KR101089018B1 - Method for formation front electrode of solar cell - Google Patents

Method for formation front electrode of solar cell Download PDF

Info

Publication number
KR101089018B1
KR101089018B1 KR1020100124362A KR20100124362A KR101089018B1 KR 101089018 B1 KR101089018 B1 KR 101089018B1 KR 1020100124362 A KR1020100124362 A KR 1020100124362A KR 20100124362 A KR20100124362 A KR 20100124362A KR 101089018 B1 KR101089018 B1 KR 101089018B1
Authority
KR
South Korea
Prior art keywords
electrode
printing layer
width
solar cell
electrode printing
Prior art date
Application number
KR1020100124362A
Other languages
Korean (ko)
Inventor
안수범
양수미
양종우
송석현
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020100124362A priority Critical patent/KR101089018B1/en
Application granted granted Critical
Publication of KR101089018B1 publication Critical patent/KR101089018B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A front electrode formation method of a solar battery is provided to minimize serial resistance and increase a short-circuit current at the same time by maximizing light absorption, thereby improving the photoelectric conversion efficiency of the solar battery. CONSTITUTION: A solar cell substrate(201) is prepared. A first electrode printing layer(202), a second electrode printing layer(203), and a third electrode printing layer(204) are successively coated on the substrate. A front electrode is arranged by firing the first to third electrode printing layers. The width of the second electrode printing layer is 50 to 80 percent of the width of the first electrode printing layer. The width of the third electrode printing layer is 50 to 80 percent of the width of the second electrode printing layer.

Description

태양전지의 전면전극 형성방법{Method for formation front electrode of solar cell}Method for formation front electrode of solar cell

본 발명은 태양전지의 전면전극 형성방법에 관한 것으로서, 보다 상세하게는 전극의 종횡비를 높여 전극 면적을 최소화함과 함께 전극 저항이 증가되는 것을 방지하여 태양전지의 전기적인 특성을 향상시킬 수 있는 태양전지의 전면전극 형성방법에 관한 것이다.
The present invention relates to a method for forming a front electrode of a solar cell, and more particularly, to increase the aspect ratio of an electrode to minimize the electrode area and to prevent the increase of electrode resistance, thereby improving the electrical characteristics of the solar cell. A method of forming a front electrode of a battery.

태양전지는 태양광을 직접 전기로 변환시키는 태양광 발전의 핵심소자로서, 기본적으로 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. 태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 이 때 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. A solar cell is a key element of photovoltaic power generation that converts sunlight directly into electricity, and is basically a diode composed of a p-n junction. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the pn junction of solar cells, electron-hole pairs are generated, and electrons move to n layers and holes move to p layers by the electric field. Photovoltaic power is generated between the pn junctions, and when a load or a system is connected to both ends of the solar cell, current flows to generate power.

태양전지의 구조를 살펴보면, 도 1에 도시한 바와 같이 p형 반도체층(101) 상에 n형 반도체층(102)이 구비되며, 상기 n형 반도체층(102)의 상부 및 p형 반도체층의 하부에 각각 전면전극(104)과 후면전극(105)이 구비된다. 이 때, 상기 p형 반도체층(101) 및 n형 반도체층(102)은 하나의 기판에 구현되는 것으로서, 기판의 하부는 p형 반도체층(101), 기판의 상부는 n형 반도체층(102)이라 할 수 있으며, 일반적으로 p형 실리콘 기판이 준비된 상태에서 p형 실리콘 기판의 둘레에 n형 불순물 이온을 주입, 확산(diffusion)시켜 n형 반도체층(102)을 형성한다. 또한, 상기 n형 반도체층(102) 상에는 표면 반사를 최소화하기 위한 반사방지막(103)이 구비된다. 도 1의 미설명부호 106은 후면전계층, 107은 아이솔레이션 트렌치이다. Referring to the structure of the solar cell, as shown in FIG. 1, an n-type semiconductor layer 102 is provided on the p-type semiconductor layer 101, and an upper portion of the n-type semiconductor layer 102 and a p-type semiconductor layer are provided. The front electrode 104 and the rear electrode 105 are provided at the bottom, respectively. In this case, the p-type semiconductor layer 101 and the n-type semiconductor layer 102 is implemented in one substrate, the lower portion of the substrate is a p-type semiconductor layer 101, the upper portion of the substrate is an n-type semiconductor layer 102 In general, an n-type semiconductor layer 102 is formed by implanting and diffusing n-type impurity ions around a p-type silicon substrate in a state where a p-type silicon substrate is prepared. In addition, an anti-reflection film 103 is provided on the n-type semiconductor layer 102 to minimize surface reflection. Reference numeral 106 in FIG. 1 denotes a rear electric field layer, and 107 denotes an isolation trench.

한편, 태양전지에서 발생하는 전기적인 손실은 전극저항 손실, 전극과 반도체층의 접촉저항 손실, 반도체층 저항 손실로 구분된다. 이 중 전극저항 손실은 전극 자체의 저항을 의미하며, 전자가 이동하는 방향의 전극 면적에 반비례한다. 전극 면적이 작으면 직렬저항(Rs)이 커지게 되고 태양전지의 특성을 나타내는 파라미터인 필 팩터(fill factor)가 감소하여 결국 효율에 악영향을 끼치게 된다. 따라서, 전극저항 손실을 줄이기 위해서는 전극의 선폭을 크게 하고 두께를 높게 형성하여 전극 면적을 크게 만들어야 한다. 하지만, 전극의 선폭을 크게 형성하면 기판 표면에서 전극이 차지하는 면적이 커지기 때문에 그 만큼 빛을 받는 면적이 줄어들게 된다.
On the other hand, electrical losses generated in the solar cell are classified into electrode resistance loss, contact resistance loss between the electrode and the semiconductor layer, semiconductor layer resistance loss. Among these, electrode resistance loss means resistance of the electrode itself, and is inversely proportional to the electrode area in the direction in which electrons move. If the electrode area is small, the series resistance (Rs) is increased, and the fill factor, a parameter representing the characteristics of the solar cell, is reduced, which adversely affects efficiency. Therefore, in order to reduce the electrode resistance loss, the electrode width should be increased by increasing the line width of the electrode and increasing the thickness thereof. However, if the line width of the electrode is made large, the area occupied by the electrode on the surface of the substrate is increased, thereby reducing the area receiving light.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 전극의 종횡비를 높여 전극 면적을 최소화함과 함께 전극 저항이 증가되는 것을 방지하여 태양전지의 전기적인 특성을 향상시킬 수 있는 태양전지의 전면전극 형성방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, to minimize the electrode area by increasing the aspect ratio of the electrode and to prevent the increase of the electrode resistance of the solar cell to improve the electrical characteristics of the solar cell The object is to provide a method for forming an electrode.

상기의 목적을 달성하기 위한 본 발명에 따른 태양전지의 전면전극 형성방법은 태양전지 기판을 준비하는 단계와, 상기 기판 상에 제 1 전극인쇄층, 제 2 전극인쇄층 및 제 3 전극인쇄층을 순차적으로 도포하는 단계 및 상기 제 1 전극인쇄층 내지 제 3 전극인쇄층을 소성하여 전면전극을 형성하는 단계를 포함하여 이루어지며, 상기 제 2 전극인쇄층의 폭은 상기 제 1 전극인쇄층의 폭의 50∼80%이고, 상기 제 3 전극인쇄층의 폭은 상기 제 2 전극인쇄층의 폭의 50∼80%인 것을 특징으로 한다. Method for forming a front electrode of a solar cell according to the present invention for achieving the above object comprises the steps of preparing a solar cell substrate, the first electrode printing layer, the second electrode printing layer and the third electrode printing layer on the substrate Sequentially applying and firing the first to third electrode print layers to form a front electrode, wherein the width of the second electrode print layer is the width of the first electrode print layer. 50 to 80% of the width of the third electrode printing layer is characterized in that 50 to 80% of the width of the second electrode printing layer.

상기 제 1 전극인쇄층 내지 제 3 전극인쇄층은 스크린 인쇄방법을 통해 도포될 수 있다.
The first electrode print layer to the third electrode print layer may be applied through a screen printing method.

본 발명에 따른 태양전지의 전면전극 형성방법은 다음과 같은 효과가 있다. The method of forming a front electrode of a solar cell according to the present invention has the following effects.

태양전지의 전면전극이 스크린 인쇄에 의한 3중층으로 구성됨에 따라 선폭을 줄일 수 있게 되며, 이를 통해 빛의 흡수를 최대화하여 단락전류를 증가시킴과 함께 직렬저항을 최소화하여 태양전지의 광전변환효율을 향상시킬 수 있게 된다.
As the front electrode of the solar cell is composed of triple layers by screen printing, the line width can be reduced, thereby maximizing the absorption of light, increasing the short circuit current, and minimizing the series resistance, thereby improving the photoelectric conversion efficiency of the solar cell. It can be improved.

도 1은 일반적인 태양전지의 구성도.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 태양전지의 전면전극 형성방법을 설명하기 위한 공정 단면도.
1 is a configuration diagram of a typical solar cell.
2A to 2C are cross-sectional views illustrating a method of forming a front electrode of a solar cell according to an embodiment of the present invention.

본 발명은 스크린 인쇄(screen printing)를 통해 전면전극 형성함에 있어서, 전면전극을 이루는 전극인쇄층을 3중층으로 구성하고, 상층으로 갈수록 전극인쇄층의 폭을 줄임으로써 전극 저항은 최소화하고 태양광의 입사율은 최대화하는 것을 특징으로 한다. 이하, 도면을 참조하여 본 발명의 일 실시예에 따른 태양전지의 전면전극 형성방법을 상세히 설명하기로 한다. In the present invention, in forming the front electrode through screen printing, the electrode printing layer constituting the front electrode is composed of triple layers, and the electrode printing layer is minimized by reducing the width of the electrode printing layer toward the upper layer, thereby incidence of sunlight. The rate is characterized by maximizing. Hereinafter, a method of forming a front electrode of a solar cell according to an embodiment of the present invention will be described in detail with reference to the drawings.

먼저, 도 2a에 도시한 바와 같이 태양전지 기판(201)을 준비한다. 도면에 도시하지 않았지만, 상기 기판(201)의 전면 상에는 텍스쳐링에 의해 요철이 형성되어 있으며, 기판(201)의 둘레를 따라 일정 깊이로 반도체층이 형성되어 있으며, 상기 기판(201)의 전면 상에는 반사방지막이 미리 형성되어 있을 수 있다. First, as shown in FIG. 2A, a solar cell substrate 201 is prepared. Although not shown in the drawings, irregularities are formed on the entire surface of the substrate 201 by texturing, and a semiconductor layer is formed at a predetermined depth along the circumference of the substrate 201, and is reflected on the entire surface of the substrate 201. The prevention film may be formed in advance.

이와 같은 상태에서, 도 2b에 도시한 바와 같이 전면전극(205) 형성공정을 진행한다. 구체적으로, 스크린 인쇄방법을 통해 상기 기판(201) 상에 제 1 전극인쇄층(202)을 도포한다. 상기 제 1 전극인쇄층(202)은 알루미늄 페이스트(Al paste)로 이루어질 수 있다. 그런 다음, 상기 제 1 전극인쇄층(202) 상에 제 2 전극인쇄층(203)을 도포한다. 이 때, 상기 제 2 전극인쇄층(203)의 폭은 상기 제 1 전극인쇄층(202)의 폭의 50∼80%으로 이루어진다. 이어, 상기 제 2 전극인쇄층(203) 상에 제 3 전극인쇄층(204)을 스크린 인쇄하여 형성하며, 상기 제 3 전극인쇄층(204)의 폭은 상기 제 2 전극인쇄층(203)의 폭 대비 50∼80%를 이룬다. 상층에 도포된 전극인쇄층의 폭을 하층의 전극인쇄층에 대비하여 50∼80%의 폭을 갖도록 하는 것은 상층의 전극인쇄층이 안정적으로 도포되도록 하기 위함이다. In this state, the front electrode 205 forming process is performed as shown in FIG. 2B. Specifically, the first electrode printing layer 202 is coated on the substrate 201 through a screen printing method. The first electrode printing layer 202 may be made of aluminum paste. Thereafter, a second electrode printing layer 203 is coated on the first electrode printing layer 202. At this time, the width of the second electrode printing layer 203 is 50 to 80% of the width of the first electrode printing layer 202. Subsequently, the third electrode print layer 204 is formed by screen printing on the second electrode print layer 203, and the width of the third electrode print layer 204 is equal to that of the second electrode print layer 203. 50-80% of the width. The width of the electrode printed layer coated on the upper layer is 50 to 80% of the width of the lower electrode printed layer in order to allow the upper electrode printed layer to be stably applied.

상기의 공정을 통해 제 1 내지 제 3 전극인쇄층(202)(203)(204)이 스크린 인쇄된 상태에서, 일정 온도에서 소성(firing) 공정을 진행하면 3중의 전극인쇄층으로 구성된 전면전극(205)이 완성된다(도 2c 참조).
In the state where the first to third electrode printing layers 202, 203, and 204 are screen printed through the above process, when the firing process is performed at a predetermined temperature, a front electrode composed of triple electrode printing layers ( 205) is completed (see FIG. 2C).

201 : 태양전지 기판 202 : 제 1 전극인쇄층
203 : 제 2 전극인쇄층 204 : 제 3 전극인쇄층
205 : 전면전극
201: solar cell substrate 202: first electrode printing layer
203: second electrode print layer 204: third electrode print layer
205: front electrode

Claims (2)

태양전지 기판을 준비하는 단계;
상기 기판 상에 제 1 전극인쇄층, 제 2 전극인쇄층 및 제 3 전극인쇄층을 순차적으로 도포하는 단계; 및
상기 제 1 전극인쇄층 내지 제 3 전극인쇄층을 소성하여 전면전극을 형성하는 단계를 포함하여 이루어지며,
상기 제 2 전극인쇄층의 폭은 상기 제 1 전극인쇄층의 폭의 50∼80%이고, 상기 제 3 전극인쇄층의 폭은 상기 제 2 전극인쇄층의 폭의 50∼80%인 것을 특징으로 하는 태양전지의 전면전극 형성방법.
Preparing a solar cell substrate;
Sequentially applying a first electrode printing layer, a second electrode printing layer, and a third electrode printing layer on the substrate; And
And firing the first to third electrode print layers to form a front electrode.
The width of the second electrode printing layer is 50 to 80% of the width of the first electrode printing layer, the width of the third electrode printing layer is characterized in that 50 to 80% of the width of the second electrode printing layer. Method of forming a front electrode of a solar cell.
제 1 항에 있어서, 상기 제 1 전극인쇄층 내지 제 3 전극인쇄층은 스크린 인쇄방법을 통해 도포되는 것을 특징으로 하는 태양전지의 전면전극 형성방법.
The method of claim 1, wherein the first to third electrode print layers are applied through a screen printing method.
KR1020100124362A 2010-12-07 2010-12-07 Method for formation front electrode of solar cell KR101089018B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100124362A KR101089018B1 (en) 2010-12-07 2010-12-07 Method for formation front electrode of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100124362A KR101089018B1 (en) 2010-12-07 2010-12-07 Method for formation front electrode of solar cell

Publications (1)

Publication Number Publication Date
KR101089018B1 true KR101089018B1 (en) 2011-12-01

Family

ID=45505509

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100124362A KR101089018B1 (en) 2010-12-07 2010-12-07 Method for formation front electrode of solar cell

Country Status (1)

Country Link
KR (1) KR101089018B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366354B1 (en) 2001-01-03 2002-12-31 삼성에스디아이 주식회사 manufacturing method of silicon solar cell
WO2009041182A1 (en) 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag electrode paste, solar battery cell, and process for producing the solar battery cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366354B1 (en) 2001-01-03 2002-12-31 삼성에스디아이 주식회사 manufacturing method of silicon solar cell
WO2009041182A1 (en) 2007-09-27 2009-04-02 Murata Manufacturing Co., Ltd. Ag electrode paste, solar battery cell, and process for producing the solar battery cell

Similar Documents

Publication Publication Date Title
KR101627217B1 (en) Sollar Cell And Fabrication Method Thereof
KR101138174B1 (en) Method for fabricating back electrodes of solar cell
KR101383395B1 (en) Method for fabricating back contact solar cell
KR20110071375A (en) Back contact type hetero-junction solar cell and method of fabricating the same
KR101125435B1 (en) Metal Wrap Through type solar cell
KR101612133B1 (en) Metal Wrap Through type solar cell and method for fabricating the same
US20200381572A1 (en) Bifacial punched perc solar cell and module, system, and preparation method thereof
WO2015114922A1 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
CN220543926U (en) Solar cell and photovoltaic module
KR101238988B1 (en) Back contact solar cell and method for fabricating the same
KR20180000498A (en) Passivated Emitter Rear Locally diffused type solar cell and method for fabricating the same
KR101198430B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR101089018B1 (en) Method for formation front electrode of solar cell
KR20140136555A (en) PERL type bi-facial solar cell and method for the same
JP2013513965A (en) Back surface field type heterojunction solar cell and manufacturing method thereof
KR101155192B1 (en) Method for fabricating solar cell
KR20140022508A (en) Method for fabricating back contact type hetero-junction solar cell
KR101145472B1 (en) Method for fabricating solar cell
KR101172619B1 (en) Solar cell having AlN passivation layer
KR101261794B1 (en) Front and Back contact electric field solar cell and method thereof
KR101150686B1 (en) Solar cell and method for fabricating the same
CN115425111A (en) Manufacturing method of doping structure, solar cell assembly and solar cell system
KR101069961B1 (en) Method for fabricating solar cell
KR20120090553A (en) Solar cell and the method of manufacturing the same
KR101188985B1 (en) Front and Back contact electric field solar cell and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee