KR20190056550A - Solar cell module with Metal Wrap Through type solar cell and wire interconnector - Google Patents

Solar cell module with Metal Wrap Through type solar cell and wire interconnector Download PDF

Info

Publication number
KR20190056550A
KR20190056550A KR1020170153610A KR20170153610A KR20190056550A KR 20190056550 A KR20190056550 A KR 20190056550A KR 1020170153610 A KR1020170153610 A KR 1020170153610A KR 20170153610 A KR20170153610 A KR 20170153610A KR 20190056550 A KR20190056550 A KR 20190056550A
Authority
KR
South Korea
Prior art keywords
solar cell
electrode
wire
mwt
interconnector
Prior art date
Application number
KR1020170153610A
Other languages
Korean (ko)
Inventor
임종근
김문석
안진형
Original Assignee
현대중공업그린에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업그린에너지 주식회사 filed Critical 현대중공업그린에너지 주식회사
Priority to KR1020170153610A priority Critical patent/KR20190056550A/en
Publication of KR20190056550A publication Critical patent/KR20190056550A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to an MWT-type bifacial solar cell and a solar cell module using a wire interconnector, which are able to form the solar cell module by using the MWT-type bifacial solar cell, to connect solar cells to each other by using the wire interconnector, to improve photoelectric transformation properties of the solar cell module, and to improve a precision in alignment of the interconnector. According to the present invention, the MWT-type bifacial solar cell and the solar cell module using the wire interconnector comprise: a plurality of MWT-type bifacial solar cells; and the wire interconnector which electrically connects neighboring MWT-type bifacial solar cells. The MWT-type bifacial solar cell has an n electrode and a p electrode repeatedly placed in turn on a rear surface of a substrate. The wire interconnector is placed on the n electrode and the p electrode of the neighboring MWT-type bifacial solar cell to electrically connect the n electrode to the p electrode.

Description

MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈{Solar cell module with Metal Wrap Through type solar cell and wire interconnector}[0001] The present invention relates to a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnection,

본 발명은 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈에 관한 것으로서, 보다 상세하게는 MWT형 양면수광 태양전지를 이용하여 태양전지 모듈을 구성함과 함께 태양전지와 태양전지를 와이어 인터커넥터를 이용하여 연결시킴으로써 태양전지 모듈의 광전변환 특성을 향상시키고 인터커넥터의 정렬 정확도를 개선시킬 수 있는 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈에 관한 것이다. The present invention relates to a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnection, and more particularly, to a solar cell module using a MWT type double-sided light receiving solar cell, The present invention relates to a solar cell module using a MWT-type double-sided light receiving solar cell and a wire interconnection, which can improve the photoelectric conversion characteristics of a solar cell module by connecting using an inter-connector and improve the alignment accuracy of the interconnector.

태양전지 모듈은 태양광을 수광하여 광전변환하는 장치로서, 복수의 태양전지(solar cell)로 이루어진다. 태양전지 모듈을 구성하는 각각의 태양전지는 p-n 접합 다이오드(diode)라 할 수 있다. The solar cell module is a device for receiving and photoelectrically converting sunlight, and is made up of a plurality of solar cells. Each solar cell constituting the solar cell module may be referred to as a p-n junction diode.

태양광이 태양전지에 의해 전기로 변환되는 과정 이른 바, 광전변환 과정을 살펴보면 다음과 같다. 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n형 반도체층으로, 정공은 p형 반도체층으로 이동되어 p-n 접합부 사이에 광기전력이 발생된다. 이와 같은 상태에서 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있다. 태양전지의 전면과 후면에는 전자, 정공을 수집하기 위한 전면전극과 후면전극이 각각 구비된다. The process of converting sunlight into electricity by solar cells is as follows. When sunlight is incident on the p-n junction of the solar cell, an electron-hole pair is generated, and electrons are transferred to the n-type semiconductor layer and holes are transferred to the p-type semiconductor layer by the electric field to generate photovoltaic power between the p-n junctions. In such a state, if a solar cell is connected to both ends of the solar cell, a current can flow to produce electric power. The front and rear surfaces of the solar cell are provided with front and back electrodes for collecting electrons and holes, respectively.

한편, 태양전지 모듈을 구성하는 복수의 태양전지는 전기적으로 연결되는데, 예를 들어 제 1 태양전지의 전면전극은 이웃하는 제 2 태양전지의 후면전극과 접속되는 형태로 연결된다. 제 1 태양전지의 전면전극과 제 2 태양전지의 후면전극을 전기적 연결시키는 도전체를 통상, 인터커넥터(interconnector)라 한다. Meanwhile, a plurality of solar cells constituting the solar cell module are electrically connected to each other. For example, the front electrode of the first solar cell is connected to the rear electrode of the neighboring second solar cell. The conductor for electrically connecting the front electrode of the first solar cell and the rear electrode of the second solar cell is generally referred to as an interconnector.

이웃하는 태양전지를 전기적으로 연결시키는 인터커넥터는 일정 폭과 두께를 갖는 도전체로 이루어지며, 이웃하는 태양전지를 연결시키는 형상이 리본 형태를 이루어 통상의 인터커넥터는 리본이라 칭하기도 한다. The interconnector for electrically connecting neighboring solar cells is made of a conductor having a certain width and thickness. The shape for connecting neighboring solar cells is a ribbon shape, and a common interconnector is also referred to as a ribbon.

리본 형태의 인터커넥터는 일정 폭과 두께 예를 들어, 약 1.5mm의 폭과 약 270㎛의 두께를 갖음에 따라, 태양전지의 일정 면적이 인터커넥터에 의해 가려질 수 밖에 없다. 태양전지가 태양광을 수광하여 이를 전기로 변환시키는 장치임에 따라, 태양전지의 수광면적이 줄어듦은 광전변환 효율의 저하를 의미한다. Since the ribbon-shaped interconnector has a certain width and thickness, for example, a width of about 1.5 mm and a thickness of about 270 탆, a certain area of the solar cell is inevitably obscured by the interconnector. Since the solar cell receives the sunlight and converts it into electricity, the decrease in the light receiving area of the solar cell means a decrease in the photoelectric conversion efficiency.

인터커넥터에 의한 수광면적 축소 문제를 해결함과 함께 태양전지의 효율을 향상시키기 위해 최근에는 리본 형태의 인터커넥터를 와이어(wire) 형태의 인터커넥터로 대체하는 연구가 활발히 진행되고 있다. 와이어 형태의 인터커넥터 방식은 직경 약 400㎛의 도전성 와이어를 이용하여 이웃하는 태양전지의 전극을 연결시키는 방식이다. In order to solve the problem of reducing the light receiving area by the interconnector and to improve the efficiency of the solar cell, researches have been actively conducted to replace the ribbon-type interconnector with a wire-type interconnector. The wire-type interconnecting method is a method of connecting electrodes of neighboring solar cells by using a conductive wire having a diameter of about 400 탆.

와이어 형태의 인터커넥터 방식은 리본 형태의 인터커넥터 방식에 비해 도전체의 폭(직경)이 현저히 작음에 따라 인터커넥터에 의해 수광면적이 축소되는 것을 최소화할 수 있으며, 인터커넥터에 의한 수광면적 축소 영향이 작음에 따라 리본 형태의 인터커넥터 방식에 대비하여 보다 많은 수의 인터커넥터를 태양전지에 배치할 수 있어 태양전지의 효율을 향상시킬 수 있다. In the wire-type interconnection method, since the width (diameter) of the conductor is significantly smaller than that of the ribbon-type interconnection method, the reduction of the light-receiving area by the interconnection can be minimized, As a result, a larger number of interconnects can be disposed in the solar cell in comparison with the ribbon-type interconnector method, thereby improving the efficiency of the solar cell.

그러나, 와이어 형태의 인터커넥터 방식을 적용함에 있어서, 와이어에 의한 셀 크랙(cell crack) 현상이 유의되어야 한다. However, in applying the wire-type inter-connector method, it is necessary to note the phenomenon of cell crack due to the wire.

리본 형태의 인터커넥터 즉, 리본 인터커넥터는 넓은 폭과 얇은 두께를 갖고 있어 제 1 태양전지 전면의 전면전극과 제 2 태양전지 후면의 후면전극을 연결함에 있어서 제 1 태양전지와 제 2 태양전지 사이 부분에서 자연스럽게 절곡되는 특성을 갖는다. 이에 반해, 와이어 형태의 인터커넥터 즉, 와이어 인터커넥터는 일정한 직경의 와이어 형태임에 따라 리본 인터커넥터보다 탄성률이 커 리본 인터커넥터에 비해 제 1 태양전지와 제 2 태양전지 사이 부분에서 자연스럽게 절곡되는 특성을 떨어진다. 따라서, 제 1 태양전지와 제 2 태양전지 사이 부분에서 와이어 인터커넥터와 접촉하는 제 1 태양전지 및 제 2 태양전지에는 와이어 인터커넥터에 의한 미세 크랙(crack)이 발생될 가능성이 크다. In the ribbon-type interconnector, that is, the ribbon interconnector has a wide width and a small thickness, the front electrode on the front surface of the first solar cell and the rear electrode on the rear surface of the second solar cell are connected to each other, And has a characteristic of naturally bending in the portion. On the other hand, the wire-type interconnector, that is, the wire interconnector has a greater elasticity than the ribbon interconnector due to the wire shape of a constant diameter, so that it has a characteristic that it naturally bends at the portion between the first and second solar cells . Therefore, there is a high possibility that fine cracks are generated in the first solar cell and the second solar cell which are in contact with the wire interconnection between the first solar cell and the second solar cell due to the wire interconnection.

이와 함께, 종래 기술에 따른 태양전지 모듈의 경우, 인터커넥터가 제 1 태양전지와 제 2 태양전지 사이에서 절곡되는 구조임에 따라, 인터커넥터를 태양전지의 후면에 배치함에 있어서 인터커넥터의 정렬(alignment) 정확성을 기하는데 어려움이 있다. In addition, in the case of the solar cell module according to the prior art, since the interconnector is bent between the first solar cell and the second solar cell, in arranging the interconnector on the rear surface of the solar cell, There is a difficulty in achieving accuracy.

한국등록특허 제1138174호Korean Patent No. 1138174

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, MWT형 양면수광 태양전지를 이용하여 태양전지 모듈을 구성함과 함께 태양전지와 태양전지를 와이어 인터커넥터를 이용하여 연결시킴으로써 태양전지 모듈의 광전변환 특성을 향상시키고 인터커넥터의 정렬 정확도를 개선시킬 수 있는 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈을 제공하는데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a solar cell module using a MWT type double-sided light receiving solar cell and a solar cell and a solar cell using a wire interconnection, And to provide a solar cell module using a MWT-type double-sided light receiving solar cell and a wire interconnection which can improve the photoelectric conversion characteristics and improve the alignment accuracy of the interconnector.

상기의 목적을 달성하기 위한 본 발명에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈은 복수의 MWT형 양면수광 태양전지; 및 이웃하는 MWT형 양면수광 태양전지를 전기적으로 연결시키는 와이어 인터커넥터;를 포함하여 이루어지며, 상기 MWT형 양면수광 태양전지는 기판 후면에 n 전극과 p 전극이 교번하여 반복, 배치되며, 상기 와이어 인터커넥터는 이웃하는 MWT형 양면수광 태양전지의 n 전극과 p 전극 상에 구비되어, n 전극과 p 전극을 전기적으로 연결시키는 것을 특징으로 한다. In order to accomplish the above object, there is provided a solar cell module using a MWT-type double-sided light receiving solar cell and a wire interconnection according to the present invention comprises a plurality of MWT-type double- And a wire interconnector electrically connecting neighboring MWT type double-sided light receiving solar cells, wherein the MWT type double-sided light receiving solar cell is repeatedly arranged such that an n electrode and a p electrode are alternately arranged on a rear surface of the substrate, The interconnector is provided on the n-electrode and the p-electrode of the neighboring MWT-type double-side light receiving solar cell, and electrically connects the n-electrode and the p-electrode.

상기 MWT형 양면수광 태양전지는, p형 반도체 기판과, 기판 전면에 구비된 반사방지막과, 상기 반사방지막 상에 구비된 핑거전극과, 상기 기판의 후면 내부에 이격된 형태로 구비된 복수의 국부 후면전계층과, 상기 기판의 후면 상에 구비되며, 상기 국부 후면전계층의 일부를 선택적으로 노출시키는 후면 패시베이션층과, 기판 후면 상에 구비되며, 비아홀 내부로 연장되어 상기 비아홀 상측의 핑거전극과 전기적으로 연결되는 n 전극 및 상기 후면 패시베이션층 상에 구비되어 상기 국부 후면전계층과 전기적으로 연결되는 p 전극;을 포함하여 이루어진다. The MWT type double-side light receiving solar cell includes a p-type semiconductor substrate, an antireflection film provided on the entire surface of the substrate, a finger electrode provided on the antireflection film, and a plurality of local regions A rear passivation layer provided on the rear surface of the substrate and selectively exposing a part of the front part of the front part of the substrate, a rear passivation layer provided on the rear surface of the substrate and extending to the inside of the via hole, An n-electrode electrically connected to the first passivation layer and a p-electrode electrically connected to the second passivation layer.

상기 와이어 인터커넥터는 지름 120∼370㎛의 와이어 형태이다. The wire interconnection is in the form of a wire having a diameter of 120 to 370 m.

본 발명에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈은 다음과 같은 효과가 있다. The solar cell module using the MWT type double-sided light receiving solar cell and the wire interconnector according to the present invention has the following effects.

MWT형 양면수광 태양전지의 후면에 n 전극 및 p 전극이 구비됨으로 인해, 인터커넥터를 이용하여 이웃하는 2개의 태양전지를 연결할 때 인터커넥터의 절곡이 요구되지 않으며, 이에 따라 와이어 인터커넥터와 태양전지 모서리 부분의 접촉으로 인한 태양전지 파손 등의 문제를 해결할 수 있다. Since the n-electrode and the p-electrode are provided on the rear surface of the MWT-type double-sided light receiving solar cell, when the two neighboring solar cells are connected using the interconnector, the bending of the interconnector is not required, It is possible to solve problems such as damage to the solar cell due to the contact of the corner portions.

또한, 와이어 인터커넥터가 이웃하는 2개의 태양전지 상에 평행한 형태로 배치됨에 따라, 와이어 인터커넥터의 정렬 정확성을 개선할 수 있다. Further, since the wire interconnector is disposed in parallel to the two neighboring solar cells, the alignment accuracy of the wire interconnector can be improved.

이와 함께, 와이어 인터커넥터를 적용함으로써 태양전지의 전기적 특성을 향상시킴과 함께 태빙(tabbing) 공정시 종래의 리본 인터커넥터에 대비하여 용이하게 태빙할 수 있다. In addition, the electrical characteristics of the solar cell can be improved by applying the wire interconnection, and the tabbing process can be easily performed in preparation for the conventional ribbon interconnection.

도 1은 본 발명의 일 실시예에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈의 구성도.
도 2는 본 발명의 일 실시예에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈의 배면도.
도 3은 본 발명의 일 실시예에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈의 정면도.
1 is a schematic view of a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnection according to an embodiment of the present invention.
2 is a rear view of a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnector according to an embodiment of the present invention.
3 is a front view of a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnector according to an embodiment of the present invention.

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈을 상세히 설명하기로 한다. Hereinafter, a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnector according to an embodiment of the present invention will be described in detail with reference to the drawings.

도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈은 복수의 태양전지(10)를 구비하며, 복수의 태양전지(10)는 와이어 인터커넥터(20)에 의해 전기적으로 연결된다. 1 to 3, a solar cell module using a MWT type double-sided light receiving solar cell and a wire interconnection according to an embodiment of the present invention includes a plurality of solar cells 10, and a plurality of solar cells 10 Are electrically connected to each other by a wire interconnection (20).

본 발명에 적용되는 태양전지(10)는 MWT형 양면수광 태양전지이며, 다음과 같은 구조를 갖는다. 본 발명에 적용되는 MWT형 양면수광 태양전지(10)는 도 1에 도시한 바와 같이 제 1 도전형 예를 들어, p형의 결정질 실리콘 기판(101)을 구비한다. 상기 기판(101)의 표면은 요철 형태로 가공되며, 이를 통해 기판(101) 표면에서의 빛 반사가 최소화된다. The solar cell 10 applied to the present invention is an MWT type double-side light receiving solar cell, and has the following structure. The MWT-type double-side light receiving solar cell 10 applied to the present invention has a first conductive type, for example, a p-type crystalline silicon substrate 101 as shown in Fig. The surface of the substrate 101 is processed into a concave-convex shape, thereby minimizing light reflection on the surface of the substrate 101.

상기 기판(101)의 일측에는 상기 기판(101)을 관통하는 비아홀(102)이 구비되며, 상기 비아홀(102)은 전면의 에미터층(103)과 후면의 n 전극(106)을 서로 연결하는 매개체 역할을 한다. 상기 기판(101)의 전면과 후면의 내부 그리고 상기 비아홀(102) 주변의 기판(101) 내부에는 제 2 도전형 예를 들어, n형의 불순물 이온이 주입된 에미터층(103)(emitter)이 구비된다. A via hole 102 penetrating the substrate 101 is formed on one side of the substrate 101. The via hole 102 is formed in a medium 101 connecting the emitter layer 103 on the front surface and the n- It plays a role. An emitter layer 103 in which a second conductivity type, for example, n-type impurity ions are implanted, is formed in the front and rear surfaces of the substrate 101 and in the substrate 101 around the via hole 102 Respectively.

또한, 상기 기판(101) 전면 상에는 빛이 반사되는 것을 방지하는 역할을 하는 반사방지막(104)이 구비되며, 상기 반사방지막(104) 상에는 핑거전극(105)이 구비된다. 이 때, 상기 핑거전극(105)은 기판(101)의 양단을 가로지르는 직선 형태로 구비되고, 상기 비아홀(102)이 형성된 영역을 포함하는 형태로 구비된다. An anti-reflection film 104 is provided on the front surface of the substrate 101 to prevent reflection of light. A finger electrode 105 is provided on the anti-reflection film 104. At this time, the finger electrodes 105 are provided in a straight line crossing both ends of the substrate 101 and include a region where the via holes 102 are formed.

상기 기판(101) 후면 상에는 n 전극(106)이 구비되며, 상기 n 전극(106)은 비아홀(102) 내부로 연장되어 상기 비아홀(102) 상측의 핑거전극(105)과 전기적으로 연결된다. 또한, 상기 n 전극(106)은 기판(101) 후면의 에미터층(103) 및 비아홀(102) 주변의 에미터층(103)과도 전기적으로 연결된다. An n electrode 106 is provided on the rear surface of the substrate 101 and the n electrode 106 extends into the via hole 102 and is electrically connected to the finger electrode 105 on the via hole 102. The n electrode 106 is also electrically connected to the emitter layer 103 on the backside of the substrate 101 and the emitter layer 103 around the via hole 102.

한편, 기판(101) 후면 내부에는 일정 간격 이격된 형태로 복수의 국부 후면전계층(107)(p+)이 구비된다. 상기 복수의 국부 후면전계층(107)이 구비된 기판(101) 후면 상에는 후면 패시베이션층(108)이 구비되는데, 상기 후면 패시베이션층(108)은 상기 국부 후면전계층(107)과 후술하는 p 전극(109) 사이의 접촉면적을 최소화하여 국부 후면전계층(107)과 p 전극(109)의 계면에서 발생되는 전자-정공의 재결합을 억제하는 역할을 한다. 이와 같은 역할을 수행하기 위해, 상기 후면 패시베이션층(108)은 상기 국부 후면전계층(107)의 일부 면적만이 노출되도록 상기 기판(101) 후면 상에 구비된다. 이 때, 상기 후면 패시베이션층(108)은 절연물질로 이루어지는 것이 바람직하며 일 예로, SiO2, SiNx, SiOxNy, AlOx, SiC, 비정질 실리콘 등으로 구성될 수 있다. On the other hand, a plurality of local rear front layers 107 (p +) are provided in the rear surface of the substrate 101 at a predetermined interval. A rear passivation layer 108 is provided on the rear surface of the substrate 101 having the plurality of local rear front layers 107. The rear passivation layer 108 is formed on the back surface of the local rear front layer 107, Electrode 109 and the p-electrode 109 to minimize the recombination of electrons and holes generated at the interface between the local rear-front layer 107 and the p-electrode 109. [ In order to perform such a role, the rear passivation layer 108 is provided on the rear surface of the substrate 101 such that only a partial area of the local rear front layer 107 is exposed. At this time, the rear passivation layer 108 is preferably made of an insulating material. For example, the rear passivation layer 108 may be composed of SiO 2 , SiN x , SiO x N y , AlO x , SiC, or amorphous silicon.

상기 후면 패시베이션층(108) 상에는 p 전극(109)이 구비된다. 상기 p 전극(109)은 상기 후면 패시베이션층(108) 및 국부 후면전계층(107)이 형성된 영역을 포함하는 형태로 구비된다. 이에 따라, 상기 후면 패시베이션층(108)에 의해 노출된 국부 후면전계층(107)은 상기 p 전극(109)과 전기적으로 연결된다. A p-electrode 109 is provided on the rear passivation layer 108. The p-electrode 109 is formed to include a region where the rear passivation layer 108 and the local rear front layer 107 are formed. Thus, the local backside front layer 107 exposed by the rear passivation layer 108 is electrically connected to the p-electrode 109.

도 2를 참조하면, 기판(101) 후면 상에 구비된 n 전극(106)과 p 전극(109)은 교번하여 반복, 배치되는 형태를 이룬다. 또한, n 전극(106)과 p 전극(109) 각각은 기판(101) 일단에서 타단까지 연장된 형태를 갖는다. Referring to FIG. 2, the n-electrode 106 and the p-electrode 109 provided on the rear surface of the substrate 101 are alternately and repeatedly arranged. Each of the n-electrode 106 and the p-electrode 109 has a shape extending from one end of the substrate 101 to the other end.

이상, 본 발명에 적용되는 MWT형 양면수광 태양전지의 구조에 대해 설명하였다. 한편, 전술한 바와 같이 본 발명에 따른 태양전지 모듈은 복수의 MWT형 양면수광 태양전지가 와이어 인터커넥터에 의해 연결되는 구조를 갖는다. The structure of the MWT type double-side light receiving solar cell applied to the present invention has been described above. Meanwhile, as described above, the solar cell module according to the present invention has a structure in which a plurality of MWT type double-side light receiving solar cells are connected by a wire interconnection.

구체적으로, 와이어 인터커넥터는 제 1 MWT형 양면수광 태양전지(이하, 제 1 태양전지라 함)(10)의 n 전극(106)과 제 2 MWT형 양면수광 태양전지(이하, 제 2 태양전지라 함)(10)의 p 전극(109) 상에 구비되어, 제 1 태양전지(10)의 n 전극(106)과 제 2 태양전지(10)의 p 전극(106)을 전기적으로 연결시킨다. 제 1 태양전지(10)의 p 전극(109)과 제 2 태양전지(10)의 n 전극(106) 역시 동일한 방식으로 와이어 인터커넥터(20)에 의해 연결된다. Specifically, the wire interconnector is connected to the n-electrode 106 of the first MWT type double-side light receiving solar cell (hereinafter, referred to as a first solar cell) 10 and the second MWT type double- Electrode 109 of the first solar cell 10 to electrically connect the n electrode 106 of the first solar cell 10 and the p electrode 106 of the second solar cell 10 to each other. The p electrode 109 of the first solar cell 10 and the n electrode 106 of the second solar cell 10 are also connected by the wire interconnector 20 in the same manner.

상기 와이어 인터커넥터(20)는 와이어(wire) 형태를 갖는 인터커넥터를 칭한다. 와이어 인터커넥터(20)는 직경이 일정한 원형의 와이어 뿐만 아니라 폭과 두께가 서로 다른 와이어가 적용될 수 있다. 일 실시예로, 상기 와이어 인터커넥터는 지름 120∼370㎛의 와이어로 구성될 수 있다. The wire interconnector 20 refers to an interconnector having a wire shape. The wire interconnector 20 may be a circular wire having a constant diameter, or a wire having a different width and thickness. In one embodiment, the wire interconnector may be formed of a wire having a diameter of 120 to 370 μm.

한편, 본 발명에 따른 태양전지 모듈은 도 3에 도시한 바와 같이 상부 투명기판(31)과 하부 투명기판(32)을 구비하며, 상부 투명기판(31)과 하부 투명기판(32) 사이에 와이어 인터커넥터(20)에 의해 연결되는 복수의 태양전지(10)가 구비된다. 또한, 상부 투명기판(31)과 하부 투명기판(32) 사이의 빈 공간에는 봉지재(33)가 채워진다. 상부 투명기판(31)과 하부 투명기판(32)은 투명유리 또는 투명시트 등으로 구성될 수 있다. 3, the solar cell module according to the present invention includes an upper transparent substrate 31 and a lower transparent substrate 32, and a wire 30 is interposed between the upper transparent substrate 31 and the lower transparent substrate 32, And a plurality of solar cells 10 connected by the interconnector 20 are provided. An empty space between the upper transparent substrate 31 and the lower transparent substrate 32 is filled with an encapsulating material 33. The upper transparent substrate 31 and the lower transparent substrate 32 may be made of transparent glass, a transparent sheet, or the like.

10 : 태양전지 20 : 와이어 인터커넥터
31 : 상부 투명기판 32 : 하부 투명기판
33 : 봉지재
101 : 제 1 도전형의 결정질 실리콘 기판
102 : 비아홀 103 : 에미터층
104 : 반사방지막 105 : 핑거전극
106 : n 전극 107 : 국부 후면전계층
108 : 후면 패시베이션층 109 : p 전극
10: Solar cell 20: Wire interconnect connector
31: upper transparent substrate 32: lower transparent substrate
33: Encapsulation material
101: crystalline silicon substrate of the first conductivity type
102: via hole 103: emitter layer
104: antireflection film 105: finger electrode
106: n electrode 107: local backside front layer
108: rear passivation layer 109: p electrode

Claims (3)

복수의 MWT형 양면수광 태양전지; 및
이웃하는 MWT형 양면수광 태양전지를 전기적으로 연결시키는 와이어 인터커넥터;를 포함하여 이루어지며,
상기 MWT형 양면수광 태양전지는 기판 후면에 n 전극과 p 전극이 교번하여 반복, 배치되며,
상기 와이어 인터커넥터는 이웃하는 MWT형 양면수광 태양전지의 n 전극과 p 전극 상에 구비되어, n 전극과 p 전극을 전기적으로 연결시키는 것을 특징으로 하는 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈.
A plurality of MWT type double-side light receiving solar cells; And
And a wire interconnection electrically connecting neighboring MWT type double-side light receiving solar cells,
The MWT type double-side photoreceiving solar cell is repeatedly arranged with the n-electrode and the p-electrode alternating with each other on the rear surface of the substrate,
Wherein the wire interconnector is provided on an n-electrode and a p-electrode of a neighboring MWT-type double-side light receiving solar cell, and electrically connects the n-electrode and the p-electrode to each other. Solar module.
제 1 항에 있어서, 상기 MWT형 양면수광 태양전지는,
p형 반도체 기판과,
기판 전면에 구비된 반사방지막과,
상기 반사방지막 상에 구비된 핑거전극과,
상기 기판의 후면 내부에 이격된 형태로 구비된 복수의 국부 후면전계층과,
상기 기판의 후면 상에 구비되며, 상기 국부 후면전계층의 일부를 선택적으로 노출시키는 후면 패시베이션층과,
기판 후면 상에 구비되며, 비아홀 내부로 연장되어 상기 비아홀 상측의 핑거전극과 전기적으로 연결되는 n 전극 및
상기 후면 패시베이션층 상에 구비되어 상기 국부 후면전계층과 전기적으로 연결되는 p 전극;을 포함하여 이루어지는 것을 특징으로 하는 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈.
The MWT type double-side light receiving solar cell according to claim 1,
a p-type semiconductor substrate,
An antireflection film provided on a front surface of the substrate,
A finger electrode provided on the anti-reflection film,
A plurality of local backside front layers spaced apart from the backside of the substrate,
A rear passivation layer provided on a rear surface of the substrate and selectively exposing a part of the local rear whole front layer,
An n-electrode which is provided on the rear surface of the substrate and extends to the inside of the via hole and is electrically connected to the finger electrode on the upper side of the via hole,
And a p-electrode provided on the rear passivation layer and electrically connected to the local backside front layer. 2. The solar cell module of claim 1, wherein the p-electrode is formed on the rear passivation layer.
제 1 항에 있어서, 상기 와이어 인터커넥터는 지름 120∼370㎛의 와이어 형태인 것을 특징으로 하는 MWT형 양면수광 태양전지 및 와이어 인터커넥터를 이용한 태양전지 모듈. The solar cell module according to claim 1, wherein the wire interconnector is a wire having a diameter of 120 to 370 탆.
KR1020170153610A 2017-11-17 2017-11-17 Solar cell module with Metal Wrap Through type solar cell and wire interconnector KR20190056550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170153610A KR20190056550A (en) 2017-11-17 2017-11-17 Solar cell module with Metal Wrap Through type solar cell and wire interconnector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170153610A KR20190056550A (en) 2017-11-17 2017-11-17 Solar cell module with Metal Wrap Through type solar cell and wire interconnector

Publications (1)

Publication Number Publication Date
KR20190056550A true KR20190056550A (en) 2019-05-27

Family

ID=66679410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170153610A KR20190056550A (en) 2017-11-17 2017-11-17 Solar cell module with Metal Wrap Through type solar cell and wire interconnector

Country Status (1)

Country Link
KR (1) KR20190056550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246912A (en) * 2019-06-19 2019-09-17 晶科能源有限公司 A kind of double-sided solar battery and photovoltaic module
CN111599876A (en) * 2020-06-02 2020-08-28 上海空间电源研究所 Plastic substrate film battery for leading front electrode to another side of battery and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138174B1 (en) 2010-09-09 2012-04-25 현대중공업 주식회사 Method for fabricating back electrodes of solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101138174B1 (en) 2010-09-09 2012-04-25 현대중공업 주식회사 Method for fabricating back electrodes of solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246912A (en) * 2019-06-19 2019-09-17 晶科能源有限公司 A kind of double-sided solar battery and photovoltaic module
CN110246912B (en) * 2019-06-19 2024-05-07 晶科能源股份有限公司 Double-sided solar cell and photovoltaic module
CN111599876A (en) * 2020-06-02 2020-08-28 上海空间电源研究所 Plastic substrate film battery for leading front electrode to another side of battery and preparation method thereof
CN111599876B (en) * 2020-06-02 2022-09-02 上海空间电源研究所 Preparation method of plastic substrate thin film battery for leading front electrode to other side of battery

Similar Documents

Publication Publication Date Title
US9608139B2 (en) Solar cell
US20110017263A1 (en) Method and device for fabricating a solar cell using an interface pattern for a packaged design
US9893225B2 (en) Bifacial solar cell
TWI603493B (en) Solar cell and module comprising the same
US11728445B2 (en) Solar cell and solar cell panel including the same
JP2015525961A (en) Solar cell
KR20090121629A (en) Solar cell and solar cell module using the same
ES2785221T3 (en) Solar battery module
US20140373911A1 (en) Solar cell
US20170186899A1 (en) Solar cell module
KR101125435B1 (en) Metal Wrap Through type solar cell
EP2472591A1 (en) Solar cell module
JP2015207598A (en) Solar cell module, solar cell, and inter-element connection body
KR101146734B1 (en) Solar cell and solar cell module with the same
KR20140095658A (en) Solar cell
KR101231314B1 (en) Solar cell module
KR20190056550A (en) Solar cell module with Metal Wrap Through type solar cell and wire interconnector
KR101542003B1 (en) Solar cell module
KR101637825B1 (en) Back electrode of solar cell and method for the same
US20140174500A1 (en) Concentrator system
EP3573113A1 (en) Photovoltaic module
KR101358513B1 (en) Structure for improving adhesive strength in solar cell with plated electrode and method thereof
KR20120081417A (en) Solar cell and manufacturing method of the same
KR101680388B1 (en) Solar cell module
KR20200043734A (en) photovoltaic cell with bypass route

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application