WO2016068354A1 - 무인비행기, 타겟 자동 촬영 장치 및 방법 - Google Patents

무인비행기, 타겟 자동 촬영 장치 및 방법 Download PDF

Info

Publication number
WO2016068354A1
WO2016068354A1 PCT/KR2014/010214 KR2014010214W WO2016068354A1 WO 2016068354 A1 WO2016068354 A1 WO 2016068354A1 KR 2014010214 W KR2014010214 W KR 2014010214W WO 2016068354 A1 WO2016068354 A1 WO 2016068354A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
image
drone
unit
image capturing
Prior art date
Application number
PCT/KR2014/010214
Other languages
English (en)
French (fr)
Inventor
김신덕
박금춘
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to PCT/KR2014/010214 priority Critical patent/WO2016068354A1/ko
Publication of WO2016068354A1 publication Critical patent/WO2016068354A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to a drone, and more particularly to a drone having a device for automatically photographing a target.
  • a drone is a device that is remotely controlled by a remote operator or is flying in the air according to a predetermined driving algorithm.
  • the drone is researched for various purposes such as military use such as entertainment, aerial photography and surveillance, coast guard, meteorological observation, and fish detection. And have been utilized.
  • Drones come in a variety of forms, including multi-rotor aircraft, RC helicopter controls such as tilt-rotor aircraft, ornithopterers that fly like birds, and fixed wing aircraft. Is being developed. Conventional drones are simply equipped with a camera to take an image, and does not have a function to automatically capture the image of the target by controlling the flight of the drone around a specific target.
  • the vehicle An image capturing unit installed on the vehicle and capturing an image of a target; And a driving controller for recognizing a target from the captured image and tracking the movement of the target, and automatically adjusting the position and the image capturing direction of the image capturing unit according to the position of the target.
  • the driving controller may adjust the position and direction angle of the vehicle in a target direction, or adjust the image photographing direction by driving the image photographing unit in a target direction with respect to the vehicle.
  • the driving controller may adjust the position and the image capturing direction of the image capturing unit so that the object of the target is located in the set image area in the image captured by the image capturing unit.
  • the driving control unit may control the flight of the vehicle so that the distance between the drone and the target is kept constant.
  • the driving controller recognizes the front of the target and moves the vehicle to a position where the front of the target can be photographed by the image capturing unit.
  • the driving controller may automatically control the flight of the vehicle and perform a control for avoiding collision of surrounding objects.
  • the drone may further include a driving unit installed in the aircraft to rotate the image photographing unit.
  • a target automatic photographing apparatus including a driving controller for automatically adjusting a photographing direction.
  • the target is recognized in the image taken by the image capturing unit mounted on the drone, the target movement is tracked, and the position and image shooting direction of the image capturing unit automatically according to the position of the target A method of automatically shooting a target is provided.
  • a computer-readable recording medium recording a program for executing the target automatic shooting method.
  • an image of a target may be automatically captured by adaptively controlling a flight of the drone around a specific target.
  • FIG. 1 is a perspective view showing a drone according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a drone according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a driving control unit constituting the drone according to an exemplary embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a target automatic photographing method according to an exemplary embodiment.
  • FIG. 5 is a diagram illustrating a remote control device for wireless communication with the drone according to an embodiment of the present invention.
  • FIG. 6 is a side view for explaining the operation of the drone according to an embodiment of the present invention.
  • FIG. 7A is a diagram illustrating an image captured by a drone when a distance between a drone and a target is closer than a set distance according to an embodiment of the present invention.
  • 7B is a diagram illustrating an image captured by the drone when the distance between the drone and the target is farther than the set distance according to an embodiment of the present invention.
  • 8A is a diagram illustrating an image photographed by the drone when the drone photographs the upper side of the target according to an embodiment of the present invention.
  • FIG. 8B is a diagram illustrating an image captured by the drone when the drone photographs the lower side of the target according to an exemplary embodiment.
  • 8C is a diagram illustrating an image captured by the drone when the drone photographs the right side of the target according to an embodiment of the present invention.
  • 8D is a diagram illustrating an image captured by the drone when the drone photographs the left side of the target according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the operation of the drone according to an embodiment of the present invention, when the target is rotated.
  • FIG. 10A is a diagram illustrating a case in which a drone photographs an image toward a left side of a target according to an exemplary embodiment.
  • FIG. 10B is a diagram illustrating a case in which a drone photographs an image toward a right side of a target according to an exemplary embodiment.
  • FIG. 11 is a view for explaining a drone according to another embodiment of the present invention.
  • ' ⁇ part' is a unit for processing at least one function or operation, and may mean, for example, a hardware component such as software, FPGA, or ASIC. However, ' ⁇ ' is not meant to be limited to software or hardware. ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors. As an example, ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. The functions provided by the component and the ' ⁇ ' may be performed separately by the plurality of components and the ' ⁇ ', or may be integrated with other additional components.
  • Drone according to an embodiment of the present invention.
  • An image capturing unit installed in the vehicle and capturing an image of a target;
  • a driving controller for recognizing the target in the captured image, tracking the movement of the target, and automatically adjusting the position and the image capturing direction of the image capturing unit according to the target position.
  • an image of a target may be automatically photographed by adaptively controlling a flight of the drone around a specific target position.
  • FIG. 1 is a perspective view showing a drone 100 according to an embodiment of the present invention.
  • the drone 100 may be utilized for entertainment, aerial photographing and surveillance, military such as coast guard, weather observation, fish detection, or various other purposes and uses not illustrated.
  • a drone 100 according to an embodiment of the present invention will be described by taking a RC (remote control) helicopter as an example, but the drone 100 is an oniopter, a fixed wing drone, in addition to the RC helicopter. It may be provided in various forms such as.
  • the drone 100 includes a vehicle 110, an image photographing unit 120 installed on the vehicle 110, and a driving controller 130.
  • the aircraft 110 is a body 111 having an image capturing unit 120 and a drive control unit 130
  • a drive motor 112 is installed on the body 111 to drive the rotary blade 113
  • the rotor 111 may be installed on the body 111 and driven by the driving motor 112.
  • the image capturing unit 120 captures an image of a target.
  • the target may include a photographing object having mobility, for example, a transport means such as a person, an animal, a vehicle or a ship.
  • the image capturing unit 120 may be installed to capture an image in a downward position at a position suitable for capturing the target, for example, the lower side of the body 111.
  • the image captured by the image capturing unit 120 is provided to the driving controller 130.
  • the driving controller 130 recognizes the target in the image photographed by the image capturing unit 120, tracks the movement of the target, and positions the drone 100 and the image capturing unit 120 according to the position of the target, The image capturing direction of the image capturing unit 120 is automatically adjusted. In addition, the driving controller 130 may automatically control the flight of the drone 100 and perform a control for avoiding collision of surrounding objects.
  • the image capturing direction of the image capturing unit 120 may be changed by adjusting the direction angle of the vehicle 110 in the target direction by the driving controller 130, while maintaining the direction angle of the vehicle 110. It may be changed by driving the image capturing unit 120 in the target direction with respect to the vehicle 110.
  • the driving controller 130 will be described later in more detail with reference to FIG. 3.
  • the drone 100 includes a body 110, an image photographing unit 120, a driving control unit 130, a driving unit 140, a communication unit 150, a sensor unit 160, and an illumination unit. 170, the memory 180, the battery 190, and the controller 200.
  • the driving controller 130, the communicator 150, the memory 180, and the controller 200 are implemented as embedded boards, such as an image photographing unit 120, a driving unit 140, a sensor unit 160, and an illumination unit.
  • An electrical signal may be connected to the 170 and the battery 190.
  • the driving unit 140 is a means for adaptively adjusting the position and the image capturing direction of the drone 100 and the image capturing unit 120 according to the position of the target, for example, driving to rotate the rotary blade 113. It may be provided as a direction control propeller (not shown) for adjusting the direction of the motor 112, the drone 100, a camera driver (not shown) for adjusting the photographing direction by rotating the image capturing unit 120. .
  • the communication unit 150 may include a wireless communication module for wirelessly communicating with a remote control device (not shown).
  • the communicator 150 wirelessly receives various control commands from the remote controller, and wirelessly transmits information such as image data captured by the image capturing unit 120 and data measured by the sensor unit 160 to the remote controller. Perform communication interface function.
  • the sensor unit 160 may measure information such as position, speed, acceleration, tilt, and posture information of the drone 100, a distance to a target or a surrounding structure, and the like.
  • the sensor unit 160 may be, for example, an acceleration sensor such as a gyro sensor, a geomagnetic sensor, a position measuring device such as a GPS (Global Positioning System), or a degree of vibration (vibration) such as an earthquake meter (period or level). It may include a variety of measuring devices, such as a vibration sensor for measuring the distance, a distance measuring sensor such as a laser sensor for measuring the distance to the target, proximity sensor for detecting the surrounding structure to prevent the collision.
  • the lighting unit 170 may generate illumination toward the target or the target surroundings in an environment such as a night or a dark room.
  • the lighting unit 170 may be provided as, for example, a light emitting diode (LED).
  • the lighting unit 170 may generate illumination in a direction parallel to the photographing direction of the image capturing unit 120.
  • the lighting unit 170 may be rotated by the driving controller 130 according to the position of the target to generate illumination to face the target or the surroundings of the target.
  • the memory 180 is adaptive to the position of the target, a program for performing flight control, position and attitude control, collision avoidance control of the drone 100, an image captured by the image capturing unit 120, a sensor unit Various information such as measurement information of 160 can be stored.
  • the battery 190 is provided to power each component of the drone 100.
  • the controller 200 controls the position and attitude of the drone 100 according to the position of the target, and performs a function of controlling the flight.
  • the controller 200 may be implemented with at least one processor.
  • the driving controller 130 includes a target recognition and motion tracking unit 131, a vehicle driving control unit 132, a camera driving control unit 133, and an anti-collision control unit 134.
  • the target recognition and motion tracking unit 131 recognizes a target in the image photographed by the image capturing unit 120 and tracks the movement of the target.
  • the target recognition and motion tracking unit 131 may extract feature information of the target from the image to recognize the target and track the motion.
  • the feature information of the target may include, for example, shape information, color, or contrast information of the target.
  • shape information For example, if a target is a human, an object such as a human face contour, an eye, a nose, or a mouth may be extracted from an image to recognize a target position based on an image coordinate system, and may be based on a distance between objects or a ratio of an object.
  • the direction of the target can be recognized.
  • the vehicle driving control unit 132 determines a driving value for driving the vehicle 110 according to the position and direction of the target. For example, the vehicle driving controller 132 may calculate a driving value for driving the aircraft 110 to a position where the face of the person may be photographed. In addition, the aircraft driving control unit 132 may adjust the distance of the drone 100 with respect to the target so that the target can be photographed in an image area having a predetermined size.
  • the collision avoidance control unit 134 receives the distance information of the surrounding structure from the distance measuring sensor of the sensor unit 160, and controls the aircraft driving control unit to limit the position or attitude of the drone 100 from the distance information of the surrounding structure. 132). Based on the information received from the collision avoidance control unit 134, the vehicle driving control unit 132 may determine a driving value for driving the vehicle 110 in an area that does not collide with the surrounding structure.
  • the camera driving controller 133 determines a driving value for driving the image capturing unit 120 according to the position and the direction of the target. For example, the camera driving controller 133 may determine a driving value for adjusting the direction of the image capturing unit 120 at an angle at which the face of the human face may be photographed. In addition, the camera driving controller 133 may adjust the zoom distance (zoom in / out) so that the target can be captured by the image area having a predetermined size.
  • the vehicle 110 is driven using only the vehicle drive control unit 132 without using the camera drive control unit 133, or only the camera drive control unit 133 is used without using the vehicle drive control unit 132.
  • the image capturing unit 120 by driving the image capturing unit 120 or the vehicle 110 and the image capturing unit 120 in a hybrid mode using both the aircraft driving control unit 132 and the camera driving control unit 133. ) Position and video recording direction can be adjusted automatically.
  • FIG. 4 is a flowchart illustrating a target automatic photographing method according to an exemplary embodiment.
  • an operator of the drone 100 performs initial setting for auto target shooting by using a remote control device (S31).
  • FIG. 5 is a diagram exemplarily illustrating a remote control apparatus 10 for wireless communication with the drone 100 according to an exemplary embodiment.
  • the remote control device 10 may be provided as a dedicated device for wireless communication with the drone 100, or may be provided as a terminal such as a smartphone in which an application for communicating with the drone 100 is downloaded. have.
  • the remote control device 10 shown in FIG. 5 when the user runs the app for the target automatic shooting of the drone 100 in the smartphone, the communication connection between the smartphone and the drone 100 is Is performed. If the user selects the 'manual steering' icon 15, the drone 100 is manually controlled according to the user's control. When the user manipulates the drone 100 by operating the smartphone, the image photographed by the drone 100 is transmitted to the smartphone and displayed on the image display area 12 on the screen of the display 11.
  • the user selects the 'setting' icon 12 displayed on the display unit 11 of the smart phone when the app is executed, sets a target (person, car, etc.) to be shot on the drone 100, and sets the target and the drone ( Information such as the distance between the cameras and the photographing direction can be set.
  • the user may determine the size and position of the image area 16 to display an object (eg, a face) of the target in the image display area 12.
  • the drone 100 may fly to automatically capture an image of the target in a set direction while maintaining a constant distance from the target.
  • the image capturing unit 120 of the drone 100 captures an image of the target
  • the driving controller 130 captures the target from the image captured by the image capturing unit 120. Recognize and track the movement of the target (S32, S33).
  • the driving controller 130 automatically controls the position and posture of the drone 100 according to the position and the movement of the target, and adjusts the position and the image capturing direction of the image capturing unit 120 (S34).
  • the captured image data is stored in the drone 100 or wirelessly transmitted to the remote control device 10, and the target automatic shooting process is repeated until the shooting is finished according to a setting or a user's command (S35, S36). .
  • FIG. 6 is a side view for explaining the operation of the drone 100 according to an embodiment of the present invention.
  • FIG. 5 an example of the drone 100 for capturing an image around the target T with a person as the target T is illustrated. As the target T moves, the drone 100 captures an image of the target T while moving along the target T. The distance between the drone 100 and the target T is maintained to coincide with the set image region of an object (eg, a face) of the target T.
  • an object eg, a face
  • FIG. 7A is a diagram illustrating an image captured by a drone when a distance between a drone and a target is closer than a set distance according to an embodiment of the present invention
  • FIG. 7B is a diagram of a drone according to an embodiment of the present invention. If the distance between the target and the target is farther than the set distance, it is a diagram illustrating an image captured by the drone. 1, 5, 7A, and 7B, the driving controller 130 may adjust the position and direction of the drone 100 such that the face is disposed in the set image area 16, for example.
  • the driving controller 130 recognizes that the face of the target is larger than the image area 16, moves the drone 100 away from the target, and in FIG. 7B, the face of the target is the image. Recognizing that it is smaller than the area, the drone 100 is moved in a direction closer to the target. Through this, the driving controller 130 may control the flight of the drone 100 to maintain a constant distance between the drone 100 and the target. Accordingly, the drone 100 may photograph the target's face at a constant image size while moving along the target. Alternatively, the driving controller 130 may maintain the size of the target face by adjusting the zoom distance by zooming in or zooming out the image capturing unit 120.
  • FIG. 8A is a diagram illustrating an image captured by a drone when the drone photographs an upper portion of the target according to an embodiment of the present invention
  • FIG. 8B illustrates a drone target according to an embodiment of the present invention.
  • Figure 8c is a drone according to an embodiment of the present invention when the image of the right side of the target
  • the image taken by the drone 8D is a diagram illustrating an image captured by the drone when the drone photographs the left side of the target according to an embodiment of the present invention.
  • the driving controller 130 recognizes that the face of the target is located below the image area, and lowers the height of the drone 100.
  • the tilt of the drone 100 may be controlled to be inclined downward toward the front.
  • the driving controller 130 recognizes that the face of the target is located above the image area 16, increases the height of the drone 100, or tilts the drone 100 toward the front. It can be controlled to be inclined upward.
  • the driving controller 130 recognizes that the face of the target is located to the left of the image area 16, and controls the direction (posture) of the drone 100 to the left. Recognizing that the face is located on the right side than the image area 16, the direction of the drone 100 may be controlled to the right. Accordingly, the drone 100 may photograph the target such that the face of the target is disposed in the image area 16 while moving along the target.
  • FIG. 9 is a view for explaining the operation of the drone 100 according to an embodiment of the present invention, when the target (T) is rotated.
  • the drone 100 when the target T rotates in a counterclockwise direction, the drone 100 is also fixed to the target T according to the movement of the target so that the face of the target T can be photographed. Rotate counterclockwise while maintaining distance.
  • the drone 100 changes its position toward the front of the target T while maintaining its posture, and rotates the image photographing unit 120 by 90 ° counterclockwise to rotate the face of the target T. You can also shoot.
  • FIG. 10A illustrates a case in which a drone photographs an image toward a left side of a target
  • FIG. 10B illustrates an image of a drone according to an embodiment of the present invention toward a right side of a target. It is a figure which shows the case of taking a picture.
  • the driving controller 130 recognizes, for example, the position (pixel information) of an object such as an eye, a nose, and an ear on the face of the target through object analysis of the image, and accordingly, the direction (posture) information of the drone and the target.
  • the posture of the drone 100 according to the image of the target can be taken in a set direction.
  • the driving controller 130 may recognize the front of the target and rotate the drone 100 about the target to a position where the front of the target can be photographed by the image capturing unit 120. Accordingly, the drone 100 may photograph the front face of the target while moving along the target.
  • the example was described by matching the face of the target with the set image area, but the position and direction of the image capturing unit 120 is displayed so that not only the face of the target but also an object such as a whole body, arms, and legs are displayed on the set image area. It is also possible to control the posture.
  • the drive controller 130 controls the position and the direction angle of the vehicle 110, and drives the camera driver 121 to capture an image of the image capture unit 120 with respect to the vehicle 110. You can adjust or zoom distance.
  • the camera driver 121 may include a first driver 122 and a second driver 123.
  • the first driver 122 adjusts a roll angle or yaw angle in the left and right directions
  • the second driver 123 adjusts a pitch angle in the up and down directions.
  • the target may be photographed in a predetermined size and direction in the image area by adjusting the position and direction angle of the aircraft 110 and the photographing direction of the image capturing unit 120.
  • the target automatic photographing method may be implemented as a program that can be executed in a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may be volatile memory such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), Nonvolatile memory, such as electrically erasable and programmable ROM (EEPROM), flash memory device, phase-change RAM (PRAM), magnetic RAM (MRAM), resistive RAM (RRAM), ferroelectric RAM (FRAM), floppy disk, hard disk, or Optical reading media may be, for example, but not limited to, a storage medium in the form of CD-ROM, DVD, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

본 발명은 무인비행기 및 타겟 자동 촬영 시스템에 관한 것으로, 비행체; 비행체에 설치되어 타겟에 대한 영상을 촬영하는 영상 촬영부; 및 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함하는 무인비행기를 제공한다.

Description

무인비행기, 타겟 자동 촬영 장치 및 방법
본 발명은 무인비행기에 관한 것으로, 보다 상세하게는 타겟을 자동으로 촬영하기 위한 장치를 구비한 무인비행기에 관한 것이다.
무인비행기는 원격지의 조종원에 의해 무선 조종되거나 정해진 주행 알고리즘에 따라 공중을 비행하는 장치로서, 오락용, 항공 촬영 및 감시, 해안경비와 같은 군사용, 기상관측용, 어군탐지용 등의 다양한 목적으로 연구 및 활용되어 왔다. 무인비행기는 멀티로터(multi-rotor) 비행체, 틸트로터(tilt-rotor) 비행체와 같은 RC 헬기(remote control), 새처럼 날개짓하는 오니솝터(ornithopter), 고정익(fixed wing) 항공기 등의 다양한 형태로 개발되고 있다. 종래의 무인비행기는 단순히 카메라를 장착하여 영상을 촬영하는 기능을 구비하고 있을 뿐, 특정한 타겟을 중심으로 무인비행기의 비행을 제어하여 타겟에 대한 영상을 자동으로 촬영하는 기능은 구비하고 있지 않다.
본 발명은 특정한 타겟을 중심으로 무인비행기의 비행을 제어하여 타겟에 대한 영상을 자동으로 촬영하는 타겟 자동 촬영 장치 및 이를 구비한 무인비행기를 제공하는 것을 목적으로 한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제로 제한되지 않는다. 언급되지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 비행체; 상기 비행체에 설치되어 타겟에 대한 영상을 촬영하는 영상 촬영부; 및 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 상기 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함하는 무인비행기가 제공된다.
상기 구동 제어부는 상기 비행체의 위치 및 방향각을 타겟 방향으로 조절하거나, 상기 비행체에 대해 상기 영상 촬영부를 타겟 방향으로 구동하여 영상 촬영 방향을 조절할 수 있다.
상기 구동 제어부는 상기 영상 촬영부에 의해 촬영된 영상 내의 설정된 영상 영역에 타겟의 객체가 위치하도록 상기 영상 촬영부의 위치 및 영상 촬영 방향을 조절할 수 있다.
상기 구동 제어부는 상기 무인비행기와 타겟 간의 거리가 일정하게 유지되도록 상기 비행체의 비행을 제어할 수 있다.
상기 구동 제어부는 타겟의 정면을 인식하여, 상기 영상 촬영부에서 타겟의 정면을 촬영할 수 있는 위치로 상기 비행체를 이동시킬 수 있다.
상기 구동 제어부는 상기 비행체의 비행을 자동 제어하고, 주변 물체의 충돌을 회피하기 위한 제어를 수행할 수 있다.
상기 무인비행기는 상기 비행체에 설치되어 상기 영상 촬영부를 회동 구동하는 구동부를 더 포함할 수 있다.
본 발명의 다른 일 측면에 따르면, 영상 촬영부에 촬영된 영상을 분석하여 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 무인비행기의 위치 및 자세를 제어하여 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함하는 타겟 자동 촬영 장치가 제공된다.
본 발명의 또 다른 일 측면에 따르면, 무인비행기에 장착된 영상 촬영부에 의해 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 타겟 자동 촬영 방법이 제공된다.
본 발명의 또 다른 일 측면에 따르면, 상기 타겟 자동 촬영 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 제공된다.
본 발명의 실시 예에 의하면, 특정한 타겟을 중심으로 무인비행기의 비행을 적응적으로 제어하여 타겟에 대한 영상을 자동으로 촬영할 수 있다.
본 발명의 효과는 상술한 효과들로 제한되지 않는다. 언급되지 않은 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 무인비행기를 보여주는 사시도이다.
도 2는 본 발명의 일 실시 예에 따른 무인비행기의 구성도이다.
도 3은 본 발명의 일 실시 예에 따른 무인비행기를 구성하는 구동 제어부의 구성도이다.
도 4는 본 발명의 일 실시 예에 따른 타겟 자동 촬영 방법을 보여주는 흐름도이다.
도 5는 본 발명의 일 실시 예에 따른 무인비행기와 무선 통신하는 원격 조종 장치를 예시적으로 나타낸 도면이다.
도 6은 본 발명의 일 실시 예에 따른 무인비행기의 동작을 설명하기 위한 측면도이다.
도 7a는 본 발명의 일 실시 예에 따른 무인비행기와 타겟의 거리가 설정된 거리보다 가까운 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 7b는 본 발명의 일 실시 예에 따른 무인비행기와 타겟의 거리가 설정된 거리보다 먼 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 8a는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 위쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 8b는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 아래쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 8c는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 오른쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 8d는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 왼쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 9는 타겟이 회전 이동하는 경우, 본 발명의 일 실시 예에 따른 무인비행기의 동작을 설명하기 위한 도면이다.
도 10a는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 왼쪽을 향하여 영상을 촬영하는 경우를 나타내는 도면이다.
도 10b는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 오른쪽을 향하여 영상을 촬영하는 경우를 나타내는 도면이다.
도 11은 본 발명의 다른 일 실시 예에 따른 무인비행기를 설명하기 위한 도면이다.
본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술하는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되지 않으며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 갖는다. 공지된 구성에 대한 일반적인 설명은 본 발명의 요지를 흐리지 않기 위해 생략될 수 있다. 본 발명의 도면에서 동일하거나 상응하는 구성에 대하여는 가급적 동일한 도면부호가 사용된다. 본 발명의 이해를 돕기 위하여, 도면에서 일부 구성은 다소 과장되거나 축소되어 도시될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다", "가지다" 또는 "구비하다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서 전체에서 사용되는 '~부'는 적어도 하나의 기능이나 동작을 처리하는 단위로서, 예를 들어 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미할 수 있다. 그렇지만 '~부'가 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함할 수 있다. 구성요소와 '~부'에서 제공하는 기능은 복수의 구성요소 및 '~부'들에 의해 분리되어 수행될 수도 있고, 다른 추가적인 구성요소와 통합될 수도 있다.
본 발명의 일 실시 예에 따른 무인비행기는 비행체; 비행체에 설치되어 타겟(target)에 대한 영상을 촬영하는 영상 촬영부; 및 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함한다. 본 발명의 실시 예에 의하면, 특정한 타겟의 위치를 중심으로 무인비행기의 비행을 적응적으로 제어하여 타겟에 대한 영상을 자동으로 촬영할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 무인비행기(100)를 보여주는 사시도이다. 무인비행기(100)는 오락용, 항공 촬영 및 감시, 해안경비와 같은 군사용, 기상관측용, 어군탐지용, 혹은 예시되지 않은 그 밖의 다양한 목적 및 용도로 활용될 수 있다. 이하에서, RC(remote control) 헬기를 예로 들어, 본 발명의 실시 예에 따른 무인비행기(100)를 설명하지만, 무인비행기(100)는 RC 헬기 외에 오니솝터(ornithopter), 고정익(fixed wing) 무인기 등의 다양한 형태로 제공될 수도 있다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 무인비행기(100)는 비행체(110), 비행체(110)에 설치되는 영상 촬영부(120) 및 구동 제어부(130)를 포함한다. 일 실시 예로, 비행체(110)는 영상 촬영부(120)와 구동 제어부(130)를 구비한 몸체(111), 몸체(111)에 설치되어 회전날개(113)를 구동하는 구동모터(112) 및 몸체(111)에 설치되고 구동모터(112)에 의하여 구동되는 회전날개(rotor)(113)를 포함할 수 있다.
영상 촬영부(120)는 타겟(target)에 대한 영상을 촬영한다. 타겟은 예를 들어, 사람, 동물, 차량이나 선박과 같은 이송 수단과 같이, 이동성을 갖는 촬영 대상을 포함할 수 있다. 타겟이 지상에 위치하는 경우, 영상 촬영부(120)는 타겟을 촬영하기에 적합한 위치, 예를 들어, 몸체(111)의 하부 측에 아래 방향으로 영상을 촬영하도록 설치될 수 있다. 영상 촬영부(120)에서 타겟을 촬영한 영상은 구동 제어부(130)로 제공된다.
구동 제어부(130)는 영상 촬영부(120)에 의해 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 무인비행기(100) 및 영상 촬영부(120)의 위치와, 영상 촬영부(120)의 영상 촬영 방향을 자동으로 조절한다. 그 밖에도, 구동 제어부(130)는 무인비행기(100)의 비행을 자동 제어하고, 주변 물체의 충돌을 회피하기 위한 제어를 수행할 수 있다.
영상 촬영부(120)의 영상 촬영 방향은 구동 제어부(130)에 의해 비행체(110)의 방향각을 타겟 방향으로 조절하는 것에 의해 변화될 수도 있고, 비행체(110)의 방향각을 유지한 상태에서 영상 촬영부(120)를 비행체(110)에 대해 타겟 방향으로 구동하는 것에 의해 변화될 수도 있다. 구동 제어부(130)에 대하여는 이후 도 3을 참조하여 보다 상세하게 후술한다.
도 2는 본 발명의 일 실시 예에 따른 무인비행기(100)의 구성도이다. 도 1 및 도 2를 참조하면, 무인비행기(100)는 몸체(110), 영상 촬영부(120), 구동 제어부(130), 구동부(140), 통신부(150), 센서부(160), 조명부(170), 메모리(180), 배터리(190) 및 제어부(200)를 포함한다. 구동 제어부(130), 통신부(150), 메모리(180) 및 제어부(200)는 임베디드 보드(embedded board)로 구현되어, 영상 촬영부(120), 구동부(140), 센서부(160), 조명부(170) 및 배터리(190)와 전기신호적으로 연결될 수 있다.
구동부(140)는 타겟의 위치에 따라 무인비행기(100)와 영상 촬영부(120)의 위치 및 영상 촬영 방향을 적응적으로 조절하기 위한 수단, 예를 들어 회전날개(113)를 회동 구동하는 구동모터(112), 무인비행기(100)의 방향을 조절하는 방향조절 프로펠러(도시 생략), 영상 촬영부(120)를 회동 구동하여 촬영 방향을 조절하는 카메라 구동부(도시 생략) 등으로 제공될 수 있다.
통신부(150)는 원격 조종 장치(도시 생략)와 무선으로 통신하기 위한 무선통신모듈을 포함할 수 있다. 통신부(150)는 원격 조종 장치로부터 각종 제어 명령을 무선 전송받고, 영상 촬영부(120)에 의해 촬영된 영상 데이터, 센서부(160)에서 측정한 데이터 등의 정보를 원격 조종 장치로 무선 전송하는 통신인터페이스 기능을 수행한다.
센서부(160)는 무인비행기(100)의 위치, 속도, 가속도, 기울기, 흔들림과 같은 자세 정보, 타겟이나 주변 구조물에 이르는 거리 등의 정보를 측정할 수 있다. 센서부(160)는 예를 들어, 자이로 센서(gyro sensor)와 같은 가속도 센서, 지자기 센서, GPS(Global Positioning System)와 같은 위치측정 장치, 지진계와 같이 흔들림(진동)의 정도(주기나 레벨)를 측정하는 진동센서, 타겟에 이르는 거리를 측정하는 레이저 센서와 같은 거리측정센서, 충돌 방지를 위해 주변 구조물을 감지하는 근접감지센서와 같은 각종 측정 장치를 포함할 수 있다.
조명부(170)는 야간이나 어두운 실내 등의 환경에서 타겟이나 타겟 주변을 향하여 조명을 발생할 수 있다. 조명부(170)는 예시적으로, LED(light emitting diode)로 제공될 수 있다. 조명부(170)는 영상 촬영부(120)의 촬영 방향과 나란한 방향으로 조명을 발생할 수 있다. 조명부(170)는 구동 제어부(130)에 의하여 타겟의 위치에 따라 회동 구동되어, 타겟이나 타겟 주변을 향하도록 조명을 발생할 수도 있다.
메모리(180)는 타겟의 위치에 적응적으로, 무인비행기(100)의 비행 제어, 위치 및 자세 제어, 충돌 방지 제어를 수행하기 위한 프로그램, 영상 촬영부(120)에 의해 촬영된 영상, 센서부(160)의 측정 정보 등의 각종 정보를 저장할 수 있다. 배터리(190)는 무인비행기(100)의 각 구성에 전원을 공급하기 위해 제공된다. 제어부(200)는 타겟의 위치에 따라 무인비행기(100)의 위치 및 자세를 제어하고, 비행을 제어하는 기능을 수행한다. 제어부(200)는 적어도 하나의 프로세서(processor)로 구현될 수 있다.
도 3은 본 발명의 일 실시 예에 따른 무인비행기를 구성하는 구동 제어부의 구성도이다. 도 3을 참조하면, 구동 제어부(130)는 타겟 인식 및 움직임 추적부(131), 비행체 구동 제어부(132), 카메라 구동 제어부(133) 및 충돌방지 제어부(134)를 포함한다.
타겟 인식 및 움직임 추적부(131)는 영상 촬영부(120)에 의해 촬영된 영상에서 타겟을 인식하고, 타겟의 움직임을 추적한다. 타겟 인식 및 움직임 추적부(131)는 영상에서 타겟의 특징 정보를 추출하여 타겟을 인식하고, 움직임을 추적할 수 있다. 타겟의 특징 정보는 예를 들어, 타겟의 형상 정보나 색상 혹은 명암 정보를 포함할 수 있다. 타겟이 사람인 경우를 예로 들면, 영상에서 사람의 얼굴 윤곽이나, 눈이나 코, 입 등의 객체를 추출하여 영상 좌표계를 기준으로 타겟의 위치를 인식할 수 있으며, 객체 간의 거리나 객체의 비율 등에 근거하여 타겟의 방향을 인식할 수 있다.
비행체 구동 제어부(132)는 타겟의 위치 및 방향에 따라 비행체(110)를 구동하기 위한 구동 값을 결정한다. 예를 들어, 비행체 구동 제어부(132)는 사람의 얼굴 정면을 촬영할 수 있는 위치로 비행체(110)를 구동하기 위한 구동 값을 산출할 수 있다. 또한, 비행체 구동 제어부(132)는 타겟을 미리 설정된 크기의 영상 영역으로 촬영할 수 있도록 타겟에 대한 무인비행기(100)의 거리를 조절하는 것도 가능하다.
충돌방지 제어부(134)는 주변 구조물의 거리 정보를 센서부(160)의 거리측정센서로부터 입력받고, 주변 구조물의 거리 정보로부터 무인비행기(100)의 위치나 자세를 제한하는 정보를 비행체 구동 제어부(132)로 전달한다. 충돌방지 제어부(134)로부터 입력받은 정보에 근거하여, 비행체 구동 제어부(132)는 주변 구조물과 충돌되지 않는 영역 내에서 비행체(110)를 구동하기 위한 구동 값을 결정할 수 있다.
카메라 구동 제어부(133)는 타겟의 위치 및 방향에 따라 영상 촬영부(120)를 구동하기 위한 구동 값을 결정한다. 예를 들어, 카메라 구동 제어부(133)는 사람의 얼굴 정면을 촬영할 수 있는 각도로 영상 촬영부(120)의 방향을 조절하기 위한 구동 값을 결정할 수 있다. 또한, 카메라 구동 제어부(133)는 타겟을 미리 설정된 크기의 영상 영역으로 촬영할 수 있도록 줌거리(zoom in/out)를 조절하는 것도 가능하다.
일 실시 예에서, 카메라 구동 제어부(133)를 이용하지 않고 비행체 구동 제어부(132)만을 이용하여 비행체(110)를 구동하거나, 비행체 구동 제어부(132)를 이용하지 않고 카메라 구동 제어부(133)만을 이용하여 영상 촬영부(120)를 구동하거나, 혹은 비행체 구동 제어부(132) 및 카메라 구동 제어부(133)를 모두 이용하는 하이브리드 모드로 비행체(110) 및 영상 촬영부(120)를 구동함으로써 영상 촬영부(120)의 위치 및 영상 촬영 방향을 자동으로 조절할 수 있다.
도 4는 본 발명의 일 실시 예에 따른 타겟 자동 촬영 방법을 보여주는 흐름도이다. 도 1 내지 도 4를 참조하면, 먼저 무인비행기(100)의 조종자는 원격 조종 장치를 이용하여 타겟 자동 촬영을 위한 초기 설정을 수행한다(S31). 도 5는 본 발명의 일 실시 예에 따른 무인비행기(100)와 무선 통신하는 원격 조종 장치(10)를 예시적으로 나타낸 도면이다. 원격 조종 장치(10)는 무인비행기(100)와 무선 통신하는 전용의 장치로 제공될 수도 있고, 무인비행기(100)와 통신하기 위한 앱(application)이 다운로드된 스마트폰과 같은 단말기로 제공될 수도 있다.
도 5에 도시된 원격 조종 장치(10)를 예로 들어 설명하면, 사용자가 스마트폰에서 무인비행기(100)의 타겟 자동 촬영을 위한 앱을 실행하면, 스마트폰과 무인비행기(100) 간에 통신 연결이 수행된다. 사용자가 '수동조종' 아이콘(15)을 선택하면, 무인비행기(100)는 사용자의 조종에 따라 수동으로 제어된다. 사용자가 스마트폰을 조작하여 무인비행기(100)를 조종시, 무인비행기(100)에서 촬영된 영상은 스마트폰으로 전송되어 디스플레이부(11) 화면상의 영상 표시 영역(12)에 표시된다.
사용자는 앱 실행시 스마트폰의 디스플레이부(11)에 표시되는 '설정' 아이콘(12)을 선택하여, 무인비행기(100)에서 촬영할 타겟(사람, 자동차 등)을 설정하고, 타겟과 무인비행기(100) 간의 거리나 촬영 방향 등의 정보를 설정할 수 있다. 초기 설정시 사용자는 타겟의 객체(예를 들어, 얼굴)를 표시할 영상 영역(16)의 크기와 위치를 영상 표시 영역(12) 내에서 결정할 수 있다.
사용자가 스마트폰을 조작하여 무인비행기(100)를 타겟 촬영이 가능한 위치로 비행시킨 후 '자동 조종' 아이콘(14)을 선택하면, 선택 시점부터 타겟을 중심으로 무인비행기(100)의 위치 및 자세를 제어하여 타겟을 자동 촬영하는 기능이 실행된다. 이에 따라, 무인비행기(100)는 타겟으로부터 일정한 거리를 유지하면서, 설정된 방향으로 타겟의 영상을 자동 촬영하도록 비행한다.
다시 도 1 및 도 4를 참조하면, 무인비행기(100)의 영상 촬영부(120)는 타겟에 대한 영상을 촬영하며, 구동 제어부(130)는 영상 촬영부(120)에서 촬영한 영상에서 타겟을 인식하고, 타겟의 움직임을 추적한다(S32, S33). 구동 제어부(130)는 타겟의 위치 및 움직임에 따라 무인비행기(100)의 위치 및 자세를 자동 제어하여, 영상 촬영부(120)의 위치 및 영상 촬영 방향을 조절한다(S34). 촬영된 영상 데이터는 무인비행기(100)에 저장되거나, 원격 조종 장치(10)로 무선 전송되며, 설정 혹은 사용자의 명령에 따라 촬영이 종료될 때까지 타겟 자동 촬영 과정이 반복된다(S35,S36).
도 6은 본 발명의 일 실시 예에 따른 무인비행기(100)의 동작을 설명하기 위한 측면도이다. 도 5를 참조하면, 사람을 타겟(T)으로 하여, 타겟(T)을 중심으로 영상을 촬영하는 무인비행기(100)의 예가 도시된다. 타겟(T)이 이동함에 따라, 무인비행기(100)는 타겟(T)을 따라 이동하면서 타겟(T)에 대한 영상을 촬영한다. 무인비행기(100)와 타겟(T) 간의 거리는 타겟(T)의 객체(예를 들어, 얼굴)가 설정된 영상 영역과 일치되도록 유지된다.
도 7a는 본 발명의 일 실시 예에 따른 무인비행기와 타겟의 거리가 설정된 거리보다 가까운 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이고, 도 7b는 본 발명의 일 실시 예에 따른 무인비행기와 타겟의 거리가 설정된 거리보다 먼 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다. 도 1, 도 5, 도 7a 및 도 7b를 참조하면, 구동 제어부(130)는 예를 들어, 설정된 영상 영역(16) 내에 얼굴이 배치되도록 무인비행기(100)의 위치 및 방향을 조절할 수 있다.
구동 제어부(130)는 도 7a의 경우, 타겟의 얼굴이 영상 영역(16)보다 큰 것을 인식하고, 무인비행기(100)를 타겟으로부터 먼 방향으로 이동시키고, 도 7b의 경우, 타겟의 얼굴이 영상 영역보다 작은 것을 인식하고, 무인비행기(100)를 타겟으로부터 가까운 방향으로 이동시킨다. 이를 통해 구동 제어부(130)는 무인비행기(100)와 타겟 간의 거리가 일정하게 유지되도록 무인비행기(100)의 비행을 제어할 수 있다. 이에 따라 무인비행기(100)는 타겟을 따라 이동하면서 일정한 영상 크기로 타겟의 얼굴을 촬영할 수 있다. 대안적으로, 구동 제어부(130)는 영상 촬영부(120)를 줌인(zoom in)하거나 줌아웃(zoom out)하여 줌거리를 조절함으로써, 타겟의 얼굴을 설정된 영상 영역의 크기로 유지할 수도 있다.
도 8a는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 위쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이고, 도 8b는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 아래쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이고, 도 8c는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 오른쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이고, 도 8d는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 왼쪽을 촬영하는 경우, 무인비행기에 의해 촬영된 영상을 예시하는 도면이다.
도 1, 도 5, 도 8a 내지 도 8d를 참조하면, 구동 제어부(130)는 도 8a의 경우, 타겟의 얼굴이 영상 영역보다 아래쪽에 위치한 것을 인식하고, 무인비행기(100)의 높이를 하향하거나, 무인비행기(100)의 기울기를 전방을 향해 하향 경사지도록 제어할 수 있다. 구동 제어부(130)는 도 8b의 경우, 타겟의 얼굴이 영상 영역(16)보다 위쪽에 위치한 것을 인식하고, 무인비행기(100)의 높이를 상향하거나, 무인비행기(100)의 기울기를 전방을 향해 상향 경사지도록 제어할 수 있다.
구동 제어부(130)는 도 8c의 경우, 타겟의 얼굴이 영상 영역(16)보다 왼쪽에 위치한 것을 인식하고, 무인비행기(100)의 방향(자세)을 왼쪽으로 제어하고, 도 8d의 경우, 타겟의 얼굴이 영상 영역(16)보다 오른쪽에 위치한 것을 인식하고, 무인비행기(100)의 방향을 오른쪽으로 제어할 수 있다. 이에 따라, 무인비행기(100)는 타겟을 따라 이동하면서 타겟의 얼굴이 영상 영역(16) 내에 배치되도록 타겟을 촬영할 수 있다.
도 9는 타겟(T)이 회전 이동하는 경우, 본 발명의 일 실시 예에 따른 무인비행기(100)의 동작을 설명하기 위한 도면이다. 도 9에 화살표로서 도시된 바와 같이, 타겟(T)이 반시계 방향으로 회전하는 경우, 타겟(T)의 얼굴을 촬영할 수 있도록 무인비행기(100) 역시 타겟의 움직임에 따라 타겟(T)과 일정한 거리를 유지하면서 반시계 방향으로 회전한다. 대안적으로, 무인비행기(100)는 자세를 유지한 채로 타겟(T)의 정면으로 위치를 변화하는 동시에, 영상 촬영부(120)를 반시계 반향으로 90°회전하여 타겟(T)의 얼굴을 촬영할 수도 있다.
도 10a는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 왼쪽을 향하여 영상을 촬영하는 경우를 나타내는 도면이고, 도 10b는 본 발명의 일 실시 예에 따른 무인비행기가 타겟의 오른쪽을 향하여 영상을 촬영하는 경우를 나타내는 도면이다. 구동 제어부(130)는 영상의 객체 분석을 통해 예를 들어, 타겟의 얼굴에서 눈이나 코, 귀 등의 객체의 위치(픽셀 정보)를 인식하고, 그에 따라 무인비행기와 타겟의 방향(자세) 정보를 파악할 수 있으며, 그에 따라 무인비행기(100)의 자세를 제어하여 타겟의 영상을 설정된 방향으로 촬영할 수 있다.
예를 들어, 구동 제어부(130)는 타겟의 정면을 인식하여, 영상 촬영부(120)에서 타겟의 정면을 촬영할 수 있는 위치로 무인비행기(100)를 타겟을 중심으로 회동시킬 수 있다. 이에 따라, 무인비행기(100)는 타겟을 따라 이동하면서 타겟의 얼굴 정면을 영상 촬영할 수 있다. 이상에서, 타겟의 얼굴을 설정된 영상 영역과 일치시켜 예에 대해 설명하였으나, 타겟의 얼굴뿐 아니라, 전신이나 팔, 다리 등의 객체가 설정된 영상 영역에 표시되도록 영상 촬영부(120)의 위치 및 방향(자세)를 제어하는 것도 가능하다.
도 11은 본 발명의 다른 일 실시 예에 따른 무인비행기(100)를 설명하기 위한 도면이다. 도 11의 실시 예를 설명함에 있어서, 앞서 설명한 실시 예와 동일하거나 상응하는 구성에 대하여는 중복되는 설명을 생략한다. 도 11을 참조하면, 구동 제어부(130)는 비행체(110)의 위치 및 방향각을 조절하는 외에, 카메라 구동부(121)를 구동하여 비행체(110)에 대해 영상 촬영부(120)의 영상 촬영 각도를 조절하거나, 줌거리를 조절할 수 있다. 카메라 구동부(121)는 제1 구동부(122)와 제2 구동부(123)를 포함할 수 있다. 제1 구동부(122)는 좌우 방향으로의 롤(roll) 각 혹은 요(yaw) 각을 조절하며, 제2 구동부(123)는 상하 방향으로의 피치(pitch) 각을 조절한다. 도 11의 실시 예에 의하면, 비행체(110)의 위치 및 방향각을 조절하는 동시에 영상 촬영부(120)의 촬영 방향을 조절함으로써, 타겟을 영상 영역 내에 일정한 크기와 방향으로 촬영할 수 있다.
본 발명의 실시 예에 따른 타겟 자동 촬영 방법은 예를 들어 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 SRAM(Static RAM), DRAM(Dynamic RAM), SDRAM(Synchronous DRAM) 등과 같은 휘발성 메모리, ROM(Read Only Memory), PROM(Programmable ROM), EPROM(Electrically Programmable ROM), EEPROM(Electrically Erasable and Programmable ROM), 플래시 메모리 장치, PRAM(Phase-change RAM), MRAM(Magnetic RAM), RRAM(Resistive RAM), FRAM(Ferroelectric RAM)과 같은 불휘발성 메모리, 플로피 디스크, 하드 디스크 또는 광학적 판독 매체 예를 들어 시디롬, 디브이디 등과 같은 형태의 저장매체일 수 있으나, 이에 제한되지는 않는다.
이상의 실시 예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시 예들도 본 발명의 범위에 속하는 것임을 이해하여야 한다. 본 발명의 기술적 보호범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 특허청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명에 대하여까지 미치는 것임을 이해하여야 한다.

Claims (12)

  1. 비행체;
    상기 비행체에 설치되어 타겟에 대한 영상을 촬영하는 영상 촬영부; 및
    촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 상기 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함하는 무인비행기.
  2. 제1 항에 있어서,
    상기 구동 제어부는 상기 비행체의 위치 및 방향각을 타겟 방향으로 조절하거나, 상기 비행체에 대해 상기 영상 촬영부를 타겟 방향으로 구동하여 영상 촬영 방향을 조절하는 무인비행기.
  3. 제1 항에 있어서,
    상기 구동 제어부는 상기 영상 촬영부에 의해 촬영된 영상 내의 설정된 영상 영역에 타겟의 객체가 위치하도록 상기 영상 촬영부의 위치 및 영상 촬영 방향을 조절하는 무인비행기.
  4. 제1 항에 있어서,
    상기 구동 제어부는 상기 무인비행기와 타겟 간의 거리가 일정하게 유지되도록 상기 비행체의 비행을 제어하는 무인비행기.
  5. 제1 항에 있어서,
    상기 구동 제어부는 타겟의 정면을 인식하여, 상기 영상 촬영부에서 타겟의 정면을 촬영할 수 있는 위치로 상기 비행체를 이동시키는 무인비행기.
  6. 제1 항에 있어서,
    상기 구동 제어부는 상기 비행체의 비행을 자동 제어하고, 주변 물체의 충돌을 회피하기 위한 제어를 수행하는 무인비행기.
  7. 제1 항에 있어서,
    상기 비행체에 설치되어 상기 영상 촬영부를 회동 구동하는 구동부를 더 포함하는 무인비행기.
  8. 영상 촬영부에 촬영된 영상을 분석하여 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 무인비행기의 위치 및 자세를 제어하여 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 구동 제어부를 포함하는 타겟 자동 촬영 장치.
  9. 제8 항에 있어서,
    상기 구동 제어부는 무인비행기의 위치 및 방향각을 타겟 방향으로 조절하거나, 무인비행기에 대해 영상 촬영부를 타겟 방향으로 구동하여 영상 촬영 방향을 조절하는 타겟 자동 촬영 장치.
  10. 제8 항에 있어서,
    상기 구동 제어부는 영상 촬영부에 의해 촬영된 영상 내의 설정된 영상 영역에 타겟의 객체가 위치하도록 영상 촬영부의 위치 및 영상 촬영 방향을 조절하는 타겟 자동 촬영 장치.
  11. 무인비행기에 장착된 영상 촬영부에 의해 촬영된 영상에서 타겟을 인식하고 타겟의 움직임을 추적하며, 타겟의 위치에 따라 영상 촬영부의 위치 및 영상 촬영 방향을 자동으로 조절하는 타겟 자동 촬영 방법.
  12. 제11 항에 기재된 타겟 자동 촬영 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
PCT/KR2014/010214 2014-10-28 2014-10-28 무인비행기, 타겟 자동 촬영 장치 및 방법 WO2016068354A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/010214 WO2016068354A1 (ko) 2014-10-28 2014-10-28 무인비행기, 타겟 자동 촬영 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/010214 WO2016068354A1 (ko) 2014-10-28 2014-10-28 무인비행기, 타겟 자동 촬영 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2016068354A1 true WO2016068354A1 (ko) 2016-05-06

Family

ID=55857684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010214 WO2016068354A1 (ko) 2014-10-28 2014-10-28 무인비행기, 타겟 자동 촬영 장치 및 방법

Country Status (1)

Country Link
WO (1) WO2016068354A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292713A (zh) * 2016-10-28 2017-01-04 天津城建大学 一种多旋翼飞行器控制系统
CN106325290A (zh) * 2016-09-30 2017-01-11 北京奇虎科技有限公司 一种基于无人机的监控系统及设备
CN106681357A (zh) * 2017-01-11 2017-05-17 深圳市元征科技股份有限公司 基于无人机背包控制无人机的方法、系统及无人机背包

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070250260A1 (en) * 2006-04-25 2007-10-25 Honeywell International Inc. Method and system for autonomous tracking of a mobile target by an unmanned aerial vehicle
KR20080113021A (ko) * 2006-03-13 2008-12-26 더 보잉 컴파니 항공기 충돌 감지/회피 시스템 및 방법
KR20120082728A (ko) * 2011-01-14 2012-07-24 동국대학교 산학협력단 공중추적영상촬영을 위한 무인헬리콥터 탑재 카메라 짐벌의 시선각 연동 장치
KR101193445B1 (ko) * 2012-04-09 2012-10-24 국방과학연구소 항공 촬영용 자동 배경 추적 장치
KR20130058242A (ko) * 2011-11-25 2013-06-04 건국대학교 산학협력단 비행체의 충돌 방지 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080113021A (ko) * 2006-03-13 2008-12-26 더 보잉 컴파니 항공기 충돌 감지/회피 시스템 및 방법
US20070250260A1 (en) * 2006-04-25 2007-10-25 Honeywell International Inc. Method and system for autonomous tracking of a mobile target by an unmanned aerial vehicle
KR20120082728A (ko) * 2011-01-14 2012-07-24 동국대학교 산학협력단 공중추적영상촬영을 위한 무인헬리콥터 탑재 카메라 짐벌의 시선각 연동 장치
KR20130058242A (ko) * 2011-11-25 2013-06-04 건국대학교 산학협력단 비행체의 충돌 방지 장치 및 방법
KR101193445B1 (ko) * 2012-04-09 2012-10-24 국방과학연구소 항공 촬영용 자동 배경 추적 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106325290A (zh) * 2016-09-30 2017-01-11 北京奇虎科技有限公司 一种基于无人机的监控系统及设备
CN106292713A (zh) * 2016-10-28 2017-01-04 天津城建大学 一种多旋翼飞行器控制系统
CN106681357A (zh) * 2017-01-11 2017-05-17 深圳市元征科技股份有限公司 基于无人机背包控制无人机的方法、系统及无人机背包

Similar Documents

Publication Publication Date Title
CN110692027B (zh) 用于提供无人机应用的易用的释放和自动定位的系统和方法
US10645300B2 (en) Methods and apparatus for image processing
CN110494360B (zh) 用于提供自主摄影及摄像的系统和方法
US10802509B2 (en) Selective processing of sensor data
JP6496323B2 (ja) 可動物体を検出し、追跡するシステム及び方法
CN113038016B (zh) 无人机图像采集方法及无人机
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
WO2018098678A1 (zh) 飞行器的控制方法、装置和设备以及飞行器
CN105242685B (zh) 一种伴飞无人机航拍系统及方法
JP6696118B2 (ja) 電子機器
JP2018537335A (ja) 無人航空機の飛行を制御する方法及びシステム
TW201249713A (en) Unmanned aerial vehicle control system and method
WO2018121247A1 (zh) 控制无人机飞行的方法、装置以及无人机
CN107065894B (zh) 无人飞行器、飞行高度控制装置、方法以及计算机可读取记录介质
US20210112194A1 (en) Method and device for taking group photo
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
CN108163203B (zh) 一种拍摄控制方法、装置及飞行器
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
CN111567032B (zh) 确定装置、移动体、确定方法以及计算机可读记录介质
WO2016068354A1 (ko) 무인비행기, 타겟 자동 촬영 장치 및 방법
KR101796478B1 (ko) 360도 영상 촬영이 가능한 무인비행체
WO2021135824A1 (zh) 图像曝光方法及装置、无人机
WO2020244648A1 (zh) 一种飞行器控制方法、装置及飞行器
JP6481228B1 (ja) 決定装置、制御装置、撮像システム、飛行体、決定方法、及びプログラム
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905148

Country of ref document: EP

Kind code of ref document: A1