KR101283184B1 - 핫플레이트 및 핫플레이트 제조 방법 - Google Patents

핫플레이트 및 핫플레이트 제조 방법 Download PDF

Info

Publication number
KR101283184B1
KR101283184B1 KR1020110107200A KR20110107200A KR101283184B1 KR 101283184 B1 KR101283184 B1 KR 101283184B1 KR 1020110107200 A KR1020110107200 A KR 1020110107200A KR 20110107200 A KR20110107200 A KR 20110107200A KR 101283184 B1 KR101283184 B1 KR 101283184B1
Authority
KR
South Korea
Prior art keywords
layer
barrier layer
heat transfer
barrier
hot plate
Prior art date
Application number
KR1020110107200A
Other languages
English (en)
Other versions
KR20130043005A (ko
Inventor
김익찬
김무성
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110107200A priority Critical patent/KR101283184B1/ko
Priority to PCT/KR2012/008622 priority patent/WO2013058610A1/en
Priority to US14/353,199 priority patent/US9657394B2/en
Publication of KR20130043005A publication Critical patent/KR20130043005A/ko
Application granted granted Critical
Publication of KR101283184B1 publication Critical patent/KR101283184B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

실시예에 따른 핫플레이트 제조방법은, 제 1 배리어층을 준비하는 단계; 상기 제 1 배리어층 상에 제 1 열전달층을 적층하는 단계; 및 상기 제 1 열전달층 상에 제 2 배리어층을 적층하는 단계를 포함하고, 상기 제 1 배리어층 또는 상기 제 2 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층을 포함한다.
실시예에 따른 핫플레이트는, 제 1 배리어층; 상기 제 1 배리어층 상에 위치하는 제 1 열전달층; 및 상기 제 1 열전달층 상에 위치하는 제 2 배리어층을 포함하고, 상기 제 1 배리어층 또는 제 2 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노 배리어층을 포함한다.

Description

핫플레이트 및 핫플레이트 제조 방법{HOT PLATE AMD METHOD MANUFACTURING THE SAME}
실시예는 핫플레이트 및 핫플레이트 제조방법에 관한 것이다.
일반적으로 기판 또는 웨이퍼(wafer)상에 다양한 박막을 형성하는 기술 중에 화학 기상 증착 방법(Chemical Vapor Deposition; CVD)이 많이 사용되고 있다. 화학 기상 증착 방법은 화학 반응을 수반하는 증착 기술로, 소스 물질의 화학 반응을 이용하여 웨이퍼 표면상에 반도체 박막이나 절연막 등을 형성한다.
이러한 화학 기상 증착 방법 및 증착 장치는 최근 반도체 소자의 미세화와 고효율, 고출력 LED 개발 등으로 박막 형성 기술 중 매우 중요한 기술로 주목받고 있다. 현재 웨이퍼 상에 실리콘 막, 산화물 막, 실리콘 질화물 막 또는 실리콘 산질화물 막, 텅스텐 막 등과 같은 다양한 박막들을 증착하기 위해 이용되고 있다. 또한, 제조 단가를 낮추기 위해 대구경의 웨이퍼가 꾸준히 연구되고 있다.
그러나, 현재 사용되고 있는 화학 기상 증착 방법은 서셉터 또는 핫플레이트의 사이즈를 증가시, 균일한 온도분포를 갖는데 어려움이 있다. 따라서, 현재 개발중인 6" 또는 그 이상의 사이즈를 가지는 기판 또는 웨이퍼 위에 에피층을 증착하는데 많은 어려움이 따를 수 있다.
종래의 화학 기상 증착 방법에 사용되는 서셉터에서는 핫플레이트 상에 웨이퍼 또는 기판을 올려놓고 다양한 박막들을 증착하였다. 이때, 사용되는 핫플레이트는 고온에서 견딜 수 있는 재질로 구성될 수 있다. 탄화규소 증착에 주로 사용되는 핫플레이트의 경우 탄화규소(SiC)가 주로 사용될 수 있다. 상기 탄화규소는 약 300W/mK의 열전도율을 가지는 전도체이다.
그러나, 상기 웨이퍼의 대구경화에 따라, 상기 핫플레이트도 함께 대형화되면서, 상기 웨이퍼 상에 열전달이 균일하게 전달되지 않을 수 있다. 이에 따라, 웨이퍼 상에 박막 증착이 불균일하게 증착되어 특성을 저하시킬 수 있다.
참고문헌 "Pernot, G., et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater 9, 491-495 (2010)."를 참조하면, Si/Ge를 나노 사이즈의 단일층들로 이루어진 다층으로 코팅한 것이 개시되어 있다.
상기 재료를 나노 사이즈로 코팅하게 되면 벌크 실리콘에 비해 열전도율이 매우 낮아지는 것을 알 수 있다. 즉, 벌크 재료의 열전도에 비해 나노 사이즈 재료의 열전도는 매우 낮아지는 것을 알 수 있다.
따라서, 동일한 재료라고 하더라도, 벌크 재료와 나노 사이즈를 가지는 재료들은 사이즈 효과(size effect)에 의해 서로 열전도에 있어서 차이가 난다.
이에 따라, 본 실시예에 따른 핫플레이트는, 상기 사이즈 효과에 의한 열전도의 차이를 이용하여 웨이퍼에 균일한 온도분포를 전달할 수 있는 핫플레이트를 제조하는 것을 목적으로 한다.
실시예는 서셉터 상에 위치하는 웨이퍼에 균일한 열전달이 가능한 핫플레이트의 제조 방법 및 이에 의해 제조되는 핫플레이트를 제공하고자 한다.
실시예에 따른 핫플레이트 제조방법은, 제 1 배리어층을 준비하는 단계; 상기 제 1 배리어층 상에 제 1 열전달층을 적층하는 단계; 및 상기 제 1 열전달층 상에 제 2 배리어층을 적층하는 단계를 포함하고, 상기 제 1 배리어층 또는 상기 제 2 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층을 포함한다.
실시예에 따른 핫플레이트는, 제 1 배리어층; 상기 제 1 배리어층 상에 위치하는 제 1 열전달층; 및 상기 제 1 열전달층 상에 위치하는 제 2 배리어층을 포함하고, 상기 제 1 배리어층 또는 제 2 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노 배리어층을 포함한다.
실시예에 따른 핫플레이트는, 배리어층과 상기 배리어층 사이에 위치하는 열전달층을 포함한다. 또한, 상기 배리어층은 제 1 서브 나노배리어층 및 제 2 서브 나노 배리어층들이 서로 교차로 적층되어 형성된다.
상기 배리어층은 다수개의 나노 사이즈를 가지는 복수의 이중층 또는 복수의 다층으로 적층되므로, 상기 배리어층에서는 매우 낮은 열전도율을 가질 수 있다.
따라서, 상기 배리어층 사이에 위치하는 열전달층에서는 수직 방향으로의 열전달에 비해 수평 방향으로의 열전달이 우세해질 수 있다.
이에 따라, 웨이퍼 사이즈 증가에 따른 서셉터 사이즈 증가시, 증가된 서셉터의 상부 표면적에서 수평방향으로의 온도구배(temperature gradient)를 줄임으로써 웨이퍼의 모든 면적에 균일한 열 에너지를 공급할 수 있다.
도 1은 실시예에 따른 증착 장치의 분해도를 도시한 도면이다.
도 2는 실시예에 따른 증착 장치를 도시한 도면이다.
도 3은 실시예에 따른 핫플레이트 및 웨이퍼를 도시한 사시도이다.
도 4는 도 3을 A-A' 방향으로 절단한 평면도를 도시한 도면이다.
도 5는 실시예에 따른 핫플레이트의 층상 구조를 도시한 도면이다.
도 6은 실시예에 따른 배리어층의 층상 구조를 도시한 도면이다.
도 7은 실시예에 따른 핫플레이트 제조 방법의 공정도를 도시한 도면이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
도 1 및 도 2는 실시예에 따른 증착 장치의 단면을 도시한 도면이다.
도 1 및 도 2를 참조하면, 상기 증착 장치는 챔버(100), 상기 챔버 내에 위치하는 서셉터(200), 상기 서셉터(200) 내에 위치하는 핫플레이트(300), 반응 기체가 유입되는 소스 기체 라인(400) 및 상기 챔버(100) 외주를 감싸는 유도 코일(500)을 포함할 수 있다.
상기 챔버(100)는 원통형 튜브 형상을 가질 수 있다. 이와는 다르게, 상기 챔버(100)는 사각 박스 형상을 가질 수 있다. 상기 챔버(100)는 상기 서셉터(200)를 수용할 수 있다. 또한, 도면에 도시하지 않았으나, 상기 챔버(100)의 일측면에는 전구체 등을 유입시키기 위한 기체 공급부 및 기체의 배출을 위한 기체 배출부가 더 배치될 수 있다.
또한, 상기 챔버(100)의 양 끝단들은 밀폐되고, 상기 챔버(100)는 외부의 기체유입을 막고 진공도를 유지할 수 있다. 상기 챔버(100)는 기계적 강도가 높고, 화학적 내구성이 우수한 석영(quartz)을 포함할 수 있다. 또한, 상기 챔버(100)는 향상된 내열성을 가진다.
또한, 상기 챔버(100) 내에 단열부가 더 구비될 수 있다. 상기 단열부는 상기 챔버(100) 내의 열을 보존하는 기능을 수행할 수 있다. 상기 단열부로 사용되는 물질의 예로서는 질화물 세라믹, 탄화물 세라믹 또는 흑연 등을 들 수 있다.
상기 서셉터(200)는 상기 챔버(100) 내에 배치된다. 상기 서셉터(200)는 상기 핫 플레이트 및 웨이퍼(W) 등과 같은 기판을 수용한다.
상기 서셉터(200)는 고온 등의 조건에서 견딜 수 있도록 내열성이 높고 가공이 용이한 흑연(graphite)를 포함할 수 있다. 또한, 상기 서셉터(200)는 흑연 몸체에 실리콘 카바이드가 코팅된 구조를 가질 수 있다. 또한, 상기 서셉터(200)는 자체로 유도가열될 수 있다.
상기 서셉터(200)에 공급되는 반응 기체는 열에 의해서, 라디칼로 분해되고, 이 상태에서, 상기 웨이퍼(W) 등에 증착될 수 있다. 예를 들어, MTS는 실리콘 또는 탄소를 포함하는 라디칼로 분해되고, 상기 웨이퍼(W) 상에는 실리콘 카바이드 에피층이 성장될 수 있다. 더 자세하게, 상기 라디칼은 CH3·, CH4, SiCl3· 또는 SiCl2·일 수 있다.
도 3은 실시예에 따른 핫플레이트 및 웨이퍼를 도시한 사시도이고, 도 4는 도 3을 A-A' 방향으로 절단한 평면도를 도시한 도면이다
도 3 및 도 4를 참조하면, 상기 웨이퍼는 상기 핫플레이트(300) 위에 위치할 수 있다. 상기 웨이퍼는 상기 챔버(100) 내에 수용되는 상기 핫플레이트(300) 상에 위치하여, 상기 서셉터(200)로 공급되는 반응기체와 반응하여 상기 웨이퍼 상에 에피층을 성장시킬 수 있다. 상기 핫플레이트(300)는 상기 유도 코일에 의한 열을 상기 웨이퍼에 전달할 수 있다.
도 5는 실시예에 따른 핫플레이트의 층상 구조를 도시한 도면이다. 또한, 도 6은 실시예에 따른 배리어층의 층상 구조를 도시한 도면이다.
도 5 및 도 6을 참조하면, 실시예에 따른 핫플레이트(300)는, 제 1 배리어층(320a); 상기 제 1 배리어층(320a) 상에 위치하는 제 1 열전달층(310a); 및 상기 제 1 열전달층(310a) 상에 위치하는 제 2 배리어층(320b)을 포함하고, 상기 제 1 배리어층(320a) 또는 제 2 배리어층(320b)은 복수개의 제 1 서브 나노배리어층(311) 및 복수개의 제 2 서브 나노배리어층(321)을 포함할 수 있다.
또한, 실시예에 따른 핫플레이트(300)는, 상기 제 2 배리어층(320b) 상에 위치하는 제 2 열전달층(310b); 및 상기 제 2 열전달층(310b) 상에 위치하는 제 3 배리어층(320c)을 더 포함하고, 상기 제 3 배리어층(320c)은 복수개의 제 1 서브 나노배리어층(311) 및 복수개의 제 2 서브 나노배리어층(321)을 포함할 수 있다.
상기 핫플레이트(300)는 상기 열전달층과 상기 배리어층이 서로 교대로 적층되어 형성될 수 있다. 상기 핫플레이트(300)는 상기 제 1,2,3 배리어층 및 상기 제 1,2 열전달층 외에도 다수개의 배리어층 및 열전달층이 교대로 적층되어 형성될 수 있다. 또한, 상기 핫플레이트(300)의 상부 표면은 100㎛ 이상의 두께를 가지는 탄화규소로 코팅함으로써, 900℃ 이상의 고온에서도 상기 핫플레이트(300)의 오염을 방지할 수 있다.
상기 제 1 배리어층(320a) 또는 상기 제 2 배리어층(320b)은 복수개의 제 1 서브 나노배리어층(311) 및 복수개의 제 2 서브 나노배리어층(321)이 교대로 적층되어 형성될 수 있다. 상기 서브 열전달층(311)과 상기 제 1 서브 나노배리어층(311)과 상기 제 2 서브 나노배리어층(321)은 나노 사이즈 단위의 층으로 형성되어 적층될 수 있다. 바람직하게는, 상기 제 1 서브 나노배리어층(311)의 두께는 2㎚ 내지 50㎚일 수 있고, 상기 제 2 서브 나노배리어층(321)의 두께는 2㎚ 내지 50㎚일 수 있다. 또한, 상기 제 1 서브 나노 배리어층(311)과 상기 제 2 서브 나노배리어층이 교대로 적층하여 형성된 상기 제 1 배리어층(320a) 또는 상기 제 2 배리어층(320b)의 두께는 0.5㎛ 내지 100㎛일 수 있다. 바람직하게는, 상기 제 1 배리어층(320a) 또는 상기 제 2 배리어층(320b)의 두께는 상기 열전달층(310) 두께의 30% 이상일 수 있다.
상기 제 1 배리어층(320a) 또는 상기 제 2 배리어층(320b)은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층 외에도 다수개의 서브 나노배리어층들이 교대로 적층하여 형성될 수 있다.
상기 제 1 열전달층(310a)은 상기 제 1 배리어층(320a) 위에 위치할 수 있다. 상기 제 1 열전달층(310a)은 질화알루미늄층(AlN layer), 질화하푸늄층(HfN layer) 또는 탄화규소층(SiC layer)을 포함할 수 있다. 또한, 상기 제 1 열전달층(310a) 위에 상기 제 2 배리어층(320b)이 적층되어, 상기 제 1 열전달층(310a)은 상기 제 1 배리어층(320a)과 상기 제 2 배리어층(320b) 사이에 위치할 수 있다. 상기 열전달층의 두께는 500㎚ 이상 500㎛ 이하 일 수 있다.
상기 열전달층은 질화알루미늄층, 질화하푸늄층 또는 탄화규소층)을 포함할 수 있다. 구체적으로, 질화알루미늄층의 경우 상기 핫플레이트의 온도가 1000℃ 미만일 때 사용 가능하며 질화하푸늄층의 경우 상기 핫플레이트의 온도가 2800℃ 미만일 때 사용 가능하다.
또한, 상기 배리어층은 탄화규소층, 탄탈륨카바이드층(TaC layer), 질화하푸늄층, 질화알루미늄층, 질화티타늄(TiN layer) 또는 질화탄탈륨(TaN layer)을 포함할 수 있다. 바람직하게는 상기 배리어층의 상기 제 1 서브 나노배리어층(311) 또는 상기 제 2 서브 나노배리어층(321)은 탄탈륨카바이드층, 질화하푸늄층, 탄화규소층, 질화알루미늄층, 질화티타늄층 또는 질화탄탈륨층을 포함할 수 있다.
구체적으로, 1000℃ 이상의 고온에서 사용되는 서셉터 또는 핫플레이트의 경우에는 탄화규소층, 질화하푸늄층 또는 탄탈륨카바이드 층 등이 사용될 수 있으며, 고순도의 탄화규소 에피 코팅이 목적인 경우에는 탄화규소와 탄탈륨카바이드층을 배리어층으로 사용할 수 있다. 또한, 1000℃ 이아희 온도에서 사용하는 경우에는 질화알루미늄층 또는 질화티타튬층을 배리어층으로 사용할 수 있다.
상기 제 1 서브 나노배리어층(311)과 상기 제 2 서브 나노배리어층(321)은 서로 교대로 적층되어 배리어층을 형성할 수 있다. 바람직하게는 복수 개의 제 1 서브 나노배리어층과 복수개의 제 2 서브 나노배리어층이 교대로 적층되어 배리어층을 형성할 수 있다.
상기 배리어층의 열전도율은 약 10W/mK 이하일 수 있으며, 상기 탄화규소층 등을 포함하는 상기 열전달층의 열전도율은 약 100W/mK 이상일 수 있다.
상기 제 1, 2 또는 3 배리어층에서는 열전달층에 비해 열전도율이 매우 낮아질 수 있다. 일반적으로, 재료의 열전도율은 그 재료의 고유한 상수값이지만, 상기 재료를 나노 사이즈급으로 코팅 또는 증착하게 되면, 개개의 나노 사이즈 재료의 열전도율은 절단 전의 벌크 재료에 비해 열전도율이 매우 낮아질 수 있다.
따라서, 상기 배리어층 즉, 나노 사이즈의 상기 제 1 서브 나노배리어층(311)과 상기 제 2 서브 나노배리어층(321)이 교대로 적층하여 형성되는 상기 배리어층은 열전도율이 매우 낮아질 수 있다. 바람직하게는 상기 배리어층의 열전도율은 10W/mK 이하일 수 있다. 이에 따라, 상기 배리어층들 사이에 위치하는 상기 열전달층에서는 수직방향에 비해 수평방향으로 열전달이 우세한 이방성의 열전도도(anisotropic thermal conduction)를 유도할 수 있다.
핫플레이트(300)의 상기 열전달층에서 수평방향으로 열전달이 유리해짐에 따라, 상기 핫플레이트(300)에서 전체적으로 균일한 온도 분포가 가능해지므로, 상기 핫플레이트(300) 상에 위치하는 재료, 일례로 웨이퍼에 균일한 열 에너지를 공급할 수 있다. 따라서, 웨이퍼 상에서 균일한 에피층 성장이 가능하므로, 이를 적용한 소자의 전기적 특성 등을 향상시킬 수 있다.
도 7은 실시예에 따른 핫플레이트 제조 방법의 공정도를 도시한 도면이다.
도 7을 참고하면, 실시예에 따른 핫플레이트 제조 방법은, 제 1 배리어층을 준비하는 단계(ST10); 상기 제 1 배리어층 상에 제 1 열전달층을 적층하는 단계(ST20); 및 상기 제 1 열전달층 상에 제 2 배리어층을 적층하는 단계(ST30)를 포함하고, 상기 제 1 배리어층 또는 제 2 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층을 포함한다.
또한, 실시예에 따른 핫플레이트 제조 방법은, 상기 제 2 배리어층 상에 제 2 열전달층을 적층하는 단계 및 상기 제 2 열전달층 상에 제 3 배리어층을 적층하는 단계를 더 포함하고, 상기 제 3 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층을 포함할 수 있다.
상기 제 1 열전달층 또는 상기 제 2 열전달층은 질화알루미늄층, 질화하푸늄층 또는 탄화규소층을 포함할 수 있으며, 상기 제 1서브 나노배리어층 또는 상기 제 2 서브 나노 배리어층은 탄탈륨카바이드층, 질화하퓨늄층, 질화알루미늄층, 질화티타늄층, 질화탄탈륨층 또는 탄화규소층을 포함할 수 있다.
상기 제 1 열전달층 또는 상기 제 2 열전달층의 두께는 500㎚ 내지 500㎛ 일 수 있으며, 상기 제 1 배리어층, 상기 제 2 배리어층 또는 상기 제 3 배리어층의 두께는 500㎚ 내지 100㎛ 일 수 있고, 상기 서브 배리어층의 두께는 2㎚ 내지 50㎚일 수 있으며, 상기 서브 열전달층의 두께는 2㎚ 내지 50㎚일 수 있다.
실시예의 제조방법에 따라 제조되는 핫플레이트는, 핫플레이트(300)의 상기 열전달층에서 수평방향으로 열전달이 유리해짐에 따라, 상기 핫플레이트(300)에서 전체적으로 균일한 온도 분포가 가능해지므로, 상기 핫플레이트(300) 상에 위치하는 재료, 일례로 웨이퍼에 균일한 열 에너지를 공급할 수 있다. 따라서, 웨이퍼 상에서 균일한 에피층 성장이 가능하므로, 이를 적용한 소자의 전기적 특성 등을 향상시킬 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 제 1 배리어층;
    상기 제 1 배리어층 상에 위치하는 제 1 열전달층;
    상기 제 1 열전달층 상에 위치하는 제 2 배리어층;
    상기 제 2 배리어층 상에 위치하는 제 2 열전달층; 및
    상기 제 2 열전달층 상에 위치하는 제 3 배리어층을 포함하고,
    상기 제 1 배리어층, 상기 제 2 배리어층 또는 상기 제 3 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노 배리어층을 포함하는 핫플레이트.
  2. 삭제
  3. 제 1항에 있어서,
    상기 제 1 열전달층 또는 상기 제 2 열전달층은 탄화규소층, 질화하푸늄층 또는 질화알루미늄층을 포함하는 핫플레이트.
  4. 제 1항에 있어서,
    상기 제 1 서브 나노배리어층 또는 상기 제 2 서브 나노배리어층은 탄탈륨카바이드층, 질화하푸늄층, 탄화규소층, 질화알루미늄층, 질화티타늄층 또는 질화탄탈륨층을 포함하는 핫플레이트.
  5. 제 1항에 있어서,
    상기 제 1 열전달층 또는 상기 제 2 열전달층의 두께는 500㎚ 내지 500㎛인 핫플레이트.
  6. 제 1항에 있어서,
    상기 제 1 배리어층, 상기 제 2 배리어층 또는 상기 제 3 배리어층의 두께는 500㎚ 내지 100㎛인 핫플레이트.
  7. 제 1항에 있어서,
    상기 제 1 서브 나노배리어층의 두께는 2㎚ 내지 50㎚인 핫플레이트.
  8. 제 1항에 있어서,
    상기 제 2 서브 나노배리어층의 두께는 2㎚ 내지 50㎚인 핫플레이트.
  9. 제 1 배리어층을 준비하는 단계;
    상기 제 1 배리어층 상에 제 1 열전달층을 적층하는 단계;
    상기 제 1 열전달층 상에 제 2 배리어층을 적층하는 단계;
    상기 제 2 배리어층 상에 제 2 열전달층을 적층하는 단계 및
    상기 제 2 열전달층 상에 제 3 배리어층을 적층하는 단계를 포함하고,
    상기 제 1 배리어층, 상기 제 2 배리어층 또는 상기 제 3 배리어층은 복수개의 제 1 서브 나노배리어층 및 복수개의 제 2 서브 나노배리어층을 포함하는 핫플레이트 제조 방법.
  10. 삭제
  11. 제 9항에 있어서,
    상기 제 1 열전달층 또는 상기 제 2 열전달층은 탄화규소층, 질화하푸늄층 또는 질화알루미늄층을 포함하는 핫플레이트 제조 방법.
  12. 제 9항에 있어서,
    상기 제 1 서브 나노배리어층 또는 상기 제 2 서브 나노배리어층은 탄탈륨카바이드층, 질화하푸늄층, 탄화규소층, 질화알루미늄층, 질화티타늄층 또는 질화탄탈륨층을 포함하는 핫플레이트 제조 방법.
  13. 제 9항에 있어서,
    상기 제 1 열전달층 또는 상기 제 2 열전달층의 두께는 500㎚ 내지 500㎛인 핫플레이트 제조 방법.
  14. 제 9항에 있어서,
    상기 제 1 배리어층, 상기 제 2 배리어층 또는 상기 제 3 배리어층의 두께는 500㎚ 내지 100㎛인 핫플레이트 제조 방법.
  15. 제 9항에 있어서,
    상기 제 1 서브 나노배리어층의 두께는 2㎚ 내지 50㎚인 핫플레이트 제조 방법.
  16. 제 9항에 있어서,
    상기 제 2 서브 나노배리어층의 두께는 2㎚ 내지 50㎚인 핫플레이트 제조 방법.
KR1020110107200A 2011-10-19 2011-10-19 핫플레이트 및 핫플레이트 제조 방법 KR101283184B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110107200A KR101283184B1 (ko) 2011-10-19 2011-10-19 핫플레이트 및 핫플레이트 제조 방법
PCT/KR2012/008622 WO2013058610A1 (en) 2011-10-19 2012-10-19 Hot plate and method of manufacturing the same
US14/353,199 US9657394B2 (en) 2011-10-19 2012-10-19 Hot plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110107200A KR101283184B1 (ko) 2011-10-19 2011-10-19 핫플레이트 및 핫플레이트 제조 방법

Publications (2)

Publication Number Publication Date
KR20130043005A KR20130043005A (ko) 2013-04-29
KR101283184B1 true KR101283184B1 (ko) 2013-07-05

Family

ID=48141141

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110107200A KR101283184B1 (ko) 2011-10-19 2011-10-19 핫플레이트 및 핫플레이트 제조 방법

Country Status (3)

Country Link
US (1) US9657394B2 (ko)
KR (1) KR101283184B1 (ko)
WO (1) WO2013058610A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130107001A (ko) * 2012-03-21 2013-10-01 엘지이노텍 주식회사 증착 장치
DE102016111236A1 (de) * 2016-06-20 2017-12-21 Heraeus Noblelight Gmbh Substrat-Trägerelement für eine Trägerhorde, sowie Trägerhorde und Vorrichtung mit dem Substrat-Trägerelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093790A (ko) * 2002-06-05 2003-12-11 삼성전자주식회사 반도체 장치 제조를 위한 메탈 공정 시스템
JP2004296492A (ja) 2003-03-25 2004-10-21 Hitachi Kokusai Electric Inc 熱処理装置
JP2005197534A (ja) 2004-01-08 2005-07-21 Shin Etsu Handotai Co Ltd 熱処理用治具の表面保護膜形成方法及び熱処理用治具
KR20100046909A (ko) * 2008-10-28 2010-05-07 주성엔지니어링(주) 정전 흡착 장치와 그의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183997A (en) * 1989-03-21 1993-02-02 Leybold Aktiengesellschaft Heating apparatus for cooking food, especially a hot plate
US5464966A (en) * 1992-10-26 1995-11-07 The United States Of America As Represented By The Secretary Of Commerce Micro-hotplate devices and methods for their fabrication
DE69706850T2 (de) * 1996-06-13 2002-05-16 Siemens Ag Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung
JP3497328B2 (ja) * 1996-07-16 2004-02-16 本田技研工業株式会社 熱電材料
US6131651A (en) * 1998-09-16 2000-10-17 Advanced Ceramics Corporation Flexible heat transfer device and method
US6397931B1 (en) * 2001-02-27 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Finned heat exchanger
FR2833256B1 (fr) * 2001-12-11 2004-09-17 Snc Eurokera Plaques vitroceramiques, plaques de cuisson les comprenant et leurs procedes de fabrication
US20080083732A1 (en) * 2006-10-10 2008-04-10 Sumitomo Electric Industries, Ltd. Wafer holder and exposure apparatus equipped with wafer holder
KR100891316B1 (ko) 2007-06-29 2009-04-01 한국기계연구원 유도가열에 의한 히트파이프방식 핫플레이트
US20090236087A1 (en) * 2008-03-19 2009-09-24 Yamaha Corporation Heat exchange device
JP4927121B2 (ja) * 2009-05-29 2012-05-09 シャープ株式会社 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093790A (ko) * 2002-06-05 2003-12-11 삼성전자주식회사 반도체 장치 제조를 위한 메탈 공정 시스템
JP2004296492A (ja) 2003-03-25 2004-10-21 Hitachi Kokusai Electric Inc 熱処理装置
JP2005197534A (ja) 2004-01-08 2005-07-21 Shin Etsu Handotai Co Ltd 熱処理用治具の表面保護膜形成方法及び熱処理用治具
KR20100046909A (ko) * 2008-10-28 2010-05-07 주성엔지니어링(주) 정전 흡착 장치와 그의 제조방법

Also Published As

Publication number Publication date
KR20130043005A (ko) 2013-04-29
US20140251976A1 (en) 2014-09-11
US9657394B2 (en) 2017-05-23
WO2013058610A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
Zhang et al. High‐speed preparation of< 111>‐and< 110>‐oriented β‐SiC films by laser chemical vapor deposition
US9324561B2 (en) Silicon carbide epitaxial wafer, and preparation method thereof
US9165768B2 (en) Method for deposition of silicon carbide and silicon carbide epitaxial wafer
TW201321546A (zh) 化學氣相沈積的氣體預熱系統
KR101283184B1 (ko) 핫플레이트 및 핫플레이트 제조 방법
TWI484561B (zh) 加熱器組件及運用此加熱器組件的晶圓處理裝置
TW201133945A (en) Diamond LED devices and associated methods
US20150144964A1 (en) Silicon carbide epi-wafer and method of fabricating the same
KR101936171B1 (ko) 탄화규소 에피 웨이퍼 제조 방법 및 탄화규소 에피 웨이퍼
TWI325610B (en) Electrostatic chuck and method for making the same
JP2008159900A (ja) 静電チャック付きセラミックヒーター
KR20130044789A (ko) 에피 웨이퍼 제조 장치, 에피 웨이퍼 제조 방법 및 에피 웨이퍼
KR101942536B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
KR20130107001A (ko) 증착 장치
KR101936170B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
US20150144963A1 (en) Silicon carbide epi-wafer and method of fabricating the same
KR102422422B1 (ko) 그래핀을 포함하는 반도체 소자 및 그 제조방법
JP2022500846A (ja) 静電チャック
KR20140127954A (ko) 그라파이트 기재에 대한 SiC박막 증착방법 및 SiC박막이 증착된 서셉터
KR101916226B1 (ko) 증착 장치 및 증착 방법
TWI780901B (zh) 複合基板及其製造方法
KR102203025B1 (ko) 탄화규소 에피 웨이퍼 제조 방법
JP2010073722A (ja) 静電チャック
KR101882327B1 (ko) 증착 장치 및 증착 방법
TW201220365A (en) Substrate processing apparatuses and systems

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee