KR101058068B1 - 극자외선과 연질x선 발생기 - Google Patents

극자외선과 연질x선 발생기 Download PDF

Info

Publication number
KR101058068B1
KR101058068B1 KR1020067002392A KR20067002392A KR101058068B1 KR 101058068 B1 KR101058068 B1 KR 101058068B1 KR 1020067002392 A KR1020067002392 A KR 1020067002392A KR 20067002392 A KR20067002392 A KR 20067002392A KR 101058068 B1 KR101058068 B1 KR 101058068B1
Authority
KR
South Korea
Prior art keywords
gas
electrode
radiation
discharge
diaphragm
Prior art date
Application number
KR1020067002392A
Other languages
English (en)
Other versions
KR20060054422A (ko
Inventor
클라우스 베르그만
빌리 네프
Original Assignee
코닌클리즈케 필립스 일렉트로닉스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닌클리즈케 필립스 일렉트로닉스 엔.브이. filed Critical 코닌클리즈케 필립스 일렉트로닉스 엔.브이.
Publication of KR20060054422A publication Critical patent/KR20060054422A/ko
Application granted granted Critical
Publication of KR101058068B1 publication Critical patent/KR101058068B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Reciprocating Pumps (AREA)

Abstract

본 발명은 기체 방전 소스(gas discharge source), 특히 극자외선(extreme ultraviolet) 및/또는 연질X선(soft X-radiation)의 발생을 위한 기체 방전 소스에 관한 것으로서, 기체로 채워진 중간 전극 공간(3)이 두 전극(1, 2) 사이에 위치하고, 기체의 흡입과 방출을 위한 장치가 존재하며, 그리고 한 전극(1)은 대칭축(4)을 정의하고 방사선의 방전을 위해 제공되는 개구(5)를 가진다. 대칭축(4) 상에 적어도 하나의 개구(7)를 가지고 차동 펌프 단으로 작용하는 다이아프램(diaphragm; 6)이 두 전극(1, 2) 사이에 존재한다는 것이 제안된 개선점을 가져온다.
기체 방전 소스(gas discharge source), 극자외선(extreme ultraviolet), 연질X선(soft X-radiation), 다이아프램(diaphragm)

Description

극자외선과 연질X선 발생기{EXTREME UV AND SOFT X RAY GENERATOR}
본 발명은 청구항 제1항의 전문에서 청구된 바와 같이 기체 방전 소스(gas discharge source)에 관련된 것이다. 바람직한 응용 분야는, 약 1 nm에서 20 nm까지의 파장 범위 내의 극자외선(extreme ultraviolet) 및/또는 연질X선(soft X-radiation)을 필요로 하는 분야이며, 구체적으로는 반도체 리소그래피(lithography)와 같은 분야이다.
동일한 유형의 장치가 WO 99/29145에 개시되어 있다. 이것으로부터 유래한 도 1은 전극 배치를 도시하고 있는데, 이러한 전극 배치에서는 두 전극 사이에 기체로 채워진 중간 전극 공간(intermediate electrode space)이 위치한다. 두 전극은 각각 개구(opening)를 구비하고 있는데, 이에 의하여 대칭축이 정의된다. 이 장치는 일정한 기압의 환경에서 작동한다. 전극에 높은 전압이 걸리면, 기체 방전(gas breakdown)이 일어나는데, 이는 압력과 전극 간격에 따라 결정된다. 기압과 전극 간격은, 시스템이 파센 곡선(Paschen curve)의 왼쪽 가지(branch) 상에서 작동하여 그 결과 전극 사이에 전기적인 방전이 일어나지 않도록 선택된다. 이 경우에, 전하 캐리어(charge carrier)의 평균자유행로(mean free path)가 전극 간격보다 더 크기 때문에, 기체 방전은 전극 사이에서 전파될 수 없다. 대신에, 방전을 유발시키기 위한 충분히 많은 수의 이온화 충돌(ionizing collision)은 충분히 큰 방전 갭(discharge gap)이 있어야만 가능하기 때문에, 기체 방전은 더 긴 행로를 찾게 된다. 이 긴 행로는 대칭축을 정의하는 전극 개구를 통해 미리 정해질 수 있다. 전류를 운반하는 플라스마 채널(plasma channel)은 축대칭 형태이며, 전극 개구와 일직선으로 발달한다. 극도로 높은 방전 전류는 전류 통로 근처에 자기장을 만든다. 결과로서 생기는 로렌츠힘(Lorentz force)은 플라스마를 수축시키고, 그에 의하여 플라스마가 매우 높은 온도로 가열되며, 매우 짧은 파장의 방사선, 특히 극자외선(EUV)과 연질X선의 파장 범위 내의 방사선을 방출한다. 방사선의 배출은, 전극 중 하나의 개구를 통하여, 대칭축을 따라 축 방향으로 일어난다.
극자외선 리소그래피에의 응용에 있어서, 플라스마는 1 내지 2 mm의 축성 팽창과 1 내지 2 mm의 직경 팽창을 나타내야 하며, 45 내지 60 도의 관측각에서 시각적으로 접근가능하여야 한다. 이러한 응용에서, 이러한 종류의 플라스마가, 수 줄(joule)의 범위 내의 펄스 에너지와 약 100 ns의 전류 펄스 지속시간과 10 내지 30 kA의 전류 크기를 가진 전기적 방전에서 가장 바람직하게 발생된다는 것은 일반적으로 공지되어 있다. 최적 중립 기압은 전형적으로 수 Pa 내지 수십 Pa의 범위에 놓인다. 플라스마의 압축을 위한 시작 반경(radius)은, 기본적으로 전극 시스템 내의 개구에 의하여 결정되는데, 수 mm의 범위 내에 놓인다. 전극 사이의 간격은 3 내지 10 mm 사이이다.
WO 01/01736 A1은 동일한 유형의 장치를 개시하고 있는데, 그 안에, 변환(conversion) 효율을 증가시키는 수단으로서, 대칭축 상에 개구가 존재하는 보조 전극(auxiliary electrode)이 주 전극들 사이에 나타난다.
DE 101 34 033 A1은 동일한 유형의 장치를 개시하고 있는데, 음극(cathode)의 형태를 취하는 전극에 가까운 기체의 기압은 떨어진 방전관의 영역에서보다 더 높다.
그러나, 종래 기술의 일부로서 기술한 장치는 많은 응용, 특히 반도체 리소그래피에 요구되는 높은 출력을 공급할 수 없다. 따라서 가능한 가장 높은 방사선 강도를 얻기 위하여 개선이 필요하다. 그러나, 필요로 하는 높은 전류 크기 및 전류 밀도 때문에, 음극을 통한 전류 이동이 음극 물질의 기화(vaporization)와 불가피하게 관련되어 있음을 주목하여야 한다. 이러한 종류의 전극 부식은 음극 내의 기하학적인 변화를 일으키고, 이는 결과적으로 플라스마의 방출 특성에 부정적인 영향을 미친다. 핀치 플라스마(pinch plasma)가 음극 표면에 가까이 있으면 있을수록 그러한 일이 빨리 일어난다. 그러나, 이러한 종류의 장치가 쓸모있기 위해서는, 충분히 긴 사용 기간이 필수적이다.
따라서 본 발명의 목적은 방사선을 방출하는 플라스마를 생성하기 위한 장치를 제공하는 것인데, 이에 의하여 λ= 1 내지 20 nm 사이의 파장 범위, 즉 극자외선 범위와 연질X선 파장 범위 내에서 높은 방사선 강도를 가능한 효율적으로 얻을 수 있고, 끌어낼 수 있으며, 이는 가능한 긴 사용 기간을 나타낸다.
이러한 목적은 독립 청구항 제1항에서 청구된 바와 같은 특징에 의하여 이루어진다. 유용한 실시예들과 그 이외의 실시예들은 종속 청구항에서 언급된다.
본 발명은, 전술한 기술적인 문제가 기체 방전 소스(gas discharge source)를 통해 해결될 수 있음을 간파하였는데, 상기 기체 방전 소스에는 특히 극자외선(extreme ultraviolet) 및/또는 연질X선(soft X-radiation)을 발생시키기 위해 기체로 채워진 중간 전극 공간(3)이 두 전극(1, 2) 사이에 위치되고, 기체의 들어오고 나감을 위한 장치가 존재하며, 한 전극(1)이 대칭축(4)을 정의하는 개구(5)를 가지고 방사선의 방전을 위하여 제공되며, 대칭축(4) 상에 적어도 하나의 개구(7)를 가지고 차동 펌프 단(differential pump stage)으로서 작용하는 다이아프램(diaphragm; 6)이 두 전극(1, 2) 사이에 존재한다.
본 발명은, 대칭축(4) 상에 개구(7)를 가지는 다이아프램(6)을 도입하고 이 다이아프램을 차동 펌프 단으로 사용한 결과, 어떠한 원하는 압력 조건이 단순한 방식으로 중간 전극 공간(3) 내에 설정된다는 점을 인식한 것에 기초한다. 결과로서 생기는 장점들에 덧붙여, 열이 방출될 수 있는 더 큰 표면이 이러한 종류의 다이아프램(6)의 결합의 결과, 중간 전극 공간(3) 내에 존재한다. 이러한 방식으로, 전극(1, 2) 상의 열 부담이 감소될 수 있으며, 사용기간이 증가되고, 그리고 평균 출력, 또는 시스템으로 투입될 수 있는 펄스 에너지가 달성가능한 방사 전력(radiation power)과 함께 증가될 수 있다.
중간 전극 공간(3)은 두 전극(1, 2) 사이의 전체 공간을 가리키고자 하는 것이다. 그것은 다이아프램(6)에 의하여 두 부분 영역(part-area)으로 나누어지고, 각각은 전극(그것의 개구를 포함함)과 다이아프램(그것의 개구를 포함함) 중 하나에 의하여 정의된다.
특히, 방사선의 방전 쪽을 향하는 전극(1)과 다이아프램(6)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역에서보다, 방사선의 방전 쪽을 등지는 전극(2)과 다이아프램(6)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역에서 더 큰 기압을 제공하는 선택권이 존재한다. 이러한 조치는, 전류를 운반하는 플라스마로의 에너지의 압축(compression) 또는 주입과, 이와 관련하여 높은 임피던스(impedance) 영역의 국소화(localization)가, 방사선의 방전 쪽을 향하는 전극(1) 근처의 원하는 지점에서 일어나는 것을 보증한다. 이는, 큰 관측각에서의 접근 가능성의 측면에서, 방사선의 사용을 최적화한다는 이점이 있다. 음극에서 이 지점까지의 전류 이동이 확산된, 낮은 임피던스의 플라스마에서 일어난다. 전체적으로 짧은 플라스마 채널이 일어나는 종래 기술과 비교할 때, 이는 거의 손실이 없게 만든다. 이러한 이유에서, 방사 전력의 증가도 가능하다.
중간 전극 공간(3)에서와 두 전극 사이의 공간에서의 기압은 플라스마의 점화가 파센 곡선(Paschen curve)의 왼쪽 가지에서 일어나도록, 즉 이온화 과정이 긴 전기장 라인을 따라 출발하도록, 바람직하게는 양극과 음극의 개구 영역에서 일어나도록 선택된다. 따라서 점화는 기체 볼륨(gas volume) 내에서 일어나며, 그것에 의하여 마멸 속도가 특히 낮아진다. 또한, 파센 곡선의 왼쪽 가지에서의 동작의 경우, 방사선 발생기와 전원 장치 사이의 스위칭 소자(switching element)가 필요하지 않으며, 이는 낮은 유도 - 따라서 매우 효율적인 - 에너지 주입을 가능하게 한다.
방사선의 방전 쪽을 등지는 전극(2) 또는 방사선의 방전 쪽을 향하는 전극(1)을 음극(cathode)으로 사용 가능하다. 첫번째 대안은 압축된 플라스마 - 이 경우, 본 발명에 따른 장치에 기인하여 양극(1) 가까이에서 일어날 수 있을 것임 - 가 비교적 음극(2)으로부터 멀리 떨어져 있다는 이점을 가진다. 그 결과, 음극의 부식이 덜 일어난다. 그러나, 무엇보다도 핀치 플라스마(pinch plasma)의 발생 역시 음극의 기하적 변화에 덜 심하게 의존하게 된다. 그것에 의하여 더 높은 정도의 부식이 허용될 수 있다. 전체적으로, 이는 전극 시스템에 있어서 상당히 더 긴 사용 기간에 이르게 하고, 더 높은 전기적 전력과 그에 따라 더 큰 방사 전력을 얻을 수 있는 기회를 제공한다.
다이아프램(6)이 에너지의 상당 부분을 방출할 수 있기 때문에, 방사선의 방전 쪽을 향하는 전극, 예컨대 양극 상의 열 부담 또한 과도하지 않다. 따라서, 다이아프램(6)의 존재에 기인하여, 단파 방사선(short-wave radiation)을 방출하는 핀치 플라스마 영역으로 주입된 에너지의 일부만을 고려하면 된다. 이 일부는 전체 에너지의 단지 5분의 1 내지 4분의 1에 불과하기 때문에, 도입할 수 있는 전력과 펄스 에너지가 그것에 의하여 4 내지 5의 인수만큼 증가할 수 있다.
방사선의 방전 쪽을 등지는 전극(2)을, 속이 빈 전극, 특히 공동(cavity; 8)을 구비한 속이 빈 음극 형태로 설계하는 것은 매우 큰 장점이 있다. 이 안에서, 방전의 최초 시기에 기체의 사전 이온화(pre-ionizatio)가 일어나며, 속이 빈 응집 음극 플라스마의 발달이 뒤를 잇는다. 이러한 종류의 플라스마는 특히 중간 전극 공간(3) 내에서 낮은 임피던스의 채널을 생성하기 위해 필요한 전하 캐리어(전자)를 공급하는데 적절하다. 속이 빈 전극(2)은 중간 전극 공간(3)에 하나 이상의 개구(9)를 가질 수 있을 것이다. 후자의 대안의 결과로, 전체 전류가 복수의 전극 개구(9)에 분배되기 때문에, 전극(2) 상의 국부적 부담이 이러한 방식으로 감소될 수 있으며, 따라서 전극 시스템의 사용 기간과 도입 가능한 전기적 전력은 증가할 수 있을 것이다. 속이 빈 음극으로 설계된 전극(2)의 공동(8) 내에서, 추가적인 트리거링 장치(triggering device)가 존재할 수 있을 것이다. 이러한 방식으로, 방전의 점화는 요청된 대로 정밀하게 트리거(trigger)될 수 있다. 이는 특히 복수의 개구를 지닌 속이 빈 음극의 경우에 이점이 있다. 예를 들면, 트리거링 장치는 속이 빈 음극의 보조 전극으로 설계될 수 있을 것인데, 보조 전극이 음극에 대하여 양의 전위(potential)로부터 낮은 전위, 예컨대 음극 전위로 스위칭되므로, 이에 의해 방전이 유발될 수 있을 것이다. 또 다른 트리거링 선택권은, 백열 방전(glow-discharge) 트리거, 고 유전(high dielectric) 트리거, 또는 광 펄스나 레이저 펄스를 통한 광전자(photoelectron) 또는 금속 증기(metal vapor)의 트리거를 통한, 속이 빈 음극 내 전하 캐리어의 주입 또는 발생을 포함한다.
다이아프램(6)은 그것이 기껏해야 적은 정도로만 전류 이동에 기여하도록 설계되는 것이 바람직하다. 대신에, 음극에서부터 양극으로의 전류 이동이, 전부 또는 적어도 대부분 주로 플라스마 채널만을 매개로 하여 일어난다. 이러한 방식으로, 전류가 핀치 플라스마의 발생에 있어서 가능한 완전하게, 그리고 효율적으로 사용될 수 있다. 또한, 다이아프램 상의 음극 점(cathode spot)의 발생과, 그것에 의하여 거기서 일어나는 부식은, 대부분 회피될 수 있다.
다이아프램(6)의 제조에 있어서, 다이아프램(6) 또는 다이아프램(6)의 적어도 일부가 머시닝(machining)에 잘 대응하는 물질을 포함하는 것이 유리하다. 또한, 다이아프램(6)의 적어도 일부 물질이 높은 열전도율을 나타낸다면 유리하다. 이는 효율적인 냉각(cooling) 또는 열 발산(heat dissipation)을 가능하게 한다.
다이아프램(6)의 적어도 일부에 사용될 수 있는 물질의 한 예는 세라믹(ceramic)이며, 구체적으로는 산화 알루미늄(aluminum oxide) 또는 육붕화 란타늄(lanthanum hexaboride)이다.
개구(7) 근처에 위치한 다이아프램(6)의 일부에 있어서, 즉 플라스마 채널에의 근접성에 기인하여 다이아프램(6)의 부식 가능성이 가장 큰 일부에 대하여, 이 일부를 특히 방전에 저항하는 물질 - 예컨대, 특히, 몰리브덴(molybdenum), 텅스텐(tungsten), 질화 티타늄(titanium nitride), 또는 육붕화 란타늄(lanthanum hexaboride) - 로부터 생성하는 것이 바람직하다. 그 결과, 다이아프램(6) 상의 부식의 발생은 크게 감소되며, 그에 의하여 장치의 사용 기간은 증가된다.
중간 전극 공간(3)에 다수의 다이아프램 - 각각은 대칭축(4) 상에 개구(7)를 가짐 - 을 도입하는 것도 가능하다. 특히 유리한 한 가지 실시예에 따르면, 이는 아이솔레이터(isolator; 11)들에 의하여 각각 분리된 금속성 다이아프램(6, 6', 6'')의 형태를 취한다. 이러한 방식으로, 음극 핫 스폿(hot spot)의 단계적인 점화와, 그에 따른 전류 이동이 효율적으로 억제된다. 이는 단일 아이솔레이터의 사용에서와 같은 장점을 제공한다. 또한, 금속과의 결합 결과로서, 순수한 세라믹 물체에 대비하여 전극 시스템의 원하는 낮은 인덕턴스의 구조가 가능하다. 또한, 세라믹 다이아프램의 경우에 문제를 일으킬 수 있는 다이아프램 상의 금속성 증착은 사실상 아무런 역할을 하지 않는다.
다이아프램(6)의 두께는 약 1 내지 20 mm 사이의 범위 내에 놓일 수 있다. 냉각의 관점에서 볼 때, 가능한 두꺼운 다이아프램이 제공되어야 한다. 다이아프램(6)의 지름은 약 4 내지 20 mm 사이이어야 한다.
다이아프램(6)과 방사선의 방전 쪽을 등지는 전극(2)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역을 향하는 개구를 구비한 기체 흡입구(gas inlet; 12)가 제공될 수 있다. 이 부분 영역의 기압은 그것에 의하여 명확하게 설정될 수 있다. 다이아프램(6)과의 상호 작용에 있어서, 특히, 다이아프램(6)과 방사선의 방전 쪽을 향하는 전극(1)에 의하여 정의되는 중간 전극 공간(3)의 부분 영역에서보다 여기에서 더 높은 기압이 제공될 수 있을 것이며, 또는 원하는 압력 차가 설정될 수 있다.
또한, 다이아프램(6)과 방사선의 방전 쪽을 향하는 전극(1)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역으로 향하는 개구가 구비된 기체 흡입구(12')가 존재할 수 있다.
중간 전극 공간(3)의 두 부분 영역 내의 기체 흡입구(12, 12')들의 결합으로, 중간 전극 공간(3) 내의 기압 분포 조절에 있어 매우 큰 허용 오차(tolerance)가 얻어진다. 뿐만 아니라, 다이아프램(6)의 존재와의 결합으로, 그 결과 중간 전극 공간(3) 내의 기체 구성에 있어 균질하지 않은(inhomogeneous) 분포가 발생할 기회가 제공된다. 특히, 본 발명의 특히 유용한 실시예에 따르면, 헬륨이나 수소와 같은 충전 기체(filler gas) - 사용 기체(working gas)와 비교하여, 사용되는 펄스 전류 하에서 매우 낮은 방사 손실(radiation loss)을 나타냄 - 가 상기 기체 흡입구(12)를 통하여, 다이아프램(6)과 방사선의 방전 쪽을 등지는 전극(2)에 의하여 정의되는 중간 전극 공간(3)의 부분 영역으로 부가적으로 도입된다. 이러한 방식으로, 플라스마의 임피던스는 극자외선 방출 부분에 비하여 낮은 수준으로 유지되고, 에너지 주입은 더 효율적이다. 크세논이나 네온과 같은 사용 기체 - 핀치 플라스마와 그 결과로 생기는 극자외선 방출을 발생시키기 위해 제공됨 - 는 본 기체 흡입구(12')를 통하여, 다이아프램(6)과 방사선의 방전 쪽을 향하는 전극(1)에 의하여 정의되는 중간 전극 공간(3)의 부분 영역으로 도입된다.
기체의 배출은 방사선의 방전 쪽을 향하는 전극(1)의 개구를 통하여, 중간 전극 공간 밖에 위치한 배출 장치에 의하여 매우 쉽게 일어날 수 있다. 그러나, 배출 장치를 중간 전극 공간(3) 내, 특히 다이아프램(6)과 방사선의 방전 쪽을 향하는 전극(1)에 의하여 정의되는 중간 전극 공간(3)의 부분 영역 내에 직접적으로 제공하는 것 또한 가능하다. 이는, 전술한 바와 같이, 상이한 기체 구성이 중간 전극 공간(3)의 두 부분 영역 내에 존재할 때 특히 유용한데, 이는 두 기체 혼합물의 혼합이 배출 동안 비교적 낮게 이루어질 수 있기 때문이다.
본 발명은 도면에 도시된 실시예들을 참조하여 더 상세히 기술될 것이나, 본 발명은 이에 한정되지 않는다.
도 1은 WO 99/29145에서 인용된, 공지 기술을 나타낸 도면.
도 2는 본 발명에 따른 장치를 나타낸 개략도.
도 3은 다이아프램(diaphragm)의 한 부분이 방전에 저항성 있는 물질(discharge-resistant material)을 포함하는 실시예를 나타낸 개략도.
도 4는 다수의 금속성 다이아프램이 존재하는 실시예를 나타낸 개략도.
도 5는 속이 빈 전극이 다수의 개구를 가지는 실시예를 나타낸 개략도.
<도면의 주요 부분에 대한 부호의 설명>
1 방사선의 방전 쪽을 향하는 전극
2 방사선의 방전 쪽을 등지는 전극
3 (기체로 채워진) 중간 전극 공간
4 대칭축
5 방사선의 방전 쪽을 향하는 전극(1)의 개구
6 다이아프램
7 다이아프램의 개구
8 속이 빈 전극(2)의 공동
9, 9', 9'' 방사선의 방전 쪽을 등지는 전극의 개구
10 방전을 방해하는 물질을 포함하는 다이아프램의 부분 영역
11 아이솔레이터
12, 12' 기체 흡입구
13 핀치 플라스마
도 2는 본 발명에 따른 장치의 전극 시스템의 한 실시예를 도시하고 있다. 한 전극(2)은 공동(cavity; 8)을 구비한 속이 빈 형태를 취하고, 음극으로 사용된다. 다른 전극(1)은 양극으로 작용한다. 기체로 채워진 중간 전극 공간(3) 내에서 발생된 핀치 플라스마(pinch plasma; 13)로부터 방전된 방사선의 추출이 양극(1)의 개구(5)를 통하여 일어난다. 방출된 방사선의 사용 가능한 비율을 가능한 가장 높게 만들기 위하여, 양극 개구(5)는 추출 방향으로 넓어진다. 전극(1, 2) 사이에는, 양극 개구(5)에 의하여 정의된 대칭축(4) 상에 관통구(through-opening)를 가지는 다이아프램(6)이 배치된다. 이 실시예에 따르면, 속이 빈 음극은, 역시 대칭축(4) 상에 위치하는 중간 전극 공간(3)으로의 개구(9)를 가진다. 기체 흡입구(12)들은 다이아프램(6)과 음극(2)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역으로의 개구를 구비하여 제공된다. 이 실시예에 따르면, 이러한 기체 흡입구의 공급 라인(feed line)은 속이 빈 음극의 본체를 통한다. 또 다른 기체 흡입구(12')는 다이아프램(6)과 양극(1)에 의하여 정의되는 기체로 채워진 중간 전극 공간(3)의 부분 영역으로의 개구를 구비하여 존재한다.
도 3은 본 발명에 따른 장치의 한 실시예를 도시하고 있는데, 여기에서 다이아프램(6)은 개구(7) 근처의 영역(10) 내에 방전에 저항성이 있는 물질 - 예를 들면, 몰리브덴(molybdenum), 텅스텐(tungsten), 질화 티타늄(titanium nitride), 또 는 육붕화 란타늄(lanthanum hexaboride) - 을 포함한다. 다이아프램(6)의 나머지 부분은 머시닝에 순응하는(amenable) 물질 및/또는 높은 열전도율을 지니는 물질을 포함한다.
도 4는 본 발명에 따른 장치의 한 실시예를 도시하고 있는데, 여기에서 다수의 금속성 다이아프램(6, 6', 6'')이 각각의 경우에 아이솔레이터(isolator; 11)에 의하여 분리된 전극(1, 2) 사이에 배치된다.
도 5는 음극(2)이 3개의 개구(9, 9', 9'')를 가지는 또 다른 실시예를 도시하고 있다. 대칭축의 중심에 위치하는 개구(9)는 눈에 보이지 않는 구멍(blind hole)의 형태를 취한다. 다른 2개의 개구(9', 9'')는 음극(2)의 공동(8)과 중간 전극 공간(3) 사이의 관통구(through-opening)들이다.

Claims (19)

  1. 기체 방전 소스(gas discharge source)로서,
    기체로 채워진 중간 전극 공간(3)이 두 전극(1, 2) 사이에 위치하고,
    기체의 흡입(admission)과 배출(evacuation)을 위한 장치가 존재하며,
    한 전극(1)은, 대칭축(4)을 정의하고 방사선의 방전을 위해 제공되는 개구(5)를 가지며,
    적어도 하나의 개구(7)를 상기 대칭축(4) 상에 가지고 차동 펌프 단(differential pump stage)으로서 작용하는 다이아프램(diaphragm; 6)이 상기 두 전극(1, 2) 사이에 존재하는 것을 특징으로 하는 기체 방전 소스.
  2. 제1항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 중간 전극 공간(3)의 부분 영역의 기압은, 방사선의 방전 쪽을 향하는 상기 전극(1)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 중간 전극 공간(3)의 부분 영역에서보다 더 큰 것을 특징으로 하는 기체 방전 소스.
  3. 제1항 또는 제2항에 있어서,
    상기 다이아프램(6)의 적어도 일부는 세라믹(ceramic)을 포함하는 것을 특징으로 하는 기체 방전 소스.
  4. 제1항 또는 제2항에 있어서,
    상기 다이아프램(6)은 적어도 개구(7)에 가까운 영역(10) 내에서는 방전에 저항성 있는 물질(discharge-resistant material)을 포함하는 것을 특징으로 하는 기체 방전 소스.
  5. 제1항 또는 제2항에 있어서,
    아이솔레이터(isolator; 11)에 의하여 서로 분리된 다수의 금속성 다이아프램(6, 6', 6'')이 존재하는 것을 특징으로 하는 기체 방전 소스.
  6. 제1항 또는 제2항에 있어서,
    상기 다이아프램(6)은 상기 대칭축(4) 방향으로 1mm 내지 20mm 사이에서 연장되는(extend) 것을 특징으로 하는 기체 방전 소스.
  7. 제1항 또는 제2항에 있어서,
    상기 다이아프램(6)의 개구(7)는 4mm 내지 20mm 사이의 지름을 갖는 것을 특징으로 하는 기체 방전 소스.
  8. 제1항 또는 제2항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 중간 전극 공간(3)의 부분 영역으로 향하는 개구들을 지닌 기체 흡입구(gas inlet)들이 존재하는 것을 특징으로 하는 기체 방전 소스.
  9. 제1항 또는 제2항에 있어서,
    방사선의 방전 쪽을 향하는 상기 전극(1)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 중간 전극 공간(3)의 부분 영역으로 향하는 개구들을 지닌 기체 흡입구들이 존재하는 것을 특징으로 하는 기체 방전 소스.
  10. 제1항 또는 제2항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2)은 공동(8)을 구비하고, 상기 공동(8)은 상기 기체로 채워진 중간 전극 공간(3)에 적어도 하나의 개구(9)를 갖는 것을 특징으로 하는 기체 방전 소스.
  11. 제10항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2) 내의 상기 공동(8)을 향하는 개구를 가진 기체 흡입구가 존재하는 것을 특징으로 하는 기체 방전 소스.
  12. 제10항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2)의 상기 공동(8) 내에 트리거링 장치(triggering device)가 존재하는 것을 특징으로 하는 기체 방전 소스.
  13. 제1항 또는 제2항에 있어서,
    상기 중간 전극 공간(3) 내의 기체 혼합은 기체 방전에 사용되는 사용 기체(working gas)와, 또한 상기 사용 기체에 비하여 더 낮은 방사 손실(radiation loss)을 나타내는 적어도 하나의 다른 충전 기체(filler gas)를 포함하는 것을 특징으로 하는 기체 방전 소스.
  14. 제13항에 있어서,
    방사선의 방전 쪽을 향하는 상기 전극(1)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 중간 전극 공간(3)의 부분 영역 내의 기체 혼합에 함유되는 것은 상기 사용 기체이고, 방사선의 방전 쪽을 등지는 상기 전극(2)과 상기 다이아프램(6)에 의하여 정의되는 상기 기체로 채워진 상기 중간 전극 공간(3)의 부분 영역 내의 기체 혼합에 함유되는 것은 상기 충전 기체인 것을 특징으로 하는 기체 방전 소스.
  15. 제1항 또는 제2항에 있어서,
    상기 중간 전극 공간(3)의 배출은 방사선의 방전 쪽을 향하는 상기 전극(1)의 개구(5)를 통하여 일어나는 것을 특징으로 하는 기체 방전 소스.
  16. 제1항 또는 제2항에 있어서,
    방사선의 방전 쪽을 등지는 상기 전극(2)이 음극으로서 사용되는 것을 특징으로 하는 기체 방전 소스.
  17. 제1항 또는 제2항에 있어서,
    상기 전극 사이의 전극 간격과 기압은, 기체 방전이 파센 곡선(Paschen curve)의 왼쪽 가지 상에서 일어나도록 선택되는 것을 특징으로 하는 기체 방전 소스.
  18. 삭제
  19. 삭제
KR1020067002392A 2003-08-07 2004-07-29 극자외선과 연질x선 발생기 KR101058068B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10336273.8 2003-08-07
DE10336273A DE10336273A1 (de) 2003-08-07 2003-08-07 Vorrichtung zur Erzeugung von EUV- und weicher Röntgenstrahlung
PCT/IB2004/051323 WO2005015602A2 (de) 2003-08-07 2004-07-29 Vorrichtung zur erzeugung von euv- und weicher röntgenstrahlung

Publications (2)

Publication Number Publication Date
KR20060054422A KR20060054422A (ko) 2006-05-22
KR101058068B1 true KR101058068B1 (ko) 2011-08-22

Family

ID=34129504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067002392A KR101058068B1 (ko) 2003-08-07 2004-07-29 극자외선과 연질x선 발생기

Country Status (9)

Country Link
US (1) US7734014B2 (ko)
EP (1) EP1654914B8 (ko)
JP (1) JP4814093B2 (ko)
KR (1) KR101058068B1 (ko)
CN (1) CN100482030C (ko)
AT (1) ATE427026T1 (ko)
DE (2) DE10336273A1 (ko)
TW (1) TW200515458A (ko)
WO (1) WO2005015602A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020742B8 (de) * 2007-04-28 2009-06-18 Xtreme Technologies Gmbh Anordnung zum Schalten großer elektrischer Ströme über eine Gasentladung
US20130098555A1 (en) * 2011-10-20 2013-04-25 Applied Materials, Inc. Electron beam plasma source with profiled conductive fins for uniform plasma generation
US9129777B2 (en) 2011-10-20 2015-09-08 Applied Materials, Inc. Electron beam plasma source with arrayed plasma sources for uniform plasma generation
US8951384B2 (en) 2011-10-20 2015-02-10 Applied Materials, Inc. Electron beam plasma source with segmented beam dump for uniform plasma generation
US9443700B2 (en) 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841556A (en) 1986-03-07 1989-06-20 Hitachi, Ltd. Plasma X-ray source
US6031241A (en) 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
US6389106B1 (en) 1997-12-03 2002-05-14 Fraunhoger-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing extreme ultraviolet and soft X-rays from a gaseous discharge
US6576917B1 (en) 1997-03-11 2003-06-10 University Of Central Florida Adjustable bore capillary discharge

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005931A (en) * 1960-03-29 1961-10-24 Raphael A Dandl Ion gun
NL298175A (ko) * 1962-11-20
JPS5763755A (en) * 1980-10-03 1982-04-17 Fujitsu Ltd X-ray generating appratus
JPS61218056A (ja) * 1985-03-25 1986-09-27 Nippon Telegr & Teleph Corp <Ntt> X線発生装置
KR900003310B1 (ko) * 1986-05-27 1990-05-14 리가가구 겡큐소 이온 발생 장치
US4841197A (en) * 1986-05-28 1989-06-20 Nihon Shinku Gijutsu Kabushiki Kaisha Double-chamber ion source
US4894546A (en) * 1987-03-11 1990-01-16 Nihon Shinku Gijutsu Kabushiki Kaisha Hollow cathode ion sources
JPH01117253A (ja) * 1987-10-30 1989-05-10 Hamamatsu Photonics Kk プラズマx線発生装置
JP2572787B2 (ja) * 1987-11-18 1997-01-16 株式会社日立製作所 X線発生装置
JPH01243349A (ja) * 1988-03-25 1989-09-28 Hitachi Ltd プラズマ極端紫外光発生装置
DE3927089C1 (ko) * 1989-08-17 1991-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
JP2819420B2 (ja) * 1989-11-20 1998-10-30 東京エレクトロン株式会社 イオン源
IT1246682B (it) * 1991-03-04 1994-11-24 Proel Tecnologie Spa Dispositivo a catodo cavo non riscaldato per la generazione dinamica di plasma
US5397956A (en) * 1992-01-13 1995-03-14 Tokyo Electron Limited Electron beam excited plasma system
KR100271244B1 (ko) * 1993-09-07 2000-11-01 히가시 데쓰로 전자빔 여기식 플라즈마장치
US5467362A (en) * 1994-08-03 1995-11-14 Murray; Gordon A. Pulsed gas discharge Xray laser
US6815700B2 (en) * 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
DE19962160C2 (de) * 1999-06-29 2003-11-13 Fraunhofer Ges Forschung Vorrichtungen zur Erzeugung von Extrem-Ultraviolett- und weicher Röntgenstrahlung aus einer Gasentladung
DE10051986A1 (de) * 2000-10-20 2002-05-16 Schwerionenforsch Gmbh Verfahren zum Strippen von Ionen in einer aus einem Gasentladungsplasma bestehenden Umladestrecke und Vorrichtung zur Durchführung des Verfahrens
DE10139677A1 (de) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erzeugen von extrem ultravioletter Strahlung und weicher Röntgenstrahlung
DE10134033A1 (de) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erzeugen von Extrem-Ultraviolettstrahlung/weicher Röntgenstrahlung
DE10151080C1 (de) * 2001-10-10 2002-12-05 Xtreme Tech Gmbh Einrichtung und Verfahren zum Erzeugen von extrem ultravioletter (EUV-)Strahlung auf Basis einer Gasentladung
US7342236B2 (en) * 2004-02-23 2008-03-11 Veeco Instruments, Inc. Fluid-cooled ion source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841556A (en) 1986-03-07 1989-06-20 Hitachi, Ltd. Plasma X-ray source
US6031241A (en) 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
US6576917B1 (en) 1997-03-11 2003-06-10 University Of Central Florida Adjustable bore capillary discharge
US6389106B1 (en) 1997-12-03 2002-05-14 Fraunhoger-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing extreme ultraviolet and soft X-rays from a gaseous discharge

Also Published As

Publication number Publication date
JP4814093B2 (ja) 2011-11-09
CN100482030C (zh) 2009-04-22
EP1654914A2 (de) 2006-05-10
DE10336273A1 (de) 2005-03-10
EP1654914B8 (de) 2009-08-12
TW200515458A (en) 2005-05-01
EP1654914B1 (de) 2009-03-25
ATE427026T1 (de) 2009-04-15
US7734014B2 (en) 2010-06-08
WO2005015602A2 (de) 2005-02-17
DE502004009224D1 (de) 2009-05-07
JP2007501997A (ja) 2007-02-01
US20080143228A1 (en) 2008-06-19
WO2005015602A3 (de) 2005-06-02
KR20060054422A (ko) 2006-05-22
CN1833472A (zh) 2006-09-13

Similar Documents

Publication Publication Date Title
US6894298B2 (en) Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge
US7488962B2 (en) Arrangement for the generation of intensive short-wavelength radiation based on a gas discharge plasma
US6408052B1 (en) Z-pinch plasma X-ray source using surface discharge preionization
Schoenbach et al. Microhollow cathode discharges
US5247534A (en) Pulsed gas-discharge laser
US5467362A (en) Pulsed gas discharge Xray laser
US5014289A (en) Long life electrodes for large-area x-ray generators
US7397190B2 (en) Gas discharge lamp for extreme UV radiation
US6075838A (en) Z-pinch soft x-ray source using diluent gas
KR101058068B1 (ko) 극자외선과 연질x선 발생기
EP1604552B1 (en) Method and device for the generation of a plasma through electric discharge in a discharge space
US20070029935A1 (en) Electron emission device
US7323701B2 (en) Gas discharge lamp
US7595594B2 (en) Arrangement for switching high electric currents by a gas discharge
US20030053593A1 (en) Capillary discharge source
US3516012A (en) Argon laser
US5072148A (en) Dispenser cathode with emitting surface parallel to ion flow and use in thyratrons
EP0234702A2 (en) Dual-discharge gas ion laser
JPS5949149A (ja) プラズマ陰極電子ビ−ム発生装置および方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee