KR101125435B1 - Metal Wrap Through type solar cell - Google Patents

Metal Wrap Through type solar cell Download PDF

Info

Publication number
KR101125435B1
KR101125435B1 KR1020100042727A KR20100042727A KR101125435B1 KR 101125435 B1 KR101125435 B1 KR 101125435B1 KR 1020100042727 A KR1020100042727 A KR 1020100042727A KR 20100042727 A KR20100042727 A KR 20100042727A KR 101125435 B1 KR101125435 B1 KR 101125435B1
Authority
KR
South Korea
Prior art keywords
substrate
solar cell
electrode
layer
local
Prior art date
Application number
KR1020100042727A
Other languages
Korean (ko)
Other versions
KR20110123312A (en
Inventor
문인식
조은철
이원재
임종근
김상균
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020100042727A priority Critical patent/KR101125435B1/en
Publication of KR20110123312A publication Critical patent/KR20110123312A/en
Application granted granted Critical
Publication of KR101125435B1 publication Critical patent/KR101125435B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

본 발명은 후면전계층과 p 전극 사이의 계면에서 발생되는 재결합을 최소화하여 광전변환효율을 향상시킬 수 있는 MWT형 태양전지에 관한 것으로서, 본 발명에 따른 MWT형 태양전지는 제 1 도전형의 결정질 실리콘 기판과, 상기 기판의 후면 내부에 이격된 형태로 구비된 복수의 국부 후면전계층과, 상기 기판의 후면 상에 구비되며, 상기 국부 후면전계층의 일부를 선택적으로 노출시키는 재결합 억제층 및 상기 재결합 억제층 상에 구비되어 상기 국부 후면전계층과 전기적으로 연결되는 제 1 도전형의 전극을 포함하여 이루어지는 것을 특징으로 한다. The present invention relates to an MWT type solar cell capable of improving photoelectric conversion efficiency by minimizing recombination generated at an interface between a backside field layer and a p-electrode. The MWT type solar cell according to the present invention is a crystalline of a first conductivity type. A silicon substrate, a plurality of local rear electric field layers spaced apart from inside the rear surface of the substrate, a recombination inhibiting layer provided on the rear surface of the substrate and selectively exposing a portion of the local rear electric field layer; And a first conductive type electrode provided on the recombination inhibiting layer and electrically connected to the local backside field layer.

Description

MWT형 태양전지{Metal Wrap Through type solar cell}MWT type solar cell {Metal Wrap Through type solar cell}

본 발명은 MWT형 태양전지에 관한 것으로서, 보다 상세하게는 후면전계층과 p 전극 사이의 계면에서 발생되는 재결합을 최소화하여 광전변환효율을 향상시킬 수 있는 MWT형 태양전지에 관한 것이다.
The present invention relates to an MWT solar cell, and more particularly, to an MWT solar cell capable of improving photoelectric conversion efficiency by minimizing recombination occurring at an interface between a backside field layer and a p electrode.

태양전지는 태양광을 직접 전기로 변환시키는 태양광 발전의 핵심소자로서, 기본적으로 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. 태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지에 태양광이 입사되면 전자-정공(쌍)이 생성되고, 생성된 전자와 정공은 확산하다가 p-n 접합부에 형성되는 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. A solar cell is a key element of photovoltaic power generation that converts sunlight directly into electricity, and is basically a diode composed of a p-n junction. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the solar cell, electron-holes (pairs) are generated, and the generated electrons and holes diffuse and electrons are generated by the electric field formed at the pn junction. Is n-layer, the hole is moved to the p-layer to generate photovoltaic power between the pn junction, and when the load or system is connected to both ends of the solar cell, the current flows to produce power.

한편, 일반적인 태양전지의 구조를 살펴보면 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는데, 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다. 이와 같이 수광면적이 축소되는 문제를 해결하기 위해 후면전극형 태양전지가 제안되었다. 후면전극형 태양전지는 태양전지의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양전지 전면의 수광면적을 극대화하는 것을 특징으로 한다. On the other hand, the structure of the general solar cell has a structure in which the front electrode and the rear electrode is provided on the front and rear, respectively, as the front electrode is provided on the front of the light receiving surface, the light receiving area is reduced by the area of the front electrode. In order to solve the problem that the light receiving area is reduced, a back electrode solar cell has been proposed. The back electrode solar cell is characterized by maximizing the light receiving area of the solar cell by providing a (+) electrode and a (-) electrode on the back of the solar cell.

이와 같은 후면전극형 태양전지는 유형에 따라 IBC(interdigitated back contact), 포인트 콘택형, EWT(emitter wrap through), MWT(metal wrap through) 등으로 구분된다. 이 중 MWT형 태양전지는 전면의 그리드 핑거(grid finger)와 버스바(bus bar) 중 그리드 핑거는 전면에 그대로 두고 버스바를 후면에 옮긴 구조이며, 전면의 그리드 핑거와 후면의 버스바는 기판을 관통하는 비아홀(via hole)에 의해 연결된다. Such back-electrode type solar cells are classified into interdigitated back contact (IBC), point contact type, emitter wrap through (EWT), metal wrap through (MWT), and the like according to the type. The MWT type solar cell is a structure in which the front of the grid fingers and the bus bars of the bus bar are left in front and the bus bars are moved to the rear. It is connected by penetrating via holes.

MWT형 태양전지의 구조를 살펴보면, 도 1에 도시한 바와 같이 기판(101) 전체면에 에미터층(102)이 구비되며, 상기 기판(101) 전면 상에는 반사방지막(103) 및 전면 그리드 전극(104)이 구비된다. 또한, 기판(101)의 후면에는 n 전극(105)과 p 전극(106)이 구비되며, 기판(101)을 관통하는 비아홀(108)을 매개로 상기 n 전극(105)과 전면 그리드 전극(104)이 전기적으로 연결된다. Looking at the structure of the MWT type solar cell, as shown in Figure 1, the emitter layer 102 is provided on the entire surface of the substrate 101, the anti-reflection film 103 and the front grid electrode 104 on the entire surface of the substrate 101 ) Is provided. In addition, an n electrode 105 and a p electrode 106 are provided on a rear surface of the substrate 101, and the n electrode 105 and the front grid electrode 104 are provided via via holes 108 penetrating through the substrate 101. ) Is electrically connected.

한편, 상기 p 전극(106)의 하부 즉, 기판 후면의 내부에는 전하 수집효율을 향상시키는 역할을 하는 후면전계층(back surface field)(p+)(109)이 구비되며, 후면전계층(109)과 p 전극(106)은 전면에 걸쳐 서로 접촉하는 구조를 갖는다. Meanwhile, a back surface field (p +) 109 is provided under the p electrode 106, that is, inside the back of the substrate, to improve charge collection efficiency, and the back field layer 109 is provided. The p electrode 106 has a structure in contact with each other over the entire surface.

이와 같은 MWT형 태양전지에 있어서, 상술한 바와 같이 후면전계층(109)과 p 전극(106)이 전면에 걸쳐 서로 접촉하는 구조를 이룸에 따라, 후면전계층과 p 전극 사이의 계면에서 재결합률(recombination rate)이 증가되어 궁극적으로 광전변환효율이 저하되는 문제점이 야기된다.
As described above, in the MWT solar cell, as described above, the rear field layer 109 and the p electrode 106 are in contact with each other over the entire surface, and thus the recombination rate at the interface between the rear field layer and the p electrode is reduced. (recombination rate) is increased, resulting in a problem that ultimately lowers the photoelectric conversion efficiency.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 후면전계층과 p 전극 사이의 계면에서 발생되는 재결합을 최소화하여 광전변환효율을 향상시킬 수 있는 MWT형 태양전지를 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, an object of the present invention to provide a MWT-type solar cell that can improve the photoelectric conversion efficiency by minimizing the recombination generated at the interface between the back field layer and the p electrode. .

상기의 목적을 달성하기 위한 본 발명에 따른 MWT형 태양전지는 제 1 도전형의 결정질 실리콘 기판과, 상기 기판의 후면 내부에 이격된 형태로 구비된 복수의 국부 후면전계층과, 상기 기판의 후면 상에 구비되며, 상기 국부 후면전계층의 일부를 선택적으로 노출시키는 재결합 억제층 및 상기 재결합 억제층 상에 구비되어 상기 국부 후면전계층과 전기적으로 연결되는 제 1 도전형의 전극을 포함하여 이루어지는 것을 특징으로 한다. MWT solar cell according to the present invention for achieving the above object is a crystalline silicon substrate of the first conductivity type, a plurality of local rear field layer provided in a form spaced inside the rear of the substrate, and the rear of the substrate And a recombination inhibiting layer selectively exposing a portion of the local backside field layer and a first conductivity type electrode provided on the recombination suppression layer and electrically connected to the local backside field layer. It features.

상기 기판을 수직 관통하는 비아홀이 구비되며, 상기 비아홀 주변의 기판 내부 및 기판의 둘레를 따라 에미터층이 구비될 수 있다. 또한, 상기 기판 전면 상에는 빛이 반사되는 것을 방지하는 역할을 하는 반사방지막이 구비되며, 상기 반사방지막 상에는 그리드 라인이 구비될 수 있다. 이와 함께, 상기 기판 후면 상에 n 전극이 구비되며, 상기 n 전극은 비아홀 내부로 연장되어 상기 비아홀 상측의 그리드 라인과 전기적으로 연결될 수 있다. A via hole vertically penetrating the substrate may be provided, and an emitter layer may be provided along the periphery of the substrate and the substrate around the via hole. In addition, an anti-reflection film may be provided on the entire surface of the substrate to prevent reflection of light, and a grid line may be provided on the anti-reflection film. In addition, an n electrode is provided on a rear surface of the substrate, and the n electrode extends into the via hole to be electrically connected to the grid line on the upper side of the via hole.

상기 재결합 억제층은 절연물질로 이루어지며, SiO2, SiNx, SiOxNy, Al2O3, SiC, 비정질 실리콘 중 어느 하나로 구성될 수 있다.
The recombination inhibiting layer is made of an insulating material, and may be composed of any one of SiO 2 , SiN x , SiO x N y , Al 2 O 3 , SiC, and amorphous silicon.

본 발명에 따른 MWT형 태양전지는 다음과 같은 효과가 있다. MWT solar cell according to the present invention has the following effects.

후면전계층과 p 전극 사이의 접촉 면적이 최소화됨에 따라, 후면전계층과 p 전극 사이의 계면에서 발생되는 전자-정공의 재결합을 억제할 수 있으며, 이를 통해 태양전지의 광전변환효율을 극대화할 수 있다.
As the contact area between the backside field layer and the p electrode is minimized, the recombination of electron-holes generated at the interface between the backside layer and the p electrode can be suppressed, thereby maximizing the photoelectric conversion efficiency of the solar cell. have.

도 1은 종래 기술에 따른 MWT형 태양전지의 구성도.
도 2는 본 발명의 일 실시예에 따른 MWT형 태양전지의 구성도.
1 is a configuration diagram of a MWT type solar cell according to the prior art.
2 is a block diagram of an MWT solar cell according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 MWT형 태양전지를 상세히 설명하기로 한다. Hereinafter, an MWT solar cell according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 2에 도시한 바와 같이, 본 발명의 일 실시예에 따른 MWT형 태양전지는 먼저, 제 1 도전형의 결정질 실리콘 기판(201)을 구비한다. 상기 기판(201)의 표면은 요철 형태로 가공되며, 이를 통해 기판(201) 표면에서의 빛 반사가 최소화된다. 여기서, 상기 제 1 도전형은 p형 또는 n형이고, 후술하는 제 2 도전형은 제 1 도전형의 반대이며, 이하의 설명에서는 제 1 도전형은 p형인 것을 기준으로 한다. As shown in FIG. 2, an MWT solar cell according to an embodiment of the present invention first includes a crystalline silicon substrate 201 of a first conductivity type. The surface of the substrate 201 is processed into a concave-convex shape, thereby minimizing light reflection on the surface of the substrate 201. Here, the first conductivity type is p-type or n-type, the second conductivity type described later is the opposite of the first conductivity type, in the following description it is based on the first conductivity type is p-type.

상기 기판(201)의 일측에는 상기 기판(201)을 관통하는 비아홀(202)이 구비되며, 상기 비아홀(202)은 전면의 에미터층(203)과 후면의 n 전극(206)을 서로 연결하는 매개체 역할을 한다. 상기 기판(201)의 전면과 후면의 내부 그리고 상기 비아홀(202) 주변의 기판(201) 내부에는 제 2 도전형의 불순물 이온 즉, n형의 불순물 이온이 주입된 에미터층(203)(emitter)이 구비된다. One side of the substrate 201 is provided with a via hole 202 penetrating through the substrate 201, and the via hole 202 is a medium for connecting the emitter layer 203 on the front side and the n electrode 206 on the back side with each other. Play a role. Emitter layer 203 implanted with a second conductivity type impurity ion, i.e., an n type impurity ion, in the front and rear surfaces of the substrate 201 and in the substrate 201 around the via hole 202. Is provided.

또한, 상기 기판(201) 전면 상에는 빛이 반사되는 것을 방지하는 역할을 하는 반사방지막(204)이 구비되며, 상기 반사방지막(204) 상에는 그리드 라인(205)(grid line)이 구비된다. 이 때, 상기 그리드 라인(205)은 기판(201)의 양단을 가로지르는 직선 형태로 구비되고, 상기 비아홀(202)이 형성된 영역을 포함하는 형태로 구비되며 이에 따라, 상기 그리드 라인(205)의 일부는 상기 비아홀(202) 내부로 연장된 형태를 갖는다. In addition, an anti-reflection film 204 is provided on the entire surface of the substrate 201, and a grid line 205 is provided on the anti-reflection film 204. In this case, the grid line 205 is provided in the form of a straight line across both ends of the substrate 201, including the region in which the via hole 202 is formed, and thus, the grid line 205 Some have a shape extending into the via hole 202.

상기 기판(201) 후면 상에는 n 전극(206)이 구비되며, 상기 n 전극(206)은 비아홀(202) 내부로 연장되어 상기 비아홀(202) 상측의 그리드 라인(205)과 전기적으로 연결된다. 또한, 상기 n 전극(206)은 기판(201) 후면의 에미터층(203) 및 비아홀(202) 주변의 에미터층(203)과도 전기적으로 연결된다. An n electrode 206 is provided on the back surface of the substrate 201, and the n electrode 206 extends into the via hole 202 and is electrically connected to the grid line 205 above the via hole 202. In addition, the n electrode 206 is also electrically connected to the emitter layer 203 on the back surface of the substrate 201 and the emitter layer 203 around the via hole 202.

한편, 기판(201) 후면 내부에는 일정 간격 이격된 형태로 복수의 국부 후면전계층(207)(back surface field)(p+)이 구비된다. 상기 복수의 국부 후면전계층(207)이 구비된 기판(201) 후면 상에는 재결합 억제층(208)이 구비되는데, 상기 재결합 억제층(208)은 상기 국부 후면전계층(207)과 후술하는 p 전극(209) 사이의 접촉 면적을 최소화하여 국부 후면전계층(207)과 p 전극(209)의 계면에서 발생되는 전자-정공의 재결합을 억제하는 역할을 한다. 이와 같은 역할을 수행하기 위해, 상기 재결합 억제층(208)은 상기 국부 후면전계층(207)의 일부 면적만이 노출되도록 상기 기판(201) 후면 상에 구비된다. 이 때, 상기 재결합 억제층(208)은 절연물질로 이루어지는 것이 바람직하며 일 예로, SiO2, SiNx, SiOxNy, Al2O3, SiC, 비정질 실리콘 등으로 구성될 수 있다. The back surface of the substrate 201 is provided with a plurality of local back surface field layers 207 (back surfaces) p + at a predetermined interval. A recombination inhibiting layer 208 is provided on a back surface of the substrate 201 provided with the plurality of local backside electric field layers 207, and the recombination inhibiting layer 208 is the p-electrode described later with the local backside field layer 207. By minimizing the contact area between the (209) and serves to suppress the recombination of electron-holes generated at the interface between the local back-field layer 207 and the p electrode (209). In order to perform such a role, the recombination inhibiting layer 208 is provided on the rear surface of the substrate 201 such that only a partial area of the local backside field layer 207 is exposed. At this time, the recombination inhibiting layer 208 is preferably made of an insulating material, for example, may be composed of SiO 2 , SiN x , SiO x N y , Al 2 O 3 , SiC, amorphous silicon.

상기 재결합 억제층(208) 상에는 p 전극(209)이 구비된다. 상기 p 전극(209)은 상기 재결합 억제층(208) 및 국부 후면전계층(207)이 형성된 영역을 포함하는 형태로 구비된다. 이에 따라, 상기 재결합 억제층(208)에 의해 노출된 국부 후면전계층(207)은 상기 p 전극(209)과 전기적으로 연결된다.
The p electrode 209 is provided on the recombination inhibiting layer 208. The p-electrode 209 is provided in a form including a region where the recombination inhibiting layer 208 and the local backside field layer 207 are formed. Accordingly, the local backside field layer 207 exposed by the recombination inhibiting layer 208 is electrically connected to the p electrode 209.

201 : 제 1 도전형의 결정질 실리콘 기판
202 : 비아홀 203 : 에미터층
204 : 반사방지막 205 : 그리드 라인
206 : n 전극 207 : 국부 후면전계층
208 : 재결합 억제층 209 : p 전극
201: crystalline silicon substrate of first conductivity type
202: via hole 203: emitter layer
204: antireflection film 205: grid line
206: n electrode 207: local rear field layer
208: recombination inhibiting layer 209: p electrode

Claims (6)

제 1 도전형의 결정질 실리콘 기판;
상기 기판의 후면 내부에 이격된 형태로 구비된 복수의 국부 후면전계층;
상기 기판의 후면 상에 구비되며, 상기 국부 후면전계층의 일부를 선택적으로 노출시키는 재결합 억제층; 및
상기 재결합 억제층 상에 구비되어 상기 국부 후면전계층과 전기적으로 연결되는 제 1 도전형의 전극을 포함하여 이루어지며,
상기 제 1 도전형의 전극은 상기 재결합 억제층 및 국부 후면전계층이 형성된 영역을 포함하는 형태로 구비되며,
상기 재결합 억제층은 절연물질로 이루어지는 것을 특징으로 하는 메탈랩스루형 태양전지.
A crystalline silicon substrate of a first conductivity type;
A plurality of local rear field layers provided in a form spaced inside the rear surface of the substrate;
A recombination inhibiting layer provided on a rear surface of the substrate and selectively exposing a portion of the local rear field layer; And
It is provided on the recombination inhibiting layer and comprises an electrode of the first conductivity type electrically connected to the local backside field layer,
The first conductivity type electrode is provided in a form including a region in which the recombination inhibiting layer and the local backside field layer are formed.
The recombination inhibiting layer is a metal lab through solar cell, characterized in that made of an insulating material.
제 1 항에 있어서, 상기 기판을 수직 관통하는 비아홀이 구비되며,
상기 비아홀 주변의 기판 내부 및 기판의 둘레를 따라 에미터층이 구비되는 것을 특징으로 하는 메탈랩스루형 태양전지.
The semiconductor device of claim 1, further comprising a via hole vertically penetrating the substrate.
The metal lab-through solar cell of claim 1, wherein an emitter layer is provided in the substrate and around the substrate.
제 2 항에 있어서, 상기 기판 전면 상에는 빛이 반사되는 것을 방지하는 역할을 하는 반사방지막이 구비되며, 상기 반사방지막 상에는 그리드 라인이 구비되는 것을 특징으로 하는 메탈랩스루형 태양전지.
The metallab through solar cell of claim 2, wherein an antireflection film is provided on the entire surface of the substrate to prevent reflection of light, and a grid line is provided on the antireflection film.
제 2 항에 있어서, 상기 기판 후면 상에 n 전극이 구비되며, 상기 n 전극은 비아홀 내부로 연장되어 상기 비아홀 상측의 그리드 라인과 전기적으로 연결되는 것을 특징으로 하는 메탈랩스루형 태양전지.
The metal lab-through solar cell of claim 2, wherein an n electrode is provided on a rear surface of the substrate, and the n electrode extends into a via hole and is electrically connected to a grid line above the via hole.
삭제delete 제 1 항에 있어서, 상기 재결합 억제층은 SiO2, SiNx, SiOxNy, Al2O3, SiC, 비정질 실리콘 중 어느 하나로 이루어지는 것을 특징으로 하는 메탈랩스루형 태양전지. The metallab through solar cell of claim 1, wherein the recombination inhibiting layer is made of any one of SiO 2 , SiN x , SiO x N y , Al 2 O 3 , SiC, and amorphous silicon.
KR1020100042727A 2010-05-07 2010-05-07 Metal Wrap Through type solar cell KR101125435B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100042727A KR101125435B1 (en) 2010-05-07 2010-05-07 Metal Wrap Through type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100042727A KR101125435B1 (en) 2010-05-07 2010-05-07 Metal Wrap Through type solar cell

Publications (2)

Publication Number Publication Date
KR20110123312A KR20110123312A (en) 2011-11-15
KR101125435B1 true KR101125435B1 (en) 2012-03-27

Family

ID=45393483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100042727A KR101125435B1 (en) 2010-05-07 2010-05-07 Metal Wrap Through type solar cell

Country Status (1)

Country Link
KR (1) KR101125435B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683493A (en) * 2012-05-27 2012-09-19 苏州阿特斯阳光电力科技有限公司 Preparation method of N-type crystalline silicon double-sided back contact solar cell
CN110085686A (en) * 2019-05-06 2019-08-02 苏州腾晖光伏技术有限公司 A kind of double-sided solar battery and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544235A (en) * 2012-02-24 2012-07-04 上饶光电高科技有限公司 Preparation method for MWT solar battery electrode
CN102800762B (en) * 2012-08-31 2016-04-06 英利能源(中国)有限公司 A kind of manufacture method of MWT solar cell
GB2508792A (en) 2012-09-11 2014-06-18 Rec Modules Pte Ltd Back contact solar cell cell interconnection arrangements
CN103187482A (en) * 2013-01-15 2013-07-03 常州亿晶光电科技有限公司 Manufacturing method for crystalline silicon solar MWT (metallization wrap-through) cell and manufactured cell
CN108305916B (en) * 2018-03-05 2019-10-18 通威太阳能(成都)有限公司 A kind of MWT battery manufacture craft based on plating masking diaphragm plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063754A1 (en) 2007-11-12 2009-05-22 Sharp Kabushiki Kaisha Photoelectric conversion element and method for manufacturing the same
WO2009067005A1 (en) * 2007-11-19 2009-05-28 Stichting Energieonderzoek Centrum Nederland Method of fabrication of a back-contacted photovoltaic cell, and back-contacted photovoltaic cell made by such a method
WO2009071561A2 (en) 2007-12-03 2009-06-11 Interuniversitair Microelektronica Centrum Vzw Photovoltaic cells having metal wrap through and improved passivation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063754A1 (en) 2007-11-12 2009-05-22 Sharp Kabushiki Kaisha Photoelectric conversion element and method for manufacturing the same
WO2009067005A1 (en) * 2007-11-19 2009-05-28 Stichting Energieonderzoek Centrum Nederland Method of fabrication of a back-contacted photovoltaic cell, and back-contacted photovoltaic cell made by such a method
WO2009071561A2 (en) 2007-12-03 2009-06-11 Interuniversitair Microelektronica Centrum Vzw Photovoltaic cells having metal wrap through and improved passivation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683493A (en) * 2012-05-27 2012-09-19 苏州阿特斯阳光电力科技有限公司 Preparation method of N-type crystalline silicon double-sided back contact solar cell
CN110085686A (en) * 2019-05-06 2019-08-02 苏州腾晖光伏技术有限公司 A kind of double-sided solar battery and preparation method thereof

Also Published As

Publication number Publication date
KR20110123312A (en) 2011-11-15

Similar Documents

Publication Publication Date Title
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
KR101125435B1 (en) Metal Wrap Through type solar cell
KR101699299B1 (en) Bifacial solar cell
KR20100107258A (en) Sollar cell and fabrication method thereof
KR20120084104A (en) Solar cell
KR101918737B1 (en) Solar cell
KR20110071375A (en) Back contact type hetero-junction solar cell and method of fabricating the same
KR20100123164A (en) Solar cell
KR101284278B1 (en) Solar cell module and interconnector used in solar cell module
KR101612133B1 (en) Metal Wrap Through type solar cell and method for fabricating the same
KR20130016848A (en) Heterojunction with intrinsic thin layer solar cell
KR20120023987A (en) Solar cell
KR101909143B1 (en) Bifacial solar cell
KR101198430B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR20120122002A (en) Hetero-Junction Solar Cell
KR101310518B1 (en) Solar cell and method of manufacturing the same
KR101983361B1 (en) Bifacial solar cell
KR20120077712A (en) Bifacial photovoltaic localized emitter solar cell and method for manufacturing thereof
KR20110071374A (en) Back contact type hetero-junction solar cell and method of fabricating the same
KR20190056550A (en) Solar cell module with Metal Wrap Through type solar cell and wire interconnector
KR20120122023A (en) Hetero-Junction Solar Cell
KR20130051623A (en) Bi-facial solar cell and the manufacturing mathod thereof
KR101172619B1 (en) Solar cell having AlN passivation layer
KR20120077707A (en) Localized emitter solar cell and method for manufacturing thereof
KR101089018B1 (en) Method for formation front electrode of solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee