KR101281899B1 - 항공기 충돌 감지/회피 시스템 및 방법 - Google Patents

항공기 충돌 감지/회피 시스템 및 방법 Download PDF

Info

Publication number
KR101281899B1
KR101281899B1 KR1020087020901A KR20087020901A KR101281899B1 KR 101281899 B1 KR101281899 B1 KR 101281899B1 KR 1020087020901 A KR1020087020901 A KR 1020087020901A KR 20087020901 A KR20087020901 A KR 20087020901A KR 101281899 B1 KR101281899 B1 KR 101281899B1
Authority
KR
South Korea
Prior art keywords
target
collision
delete delete
risk
determining
Prior art date
Application number
KR1020087020901A
Other languages
English (en)
Other versions
KR20080113021A (ko
Inventor
마이클 알. 아브라함
데니스 제이. 옐톤
잭 센더스-리드
크리스티안 씨. 비트
크리스토퍼 제이. 뮤지얼
Original Assignee
더 보잉 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38478402&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101281899(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 더 보잉 컴파니 filed Critical 더 보잉 컴파니
Publication of KR20080113021A publication Critical patent/KR20080113021A/ko
Application granted granted Critical
Publication of KR101281899B1 publication Critical patent/KR101281899B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers

Abstract

충돌 감지/회피 시스템 및 방법과 이 충돌 감지/회피 시스템을 포함하는 UAV(Unmaned Aerial Vehicle: 무인 항공기) 및/또는 RPV(Remote Piloted Vehicle: 원격 조정 비행체) 등의 항공기에 관한 것이다. 충돌 감지/회피 시스템은 항공기에 대한 잠재적인 충돌 위험성을 식별하여 임의의 식별된 위험을 회피하기 위한 기동을 제공하는 화상 호출기(image interrogator)를 포함하고 있다. 모션 센서(motion sensor; 예컨대 이미징 및/또는 적외선 센서)는 그 주변의 화상 프레임을 그 프레임 내에서 이동하는 국부적인 목표를 검출하는 클러터 억제(clutter suppression) 및 목표검출장치에 제공한다. LOS(Line of sight: 시선), 다중목표 추적장치는 검출된 국부적인 목표를 추적하여 검출된 국부적인 목표마다 LOS 좌표에서의 추적 이력을 유지한다. 위험성 평가장치는 어느 추적된 국부적인 목표가 충돌 위험성을 내포하고 있는지 여부를 판단한다. 회피기동장치는 임의의 식별된 상기 충돌 위험성을 회피하기 위한 기동을 비행 제어 및 안내장치에 제공한다.

Description

항공기 충돌 감지/회피 시스템 및 방법 {AIRCRAFT COLLISION SENSE AND AVOIDANCE SYSTEM AND METHOD}
본 발명은 일반적으로 비행 중의 작은 유료하중 비행체(payload air vehicle)를 제어하는 것에 관한 것으로, 특히 다른 국부적인 비행체와의 잠재적인 충돌을 감지 및 회피하기 위해 UAV(Unmaned Aerial Vehicle: 무인 항공기) 및 RPV(Remote Piloted Vehicle: 원격 조정 비행체)를 자동적으로 제어하는 것에 관한 것이다.
일반적으로, UAV(Unmaned Aerial Vehicle: 무인 항공기) 및/또는 RPV(Remote Piloted Vehicle: 원격 조정 비행체)는 국가 영공(National Air Space: NAS)에서 비행할 때 충돌의 리스크를 완화하기 위해 유인 "샤프롱(chaperon)" 항공기를 동반한다. 샤프롱은 항공기(UAV 또는 RPV)가 부근에서 비행하는 다른 유인 또는 무인 항공기와 충돌하지 않는 것, 또는 그와 반대의 경우도 다른 유인 또는 무인 항공기와 충돌하지 않는 것을 보증하기 위해 특히 필요하다. 불행하게도, 비행체와 같은 샤프로닝(chaperoning)은 노동 집약적이어서 시험 및 데모용 이외에는 그다지 유용하지 않다.
유인 항공기는 충돌 회피를 위해 항공 교통 관제(air traffic control), 트 랜스폰더(transponder: 자동 무선 레이더) 및 조종사 시력(pilot vision)에 의존한다. 트랜스폰더가 모든 상용 항공기에 요구되고 있는 반면, 많은 사설 항공기는 트랜스폰더를 운반하지 않고, 트랜스폰더는 전투 상황에서는 사용될 필요가 없다. 더욱이, 트랜스폰더 회피 권고를 반대하는 명령을 내리는 항공 교통 관제의 경우도 있어 왔다. 유인 항공기의 경우, 조종사는 국부적인 이동 물체를 시각적으로 식별하여 각 물체가 충돌 위험성을 내포하고 있는지 여부에 관한 판정 호출을 행한다. 따라서, 종종 로컬 부근에서 다른 항공기를 검출할 때에 시력 기반 검출(vision based detection)이 필요불가결하다.
일반적으로, 미국연방항공국(Federal Aviation Administration: FAA)은 NAS에서 그러한 항공기를 비행하기 위해 현존하는 유인 항공기와 비교해서 "등가의 안전 레벨"을 탐색하고 있다. 영공은 UAV 주위로 제한될 수 있거나, 또는 UAV가 다른 항공기의 충돌 리스크를 내포하고 있을 가능성을 제거하기 위해 제한된 영공에 한정될 수 있는데, 이것은 무인 항공기가 이용될 수 있는 미션(mission: 임무) 및 조건의 범위를 한정한다. 그래서, 동반되지 않는 UAV도 임의의 가까운 항공기를 검출 및 회피하기 위해 몇가지 능력을 가져야 한다. 무인 비행체는 항공기(즉, "조종석"으로부터의 시야를 중계하는 비디오 카메라)로부터 이송되는 라이브 비디오(live video)를 혼잡한 영공에서 비행체를 원격으로 조종하는 지상 기반 조종사에게 제공하도록 대체되어도 좋다. 불행하게도, 온보드 이미징 능력을 가진 원격 조종 비행체는 비디오 및 제어의 양쪽을 위한 추가적인 전송 능력과, 양 전송을 위한 충분한 대역폭 및, 루프 내에서 계속해서 조종하는 조종사를 필요로 한다. 따 라서, 그러한 비행체를 갖추어 원격으로 조종하는 것은 비용이 많이 든다. 부가적으로 원격으로 조종되는 비행체에 의해, 볼 수 있거나 보인 때 비행체로부터 이송되는 비디오 및 원격 제어 매커니즘에 있어서 추가된 지연(즉, 조종사가 경로를 정정할 때와 비행체가 경로를 바꿀 때의 사이)이 생긴다. 그리하여, 보통의 비행 중에 유용한 그러한 원격 이미징은 적시의 위험성 검출 및 회피에는 유용하지 않다.
따라서, 특히 다른 국부적인 공중 목표와의 충돌을 검출하여 회피할 수 있는 무인 비행체에 대해, 최소의 족적(minimal footprint)을 갖는 작고 컴팩트하며 가벼운 실시간 온보드 충돌 감지/회피 시스템이 필요하게 된다. 더욱이, 임의의 비행 조건 하에 다른 국부적인 공중 물체로부터 위험의 격렬함을 판단하고 또 적당한 회피 기동을 결정할 수 있는 그러한 충돌 감지/회피 시스템이 필요하게 된다.
본 발명의 실시예는 충돌 리스크를 내포하고 있을지도 모르는 항공기 부근의 물체를 검출한다. 본 발명의 다른 실시예는 항공기에 대해 충돌 리스크를 내포하고 있는 것으로 식별된 임의의 국부적인 물체를 회피하기 위해 항공기에 대해 회피적인 기동을 제안할 수 있다. 본 발명의 더욱 더 다른 실시예는 무인 항공기에 대해 충돌 리스크를 내포할 수 있는 무인 항공기 부근의 물체를 시각적으로 배치하여 자동적으로 검출하고, 임의의 식별된 충돌 리스크를 회피하기 위해 회피적인 기동을 자동적으로 제안한다.
특히, 본 발명의 실시예들은 충돌 감지/회피 시스템 및 방법과 이 충돌 감지/회피 시스템을 포함하는 UAV(Unmaned Aerial Vehicle: 무인 항공기) 및/또는 RPV(Remote Piloted Vehicle: 원격 조정 비행체) 등의 항공기를 포함한다. 충돌 감지/회피 시스템은 항공기에 대한 잠재적인 충돌 위험성을 식별하여 임의의 식별된 위험을 회피하기 위한 기동을 제공하는 화상 호출기(image interrogator)를 포함하고 있다. 모션 센서(motion sensor; 예컨대 이미징 및/또는 적외선 센서)는 그 주변의 화상 프레임을 그 프레임 내에서 이동하는 국부적인 목표를 검출하는 클러터 억제(clutter suppression) 및 목표검출장치에 제공한다. LOS(Line of sight: 시선), 다중목표 추적장치는 검출된 국부적인 목표를 추적하여 검출된 국부적인 목표마다 LOS 좌표에서의 추적 이력을 유지한다. 위험성 평가장치는 어느 추적된 국부적인 목표가 충돌 위험성을 내포하고 있는지 여부를 판단한다. 회피기동장치는 임의의 식별된 상기 충돌 위험성을 회피하기 위한 기동을 비행 제어 및 안내장치에 제공한다.
유리하게는, 바람직한 충돌 감지/회피 시스템은 임의의 항공기에 "눈으로 보고 회피(See & Avoid)"하거나 "검출하여 회피(Detect and Avoid)"하는 능력을 제공하여 국부적인 목표를 식별하여 감시할 뿐만 아니라 충돌 위험성을 내포할 수 있는 임의의 목표를 식별하여 실시간 회피 기동(realtime avoidance maneuver)을 제공한다. 바람직한 화상 호출기는 하드웨어 및 매립형 소프트웨어를 포함하며 무게가 단지 수 온스(ounce)인 하나 이상의 작은 화상 처리 하드웨어 모듈 내에 포함되어도 좋다. 그러한 극적으로 축소된 사이즈 및 무게는 작은 UAV, 예컨대 스캔이글(ScanEagle)이나 더 작은 것에조차 이용가능한 전통적인 검출 및 추적 능력을 만드는 것을 가능하게 한다.
무인 항공기에 대해 개발되고 있는 동안에, 바람직한 감지 및 회피 시스템은 특히 조밀하거나 높은 응력 환경에 있어서 인식하지 못한 위험성에 대해 유인 항공기의 조종사를 바꾸기 위한 어플리케이션을 갖는다. 따라서, 바람직한 충돌 감지/회피 시스템은 유인 및 무인 항공기의 양쪽에서 사용되어도 좋다. 유인 항공기에서는, 바람직한 충돌 감지/회피 시스템이 조종사의 시력(vision)을 증대시킨다. 무인 항공기에서는, 바람직한 충돌 감지/회피 시스템이 충돌 리스크를 내포하고 있을지도 모르는 항공기를 검출하여 필요한 경우에 무인 항공기의 비행 제어에 회피적인 기동을 제안하는 조종사의 시력을 대신해도 좋다.
전술한 목적 및 다른 목적, 국면 및 이점은 이하의 도면을 참조해서 본 발명의 바람직한 실시예의 다음의 상세한 설명으로부터 더 잘 이해될 것이다:
도 1은 본 발명의 유익한 실시예에 따른 충돌 감지/회피 시스템을 갖춘, 예컨대 UAV(Unmaned Aerial Vehicle: 무인 항공기) 또는 RPV(Remote Piloted Vehicle: 원격 조정 비행체)와 같은 항공기의 일례를 나타낸다.
도 2는 센서로부터 모션 데이터를 수신하여 비행 제어 및 안내장치로 충돌 회피 기동을 전달하는 바람직한 화상 호출기의 일례를 나타낸다.
도 3은 각각 검출된 목표가 호스트 항공기와 가능한 충돌경로 상에 있는지 여부를 판단하는 위험성 평가(1240)의 일례를 나타낸다.
도 4는 목표가 충돌 위험성을 나타낸다는 사실을 판단한 때에 회피 기동을 전개하는 일례를 나타낸다.
이제 도면, 특히 도 1로 되돌아가면, 도 1은 본 발명의 바람직한 실시예에 따른 충돌 감지/회피 시스템을 갖춘, 예컨대 UAV(Unmaned Aerial Vehicle: 무인 항공기) 또는 RPV(Remote Piloted Vehicle: 원격 조정 비행체)와 같은 바람직한 실시예 항공기(100)의 일례를 나타낸다. 호스트 항공기(100) 부근에서 이동하는 문체를 검출하기 위해 적당한 수의 모션 센서(motion sensor; 102)가 배치되어 있다. 모션 센서(102)는, 모호한 인간 시력에 대해 임의의 적당한 볼 수 있는 밴드 센서(band sensor), 또는 열악하거나 제한된 가시도(visibility)의 기간, 예컨대 안개속이나 밤중에 물체 움직임을 검출하기 위한 적외선(IR) 센서로 될 수 있다. 센서(102)는, 이 센서(102)로부터 실시간 화상 데이터를 받아들여 공중 목표, 예컨대 다른 항공기, 클러터된 배경조차도 검출하기 위해 화상 데이터를 처리하는 호스트 항공기(100) 내의 바람직한 실시예 화상 호출기에 접속되어 있다. 화상 호출기는 LOS(Line of sight: 시선) 공간에서의 시간 이력을 만든다. 목표 이력은 검출된 목표의 상대적인 이동을 가리킨다. 각각 검출된 목표는 그 상대적인 이동에 기초해서 분류되어 수동 센서 각도 및 명백한 목표 사이즈 및/또는 강도로부터 결정된 위험성 레벨 카테고리를 할당한다. 각 목표의 위험성 레벨 카테고리에 기초해서, 화상 호출기는 회피적인 기동이 타당하게 되어 있는지 여부를 판단하고, 그렇게 되 어 있다면, 임의의 잠재적인 위험성을 회피하기 위해 적당한 회피적인 기동을 제안한다. 또한 바람직한 실시예 화상 호출기는, 더 높은 레벨에서 동작하는 다른 충돌 회피 경로로, 예컨대 원거리에 위치된 제어국(control station)으로 LOS 목표 추적 및 위험성 평가(threat assessment)를 제공할 수도 있다.
도 2는 프레임 버퍼(114)를 통해 센서(102)로부터 모션 데이터(motion data: 움직임 데이터)를 수신하여 필요에 따라 비행 제어 및 안내장치(116)로 회피적인 기동을 전달하는 화상 호출기(112)를 포함하는 바람직한 충돌 감지/회피 시스템(110)의 일례를 나타낸다. 바람직하게는, 충돌 감지/회피 시스템(110)은 적당한 향상된 비전 시스템(vision system)에서 동작하는 지능형 에이전트(intelligent agent)이다. 이러한 적당한 향상된 비전 시스템의 한가지 예가 본 발명의 양수인에게 양도되어 여기에 레퍼런스로서 짜넣어진 2004년 9월 14일 출원된 샌더스-리드 등에 의한 "Situational awareness components of an enhanced vision system(향상된 비전 시스템의 상황인식 컴포넌트)"라는 명칭의 공개된 미국 특허출원공개 2006/0055628 A1에 개시되어 있다. 또한, 바람직한 화상 호출기(112)는 매립된 범용 중앙처리장치(Central Processing Unit: CPU) 코어를 갖춘 하나 이상의 FPGA(Field Programmable Gate Array) 프로세서로 실현된다. 예컨대 자일링스 버텍스-II(Xilinx Virtex-II)와 같은 이 기술분야의 FPGA 프로세서의 전형적인 상태는 독립형의 프로세서 보드의 폼 펙터(form factor: 소형 인수)를 갖는 수 인치(inch)의 정사각형이다. 그러므로, 전체 FPGA 프로세서는 외부 컴퓨터 버스 또는 다른 시스템 특성 인프라-구조 하드웨어가 필요하지 않은 단일의 3.5인치 내에 매립된 단일의 작은 프로세서 보드 또는 더 작은 입방체여도 좋다. 그러한 FPGA 프로세서 내에 매립된 화상 호출기(112)는 더 보잉 컴파니로부터의 스캔이글(ScanEagle)과 같은 매우 작은 UAV의 측면에 완전히 접착될 수 있다.
하나 이상의 센서(102)로부터의 화상 데이터는, 단순히 국부적인 랜덤 억세스 메모리(Random Access Memory: RAM), 프레임 버퍼 저장을 위해 영구적 또는 일시적으로 지정된 FPGA 프로세서 내의 정적 또는 동적 RAM(SRAM 또는 DRAM)으로 될 수 있는 프레임 버퍼(114) 내에 일시적으로 버퍼링되어도 좋다. 각 센서(102)는 전용의 프레임 버퍼(114)를 갖추어도 좋고, 또는 공유 프레임 버퍼(114)가 모든 센서에 대해 화상 프레임을 일시적으로 기억해도 좋다. 화상 데이터는 프레임 버퍼(114)로부터 바람직한 화상 호출기(112) 내의 클러터 억제 및 목표 검출장치(118)로 전달된다. 클러터 억제 및 목표 검출장치(118)는, 예컨대 내츄럴 스카이(natural sky: 자연 하늘), 구름이 뭉게뭉게 피어오른 하늘, 및 지형 배경에 대한 임의의 조건 하에, 그리고 각종의 발광조건 하에 목표를 식별할 수 있다. LOS, 다중목표 추적장치(120)는 LOS 좌표에 있어서 목표 검출장치(118)에서 식별된 목표를 추적한다. 또한, LOS, 다중목표 추적장치(120)는 식별된 목표마다 이동의 이력(122)을 유지한다. 위험성 평가장치(124)는 식별된 목표 및 각 목표와의 충돌의 가능성을 판단하기 위해 각각에 대한 추적 이력을 감시한다. 회피기동장치(126)는 호스트 항공기와의 충돌경로 상으로 간주되는 임의의 목표에 대한 적당한 회피 기동을 판정한다. 회피기동장치(126)는 실행을 위해 비행제어 및 안내장치(116)로 회피 기동을 전달한다.
클러터 억제 및 목표 검출장치(118) 및 LOS, 다중목표 추적장치(120)는 목표 추적에 널리 사용되는 다수의 적당한 잘 알려진 알고리즘 중 임의의 알고리즘을 이용해서 실현되어도 좋다. 바람직하게는, 클러터 억제 및 목표 검출은 단일 프레임 목표 검출모드나 다중 프레임 목표 검출모드로 실현된다. 단일 프레임 목표 검출모드에서는, 각 프레임이 광학 포인트 스프레드 함수(Optical Point Spread Function: OPSF)에 의해 컨볼루션(convolution)되어 있다. 그 결과, 모든 큰 특징, 즉 직경이 수개의 화소보다 큰 단일의 화소 노이즈는 제거된다. 따라서, 미정 또는 거의 미정의 형상만이 실제의 목표를 식별하기 위해 남게 된다. 일반적으로 이동목표 표시기(Moving Target Indicator: MTI)라고 불리는 적당한 다중 프레임 이동목표 검출 어프로치의 일례는 샌더스-리드 등에 의해 제공되고, 이 샌더스-리드 등에 의한 「"Muiti-Target Tracking In Clutter(클러터에서의 다중 목표 추적)", Proc. of the SPIE, 4724, April 2002」는 이동 목표가 배경에 비례하여 이동하며, 따라서 일정한 식별할 수 있는 속도로 이동하는 것(배경)은 무엇이든지 이동하는 목표만을 남기는 결과로 제거된다는 것을 가정하는 것을 개시한다.
추적 이력(122)은 각 목표의 이동의 시간 이력을 제공하고, 국부적인 기억장치, 예컨대 테이블 또는 데이터베이스 내에 포함되어 있어도 좋다. 이전에, 이 기술분야의 추적장치의 전형적인 상태가 단순히 초점 평면 화소좌표를 추적하고 있기 때문에, 목표 이동을 이해하기 위해서는 높은 레벨의 좌표계가 필요했다. 그렇지만, 바람직한 실시예의 충돌 감지/회피 시스템(110)은 그러한 높은 레벨의 좌표계를 필요로 하지 않고, 대신에 LOS, 다중목표 추적장치(120)가 LOS 좌표에서의 추적 이력(122)을 수집한다. 적당한 추적이력을 전개, 유지 및 사용하는 시스템의 일례에 대해서는, 예컨대 제이. 엔. 샌더스-리드에 의한 「"Muiti-Target, Muiti-Sensor, Closed Loop Tracking(다중 목표, 다중 센서, 폐루프 추적)", Proc. of the SPIE, 5430, April 2004」를 참조.
도 3은 각각 검출된 목표가 호스트 항공기와 가능한 충돌경로 상에 있는지 여부를 판단하는, 예컨대 위험성 평가장치(124)에서의 위험성 평가(1240)의 일례를 나타낸다. 바람직하게는, 간단하게 하기 위해, 위험성 평가장치(124)는 각 목표의 상대 위치가 "각 측정만을 이용한" 이미징 어프로치에 대한 추적이력에 기초해서 변화하고 있는지 여부를 판단한다. 그래서, 예컨대 1242에서 시작하여 식별된 목표가 위험성 평가장치(124)에 의해 선택된다. 그 후, 1244에서 추적이력이 선택된 목표에 대한 추적이력 기억장치(122)로부터 검색된다. 다음에, 1246에서 LOS 추적은, 예컨대 목표의 초점 평면 추적으로부터, 그리고 알려진 속성 및 광학 센서 특성으로부터 호스트 항공기에 대하여 선택된 목표를 위해 결정된다. 1248에서 위험성 평가장치(124)는 사이즈 및 강도 면에서 목표의 식별할 수 있는 변화로부터 식별할 수 있는 범위를 결정한다. 그 후, 1250에서 위험성 평가장치(124)는 3차원(3D) 상대 목표 궤도를 재구성하기 위해 LOS 추적을 식별할 수 있는 범위와 상관시킨다. 3D 궤도(trajectory)는 호스트 항공기에 관하여 일정한 변환인자(scaling factor) 내에 취해져도 좋다. 다른 모든 조건들이 동일하다면, 증대하는 목표는 접근하고 있고, 쇠퇴하는 목표는 후퇴하고 있다. 따라서, 위험성 평가장치(124)는 이 변환인자를 알고 있지 않더라도, 즉 정확한 범위를 알고 있지 않더라도, 식별할 수 있는 평균 목표직경에 비례하여 1252에서 정확한 충돌 리스크 평가를 판단할 수 있다. 1252에서 목표가 호스트 항공기에 너무 근접하여 통과하고 있는 경우, 목표가 충돌 위험성(1254)이 있다는 표시가 회피기동장치(126)로 전달된다. 1252에서 위험성 평가장치(124)가 선택된 목표가 충돌 위험성이 없다고 판단한 경우, 1256에서 다른 목표가 선택되고, 1242로 되돌아가서 위험성 평가장치(124)는 목표가 위험성이 있는지 여부를 판정한다.
그래서, 예컨대 위험성 평가장치(124)는 다음의 30초 내에 호스트 항공기의 하나의 평균 목표 직경 내에 접근할 수 있다는 것을 1250에서 결정할지도 모른다. 게다가, 위험성 평가장치(124)는 1252에서 이것이 목표의 정확한 사이즈 및 범위에 관계없이 충돌 리스크(1254)라고 간주할 것이다.
선택적으로, 위험성 평가장치(124)는 1252에서 정확한 범위 평가가 요구되거나 필요하다고 간주되는지의 가망성에 근거한 평가를 행할 수 있다. 정확한 범위 평가가 요구되는 경우에, 위험성 평가장치(124)는 예컨대 1250에서 재구성된 스케일드 3차원 궤도(scaled three-dimensional trajectory)로부터 목표 속도대 사이즈의 비율을 결정할 수 있다. 그 후, 1252에서 목표 속도대 사이즈의 비율은 목표가 충돌 위험성이 있다는 것을 가리키는 상대에 의한 알려진 진짜 충돌 위험성의 속도대 사이즈의 비율 및 확률과 비교될 수 있다. 선택적으로, 지면에 비례한 호스트 항공기의 이동은 예컨대 목표검출장치(118)에 의해 추적되고, 좀더 정확성을 기하기 위해 이러한 가망성에 근거한 정확한 범위 판단을 하나의 요인으로 포함할 수 있다.
단기 강도 스파이크는, 예컨대 순간적인 정반사(specular reflection)로부터의 결과일지도 모른다. 이들 단기 강도 스파이크는 충돌 위험성 평가를 해치는 지터(jitter)를 변동시키는 경향이 있다. 이와 같이 향상된 충돌 위험성 평가 정확성 및 안정성을 위해 위험성 평가장치(124)는 예컨대 1248에서 이 기술분야에서 잘 알려진 것과 같은 임의의 적당한 기술을 이용해서 이들 단기 강도 스파이크를 제거하거나 필터링할 수 있다.
도 4는 목표가 충돌 위험성(1254)을 나타낸다는 것을 위험성 평가장치(124)에 의해 판단한 때에 예컨대 회피기동장치(126)에 의해 회피 기동을 전개하는 일례를 나타낸다. 1262에서, 회피기동장치(126)는 추적이력 기억장치(122)로부터 다른 위험성이 없는 목표에 대한 추적이력을 수신한다. 1264에서 회피기동장치(126)는 호스트 항공기의 궤도를 결정한다. 회피기동장치(126)는 다른 것 및 아마도 다른 목표와의 더 절박한 위험성을 생성하는 것을 회피하기 위해 모든 국부적인 목표의 궤도를 고려하지 않으면 안된다. 그리하여, 1266에서 회피기동장치(126)는 지정된 최소 안전거리 이상의 거리만큼 충돌 위험성(1254)을 회피하기 위해 안전구역을 결정한다. 그렇지만, 항공기는 식별된 위험성을 회피하는 동안 (예컨대, 정의된 비행체 안전 파라미터 또는 비행 한계를 초과함으로써) 그 자체를 위태롭게 할지도 모르는 지나치게 격렬한 기동을 실행하면 안된다. 그래서, 1268에서 회피기동장치(126)는 기동 제약조건(maneuver constraints)을 결정한다. 그 후, 1270에서 회피기동장치(126)는 식별된 위험성(및 부근에 있는 모든 다른 항공기)로부터 호스트 항공기를 지정된 최소 안전거리 이상의 거리만큼 이간시키는 회피적인 기동(1272) 을 결정하기 위해 호스트 항공기 궤도 데이터와 더불어 부근에 있는 모든 추적된 항공기의 최상의 평가를 이용한다. 회피적인 기동(1272)은, 무인 비행체에 대해서는 비행 제어 및 안내장치(예컨대, 도 2에서 116)로 또는 유인 비행체에 대해서는 조종사에게 전달된다. 회피적인 기동(1272)이 실행된 후에, 목표 감시는 화상을 수집하고, 목표를 식별하며, 식별된 목표 중 어느 것이 충돌 위험성을 내포하고 있는지를 판단하는 것을 계속한다.
변형 실시예에 있어서, 화상 호출기(112)는 위험성 평가 및 회피기동 산출에 필요한 것과 같은 더 높은 레벨의 계산 능력을 위해 하나 이상의 병렬처리장치와 하나 이상의 FPGA의 조합을 이용해서 실현되어도 좋다.
유리하게는, 바람직한 충돌 감지/회피 시스템(110)은 임의의 항공기에 "눈으로 보고 회피(See & Avoid)"하거나 "검출하여 회피(Detect and Avoid)"하는 능력을 제공하여 국부적인 목표를 식별하여 감시할 뿐만 아니라 충돌 위험성을 내포할 수 있는 임의의 목표를 식별하여 실시간 회피 기동을 제공한다. 바람직한 화상 호출기(112)는 하드웨어 및 매립형 소프트웨어를 포함하며 무게가 단지 수 온스인 작은 화상 처리 하드웨어 모듈 내에 포함되어도 좋다. 그러한 극적으로 축소된 사이즈 및 무게는 작은 UAV, 예컨대 스캔이글(ScanEagle)이나 더 작은 것에조차 이용가능한 전통적인 검출 및 추적 능력을 만드는 것을 가능하게 한다. 따라서, 바람직한 충돌 감지/회피 시스템(110)은 유인 및 무인 항공기의 양쪽에서 사용되어도 좋다. 유인 항공기에서는, 바람직한 충돌 감지/회피 시스템(110)이 조종사의 시력을 증대시킨다. 무인 항공기에서는, 바람직한 충돌 감지/회피 시스템(110)이 충돌 리스크 를 내포하고 있을지도 모르는 항공기를 검출하여 필요한 경우에 무인 항공기의 비행 제어에 회피적인 기동을 제안하는 조종사의 시력을 대신해도 좋다.
본 발명은 바람직한 실시예의 항으로 설명했지만, 이 기술분야에서 통상의 지식을 가진 자라면 첨부된 청구의 범위의 정신 및 범위 내에서 변형해서 실시할 수 있음을 인정할 것이다. 그러한 변형 및 변경은 모두 첨부된 청구의 범위의 범위 내로 되도록 하였다. 따라서, 이들 실시예 및 도면은 제한적이라기 보다는 설명적으로 간주되어야 한다.

Claims (22)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 복수의 이미징 센서를 가진 공중 비행체에 의한 목표 충돌을 검출하여 회피하는 방법으로서,
    상기 복수의 이미징 센서로부터의 복수의 화상을 처리하기 위한 로직을 가지되 FPGA 프로세서로 이루어져 비행체의 복수의 이미징 센서로부터 입력을 수신하기 위한 모듈을 제공하는 단계와;
    클러터된 배경에 의지하여 목표를 검출하기 위해 상기 복수의 화상을 처리하 는 단계;
    상기 목표의 상대 이동의 시간이력을 생성하는 단계;
    하나 이상의 목표와의 충돌 위험성의 레벨을 평가하는 단계 및;
    상기 비행체에 대해 상기 하나 이상의 목표와의 충돌을 회피하도록 명령하는 단계를 구비하여 이루어지되,
    상기 충돌 위험성의 레벨을 평가하는 단계가,
    상기 검출된 목표로부터 하나의 목표를 선택하는 단계와,
    상기 선택된 목표에 대한 3차원(3D) 궤도를 결정하는 단계,
    상기 궤도가 상기 공중 비행체를 선택된 최소 안전거리 이상으로 통과시키는지 여부를 판단하는 단계,
    상기 검출된 목표로부터 다른 목표를 선택하는 단계 및,
    상기 선택된 목표에 대한 궤도를 결정하는 단계로 복귀하는 단계로 이루어지고,
    상기 3D 궤도를 결정하는 단계가, 상기 공중 비행체에 대해 상기 선택된 목표에 대한 LOS 궤도를 결정하는 단계와,
    상기 선택된 목표와 상기 공중 비행체 사이의 식별할 수 있는 범위 변화를 결정하는 단계로 이루어진 것을 특징으로 하는 방법.
  15. 청구항 14에 있어서, 상기 선택된 목표에 대한 궤도가 상기 공중 비행체를 선택된 최소 안전거리 이하로 통과시키는 것이 결정될 때마다 상기 목표가 충돌 위험성이 있는 것으로서 식별되는 것을 특징으로 하는 방법.
  16. 청구항 14 또는 15에 있어서, 상기 3D 궤도로부터 목표 속도대 사이즈의 비율을 결정하는 단계와,
    상기 선택된 목표에 대한 궤도가 상기 공중 비행체를 선택된 최소 안전거리 이하로 통과시키는지 여부를 판단하기 위해 결정된 상기 목표 속도대 사이즈의 비율 결과를 알려진 실제의 충돌 위험성의 속도대 사이즈의 비율 및 확률과 비교하는 단계를 더 구비하는 것을 특징으로 하는 방법.
  17. 청구항 14 또는 15에 있어서, 상기 최소 안전거리를 결정하기 전에 상기 공중 비행체에 대한 궤도가 결정되는 것을 특징으로 하는 방법.
  18. 청구항 14 또는 15에 있어서,
    정의된 비행체 동작한계를 초과하는 실행 기동으로부터 상기 공중 비행체를 제약하는 상기 공중 비행체에 대한 기동 제약조건을 결정하는 단계와,
    상기 기동 제약조건 내에서 상기 공중 비행체에 대한 각각의 상기 충돌 위험성을 회피하기 위해 회피적인 기동을 결정하는 단계를 더 구비하는 것을 특징으로 하는 방법.
  19. 청구항 14 또는 15에 있어서, 상기 모듈이 무인 비행체 상에 제공되는 것을 특징으로 하는 방법.
  20. 청구항 14 또는 15에 있어서, 상기 모듈이 유인 비행체 상에 제공되는 것을 특징으로 하는 방법.
  21. 청구항 14 또는 15에 있어서, 복수의 화상을 처리하는 단계가 단일 프레임 처리 및 광학 포인트 스프레드 함수(Optical Point Spread Function: OPSF)에 의한 컨볼루션(convolution)을 이용하는 단계를 구비하는 것을 특징으로 하는 방법.
  22. 청구항 14 또는 15에 있어서, 복수의 화상을 처리하는 단계가 다중 프레임 이동 목표 검출 알고리즘을 이용하는 단계를 구비하는 것을 특징으로 하는 방법.
KR1020087020901A 2006-03-13 2007-02-19 항공기 충돌 감지/회피 시스템 및 방법 KR101281899B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/374,807 US7876258B2 (en) 2006-03-13 2006-03-13 Aircraft collision sense and avoidance system and method
US11/374,807 2006-03-13
PCT/US2007/004547 WO2008020889A2 (en) 2006-03-13 2007-02-19 Aircraft collision sense and avoidance system and method

Publications (2)

Publication Number Publication Date
KR20080113021A KR20080113021A (ko) 2008-12-26
KR101281899B1 true KR101281899B1 (ko) 2013-07-05

Family

ID=38478402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087020901A KR101281899B1 (ko) 2006-03-13 2007-02-19 항공기 충돌 감지/회피 시스템 및 방법

Country Status (8)

Country Link
US (1) US7876258B2 (ko)
EP (1) EP1999737B2 (ko)
JP (1) JP5150615B2 (ko)
KR (1) KR101281899B1 (ko)
CN (1) CN101385059B (ko)
AU (1) AU2007284981B2 (ko)
CA (1) CA2637940C (ko)
WO (1) WO2008020889A2 (ko)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7818127B1 (en) * 2004-06-18 2010-10-19 Geneva Aerospace, Inc. Collision avoidance for vehicle control systems
US20070288156A1 (en) * 2006-05-17 2007-12-13 The Boeing Company Route search planner
US20100121574A1 (en) * 2006-09-05 2010-05-13 Honeywell International Inc. Method for collision avoidance of unmanned aerial vehicle with other aircraft
EP2115665A1 (en) * 2007-02-06 2009-11-11 AAI Corporation Utilizing polarization differencing method for detect, sense and avoid systems
WO2008134815A1 (en) * 2007-05-04 2008-11-13 Teledyne Australia Pty Ltd. Collision avoidance system and method
ES2381761T3 (es) * 2007-09-14 2012-05-31 Saab Ab Procedimiento, programa de ordenador y dispositivo para determinar el riesgo de una colisión en el aire
DE102008024308B4 (de) * 2008-05-20 2010-12-09 Eads Deutschland Gmbh Verfahren zur Detektion nichtkooperativen Luftverkehrs an Bord eines Luftfahrzeugs
US8280702B2 (en) * 2008-07-08 2012-10-02 Lockheed Martin Corporation Vehicle aspect control
ES2400708T3 (es) 2008-08-27 2013-04-11 Saab Ab Utilización de un sensor de imágenes y de un filtro de seguimiento de tiempo restante para evitar colisiones en vuelo
US8543265B2 (en) * 2008-10-20 2013-09-24 Honeywell International Inc. Systems and methods for unmanned aerial vehicle navigation
ES2378787T3 (es) 2008-11-04 2012-04-17 Saab Ab Generador de maniobras de evitación para una aeronave
EP2187233B1 (en) * 2008-11-12 2013-03-20 Saab Ab A range estimation device
US8626361B2 (en) * 2008-11-25 2014-01-07 Honeywell International Inc. System and methods for unmanned aerial vehicle navigation
ES2402832T3 (es) 2008-12-19 2013-05-09 Saab Ab Procedimiento y disposición para la estimación de al menos un parámetro de un intruso
US8570211B1 (en) * 2009-01-22 2013-10-29 Gregory Hubert Piesinger Aircraft bird strike avoidance method and apparatus
AU2010239639B2 (en) * 2009-02-02 2015-01-15 Aerovironment Multimode unmanned aerial vehicle
US8274424B2 (en) * 2009-02-26 2012-09-25 Raytheon Company Integrated airport domain awareness response system, system for ground-based transportable defense of airports against manpads, and methods
KR100950420B1 (ko) * 2009-05-28 2010-03-30 한국항공우주산업 주식회사 무인항공기 충돌회피 시스템
CN101694752B (zh) * 2009-07-06 2012-05-02 民航数据通信有限责任公司 空域运行仿真中冲突的自动检测和调解系统及方法
KR102033271B1 (ko) 2009-09-09 2019-10-16 에어로바이론먼트, 인크. 엘리본 제어 시스템
CN102596722B (zh) 2009-09-09 2016-08-03 威罗门飞行公司 用于远程工作的无人驾驶航空飞行器的带有便携式rf透明发射管的抑制爆炸声的发射器的系统和设备
US9084276B2 (en) * 2009-09-11 2015-07-14 Aerovironment, Inc. Dynamic transmission control for a wireless network
CN102063806A (zh) * 2009-11-16 2011-05-18 西安费斯达自动化工程有限公司 Tcas系统中arinc 429总线信号自动编码发送
US9361706B2 (en) * 2009-11-30 2016-06-07 Brigham Young University Real-time optical flow sensor design and its application to obstacle detection
US9097532B2 (en) * 2010-01-20 2015-08-04 Honeywell International Inc. Systems and methods for monocular airborne object detection
JP5640423B2 (ja) * 2010-03-26 2014-12-17 日本電気株式会社 赤外線撮像装置及び赤外線画像の表示方法
FR2960680B1 (fr) * 2010-05-28 2013-05-17 Airbus Operations Sas Systeme embarque a bord d'un aeronef
US9014880B2 (en) * 2010-12-21 2015-04-21 General Electric Company Trajectory based sense and avoid
DE102011016964A1 (de) 2011-04-13 2012-10-18 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Überwachen eines Luftraums um ein Luftfahrzeug
CN102785780B (zh) * 2011-05-19 2016-06-08 鸿富锦精密工业(深圳)有限公司 无人飞行载具控制系统及方法
GB2507026C (en) 2011-05-23 2019-06-26 Ion Geophysical Corp Marine threat monitoring and defense system
US8624757B2 (en) * 2011-06-27 2014-01-07 General Electric Company Method for visually indicating an advisory from the traffic collision avoidance system on a flight display
WO2018039134A1 (en) 2016-08-22 2018-03-01 Peloton Technology, Inc. Automated connected vehicle control system architecture
US20170242443A1 (en) 2015-11-02 2017-08-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US9582006B2 (en) 2011-07-06 2017-02-28 Peloton Technology, Inc. Systems and methods for semi-autonomous convoying of vehicles
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
KR101304068B1 (ko) * 2011-11-25 2013-09-04 건국대학교 산학협력단 비행체의 충돌 방지 장치 및 방법
US8884229B2 (en) 2012-02-22 2014-11-11 Excelitas Technologies Singapore Pte. Ltd. Passive infrared range finding proximity detector
US8791836B2 (en) 2012-03-07 2014-07-29 Lockheed Martin Corporation Reflexive response system for popup threat survival
US8948954B1 (en) * 2012-03-15 2015-02-03 Google Inc. Modifying vehicle behavior based on confidence in lane estimation
JP5563025B2 (ja) * 2012-03-28 2014-07-30 本田技研工業株式会社 踏切遮断機推定装置及び車両
US9240001B2 (en) 2012-05-03 2016-01-19 Lockheed Martin Corporation Systems and methods for vehicle survivability planning
US8831793B2 (en) * 2012-05-03 2014-09-09 Lockheed Martin Corporation Evaluation tool for vehicle survivability planning
US9030347B2 (en) 2012-05-03 2015-05-12 Lockheed Martin Corporation Preemptive signature control for vehicle survivability planning
CN104488012B (zh) * 2012-06-30 2017-03-08 通用电气公司 用于管理空中交通的进度管理系统和方法
US9178897B2 (en) 2012-07-03 2015-11-03 The Boeing Company Methods and systems for use in identifying cyber-security threats in an aviation platform
AU2013204965B2 (en) 2012-11-12 2016-07-28 C2 Systems Limited A system, method, computer program and data signal for the registration, monitoring and control of machines and devices
US9527586B2 (en) 2012-12-19 2016-12-27 Elwha Llc Inter-vehicle flight attribute communication for an unoccupied flying vehicle (UFV)
US9669926B2 (en) 2012-12-19 2017-06-06 Elwha Llc Unoccupied flying vehicle (UFV) location confirmance
US9063548B1 (en) 2012-12-19 2015-06-23 Google Inc. Use of previous detections for lane marker detection
US10518877B2 (en) 2012-12-19 2019-12-31 Elwha Llc Inter-vehicle communication for hazard handling for an unoccupied flying vehicle (UFV)
US9405296B2 (en) 2012-12-19 2016-08-02 Elwah LLC Collision targeting for hazard handling
US9527587B2 (en) 2012-12-19 2016-12-27 Elwha Llc Unoccupied flying vehicle (UFV) coordination
US10279906B2 (en) 2012-12-19 2019-05-07 Elwha Llc Automated hazard handling routine engagement
US9747809B2 (en) 2012-12-19 2017-08-29 Elwha Llc Automated hazard handling routine activation
US9235218B2 (en) 2012-12-19 2016-01-12 Elwha Llc Collision targeting for an unoccupied flying vehicle (UFV)
US9810789B2 (en) 2012-12-19 2017-11-07 Elwha Llc Unoccupied flying vehicle (UFV) location assurance
US9540102B2 (en) 2012-12-19 2017-01-10 Elwha Llc Base station multi-vehicle coordination
US9567074B2 (en) 2012-12-19 2017-02-14 Elwha Llc Base station control for an unoccupied flying vehicle (UFV)
US9776716B2 (en) 2012-12-19 2017-10-03 Elwah LLC Unoccupied flying vehicle (UFV) inter-vehicle communication for hazard handling
US9081385B1 (en) 2012-12-21 2015-07-14 Google Inc. Lane boundary detection using images
CN103879352A (zh) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 汽车泊车辅助系统及方法
CN103879353A (zh) * 2012-12-22 2014-06-25 鸿富锦精密工业(深圳)有限公司 泊车辅助系统及方法
CN103895573A (zh) * 2012-12-27 2014-07-02 鸿富锦精密工业(深圳)有限公司 汽车泊车辅助系统及方法
US9513371B2 (en) 2013-02-28 2016-12-06 Identified Technologies Corporation Ground survey and obstacle detection system
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US20180210463A1 (en) 2013-03-15 2018-07-26 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
CN103268410A (zh) * 2013-05-15 2013-08-28 西北工业大学 一种基于快速迭代的多目标威胁度排序方法
CN103246818A (zh) * 2013-05-15 2013-08-14 西北工业大学 基于信息熵的topsis法多目标威胁排序方法
US9824596B2 (en) * 2013-08-30 2017-11-21 Insitu, Inc. Unmanned vehicle searches
GB2520243B (en) * 2013-11-06 2017-12-13 Thales Holdings Uk Plc Image processor
EP2879012A1 (en) * 2013-11-29 2015-06-03 The Boeing Company System and method for commanding a payload of an aircraft
KR101555105B1 (ko) 2013-12-31 2015-09-22 주식회사 포스코아이씨티 파일 재고량을 측정하기 위한 무인항공 시스템 및 그 이용 방법
EP2896970B1 (en) * 2014-01-17 2018-03-28 HENSOLDT Sensors GmbH Method of kinematic ranging
US9217672B2 (en) 2014-03-04 2015-12-22 Excelitas Technologies Singapore Pte. Ltd. Motion and gesture recognition by a passive single pixel thermal sensor system
US9562773B2 (en) 2014-03-15 2017-02-07 Aurora Flight Sciences Corporation Autonomous vehicle navigation system and method
KR20160149232A (ko) * 2014-04-22 2016-12-27 가부시키가이샤 스카이로봇 태양광 발전 패널의 고장 검출 탐사 시스템
US9875661B2 (en) 2014-05-10 2018-01-23 Aurora Flight Sciences Corporation Dynamic collision-avoidance system and method
CA2952936C (en) 2014-06-17 2019-05-21 Ion Geophysical Corporation Comparative ice drift and tow model analysis for target marine structure
GB201416736D0 (en) * 2014-08-08 2014-11-05 Airbus Operations Ltd System and method for airside activity management using video analytics
US10671094B2 (en) 2014-08-11 2020-06-02 Amazon Technologies, Inc. Virtual safety shrouds for aerial vehicles
US10780988B2 (en) * 2014-08-11 2020-09-22 Amazon Technologies, Inc. Propeller safety for automated aerial vehicles
US10018709B2 (en) * 2014-09-19 2018-07-10 GM Global Technology Operations LLC Radar target detection via multi-dimensional cluster of reflectors
US11586208B2 (en) * 2014-10-24 2023-02-21 Clearpath Robotics Inc. Systems and methods for executing a task with an unmanned vehicle
WO2016068354A1 (ko) * 2014-10-28 2016-05-06 연세대학교 산학협력단 무인비행기, 타겟 자동 촬영 장치 및 방법
US9761147B2 (en) 2014-12-12 2017-09-12 Amazon Technologies, Inc. Commercial and general aircraft avoidance using light pattern detection
EP3230972B1 (en) * 2014-12-12 2020-02-05 Amazon Technologies Inc. Commercial and general aircraft avoidance using light, sound, and/or multi-spectral pattern detection
CN104537230B (zh) * 2014-12-23 2017-12-29 中国科学院国家天文台 一种航天器发射预警碰撞风险分析方法和分析装置
CN106816043A (zh) * 2015-01-07 2017-06-09 江苏理工学院 一种飞行冲突预警方法
CN106875757A (zh) * 2015-01-07 2017-06-20 江苏理工学院 基于4d航迹运行的用于飞行冲突预警的空中交通管制系统
CN104537898B (zh) * 2015-01-08 2017-11-28 西北工业大学 一种空地协同的无人机感知规避系统及其规避方法
US10061018B1 (en) * 2015-02-19 2018-08-28 Zain Naboulsi System for identifying drones
CN104809919B (zh) * 2015-04-20 2017-01-25 四川九洲空管科技有限责任公司 接收通道自动调平方法及其具备自动调平条件的判断方法及调平系统
CN111762136A (zh) 2015-05-12 2020-10-13 深圳市大疆创新科技有限公司 识别或检测障碍物的设备和方法
US20180165974A1 (en) * 2015-05-29 2018-06-14 Anthony Bonkoski Vehicle collision prevention
US9671791B1 (en) * 2015-06-10 2017-06-06 Amazon Technologies, Inc. Managing unmanned vehicles
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
US9812020B2 (en) * 2015-08-13 2017-11-07 Hon Hai Precision Industry Co., Ltd. Electronic device and unmanned aerial vehicle control method
US10822110B2 (en) 2015-09-08 2020-11-03 Lockheed Martin Corporation Threat countermeasure assistance system
DE102015224796A1 (de) * 2015-12-10 2017-06-14 Robert Bosch Gmbh Verfahren und Steuergerät zum Erkennen einer möglichen Kollision eines unbemannten Luftfahrzeugs mit einem Objekt
CN105739520B (zh) * 2016-01-29 2019-10-08 余江 一种无人飞行器识别系统及其识别方法
CN105912018A (zh) * 2016-04-27 2016-08-31 深圳电航空技术有限公司 飞行器及飞行器避障方法
IL263313B (en) * 2016-05-27 2022-09-01 Rhombus Systems Group Inc A radar system for tracking unmanned aircraft and low-flying objects
WO2017210200A1 (en) 2016-05-31 2017-12-07 Peloton Technology, Inc. Platoon controller state machine
US10310498B2 (en) * 2016-06-16 2019-06-04 Echostar Technologies International Corporation Unmanned aerial vehicle transponder systems with integrated disablement
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
CN110121740B (zh) 2017-01-06 2022-09-27 极光飞行科学公司 用于无人飞行器的避碰系统及方法
CN110178046A (zh) * 2017-01-24 2019-08-27 深圳市大疆创新科技有限公司 用于无人机的基于雷达的避障系统和方法
FR3065107B1 (fr) * 2017-04-11 2020-07-17 Airbus Operations (S.A.S.) Procede de transmission de parametres de vol d'un aeronef meneur a un aeronef intrus
US10515559B2 (en) * 2017-08-11 2019-12-24 The Boeing Company Automated detection and avoidance system
CN107544332A (zh) * 2017-09-14 2018-01-05 深圳市盛路物联通讯技术有限公司 数据处理方法及相关产品
CN109712434A (zh) * 2017-10-25 2019-05-03 北京航空航天大学 一种无人机空情显示预警方法
US10742338B2 (en) * 2018-01-26 2020-08-11 Clip Interactive, Llc Seamless integration of radio broadcast audio with streaming audio
WO2019240989A1 (en) * 2018-06-15 2019-12-19 Walmart Apollo, Llc System and method for managing traffic flow of unmanned vehicles
US11119212B2 (en) 2018-08-10 2021-09-14 Aurora Flight Sciences Corporation System and method to reduce DVE effect on lidar return
CN108958291A (zh) * 2018-08-17 2018-12-07 李俊宏 无人机避障控制系统和方法
US11288523B2 (en) * 2018-09-27 2022-03-29 The Boeing Company Pseudo-range estimation from a passive sensor
US11037453B2 (en) 2018-10-12 2021-06-15 Aurora Flight Sciences Corporation Adaptive sense and avoid system
CN111326023B (zh) * 2018-12-13 2022-03-29 丰翼科技(深圳)有限公司 一种无人机航线预警方法、装置、设备及存储介质
US20220026928A1 (en) * 2018-12-17 2022-01-27 A^3 By Airbus Llc Layered software architecture for aircraft systems for sensing and avoiding external objects
CN109684429B (zh) * 2018-12-18 2022-06-21 南京云灿信息科技有限公司 一种基于三维数字地球的低空飞行目标识别系统及算法
US11099266B2 (en) * 2019-01-11 2021-08-24 International Business Machines Corporation Trajectory based threat alerting with friendly device augmentation
EP3715901A1 (en) * 2019-03-29 2020-09-30 Robin Radar Facilities BV Detection and classification of unmanned aerial vehicles
CN110969637B (zh) * 2019-12-02 2023-05-02 深圳市唯特视科技有限公司 一种基于生成对抗网络的多威胁目标重建及态势感知方法
US20230028792A1 (en) * 2019-12-23 2023-01-26 A^3 By Airbus, Llc Machine learning architectures for camera-based detection and avoidance on aircrafts
EP3975157A1 (en) * 2020-09-25 2022-03-30 RUAG Schweiz AG Method to navigate an unmanned aerial vehicle to avoid collisions
CN112596538B (zh) * 2020-11-26 2023-06-16 中国电子科技集团公司第十五研究所 一种大型无人机冲突检测与避让决策装置及使用方法
CN112630775B (zh) * 2020-12-01 2021-07-09 北京航天驭星科技有限公司 对目标飞行物测距方法及系统
CN112799411B (zh) * 2021-04-12 2021-07-30 北京三快在线科技有限公司 一种无人驾驶设备的控制方法及装置
CN113176788B (zh) * 2021-04-27 2022-08-16 北京理工大学 一种基于变前向距离los制导律的飞行器路径跟踪方法
CN113643325B (zh) * 2021-06-02 2022-08-16 范加利 一种用于航母舰面舰载机碰撞警告的方法及系统
US11417224B1 (en) 2021-08-19 2022-08-16 Beta Air, Llc System and method for pilot assistance in an electric aircraft
KR102466481B1 (ko) 2021-12-20 2022-11-11 한화시스템 주식회사 무인 항공기의 비행공역 통제 및 충돌 방지를 위한 관제 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169070A (ja) * 1986-01-22 1987-07-25 Mitsubishi Electric Corp 誘導装置
JPH07209418A (ja) * 1993-12-14 1995-08-11 Thomson Csf モータビークル用衝突防止装置
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
JP2003522990A (ja) 1999-04-08 2003-07-29 ハネウェル・インターナショナル・インコーポレーテッド 空中衝突回避システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1505556A1 (de) 1966-03-03 1970-05-27 Bosch Gmbh Robert Steuereinrichtung fuer Stufengetriebe
JPS4944076B1 (ko) * 1969-04-29 1974-11-26
JPS6045377B2 (ja) * 1976-08-03 1985-10-09 日産自動車株式会社 衝突防止装置
US5321406A (en) * 1992-12-22 1994-06-14 Honeywell, Inc. Method of track merging in an aircraft tracking system
FR2728374A1 (fr) * 1994-12-15 1996-06-21 Aerospatiale Procede et dispositif pour fournir une information, alerte ou alarme pour un aeronef a proximite du sol
US6268803B1 (en) * 1998-08-06 2001-07-31 Altra Technologies Incorporated System and method of avoiding collisions
US6337654B1 (en) * 1999-11-05 2002-01-08 Lockheed Martin Corporation A-scan ISAR classification system and method therefor
MXPA03000264A (es) * 2000-07-10 2004-01-26 United Parcel Service Inc Metodo para determinar trayectoria de conflicto entre vehiculos moviles en el aire y un producto de programa de software de computadora y sistema asociado.
DE10065180A1 (de) 2000-12-23 2002-07-11 Eads Deutschland Gmbh Sensorsystem mit optischen sensoren zur Kollisionsvermeidung von Flugzeugen sowie ein Verfahren zu deren Durchführung
US6804607B1 (en) * 2001-04-17 2004-10-12 Derek Wood Collision avoidance system and method utilizing variable surveillance envelope
US6799114B2 (en) * 2001-11-20 2004-09-28 Garmin At, Inc. Systems and methods for correlation in an air traffic control system of interrogation-based target positional data and GPS-based intruder positional data
EP1663104B1 (en) * 2002-07-01 2014-02-12 Maria Villani Spongilla-based therapeutic compositions for treating and preventing acne
US6691034B1 (en) * 2002-07-30 2004-02-10 The Aerospace Corporation Vehicular trajectory collision avoidance maneuvering method
US20040099787A1 (en) * 2002-11-25 2004-05-27 The Boeing Company System and method for determining optical aberrations in scanning imaging systems by phase diversity
DE10306922B4 (de) * 2003-02-19 2006-04-13 Eads Deutschland Gmbh Vorrichtung zur Überwachung eines Flughafengeländes
US6985103B2 (en) * 2003-07-29 2006-01-10 Navaero Ab Passive airborne collision warning device and method
US7061401B2 (en) 2003-08-07 2006-06-13 BODENSEEWERK GERäTETECHNIK GMBH Method and apparatus for detecting a flight obstacle
US8194002B2 (en) 2004-09-14 2012-06-05 The Boeing Company Situational awareness components of an enhanced vision system
US7307579B2 (en) * 2004-11-03 2007-12-11 Flight Safety Technologies, Inc. Collision alerting and avoidance system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169070A (ja) * 1986-01-22 1987-07-25 Mitsubishi Electric Corp 誘導装置
JPH07209418A (ja) * 1993-12-14 1995-08-11 Thomson Csf モータビークル用衝突防止装置
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
JP2003522990A (ja) 1999-04-08 2003-07-29 ハネウェル・インターナショナル・インコーポレーテッド 空中衝突回避システム

Also Published As

Publication number Publication date
EP1999737A2 (en) 2008-12-10
JP5150615B2 (ja) 2013-02-20
EP1999737B2 (en) 2021-10-27
AU2007284981A1 (en) 2008-02-21
CN101385059A (zh) 2009-03-11
KR20080113021A (ko) 2008-12-26
EP1999737B1 (en) 2013-04-10
WO2008020889A3 (en) 2008-04-03
CA2637940C (en) 2018-05-01
US20070210953A1 (en) 2007-09-13
CN101385059B (zh) 2010-09-29
AU2007284981B2 (en) 2011-08-11
WO2008020889B1 (en) 2008-05-29
WO2008020889A2 (en) 2008-02-21
JP2009530159A (ja) 2009-08-27
US7876258B2 (en) 2011-01-25
CA2637940A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
KR101281899B1 (ko) 항공기 충돌 감지/회피 시스템 및 방법
US7864096B2 (en) Systems and methods for multi-sensor collision avoidance
Ramasamy et al. A unified approach to cooperative and non-cooperative sense-and-avoid
GB2450987A (en) Collision avoidance system for autonomous unmanned air vehicles (UAVs)
Kephart et al. See-and-avoid comparison of performance in manned and remotely piloted aircraft
US20020153485A1 (en) Passive power line detection system for aircraft
Shish et al. Survey of capabilities and gaps in external perception sensors for autonomous urban air mobility applications
Geyer et al. Avoiding collisions between aircraft: State of the art and requirements for UAVs operating in civilian airspace
Minwalla et al. Experimental evaluation of PICAS: An electro-optical array for non-cooperative collision sensing on unmanned aircraft systems
Geyer et al. Prototype sense-and-avoid system for UAVs
Migliaccio et al. Conflict detection and resolution algorithms for UAVs collision avoidance
US11210958B2 (en) Method and system for a dynamic collision awareness envelope for a vehicle
Münsterer et al. Sensor based 3D conformal cueing for safe and reliable HC operation specifically for landing in DVE
McCalmont et al. Sense and avoid technology for unmanned aircraft systems
Loffi et al. Evaluation of onboard detect-and-avoid system for sUAS BVLOS operations
Tirri et al. Advanced sensing issues for UAS collision avoidance.
Opromolla et al. Conflict Detection Performance of Non-Cooperative Sensing Architectures for Small UAS Sense and Avoid
McCalmont et al. Sense and avoid technology for global hawk and predator uavs
Orefice et al. An innovative algorithm for 2D Collision Avoidance manoeuvers elaboration based on spiral trajectories
Kephart et al. Comparison of see-and-avoid performance in manned and remotely piloted aircraft
Gunasinghe et al. A mid-air collision warning system: Vision-based estimation of collision threats for aircraft
McCalmont et al. Sense and avoid, phase I (man-in-the-loop) advanced technology demonstration
Jaiswal et al. A Comprehensive Analysis of UAV Collision Avoidance Techniques for Enhanced Aerial Safety
Nixon et al. Passive detection of subpixel obstacles for flight safety
Nixon et al. Improved obstacle detection using passive ranging

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170614

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180614

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190614

Year of fee payment: 7