KR101068341B1 - 용량형 역학량 센서 - Google Patents

용량형 역학량 센서 Download PDF

Info

Publication number
KR101068341B1
KR101068341B1 KR1020050005912A KR20050005912A KR101068341B1 KR 101068341 B1 KR101068341 B1 KR 101068341B1 KR 1020050005912 A KR1020050005912 A KR 1020050005912A KR 20050005912 A KR20050005912 A KR 20050005912A KR 101068341 B1 KR101068341 B1 KR 101068341B1
Authority
KR
South Korea
Prior art keywords
electrode
contact
substrate
capacitive
recess
Prior art date
Application number
KR1020050005912A
Other languages
English (en)
Other versions
KR20050076717A (ko
Inventor
가토겐지
스도우미노루
야리타미츠오
Original Assignee
세이코 인스트루 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세이코 인스트루 가부시키가이샤 filed Critical 세이코 인스트루 가부시키가이샤
Publication of KR20050076717A publication Critical patent/KR20050076717A/ko
Application granted granted Critical
Publication of KR101068341B1 publication Critical patent/KR101068341B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

정전 용량의 변화에 기초해서 역학량을 측정하기 위한 용량형 센서로서, 빔(4)에 의해 지지되고 역학량에 따라서 이동하는 추(5)를 가지는 반도체 기판(2); 및 추(5)로부터 미소 간극을 두고 추를 면하는 위치에 고정 전극이 배치되고, 반도체 기판의 일부분과 접촉하는 기판 전극(12)이 적층되는 유리 기판(1, 3)을 구비하며 접촉영역 이상의 크기를 가지는 리세스가 반도체 기판(2)이 기판 전극(12)과 접촉하는 반도체 기판(2) 내부 영역에 형성된다.

Description

용량형 역학량 센서{Capacitive Sensor for Dynamical Quantity}
도 1은 본 발명의 제1 실시 형태에 따른 용량형 역학량 센서를 설명하는 개략적인 단면도;
도 2는 본 발명의 제1 실시 형태에 따른 용량형 역학량 센서를 설명하는 개략적인 단면도;
도 3은 본 발명의 제1 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 단면도;
도 4는 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 단면도;
도 5는 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 평면도;
도 6은 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 평면도;
도 7은 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 평면도;
도 8은 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판의 접촉부를 설명하는 개략적인 평면도;
도 9는 종래의 용량형 역학량 센서를 설명하는 개략적인 단면도;
도 10은 종래 용량형 역학량 센서의 기판 접촉부를 설명하는 개략적인 단면도이다.
본 발명은 정전 용량의 변화에 의해 가속도나 각속도 등과 같은 동적인 물리량을 검출하는 역학량 측정용 용량형 센서에 관한 것이며, 더 구체적으로는 반도체 제조 공정을 통해 제작되는 용량형 역학량 센서(capacitive dynamical quantity sensor)에 관한 것이다.
지금까지, 외부에서 가해진 가속도나 각속도의 크기에 따라 이동하는 추(plumb)와, 반도체 기판 내에 형성된 추를 지지하는 빔(beam)을 가지며, 추를 포함하는 이동 전극과 이동 전극으로부터 미소 간극만큼 떨어져서 형성된 고정 전극 사이에서 발생하는 정전 용량의 변화를 검출하는데 쓰이는 정전 용량형 역학량 센서는 알려져 있다(예컨대, 일본 특개평 8-94666호 공보 참조). 도 9는 종래 정전 용량형 역학량 센서의 개략적인 단면도이다. 이 센서에서, 추(91, weight)와 빔(92)은 미세한 패터닝 공정을 통해서 반도체 기판(93) 내부에 형성되고, 상부 기판(94)과 하부 기판(95)을 결합함으로써 양쪽에서 밀봉된다. 이 정전 용량형 역학량 센서에서는, 추(weight)가 이동 전극으로 작용하도록 하기 위해, 고정 전극(98)의 일부분이 반도체 기판(93)에 접촉하여 추(91)의 전위(electrical potential)를 제어 한다. 도 10은 기판 접촉부의 개략적인 단면도이다. 유리 기판(95) 위에 적층된 고정 전극(98)의 일부분은 유리 기판(95)과 반도체 기판(93) 사이의 접합 영역까지 연장되도록 형성되며, 이 접합을 통해서 반도체 기판(93)과 접촉을 형성한다. 접촉부(99)을 구비함으로써 반도체 기판(93) 내에 형성된 추(91)의 정전위를 제어하는 것이 가능하게 된다(예컨대, 일본 특개평 8-94666호 공보 참조)
그렇지만, 종래의 정전 용량형 역학량 센서는 다음의 문제점을 가진다.
도 10에서 보듯이, 고정 전극(98)의 두께 때문에 접촉부(99)의 주변에서 유리 기판이 반도체 기판(93)과 접촉하지 않는 영역(100)이 발생하여 심각한 접합 불량을 야기하게 된다. 이 접합 불량은 공기 누설 등을 유발하여, 장치의 신뢰성을 저하시킨다. 더구나, 접촉부 주변에서의 접합 불량을 피하기 위해 미리 더 큰 접합 영역을 설계해서 신뢰성 저하를 막을 수는 있지만, 칩(chip)의 크기가 커지면 비용이 증가하게 된다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것이다.
본 발명은 용량의 변화에 기해서 역학량을 측정하기 위한 용량형 센서로서 빔에 의해 지지되며 외부에서 가해진 가속도와 각속도를 포함하는 역학량에 따라서 이동하는 추를 가진 반도체 기판과 추로부터 미소 간극을 두고 추를 면하는 고정 전극이 배치되고, 반도체 기판의 일부분과 접촉하는 기판 전극이 적층되는 유리 기판을 구비하며, 접촉부 영역 이상의 크기를 갖는 리세스(recess)가 반도체 기판이 기판 전극과 접촉하는 반도체 기판 내의 영역에 형성되는 용량형 센서이다.
용량형 역학량 센서에서, 리세스의 깊이는 기판 전극의 두께보다 작다.
용량형 역학량 센서에서, 기판 전극과 접촉하는 접촉 전극은 리세스 내에 형성된다.
용량형 역학량 센서에서, 리세스의 깊이는 기판 전극의 두께보다 크고, 접촉 전극의 두께와 기판 전극의 두께의 합은 리세스의 깊이보다 크다.
용량형 역학량 센서에서, 복수의 홈 또는 복수의 홀(hole)들이 접촉 전극 부분에 형성된다.
용량형 역학량 센서에서, 복수의 홈 또는 복수의 홀(hole)들은 일정한 간격으로 배치된다.
용량형 역학량 센서에서, 복수의 접촉 전극이 리세스 내에 존재한다.
용량형 역학량 센서에서, 복수의 접촉 전극은 일정한 간격으로 배치된다.
용량형 역학량 센서에서, 인접한 접촉 전극들은 실질적으로 동일한 전위를 가진다.
용량형 역학량 센서에서, 인접한 접촉 전극들은 접촉 전극과 동일한 물질로 연결된다.
용량형 역학량 센서에서, 각각의 접촉 전극들은 알루미늄을 함유한다.
이하 도면을 참조하여 전형적인 용량형 역학량 센서인 각속도 센서의 예를 들어 본 발명의 바람직한 실시 형태들을 구체적으로 설명한다.
제1 실시 형태
도 1은 본 발명의 제1 실시 형태에 따른 용량형 역학량 센서를 설명하는 개략적인 단면도이다. 용량형 역학량 센서는 상부 유리 기판(1), 실리콘 기판(2) 및 하부 유리 기판(3)으로 이루어진 3 층 구조를 가진다. 이러한 세 기판(1, 2, 3)은 서로 접합되어 구조를 형성한다. 빔(4)들과 추(5)를 가지는 진동체는 에칭 공정을 통해 반도체(실리콘) 기판(2) 내에 형성되고, (빔(4)들과 추(5)를 가지는) 진동체는 가해진 외력(external force)에 의해 진동하거나 뒤틀리게(twisted) 된다. 각각의 빔(4)들의 두께, 폭 그리고 길이와, 추(5)의 두께, 면적 등은 소망의 탄성 계수와 소망의 공진 주파수를 가지도록 설계된다. 또한, 미소 간극(6, 7)은 반도체 기판(2) 내부에 형성되는 빔(4) 및 추(5)와 빔(4) 및 추(5)를 각각 면하고 있는 상부 및 하부 유리 기판(1, 3) 사이의 거리로 정의된다. (빔(4)들과 추(5)를 가지는) 진동체는 빔(4)들을 통해 반도체 기판(2)의 외주부에 연결된다. 외력을 가함에 따라, 추(5)를 지지하는 빔(4)이 구부러져서, 미소 간극(6, 7) 내에서 추(5)가 이동한다.
(빔(4)들과 추(5)를 가지는) 진동체가 형성된 실리콘 기판(2)을 사이에 끼우고 있는 상부 및 하부 유리 기판(1, 3)의 일부분에 관통공(8)들이 형성된다. 상부 및 하부 유리 기판(1, 3) 내부에 형성되는 전극들은 관통공을 통해 바깥쪽으로 인출된다. 전도체(9)가 각 관통공의 바깥쪽 단에 있는 개구부에 적층되고, 따라서 상부 및 하부 유리 기판(1, 3) 사이에서 규정되는 공간(미소 간극(6, 7))은 전도체(9)로 밀봉된다. 상부 및 하부 유리 기판(1, 3) 내부에 형성된 여기용 고정 전극(10)들, 검출용 고정 전극(11)들, 그리고 기판 전극(12)은 관통공(8)의 측벽에 형 성된 배선들을 통해 도전체(9)와 각각 연결되어 외부 접속이 이루어진다.
제1 실시 형태에 따른 용량형 역학량 센서는 예컨대, 일본 특개평 8-94666호 공보에 기재된 센서의 원리와 같은 원리로 작동한다. 여기서, 용량형 역학량 센서의 작동 원리를 이하에서 간략하게 설명한다. 상부 및 하부 유리 기판(1, 3)의 내면(inner surface)에 설치된 여기용 고정 전극(10)들 각각에 교류 전압을 가하고, (빔(4)들과 추(5)를 가지는) 진동체가 여기용 고정 전극(10)과 이동 전극으로서 접지 전위를 유지하는 (빔(4)과 추(5)를 가지는) 진동체 사이에 작용하는 정전기력에 의해 수직으로 진동한다. 이와 같이 z 축 방향으로 속도가 가해지고 있는 (빔(4)과 추(5)를 가지는) 진동체에 y 축 주위의 각속도가 가해지면, 속도와 각속도의 외적 형태로 표현되는 코리올리 힘(Coriolis force)이 x 축 방향으로 주어지고, 그 결과로, 도 2에 도시한 바와 같이 빔(4)이 구부러진다. 상부 및 하부 기판(1, 3)의 내면에는 검출용 고정 전극(11)들이 각각 설치된다. 그러면, 빔(4)이 구부러져서 야기된 추(5)의 경사에 기인해서 검출용 고정 전극(11)과 이동 전극으로서의 추(5) 사이에 형성되는 정전 용량의 변화로부터 각속도 값이 검출된다.
도 3은 본 발명의 제1 실시 형태에 따른 용량형 역학량 센서에서 실리콘 기판(2)과 상부 유리 기판(1) 상의 기판 전극 사이의 접촉부를 설명하는 개략적인 단면도이다. 실리콘 기판(2) 내에서 상부 유리 기판(1)의 내면에 형성된 기판 전극(12)과 실리콘 기판(2)이 중첩하는 영역에 리세스(31)가 형성된다. 리세스(31)의 깊이가 기판 전극(12)의 두께보다 작아서, 기판 전극(12)은 리세스(31) 내에서 실리콘 기판(2)과 접촉한다. 기판 전극(12)이 실리콘 기판(2)과 접촉하고 있는 부피 만큼 상부 유리 기판(1)에 대해서 수평 방향으로 기판 전극(12)이 이동할 수 있다. 그러나, 리세스(31)의 바닥면 면적이 실리콘 기판(2)이 기판 전극(12)과 접촉하는 면적보다 크기 때문에, 이동된 기판 전극(12)은 여전히 리세스(31) 내에 유지된다. 따라서, 리세스(31)의 주변에서 기판 전극(12)의 두께에 기인한 접합 불량은 발생하지 않는다. 결과적으로, 용량형 역학량 센서의 신뢰성을 향상시킬 수 있다.
제2 실시 형태
도 4는 본 발명의 제2 실시 형태에 따른 용량형 역학량 센서에서 상부 유리 기판 상의 기판 전극(12)과 실리콘 기판 사이에 형성되는 접촉부를 설명하는 개략적인 단면도이다. 리세스(31) 내에 접촉 전극(41)이 형성된다. 그러면, 접촉 전극(41)이 기판 전극(12)과 접촉함으로써, 이 접촉을 통해 반도체 기판의 전위를 확보한다. 기판 전극(12)의 두께는 리세스(31)의 두께로부터 접촉 전극(41)의 두께를 뺀 값보다 크도록 설정해서 기판 전극(12)이 접촉 전극(41)과 접촉하게 한다. 도 5, 6 및 7은 접촉 영역들의 개략적인 평면도이다.
도 5에서 보듯이, 접촉 전극(42)은 리세스(31) 내에서 기판 전극(12)과 중첩되도록 형성된다. 접촉 전극(42)과 중첩되는 기판 전극(12)이 접합 영역까지 돌출하는 것을 방지 위해서, 이동된 기판 전극(42)의 일부분을 그 속에 수용하기 위한 공간이 리세스(31) 내에서 접촉 전극(42)의 주변에 확보된다.
마찬가지로, 도 6에서, 이동된 기판 전극의 일부분이 그 속에 수용되도록 하는 홈(61)들이 접촉 전극(42) 내에 형성된다. 각 홈(61)들의 폭은 접촉 전극(42)의 폭보다 작도록 설정되어 있어서, 확실하게 접촉이 이루어지게 한다. 이동된 기 판 전극의 일부분이 홈(61)들 중에서 대응하는 하나에 수용됨에 따라서, 접촉 전극(42)의 주변부로 이동하는 기판 전극(12)의 일부는 상대적으로 작게 된다. 그러므로, 리세스(31)의 면적이 줄어들 수 있고, 따라서 칩 크기도 줄일 수 있다. 도 6은 접촉 전극(42)에 홈(61)들이 형성된 경우를 보여주고 있으나, 홈들 대신에 원형, 직사각형 또는 타원형 홀(hole)들을 접촉 전극(42) 내에 형성할 수도 있다.
또한, 도 7에 도시한 바와 같이, 복수의 접촉 전극(71)이 구비될 수 있다. 이 경우에는, 기판 전극(12)의 폭 방향에 대해, 인접한 접촉 전극(71) 사이의 거리는 기판 전극(12)의 폭보다 작도록 설정되어, 접촉 전극(71)과 기판 전극(12) 사이에 작은 위치 이동이 있는 경우에도, 접촉 전극(71)과 기판 전극(12) 사이의 접촉은 반드시 이루어진다. 이러한 구조에서도, 각 접촉 전극(71)의 주변에 이동을 위한 공간이 확보되기 때문에, 접촉에 기인해서 이동되는 기판 전극(12)과 접촉 전극들 사이에서 접합 불량이 야기되지 않으므로, 리세스 면적을 감소시킬 수 있다. 결과적으로, 접합에 있어서 신뢰성을 향상시킬 수 있고, 또한 소형화에 적합한 용량형 역학량 센서를 제조할 수 있다.
또한, 도 8에 도시한 바와 같이, 인접한 접촉 전극(71)들은 연결부(81)를 통해서 서로 연결될 수 있다. 인접한 접촉 전극(71)들이 서로 연결되는 경우, 기판 전극(12)이 인접한 접촉 전극(71)들 중 어느 하나에 연결되기만 하면, 연결부(81)를 통해 서로 연결된 모든 접촉 전극(71)들이 동일한 전위를 갖게 된다. 따라서, 실리콘 기판(2)과 상부 유리 기판 사이에 그 접합에 있어서 작은 위치 이동이 있는 경우라도, 기판 전극(12)이 접촉 전극(71)들 중 어느 하나와 접촉하기만 하면, 접 촉 저항은 통상, 안정적으로 얻어질 수 있다. 여기서, 각각의 연결부(81)가 각각의 접촉 전극(71)과 동일한 물질로 만들어졌다면, 연결부(81)들은 제조 비용의 증가 없이 형성될 수 있다. 또한, 쉽게 가소성(可塑性) 변형이 되고, 제조 비용이 저렴한 알루미늄을 함유하는 금속이 접촉 전극(71)과 연결부(81)에 적절한 물질이다. 물론, 금, 은, 티타늄, 혹은 크롬 등의 금속과 같은 전도성 물질 또는 내부에 불순물이 주입된 실리콘 역시 사용될 수 있다.
본 실시 형태에서는 기판 전극과 반도체 기판 사이의 접촉이 리세스 내에서 이루어지므로 리세스 주변의 접합 불량을 방지할 수 있으며 신뢰성을 높일 수 있다. 또한, 본 발명에 의해 제공되는 구조는 접합 영역을 증가시킬 필요가 없기 때문에 비용 증가를 피할 수 있다.
접합되는 유리 기판 상에 적층되는 기판 전극을 통해 반도체 기판의 전위를 제어하는 정전 용량형 역학량 센서에서, 반도체 기판 내에 리세스가 형성되고, 반도체 기판의 일부분이 리세스 내에서 기판 전극과 접촉하는 구조를 택함에 따라서, 리세스 주변부에서의 접합 불량을 피하는 것이 가능하다. 따라서, 신뢰성이 뛰어나고 저렴한 비용으로 제조하는 데 적합한 용량형 역학량 센서를 제공하는 것이 가능하다.
각속도 센서를 예로 들어 제1 및 제2 실시 형태를 설명하였지만, 본 발명은 그에 한정되지 않는다. 즉, 본 발명은 속도 센서와 압력 센서 등과 같은 모든 종류의 정전 용량 변화 검출식 역학량 센서에 적용될 수 있다.
본 발명에 의해 리세스 주변에서의 접합 불량을 방지하여, 신뢰성이 뛰어나며 저렴한 비용으로 제조하는 데 적합한 정전 용량형 역학량 센서를 제공하는 것이 가능하다.

Claims (11)

  1. 추의 이동에 따라 추와 고정 전극 사이에 형성되는 용량의 변화에 기초하여 역학량을 측정하는 용량형 역학량 센서로서,
    빔에 의해 지지되며 역학량에 따라 이동하는 추를 가지는 반도체 기판; 및
    상기 추로부터 미소 간극을 두고 상기 추를 면하는 위치에 고정 전극이 배치되고, 그리고 상기 반도체 기판의 일부분과 접촉하는 기판 전극이 적층되는 유리 기판을 구비하며,
    상기 반도체 기판이 상기 기판 전극과 접촉하는 접촉 영역 이상의 크기를 가지는 리세스가 상기 반도체 기판에 형성되는 용량형 역학량 센서.
  2. 제1항에 있어서, 상기 리세스의 깊이는 상기 기판 전극의 두께보다 작은 용량형 역학량 센서.
  3. 제1항에 있어서, 상기 기판 전극과 접촉하는 접촉 전극이 상기 리세스 내에 형성되는 용량형 역학량 센서.
  4. 제3항에 있어서, 상기 리세스의 깊이는 상기 기판 전극의 두께보다 크고, 상기 접촉 전극의 두께와 상기 기판 전극의 두께의 합은 상기 리세스의 깊이보다 큰 용량형 역학량 센서.
  5. 제3항에 있어서, 복수의 홈 또는 복수의 홀(hole)이 상기 접촉 전극의 일부에 형성되는 용량형 역학량 센서.
  6. 제5항에 있어서, 상기 복수의 홈 또는 복수의 홀이 일정한 간격으로 배치되는 용량형 역학량 센서.
  7. 제3항에 있어서, 복수의 접촉 전극이 상기 리세스 내에 존재하는 용량형 역학량 센서.
  8. 제7항에 있어서, 상기 복수의 접촉 전극이 일정한 간격으로 배치되는 용량형 역학량 센서.
  9. 제7항에 있어서, 인접하는 접촉 전극들은 실질적으로 동일한 전위를 가지는 용량형 역학량 센서.
  10. 제7항에 있어서, 인접하는 상기 접촉 전극들은 상기 접촉 전극과 동일한 물질을 사용하여 연결되는 용량형 역학량 센서.
  11. 제7항에 있어서, 상기 각 접촉 전극은 알루미늄을 함유하는 용량형 역학량 센서.
KR1020050005912A 2004-01-21 2005-01-21 용량형 역학량 센서 KR101068341B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00012899 2004-01-21
JP2004012899 2004-01-21
JPJP-P-2004-00163087 2004-06-01
JP2004163087A JP4555612B2 (ja) 2004-01-21 2004-06-01 容量型力学量センサ

Publications (2)

Publication Number Publication Date
KR20050076717A KR20050076717A (ko) 2005-07-26
KR101068341B1 true KR101068341B1 (ko) 2011-09-28

Family

ID=34752132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050005912A KR101068341B1 (ko) 2004-01-21 2005-01-21 용량형 역학량 센서

Country Status (5)

Country Link
US (1) US7216541B2 (ko)
JP (1) JP4555612B2 (ko)
KR (1) KR101068341B1 (ko)
CN (1) CN1645152B (ko)
TW (1) TWI355750B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669359B2 (en) * 2005-06-22 2010-03-02 Surefire, Llc Machine gun accessory mount adapter
JP4839747B2 (ja) * 2005-09-20 2011-12-21 三菱電機株式会社 静電容量型加速度センサ
JP4692373B2 (ja) * 2006-04-28 2011-06-01 パナソニック電工株式会社 静電容量式センサ
US8919199B2 (en) * 2010-12-01 2014-12-30 Analog Devices, Inc. Apparatus and method for anchoring electrodes in MEMS devices
JP2013250133A (ja) * 2012-05-31 2013-12-12 Seiko Epson Corp 電子デバイス及びその製造方法、並びに電子機器
US9709595B2 (en) 2013-11-14 2017-07-18 Analog Devices, Inc. Method and apparatus for detecting linear and rotational movement
US9599471B2 (en) 2013-11-14 2017-03-21 Analog Devices, Inc. Dual use of a ring structure as gyroscope and accelerometer
US10746548B2 (en) 2014-11-04 2020-08-18 Analog Devices, Inc. Ring gyroscope structural features
CN105241584A (zh) * 2015-10-14 2016-01-13 华东光电集成器件研究所 一种电容式压力传感器
US11656077B2 (en) 2019-01-31 2023-05-23 Analog Devices, Inc. Pseudo-extensional mode MEMS ring gyroscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801313A (en) 1995-05-26 1998-09-01 Omron Corporation Capacitive sensor
JPH10300775A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Works Ltd 静電容量型加速度センサ及びその製造方法
JP2002055117A (ja) 2000-08-10 2002-02-20 Yazaki Corp 静電容量型加速度センサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199092A (ja) * 1986-02-27 1987-09-02 関西日本電気株式会社 ハイブリツドic
JPH06160420A (ja) * 1992-11-19 1994-06-07 Omron Corp 半導体加速度センサ及びその製造方法
JPH08122359A (ja) * 1994-10-21 1996-05-17 Fuji Electric Co Ltd 半導体加速度センサとその製造方法および試験方法
JP3312158B2 (ja) * 1994-11-08 2002-08-05 オムロン株式会社 半導体物理量センサ
JP2001349731A (ja) * 2000-06-06 2001-12-21 Matsushita Electric Ind Co Ltd マイクロマシンデバイスおよび角加速度センサおよび加速度センサ
WO2002103368A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Silicon device
CN100492015C (zh) * 2002-04-12 2009-05-27 中国科学院上海微系统与信息技术研究所 湿法腐蚀制造的微机械电容式加速度传感器
EP1522521B1 (en) * 2003-10-10 2015-12-09 Infineon Technologies AG Capacitive sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801313A (en) 1995-05-26 1998-09-01 Omron Corporation Capacitive sensor
JPH10300775A (ja) * 1997-04-30 1998-11-13 Matsushita Electric Works Ltd 静電容量型加速度センサ及びその製造方法
JP2002055117A (ja) 2000-08-10 2002-02-20 Yazaki Corp 静電容量型加速度センサ

Also Published As

Publication number Publication date
US7216541B2 (en) 2007-05-15
TWI355750B (en) 2012-01-01
CN1645152A (zh) 2005-07-27
CN1645152B (zh) 2011-09-14
TW200529455A (en) 2005-09-01
JP4555612B2 (ja) 2010-10-06
JP2005233926A (ja) 2005-09-02
KR20050076717A (ko) 2005-07-26
US20050155428A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
KR101068341B1 (ko) 용량형 역학량 센서
US7258011B2 (en) Multiple axis accelerometer
JP3941694B2 (ja) 加速度センサ
US7290449B2 (en) Physical quantity sensor having angular speed sensor and acceleration sensor
US7762134B2 (en) Dynamic quantity sensor
US8759927B2 (en) Hybrid intergrated component
JP2012225920A (ja) マイクロ−電子機械システム(mems)デバイス
EP2346083B1 (en) Mems sensor
JP2006084327A (ja) 容量式力学量センサ装置
JP5293896B1 (ja) 変位量モニタ電極の構造
JP5790003B2 (ja) 加速度センサー
JP2006226770A (ja) 力学量センサ
US6430999B2 (en) Semiconductor physical quantity sensor including frame-shaped beam surrounded by groove
US7225675B2 (en) Capacitance type dynamic quantity sensor
JP2008275325A (ja) センサ装置
US8329491B2 (en) Mechanical quantity sensor and method of manufacturing the same
JP5078245B2 (ja) 力学量センサ
KR20040097952A (ko) 커패시턴스형 동적량 센서
US20080257045A1 (en) Sensor device for detecting physical quantity
JP2006153481A (ja) 力学量センサ
JP2018179695A (ja) 電子装置
JP2006226799A (ja) 力学量センサ
KR100880212B1 (ko) 자이로 센서 및 이를 이용하는 센서 장치
CN111908419A (zh) 一种三明治式mems器件结构
JP2008249390A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 8