KR101145472B1 - Method for fabricating solar cell - Google Patents

Method for fabricating solar cell Download PDF

Info

Publication number
KR101145472B1
KR101145472B1 KR1020100119432A KR20100119432A KR101145472B1 KR 101145472 B1 KR101145472 B1 KR 101145472B1 KR 1020100119432 A KR1020100119432 A KR 1020100119432A KR 20100119432 A KR20100119432 A KR 20100119432A KR 101145472 B1 KR101145472 B1 KR 101145472B1
Authority
KR
South Korea
Prior art keywords
substrate
electrode layer
solar cell
silicon substrate
crystalline silicon
Prior art date
Application number
KR1020100119432A
Other languages
Korean (ko)
Inventor
양종우
송석현
전민영
양수미
정상윤
김강석
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020100119432A priority Critical patent/KR101145472B1/en
Application granted granted Critical
Publication of KR101145472B1 publication Critical patent/KR101145472B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a solar battery is provided to improve photoelectric transformation efficiency of the solar battery by minimizing light of long wavelength to transmit a substrate through a mirror effect. CONSTITUTION: A crystalline silicon substrate is prepared(S201). An uneven part is formed on the front and back side of the crystalline silicon substrate through a texturing process(S202). The back side of the crystalline silicon substrate is flattered by using a CMP(Chemical Mechanical Polishing) process(S203). A semiconductor layer is formed through a diffusion process. A reflection barrier layer is formed on the front side of the crystalline silicon substrate through a PECVD process(S205). An aluminum electrode layer and an electrode layer are successively formed on the back side of the crystalline silicon substrate through a sputtering process(S206).

Description

태양전지의 제조방법{Method for fabricating solar cell}Manufacturing method of solar cell {Method for fabricating solar cell}

본 발명은 태양전지의 제조방법에 관한 것으로서, 보다 상세하게는 미러(mirror) 효과를 통해 장파장의 빛이 기판을 투과하는 것을 최소화하여 태양전지의 광전변환효율을 향상시킬 수 있는 태양전지의 제조방법에 관한 것이다.
The present invention relates to a method for manufacturing a solar cell, and more particularly, a method of manufacturing a solar cell that can improve photoelectric conversion efficiency of a solar cell by minimizing long-wavelength light passing through a substrate through a mirror effect. It is about.

태양전지는 태양광을 직접 전기로 변환시키는 태양광 발전의 핵심소자로서, 기본적으로 p-n 접합으로 이루어진 다이오드(diode)라 할 수 있다. 태양광이 태양전지에 의해 전기로 변환되는 과정을 살펴보면, 태양전지의 p-n 접합부에 태양광이 입사되면 전자-정공 쌍이 생성되고, 전기장에 의해 전자는 n층으로, 정공은 p층으로 이동하게 되어 p-n 접합부 사이에 광기전력이 발생되며, 이 때 태양전지의 양단에 부하나 시스템을 연결하면 전류가 흐르게 되어 전력을 생산할 수 있게 된다. A solar cell is a key element of photovoltaic power generation that converts sunlight directly into electricity, and is basically a diode composed of a p-n junction. In the process of converting sunlight into electricity by solar cells, when solar light is incident on the pn junction of solar cells, electron-hole pairs are generated, and electrons move to n layers and holes move to p layers by the electric field. Photovoltaic power is generated between the pn junctions, and when a load or a system is connected to both ends of the solar cell, current flows to generate power.

한편, 태양전지의 광전변환 효율을 향상시키기 위해 태양전지 기판 표면 상에 요철을 형성한다. 태양전지 표면의 요철은 태양전지에 입사되는 빛의 난반사를 유도하여 태양전지의 광흡수율을 높여 궁극적으로, 태양전지의 광전변환 효율을 향상시키는 역할을 한다. 이와 같은 요철을 형성하는 공정을 텍스쳐링(texturing) 공정이라 하며, 텍스쳐링 공정은 통상 습식식각을 통해 진행된다. 이에 따라, 빛이 입사하는 기판 전면뿐만 아니라 기판 후면에도 요철이 형성된다. Meanwhile, in order to improve the photoelectric conversion efficiency of the solar cell, irregularities are formed on the surface of the solar cell substrate. The unevenness of the surface of the solar cell induces diffuse reflection of light incident on the solar cell, thereby increasing the light absorption rate of the solar cell, and ultimately, serves to improve the photoelectric conversion efficiency of the solar cell. Such a process of forming the unevenness is called a texturing process, and the texturing process is usually performed by wet etching. Accordingly, irregularities are formed not only on the front surface of the substrate on which light is incident, but also on the rear surface of the substrate.

태양전지의 구조를 살펴보면, 도 1에 도시한 바와 같이 기판(101) 전면과 후면 각각에 요철(102)이 구비되며, 기판 둘레를 따라 일정 깊이로 반도체층(103)이 형성되어 있으며, 기판(101) 전면 상에는 전면전극(105), 기판(101) 후면 상에는 후면전극(106)이 각각 구비된다. 이 때, 상기 후면전극은 알루미늄(Al) 페이스트 및 은(Ag) 페이스트를 도포, 소성하여 형성된다.Referring to the structure of the solar cell, as shown in FIG. 1, irregularities 102 are provided on the front and rear surfaces of the substrate 101, and the semiconductor layer 103 is formed at a predetermined depth along the periphery of the substrate. 101. A front electrode 105 is provided on the front surface, and a rear electrode 106 is provided on the rear surface of the substrate 101, respectively. In this case, the back electrode is formed by applying and baking an aluminum (Al) paste and a silver (Ag) paste.

이와 같이, 기판 전면뿐만 아니라 기판 후면도 습식 텍스쳐링으로 인해 요철 구조를 갖음에 따라, 적외선과 같은 장파장의 빛은 기판 전면으로의 흡수율이 뛰어나지만 기판 후면의 요철 구조를 쉽게 투과하는 특성을 갖는다. 또한, 후면전극이 금속 페이스트의 도포 및 소성을 통해 형성되는 구조를 갖음에 따라, 후면전극과 기판 후면 사이의 접촉 구조가 균일하지 않아 이 또한 장파장이 용이하게 투과되도록 한다.
As such, as the substrate front surface as well as the substrate rear surface have a concave-convex structure due to wet texturing, long-wavelength light, such as infrared light, has an excellent absorption rate to the front surface of the substrate, but easily transmits the concave-convex structure on the rear surface of the substrate. In addition, as the back electrode has a structure formed through the application and firing of the metal paste, the contact structure between the back electrode and the back side of the substrate is not uniform, so that also long wavelengths are easily transmitted.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 미러(mirror) 효과를 통해 장파장의 빛이 기판을 투과하는 것을 최소화하여 태양전지의 광전변환효율을 향상시킬 수 있는 태양전지의 제조방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the above problems, a method of manufacturing a solar cell that can improve the photoelectric conversion efficiency of the solar cell by minimizing the long wavelength light transmitted through the substrate through a mirror (mirror) effect. The purpose is to provide.

상기의 목적을 달성하기 위한 본 발명에 따른 태양전지의 제조방법은 기판을 습식식각하여 기판 전면 및 후면에 요철을 형성하는 단계와, 상기 기판 후면을 평탄화하는 단계 및 상기 기판 후면 상에 전극층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다. In accordance with another aspect of the present invention, there is provided a method of manufacturing a solar cell, wherein the substrate is wet-etched to form concavities and convexities on the front and rear surfaces of the substrate, the planarizing the rear surface of the substrate, and an electrode layer formed on the rear surface of the substrate. Characterized in that it comprises a step.

상기 기판 후면을 평탄화하는 단계는, CMP 공정을 이용하여 기판 후면을 평탄화할 수 있으며, 상기 기판 후면 상에 전극층을 형성하는 단계는, 상기 기판 후면 상에 알루미늄 전극층 및 은 전극층을 순차적으로 형성할 수 있다. 또한, 상기 기판 후면과 알루미늄 전극층 사이의 계면 및 상기 알루미늄 전극층 및 은 전극층 사이의 계면은 평탄면을 이룬다. 이 때, 상기 전극층은 스퍼터링 공정을 이용하여 형성할 수 있다.
The planarizing of the rear surface of the substrate may include planarizing the rear surface of the substrate using a CMP process, and forming an electrode layer on the rear surface of the substrate may sequentially form an aluminum electrode layer and a silver electrode layer on the rear surface of the substrate. have. In addition, the interface between the back surface of the substrate and the aluminum electrode layer and the interface between the aluminum electrode layer and the silver electrode layer form a flat surface. In this case, the electrode layer may be formed using a sputtering process.

본 발명에 따른 태양전지의 제조방법은 다음과 같은 효과가 있다. The manufacturing method of the solar cell according to the present invention has the following effects.

기판 후면이 평탄면을 이루고 기판 후면에 적층되는 전극층 역시 평탄면을 이룸에 따라, 장파장의 빛이 상기 평탄면에 의해 기판 내부로 재반사되도록 유도하여 광 흡수율을 향상시킬 수 있으며, 이를 통해 태양전지의 광전변환효율을 향상시킬 수 있게 된다.
As the back surface of the substrate forms a flat surface and the electrode layer stacked on the back surface of the substrate also forms a flat surface, the long wavelength of light may be induced to be reflected back into the substrate by the flat surface, thereby improving light absorption. It is possible to improve the photoelectric conversion efficiency of the.

도 1은 종래 기술에 따른 태양전지의 단면도.
도 2는 본 발명의 일 실시예에 따른 태양전지의 제조방법을 설명하기 위한 순서도.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따른 태양전지의 제조방법을 설명하기 위한 공정 단면도.
1 is a cross-sectional view of a solar cell according to the prior art.
2 is a flow chart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
3A to 3D are cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.

본 발명은 기판 후면 구조를 가급적 평탄면을 이루도록 하고, 상기 평탄면을 통해 장파장의 빛이 재반사되도록 함으로써 빛의 흡수율을 향상시키고 궁극적으로, 광전변환효율을 극대화함에 그 특징이 있다. 이하, 도면을 참조하여 본 발명의 일 실시예에 따른 태양전지의 제조방법을 상세히 설명하기로 한다. The present invention is characterized in that the back structure of the substrate is formed as flat as possible, and the light having a long wavelength is reflected back through the flat surface, thereby improving light absorption and ultimately maximizing photoelectric conversion efficiency. Hereinafter, a method of manufacturing a solar cell according to an embodiment of the present invention will be described in detail with reference to the drawings.

먼저, 도 2 및 도 3a에 도시한 바와 같이 제 1 도전형의 결정질 실리콘 기판(301)을 준비하고(S201), 상기 제 1 도전형의 실리콘 기판(301)의 전면 및 후면에 요철(302a)(302b)이 형성되도록 텍스쳐링(texturing) 공정을 진행한다(S202). 상기 텍스쳐링 공정은 기판(301) 표면에서의 빛 반사를 줄이기 위한 것이며, 습식식각을 이용하여 진행할 수 있다. 여기서, 상기 제 1 도전형은 p형 또는 n형일 수 있으며, 후술하는 제 2 도전형은 제 1 도전형의 반대이며, 이하의 설명에서는 제 1 도전형은 p형인 것을 기준으로 한다. First, as shown in FIGS. 2 and 3A, a crystalline silicon substrate 301 of a first conductivity type is prepared (S201), and irregularities 302 a are formed on the front and rear surfaces of the first conductivity type silicon substrate 301. A texturing process is performed to form 302b (S202). The texturing process is to reduce light reflection on the surface of the substrate 301 and may be performed using wet etching. Here, the first conductivity type may be p-type or n-type, the second conductivity type described later is the opposite of the first conductivity type, in the following description it is based on the first conductivity type is p-type.

그런 다음, 도 3b에 도시한 바와 같이 요철(302b)이 형성된 기판(301) 후면을 일정 두께만큼 제거하여 평탄화한다(S203). 이 때, 상기 기판(301) 후면의 평탄화는 CMP(chemical mechanical polishing) 공정을 이용하여 달성할 수 있다. Thereafter, as shown in FIG. 3B, the rear surface of the substrate 301 on which the unevenness 302b is formed is removed by a predetermined thickness and planarized (S203). In this case, planarization of the rear surface of the substrate 301 may be achieved by using a chemical mechanical polishing (CMP) process.

이와 같은 상태에서, 도 3c에 도시한 바와 같이 확산공정을 실시하여 반도체층(303)을 형성한다(S204). 구체적으로, 챔버 내에 상기 실리콘 기판(301)을 구비시키고 상기 챔버 내에 제 2 도전형 불순물 이온 즉, n형 불순물 이온을 포함하는 가스(예를 들어, POCl3)를 공급하여 인(P) 이온이 확산(diffusion)되도록 한다. 이를 통해, 상기 기판(301) 둘레를 따라 일정 깊이로 제 2 도전형의 반도체층(303)이 형성된다. 이어, 상기 반도체층(303)이 형성된 상태에서 기판(301) 전면 상에 PECVD 공정 등을 통해 반사방지막(304)을 형성한다(S205). In this state, as shown in FIG. 3C, a diffusion process is performed to form the semiconductor layer 303 (S204). Specifically, the silicon substrate 301 is provided in a chamber, and a gas (for example, POCl 3 ) containing a second conductivity type impurity ion, that is, an n-type impurity ion, is supplied into the chamber to form phosphorus (P) ions. Allow diffusion. As a result, the second conductive semiconductor layer 303 is formed at a predetermined depth around the substrate 301. Subsequently, in the state in which the semiconductor layer 303 is formed, an anti-reflection film 304 is formed on the entire surface of the substrate 301 through a PECVD process or the like (S205).

그런 다음, 도 3d에 도시한 바와 같이 기판(301) 후면 상에 스퍼터링 공정을 통해 알루미늄 전극층(305) 및 은 전극층(306)을 순차적으로 형성한다(S206). 이 때, 상기 평탄화 공정에 의해 기판(301) 후면이 평탄화되어 있음에 따라, 상기 알루미늄 전극층(305) 및 은 전극층(306) 역시 평탄한 상태로 적층된다. 이에 따라, 상기 기판(301) 후면과 알루미늄 전극층(305) 사이의 계면 및 상기 알루미늄 전극층(305) 및 은 전극층(306) 사이의 계면은 평탄면을 이루고, 상기 평탄면은 거울로 작용하여 적외선과 같은 장파장의 빛을 기판(301) 내부로 반사하는 역할을 한다. Thereafter, as shown in FIG. 3D, the aluminum electrode layer 305 and the silver electrode layer 306 are sequentially formed through the sputtering process on the rear surface of the substrate 301 (S206). In this case, as the rear surface of the substrate 301 is flattened by the planarization process, the aluminum electrode layer 305 and the silver electrode layer 306 are also stacked in a flat state. Accordingly, the interface between the back surface of the substrate 301 and the aluminum electrode layer 305 and the interface between the aluminum electrode layer 305 and the silver electrode layer 306 form a flat surface, and the flat surface acts as a mirror, It serves to reflect light of the same long wavelength into the substrate 301.

301 : 기판 302a, 302b : 요철
303 : 반도체층 304 : 반사방지막
305 : 알루미늄 전극층 306 : 은 전극층
301: substrate 302a, 302b: irregularities
303 semiconductor layer 304 antireflection film
305: aluminum electrode layer 306: silver electrode layer

Claims (5)

기판을 습식식각하여 기판 전면 및 후면에 요철을 형성하는 단계;
상기 기판 후면을 평탄화하는 단계; 및
상기 기판 후면 상에 전극층을 형성하는 단계를 포함하여 이루어지며,
상기 기판 후면을 평탄화하는 단계는, CMP 공정을 이용하여 기판 후면을 평탄화하는 것을 특징으로 하는 태양전지의 제조방법.
Wet etching the substrate to form irregularities on the front and rear surfaces of the substrate;
Planarizing the back side of the substrate; And
And forming an electrode layer on the back of the substrate,
The planarizing of the rear surface of the substrate may include planarizing the rear surface of the substrate using a CMP process.
삭제delete 제 1 항에 있어서, 상기 기판 후면 상에 전극층을 형성하는 단계는,
상기 기판 후면 상에 알루미늄 전극층 및 은 전극층을 순차적으로 형성하는 것을 특징으로 하는 태양전지의 제조방법.
The method of claim 1, wherein the forming of the electrode layer on the back surface of the substrate comprises:
The method of manufacturing a solar cell, characterized in that to form an aluminum electrode layer and a silver electrode layer sequentially on the back of the substrate.
제 3 항에 있어서, 상기 기판 후면과 알루미늄 전극층 사이의 계면 및 상기 알루미늄 전극층 및 은 전극층 사이의 계면은 평탄면을 이루는 것을 특징으로 하는 태양전지의 제조방법.
The method of claim 3, wherein the interface between the back surface of the substrate and the aluminum electrode layer and the interface between the aluminum electrode layer and the silver electrode layer form a flat surface.
제 1 항에 있어서, 상기 전극층은 스퍼터링 공정을 이용하여 형성하는 것을 특징으로 하는 태양전지의 제조방법. The method of claim 1, wherein the electrode layer is formed using a sputtering process.
KR1020100119432A 2010-11-29 2010-11-29 Method for fabricating solar cell KR101145472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100119432A KR101145472B1 (en) 2010-11-29 2010-11-29 Method for fabricating solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100119432A KR101145472B1 (en) 2010-11-29 2010-11-29 Method for fabricating solar cell

Publications (1)

Publication Number Publication Date
KR101145472B1 true KR101145472B1 (en) 2012-05-15

Family

ID=46272014

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100119432A KR101145472B1 (en) 2010-11-29 2010-11-29 Method for fabricating solar cell

Country Status (1)

Country Link
KR (1) KR101145472B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797436A (en) * 2019-10-30 2020-02-14 南通苏民新能源科技有限公司 Manufacturing method for improving tension of positive electrode of solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080014751A (en) * 2005-04-26 2008-02-14 신에쯔 한도타이 가부시키가이샤 Solar cell manufacturing method and solar cell
WO2009101107A1 (en) * 2008-02-15 2009-08-20 Ersol Solar Energy Ag Method for the production of monocrystalline n-silicon solar cells, and solar cell produced according to such a method
KR20100131203A (en) * 2009-06-05 2010-12-15 엘지전자 주식회사 Method of preparing electrode of solar cell and solar cell using the said method
KR101052059B1 (en) * 2010-04-14 2011-07-27 김병준 Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080014751A (en) * 2005-04-26 2008-02-14 신에쯔 한도타이 가부시키가이샤 Solar cell manufacturing method and solar cell
WO2009101107A1 (en) * 2008-02-15 2009-08-20 Ersol Solar Energy Ag Method for the production of monocrystalline n-silicon solar cells, and solar cell produced according to such a method
KR20100131203A (en) * 2009-06-05 2010-12-15 엘지전자 주식회사 Method of preparing electrode of solar cell and solar cell using the said method
KR101052059B1 (en) * 2010-04-14 2011-07-27 김병준 Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell
KR20110115068A (en) * 2010-04-14 2011-10-20 김병준 Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797436A (en) * 2019-10-30 2020-02-14 南通苏民新能源科技有限公司 Manufacturing method for improving tension of positive electrode of solar cell

Similar Documents

Publication Publication Date Title
EP2993707B1 (en) Back contact solar cell with textured front and back surfaces
JP2009278101A (en) Semiconductor solar cell having front surface electrode, and production method thereof
KR101138554B1 (en) Solar cell and method for fabricating the same
KR101145472B1 (en) Method for fabricating solar cell
KR20120003732A (en) Solar cell
KR20140136555A (en) PERL type bi-facial solar cell and method for the same
KR101125450B1 (en) Method for fabricating back contact solar cell
KR101198438B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
CN103646974B (en) A kind of high power concentrator silicon solar cell and preparation method thereof
KR20110071374A (en) Back contact type hetero-junction solar cell and method of fabricating the same
KR101155192B1 (en) Method for fabricating solar cell
KR101146782B1 (en) Method for Fabricating Solar Cell
KR101115104B1 (en) Solar cell and method for fabricating the same
KR101089416B1 (en) Solar cell and method for fabricating the same
KR20130048975A (en) Method for fabricating solar cell
KR101329855B1 (en) Method for fabricating bi-facial solar cell
KR20130048945A (en) Bi-facial solar cell and method for fabricating the same
KR101089018B1 (en) Method for formation front electrode of solar cell
KR101069961B1 (en) Method for fabricating solar cell
KR101089485B1 (en) Solar cell and method for fabricating the same
Kim et al. Stack junction approach to overcome silicon single junction limit
KR101218411B1 (en) Solar Cell and Manufacturing Method Thereof
KR101302822B1 (en) Method for fabricating selective emitter structure of solar cell using dry texturing and laser chemical process
TW201340358A (en) Manufacturing method of bifacial solar cells
KR101335082B1 (en) Method for fabricating bi-facial solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee