가한 TL-HEPES-PVA에 옮겨 피펫팅 (pipetting)하여 확장된 난구세포를 제거하였다. 돼지 난자는 미세조작기 (micromanipulator, Narishige, Japan)가 장착된 도립 현미경 (inverted microscope, Nikon, Japan)하에서 미세조작에 의하여 핵을 제거하고, 상기 실시예 6에서 제작한 HO-1 및 sTNFR1-Fc 융합 유전자가 형질전환된 공여 세포주인 돼지의 섬유아세포를 난자에 주입하였다. 서로 다른 세포에 대한 융합을 위하여 ECM 2001 electrocell manipulator (BTX Inc., San Diego, CA, USA)를 이용하여 1.5 kV/cm, 60 μs, 1 DC 펄스로 전기적 자극을 주었다. 융합된 난자는 TCM-199 배지에서 3시간 동안 배양하고 다시 PZM-3 배지에 옮겨 배양한 후 수정란 이식에 사용하였다.
실시예 7: 수정란의 흡인
수정란의 흡인과정은 실내온도 수준이 유지되는 (25~35℃) 실험실 내에서 행하였다. 페트리 접시(petri dish)에 수정란 이식용 배지를 채운 후, 이식에 사용될 실시예 9에서 제작한 수정란을 넣었다. 세포 동결용 0.25 ml 스트로우는 멸균 처리된 것을 사용하였다. 가급적 감마 광선으로 멸균 처리된 시판용 스트로우를 사용하는 것을 권장하나, 필요할 경우, EO 가스 (Ethylene Oxide) 로 직접 멸균하여 사용하는 것 역시 가능하다.
수정란의 흡인은 배지층-공기층-배지층-공기층-수정란층-공기층-배지층-공기층-배지층의 순서대로 하였다. 이 과정에서 스트로우의 멸균상태가 유지되도록 각별히 주의하였다. EO 가스 멸균된 스트로우를 사용시, 수정란 흡인 전, 수정란 이식 배지를 1~3회 흡인, 배출하면서 내부를 씻어 주었다. 흡인을 마친 스트로우는 개방 측을 봉인해 주었다. 봉인을 위해 플라스틱캡 형을 사용하였다. 흡인 및 봉인된 스트로우는 멸균상태 유지를 위하여 플라스틱 피펫 (Falcon, 2ml)을 스트로우보다 약간 큰 크기로 잘라 그 내부에 넣어 파라핀 필름으로 봉하였다. 봉한 스트로우는 이동형 인큐베이터를 사용해 사용 직전까지 온도를 유지시켰다.
실시예 8: 수정란 이식에 의한 형질전환 돼지 생산
수정란의 시기와 발정 동기화된 대리모를 준비하였다. 수정란 이식은 수술적 개복을 통해 난관을 노출시켜 수행하였다. 대리모를 마취시킨 후 복부측 정중선을 절개하여 자궁, 난소, 난관 및 난관채를 노출시켰다. 난관채 내측에서 난관의 난소측 입구를 찾았다. 이동형 배양기에서 수정란을 흡인해 둔 스트로우를 무균적으로 꺼낸 후 난관 입구로 삽입하였다. 삽입된 스트로우는 난관의 협부와 팽대부의 접합부 위치까지 진행시켰다. 이 과정 중, 스트로우의 온도 변화를 최소화하기 위하여 술자 및 노출된 자궁의 체온으로 보온 상태를 유지하며, 신속히 작업하였다. 삽입작업을 완료하고, 스트로우의 반대편 공기층 부위를 가위로 절단하였다. 절단부위에 1cc 주사기를 장착하여 약 0.3cc 정도 공기를 주입하여 스트로우 내의 수정란 및 배지를 난관 내부로 방출시켰다. 이때 주사기와 스트로우의 결합은 0.2 ml 실험용 팁 (yellow tip) 의 상단부를 5mm 정도 잘라내어 사용하였다.
수정란 이식이 끝나면 노출된 자궁, 난소, 난관 및 난관채를 복강내로 다시 넣어준 후 흡수성 봉합사로 복부 봉합을 하였다. 수술 후에는 수술부를 베타딘 소독해주고, 항생제 및 소염 진통제 처방을 하였다. 수정란 이식이 완료된 대리모는 임신 검정을 실시하고 임신이 확인된 개체는 분만을 유도하여, HO-1 및 sTNFR1-Fc가 도입된 형질전환 돼지를 생산하였다.
실시예 9: 형질전환 돼지의 HO -1 유전자 및 sTNFR1 - Fc 유전자의 발현 확인
형질전환된 돼지에서의 HO-1 유전자 및 sTNFR1-Fc 유전자의 발현을 확인하기 위하여 상기 실시예 8의 형질전환 돼지 분만시 대리모의 태반 조직과 태어난 형질전환 돼지의 탯줄 조직을 확보하였다.
확보된 태반 조직과 탯줄 조직에서 게놈 DNA 분리 키트 (G-spin™ Genomic DNA Extraction Kit, iNtRON Biotechnology, Korea)를 이용하여 게놈 DNA를 분리하였다. 분리된 게놈 DNA를 주형으로 하고 HO-1 유전자 특이적 프라이머 (서열번호 2 및 3)와 sTNFR1-Fc 유전자 특이적 프라이머 (서열번호 4 및 7)를 사용하여 MaximeTM PCR premix kit를 이용한 중합효소 연쇄 반응을 통하여 게놈 DNA 상에 유전자의 삽입 유무를 확인하였다 (도 11). 중합효소 연쇄 반응법은 95℃에서 5분간 변성하고 95℃에서 30초, 58℃에서 30초, 72℃에서 1분을 30회 반복하고 72℃에서 10분간 연장시켜 반응을 종결하였다.
그 결과, 도 11에 나타난 바와 같이, 음성 대조군인 태반조직에서는 HO-1 및 sTNFR1-Fc 유전자는 발현하지 않고, 태어난 형질전환 돼지의 탯줄조직에서 HO-1 및 sTNFR1-Fc 유전자가 발현되는 것을 확인하여 목적하는 형질전환 돼지를 제조하였음을 확인하였다.
실시예 10: sTNFR1 - Fc 유전자와 HO -1 유전자 도입 신생돼지 췌도에서의 기능 평가
sTNFR1-Fc와 HO-1 유전자의 기능을 평가하기 위하여 생후 1-5일 된 신생돼지의 췌도를 분리하여 이용하였다. 분리된 신생돼지 췌도를 37℃의 CO2 배양기에서 약 7일 간 배양 후 GFP, sTNFR1-Fc, HO-1을 발현하는 아데노바이러스 (Ad-GFP, Ad-sTNFR1-Fc, Ad-HO1)를 각각 배양액에 처리하여 감염시켰다. 아데노바이러스를 배양액에 처리하고 37℃의 CO2 배양기에서 24시간 배양 후 Normoxia (정상 상소 상황) 군과 Hypoxia 군 (저산소 상황)으로 나누어 Normoxia 군은 일반 배양 조건으로 배양하였고, Hypoxia 군은 37℃의 1% O2의 저산소 조건에서 배양하였다. 배양 24시간 후 MTT 분석을 수행하기 위하여 각 그룹에서 20개의 신생돼지 췌도를 hand-picking 하여 96 웰 플레이트에 넣은 후 MTT 분석 키트 (Cell Counting Kit-8;CCK-8, Dojindo, MD, USA)내에 포함된 CCK-8 용액을 10 ㎕를 첨가하고 37℃의 CO2 배양기에서 4시간 배양한 후 마이크로플레이트 리더기 (microplate reader)에서 450nm 파장으로 O.D 값을 측정하였다.
그 결과 Normoxia 조건에서 배양한 군에서는 세포의 생존율에 큰 차이가 보이지 않았지만, Hypoxia 조건에서 배양한 군에서는 Ad-HO-1 감염군과 Ad-HO-1 + Ad-sTNFR1-Fc 동시 감염군에서 아데노바이러스를 감염시키지 않은 군에 비해 각각 약 40%와 약 60%의 세포 생존율 증가를 확인하였다 (도 12). 도 12에서 각각 Non (대조구), Ad-GFP (GFP를 발현하는 아데노바이러스 감염군), Ad-sTNFR1-Fc (sTNFR1-Fc를 발현하는 아데노바이러스 감염군), Ad-HO-1 (HO-1를 발현하는 아데노바이러스 감염군), Ad-sTNFR1-Fc + Ad-HO-1 (sTNFR1-Fc를 발현하는 아데노바이러스와 HO-1를 발현하는 아데노바이러스의 동시 감염군)를 나타낸다. 이러한 결과는 장기 이식 시 일어나는 Hypoxia 상태에서 본 발명의 HO-1 및 sTNFR1-Fc를 동시에 발현하는 돼지의 세포의 경우 생존율이 보통의 돼지 세포보다 증가하여 면역이식 시 일어나는 거부반응 억제는 물론 산화적 스트레스로부터 장기를 보호할 수 있음을 시사하는 것이다.
한국세포주연구재단 KCLRF-BP-00225 20091228
서열목록 전자파일 첨부

Claims (12)

  1. a) 돼지로부터 체세포를 분리하는 단계;
    b) 인간 HO-1 (Heme oxygenase-1) 유전자 및 인간 TNFR1-Fc (Tumor necrosis factor receptor 1-Fc) 융합 유전자를 상기 체세포에 도입시키는 단계;
    c) 상기 유전자들이 도입된 체세포를 선별한 후 배양하는 단계;
    d) 돼지 난자의 핵을 제거하고 상기 선별된 체세포와 융합하여 체세포 핵이 이식된 수정란을 제조하는 단계; 및
    e) 상기 수정란을 착상시키는 단계를 포함하는, 이종 췌도 이식시 면역거부 반응이 억제된 형질전환 돼지의 제조 방법.
  2. 제1항에 있어서, 상기 b) 단계의 인간 HO-1 유전자는 서열번호 1의 염기서열을 가지는 것인 방법.
  3. 제1항에 있어서, 상기 b) 단계의 인간 TNFR1-Fc 융합 유전자는 서열번호 8의 염기서열을 가지는 것인 방법.
  4. 제1항에 있어서, 상기 b) 단계는 인간 HO-1 유전자를 포함하는 단일 벡터 및 인간 TNFR1-Fc 융합 유전자를 포함하는 단일 벡터를 별도로 또는 동시에 체세포에 도입시키는 것인 방법.
  5. 제4항에 있어서, 상기 인간 HO-1 유전자를 포함하는 단일 벡터는 도 1의 개열지도를 갖는 벡터이고, 인간 TNFR1-Fc 융합 유전자를 포함하는 단일 벡터는 도 4의 개열지도를 갖는 벡터인 방법.
  6. 제1항의 방법으로 제조된 이종 췌도 이식시 면역거부 반응이 억제된 췌도 이식용 형질전환 돼지.
  7. 제6항에 있어서, 상기 형질전환 돼지는 기탁번호 KCLRF-BP-00225의 체세포 공여 세포주를 이용하여 제조된 것인 형질전환 돼지.
  8. 제6항의 형질전환 돼지를 제조하기 위한 체세포 공여 세포주.
  9. 제8항에 있어서, 상기 체세포 공여 세포주는 기탁번호 KCLRF-BP-00225인 체세포 공여 세포주.
  10. 제1항의 방법에 의해 형질전환 돼지를 제조하는 단계; 및
    상기 형질전환 돼지로부터 이식용 췌도를 분리하는 단계를 포함하는, 이종 췌도 이식시 면역거부 반응이 억제된 췌도를 제조하는 방법.
  11. 제1항에 있어서, 상기 (c) 단계에서 선별된 체세포는 기탁번호 KCLRF-BP-00225인 것인 방법.
  12. 제10항에 있어서, 상기 췌도는 인간에게 이식했을 때 면역거부 반응이 일어나지 않는 것인 방법.
KR1020100090543A 2009-12-30 2010-09-15 HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법 KR101312829B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10841175.2A EP2520164B1 (en) 2009-12-30 2010-12-21 Transgenic pig in which ho-1 genes and tnfr1-fc genes are simultaneously expressed, and method for producing same
PCT/KR2010/009172 WO2011081343A2 (ko) 2009-12-30 2010-12-21 HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법
US13/520,056 US9018439B2 (en) 2009-12-30 2010-12-21 Transgenic pig in which HO-1 and TNFR1-Fc are simultaneously expressed, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090134548 2009-12-30
KR20090134548 2009-12-30

Publications (2)

Publication Number Publication Date
KR20110079485A KR20110079485A (ko) 2011-07-07
KR101312829B1 true KR101312829B1 (ko) 2013-09-27

Family

ID=44918852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100090543A KR101312829B1 (ko) 2009-12-30 2010-09-15 HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법

Country Status (4)

Country Link
US (1) US9018439B2 (ko)
EP (1) EP2520164B1 (ko)
KR (1) KR101312829B1 (ko)
WO (1) WO2011081343A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566498B1 (ko) 2013-11-13 2015-11-06 건국대학교 산학협력단 인터루킨 2 수용체 감마 유전자 적중벡터, 그 벡터가 도입된 면역세포 결핍 형질전환 미니 복제돼지 생산과 그 제조방법 및 활용

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101276801B1 (ko) * 2011-01-21 2013-06-19 한화엘앤씨 주식회사 sTNFR1-Fc 유전자를 발현하는 형질전환 돼지 및 이의 용도
CN103463626B (zh) * 2013-03-03 2016-05-04 西北农林科技大学 Ho-1和ho-1的诱导剂作为抑制prrs病毒感染的新型阻断剂
KR102613900B1 (ko) * 2015-11-13 2023-12-15 서울대학교 산학협력단 HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하며 GGTA1 유전자가 넉아웃된 형질전환 돼지 및 이의 용도
KR102363891B1 (ko) * 2017-04-28 2022-02-17 서울대학교산학협력단 HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하며 GGTA1 유전자 및 CMAH 유전자가 넉아웃된 형질전환 돼지 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268347A1 (en) * 2004-06-01 2005-12-01 Animal Technology Institute Taiwan Transgenic pigs carrying both hHO-1 and hDAF transgenes for xenotransplantation
KR20070081531A (ko) * 2006-02-13 2007-08-17 조아제약주식회사 유선 특이적 인간 에리트로포이에틴 발현 벡터, 이를이용한 형질전환 동물 및 이를 이용한 인간에리트로포이에틴의 생산 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096871A (en) 1995-04-14 2000-08-01 Genentech, Inc. Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
US7628988B2 (en) * 2002-06-27 2009-12-08 The General Hospital Corporation Methods and compositions for treating type 1 diabetes
AU2006292827B2 (en) * 2005-08-09 2013-02-14 Revivicor, Inc. Transgenic ungulates expressing CTLA4-IG and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050268347A1 (en) * 2004-06-01 2005-12-01 Animal Technology Institute Taiwan Transgenic pigs carrying both hHO-1 and hDAF transgenes for xenotransplantation
KR20070081531A (ko) * 2006-02-13 2007-08-17 조아제약주식회사 유선 특이적 인간 에리트로포이에틴 발현 벡터, 이를이용한 형질전환 동물 및 이를 이용한 인간에리트로포이에틴의 생산 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gene Therapy, 2004, vol. 11, pp. 1506-1514. *
Gene Therapy, 2004, vol. 11, pp. 1506-1514.*
NCBI Reference Sequence: NM_002133.1, 2009. 12.13. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566498B1 (ko) 2013-11-13 2015-11-06 건국대학교 산학협력단 인터루킨 2 수용체 감마 유전자 적중벡터, 그 벡터가 도입된 면역세포 결핍 형질전환 미니 복제돼지 생산과 그 제조방법 및 활용
US10058079B2 (en) 2013-11-13 2018-08-28 Konkuk University Industrial Cooperation Corp. Interleukin 2 receptor gamma gene targeting vector, production of immune cell-deficient transgenic cloned mini pig having vector introduced therein, preparation method therefor and use thereof

Also Published As

Publication number Publication date
KR20110079485A (ko) 2011-07-07
WO2011081343A3 (ko) 2011-11-17
EP2520164A4 (en) 2013-12-04
WO2011081343A2 (ko) 2011-07-07
EP2520164B1 (en) 2018-10-03
US20120278910A1 (en) 2012-11-01
EP2520164A2 (en) 2012-11-07
US9018439B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
CA2181433C (en) Materials and methods for management of hyperacute rejection in human xenotransplantation
PL171474B1 (pl) Sposób wytwarzania transgenicznych zwierzat PL
KR101312829B1 (ko) HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하는 형질전환 돼지 및 그의 제조 방법
JP4153878B2 (ja) Gt遺伝子が除去された複製豚及びその生産方法
JP5817955B2 (ja) 血友病aモデルブタの作出
KR100769291B1 (ko) 유선 특이적 인간 에리트로포이에틴 발현 벡터, 이를이용한 형질전환 동물 및 이를 이용한 인간에리트로포이에틴의 생산 방법
KR101324345B1 (ko) Ho-1 유전자를 발현하는 형질전환 돼지 및 이의 용도
KR101276801B1 (ko) sTNFR1-Fc 유전자를 발현하는 형질전환 돼지 및 이의 용도
US10717991B2 (en) Transgenic pig which simultaneously expresses HO-1 gene and TNFR1-Fc gene, and comprises knocked-out GGTA1 gene, and use thereof
KR101911515B1 (ko) 단계별 면역거부반응 억제 다중유전자가 α-Gal 유전자에 적중된 복합형질전환 세포주 및 그의 제조방법
KR102363891B1 (ko) HO-1 유전자 및 TNFR1-Fc 유전자를 동시에 발현하며 GGTA1 유전자 및 CMAH 유전자가 넉아웃된 형질전환 돼지 및 이의 용도
JP5374389B2 (ja) 霊長類動物の初期胚への外来遺伝子導入法及び該導入法を含むトランスジェニック霊長類動物を作出する方法
KR101025707B1 (ko) 사람 알파1-안티트립신을 생산하는 형질전환 복제소 및이것의 생산 방법
KR20060106590A (ko) 자연살해 세포의 활성을 억제하기 위한 hla-g 유전자를발현하는 형질 전환 복제 돼지 및 그의 제조 방법
KR101832485B1 (ko) 목적유전자를 조건적으로 발현하는 복제된 개과동물의 생산방법
KR20040101793A (ko) 사람 에리트로포이에틴을 생산하는 형질전환 복제소 및이의 생산 방법
AU711144B2 (en) Materials and methods for management of hyperacute rejection in human xenotransplantation
KR101147409B1 (ko) 세포성 면역 억제를 위한 인간 FasL 단백질을 발현하는 형질전환 돼지 클론 체세포주 및 이를 이용한 형질전환 복제돼지
Brem Generation of recombinant antibody transgenic farm animals
KR20090068646A (ko) Hla-g 유전자 및 daf 유전자를 발현하는 형질전환복제 돼지 및 그의 제조 방법
KR100975350B1 (ko) 사람 락토페리신을 생산하는 형질전환 복제 소 및 이것의생산방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160926

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170728

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180810

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190918

Year of fee payment: 7