KR101016441B1 - 자기정렬에 의한 유기박막 트랜지스터 제조 방법 - Google Patents

자기정렬에 의한 유기박막 트랜지스터 제조 방법 Download PDF

Info

Publication number
KR101016441B1
KR101016441B1 KR1020080124277A KR20080124277A KR101016441B1 KR 101016441 B1 KR101016441 B1 KR 101016441B1 KR 1020080124277 A KR1020080124277 A KR 1020080124277A KR 20080124277 A KR20080124277 A KR 20080124277A KR 101016441 B1 KR101016441 B1 KR 101016441B1
Authority
KR
South Korea
Prior art keywords
film
photoresist
source
drain electrode
shape
Prior art date
Application number
KR1020080124277A
Other languages
English (en)
Other versions
KR20100065766A (ko
Inventor
박종문
박건식
유성욱
윤용선
김상기
강승열
구진근
김보우
강진영
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020080124277A priority Critical patent/KR101016441B1/ko
Publication of KR20100065766A publication Critical patent/KR20100065766A/ko
Application granted granted Critical
Publication of KR101016441B1 publication Critical patent/KR101016441B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 게이트 전극과 소스-드레인 전극 형상 간 오정렬을 방지하고 제조 수율을 향상시킬 수 있는 하부 게이트형 유기박막 트랜지스터 제조 방법을 제공한다. 본 발명에 따른 유기박막 트랜지스터 제조 방법은, 게이트 전극과 게이트 절연막이 형성된 기판 전면 상에 형상반전 감광막과 광 표백물질막을 도포하는 단계와, 마스크를 사용하여 상기 형상반전 감광막 중에서 필드 영역의 감광막만을 선택적으로 감광시키는 단계와, 상기 형상 반전 감광막 중에서 상기 게이트 전극 상부에 위치한 감광막이 감광되고 소스-드레인 전극 형성 영역의 감광막은 감광되지 않도록 전면 노광을 실시하는 단계와, 상기 전면 노광 후, 상기 광 표백물질막을 제거하고, 감광된 상기 필드 영역 및 게이트 전극 상부의 감광막을 형상 반전시키는 단계와, 전면 노광을 실시하여, 형상 반전되지 않은 상기 소스-드레인 전극 형성 영역의 감광막을 감광시키는 단계와, 상기 감광된 소스-드레인 전극 형성 영역의 감광막을 현상액으로 제거하는 단계를 포함한다.
유기박막 트랜지스터, 게이트 전극

Description

자기정렬에 의한 유기박막 트랜지스터 제조 방법{Method of fabricating organic thin-film transistor by self alignment}
본 발명은 유기박막 트랜지스터의 제조 방법에 관한 것으로, 특히 자기정렬 방식에 의해 소스-드레인 전극 형상과 게이트 간의 오정렬을 방지하여 소자 성능과 제조 수율을 향상시킬 수 있는 하부 게이트형 유기박막 트랜지스터의 제조 방법에 관한 것이다.
최근 액정 디스플레이 등에 사용되는 박막 전계효과 트랜지스터로서, 비정질 실리콘 박막 트랜지스터외에, 유기 반도체 박막을 사용하는 유기박막 트랜지스터(organic thin-film transistor: OTFT)가 알려져 있다. 유기박막 트랜지스터는 유기박막 내의 전기 저항 또는 전기 전도도를 조절하는 게이트 전극, 게이트 절연막, 전하의 통로로 사용되는 소스-드레인 전극 그리고 게이트 전극에 걸리는 전압에 의해 전하의 전도도가 조절되는 유기 반도체 박막(organic semiconductor film)을 포함한다. 이러한 유기박막 트랜지스터에는, 게이트 전극이 기판과 유기 반도체 박막 사이에 배치되는 하부 게이트(bottom gate)형 박막 트랜지스터와, 유기 반도체 박막이 게이트 전극과 기판 사이에 배치되는 상부 게이트(top gate)형 박막 트랜지스터가 있다. 또한 유기박막 트랜지스터는 게이트 절연막으로서 무기막을 사용하는 방식과 유기막을 사용하는 방식으로 분류될 수 있다. 일반적으로 유기막의 게이트 절연막은 무기막의 게이트 절연막보다 플라스틱 기판의 적용에 더욱 적합할 뿐만 아니라 저온 공정에 유리하고 유기 반도체 박막과 연관되어 요구되는 계면 특성이 양호하다.
유기 반도체 박막이 용제(solvent)에 취약하기 때문에 구조적으로 이러한 문제를 보완하는 하부 게이트형 유기박막 트랜지스터 구조가 채택되어 사용되고 있다. 즉, 유기 게이트 절연막 위에 소스-드레인 전극이 배치되고, 소스-드레인 전극 위에 유기 반도체 박막이 배치되는 구조가 유기박막 트랜지스터로 많이 사용되고 있다. 소자의 집적도 향상을 위해 유기 게이트 절연막 위에 미세형상의 소스-드레인 전극이 적용된다. 이 경우, 수 마이크론 내지 수십 마이크론 크기의 소스-드레인 형상을 구현하기 위해 접촉형 정렬 노광 장치(contact aligner)를 사용한다. 이러한 접촉형 노광 장치를 이용하여 미세형상의 소스-드레인 전극 형상 패턴을 형성할 경우, 게이트 도전막과 소스-드레인 전극 형상과의 정렬이 유기박막 트랜지스터 소자 제작에 있어서 중요한 요소로 작용한다. 특히, 플라스틱 기판에서의 정렬은, 기판의 평판도가 상대적으로 단단한 무기물 결정체로 된 실리콘 기판을 사용하는 경우보다, 위치에 따라 정렬도가 더욱 다양하게 나타남으로 인해 소자의 성능은 물 론 수율 악화에도 영향을 미치게 된다.
도 1(a) 내지 (d)는 종래의 유기박막 트랜지스터 제조 공정에 있어서, 게이트와 소스-드레인 전극 형상 간의 여러가지 정렬 상태를 나타내는 평면도들이고, 도 2(a) 내지 (d)는 도 1(a) 내지 (d)에 각각 대응되는 AA' 라인을 따라 자른 단면도들이다.
도 1(a) 및 도 2(a)는 기판(11) 상에서 게이트 전극(12)과 소스-드레인 전극 형성용 감광막 패턴(14) 간의 정렬 상태가 잘 이루어진 경우를 나타낸다. 특히, 게이트 전극(12) 상에 형성된 감광막(14a)은 게이트 전극(12)과 잘 정렬되어 있다. 이 경우, 게이트 전극(12)과 필드 영역(24) 위에 형성된 감광막 패턴(14)에 의해 노출된 부분은 소스-게이트 전극이 형성될 영역(소스-드레인 전극 형상)(13)에 해당한다. 도면부호 15는 게이트 절연막을 나타낸다.
그러나, 기존에 통상적으로 적용되는 소스-드레인 전극용 마스크(포토마스크)(도 4(b) 참조)를 접촉형 노광 장치에 적용하여 이러한 정렬 결과(도 1(a) 및 도 2(a) 참조)를 얻는 것은 현실적으로 어렵다. 통상적으로는, 도 1(b) 및 도 2(b)에 도시된 바와 같이 소스-드레인 전극 형상(13)이 좌측으로 치우치거나 도 1(c) 및 도 2(c)에 도시된 바와 같이 소스-드레인 전극 형상(13)이 우측으로 치우친다. 이러한 오정렬은 소자의 성능 저하를 초래한다. 예를 들어, 게이트 전극(12) 상층 부에 소스-드레인 전극이 위치할 경우에는 기생 커패시턴스에 의해 속도가 저하되고, 반대로 게이트 전극(12)과 소스-드레인 전극이 서로 격리될 경우 그 전극들 사이의 격리부가 고저항 영역으로 작용하여 전류 특성을 악화시킨다. 또한 도 1(d)와 도 2(d)에 도시된 바와 같이 소스-드레인 전극 영역(13)의 형상이 양측에서 게이트 상층부로 연장되는 경우 소스-드레인 전극이 게이트 상층부에 위치함에 따라 기생 커패시턴스가 발생되어 소자 속도가 저하되는 문제점이 있다.
또한 유기박막 트랜지스터 소자를 플라스틱 기판에서 제작할 경우, 기판의 평탄도가 위치에 따라 다양하게 나타난다. 통상적인 소스-드레인 전극 형상과 게이트 전극 간의 정렬 방법에서는, 이러한 평탄도 특성은 결국 플라스틱 기판 상의 위치에 따라 정렬 상태들 간의 차이를 초래하게 되고 유기박막 트랜지스터의 제조 수율을 악화시키게 된다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서 미세 구조의 소스-드레인 전극을 갖는 하부 게이트형 유기박막 트랜지스터 소자 제작시 게이트 전극과 소스-드레인 전극 형상 간의 오정렬을 효과적으로 방지하고 제조 수율을 향상시킬 수 있는 자기정렬형 유기박막 트랜지스터 제조 방법을 제공함을 일 과제로 한다.
본 발명에 따른 유기박막 트랜지스터의 제조 방법은, 게이트 전극이 형성된 기판 전면 상에 게이트 절연막을 형성하고, 상기 게이트 절연막 상에 형상반전 감광막과 광 표백물질막을 순차 도포하는 단계; 마스크를 사용한 노광 공정을 통해 상기 형상반전 감광막 중에서 필드 영역의 감광막만을 선택적으로 감광시키는 단계; 상기 형상 반전 감광막 중에서 상기 게이트 전극 상부에 위치한 감광막이 감광되고 소스-드레인 전극 형성 영역의 감광막은 감광되지 않도록 상기 기판에 대해 전면 노광을 실시하는 단계; 상기 전면 노광 후, 상기 광 표백물질막을 제거하고, 감광된 상기 필드 영역 및 게이트 전극 상부의 감광막을 열처리를 통해 형상 반전시키는 단계; 상기 형상 반전후, 전면 노광을 실시하여, 형상 반전되지 않은 상기 소스-드레인 전극 형성 영역의 감광막을 감광시키는 단계; 및 현상액을 이용하여 상기 감광된 소스-드레인 전극 형성 영역의 감광막을 제거함으로써 소스-드레인 전극 형상이 구현된 감광막 패턴을 형성하는 단계;를 포함한다.
본 발명의 실시형태에 따르면, 상기 유기박막 트랜지스터 제조 방법은, 상기 소스-드레인 전극 형상이 구현된 감광막 패턴 형성 후, 상기 기판 전면 상에 소스-드레인 전극용 금속막을 증착하고 상기 감광막 패턴을 리프트-오프 공정에 의해 제거함으로써 소스-드레인 전극을 형성하는 단계; 및 상기 소스-드레인 전극이 형성된 기판 상에 유기 반도체 박막 및 보호막을 순차 형성하는 단계를 더 포함할 수 있다.
또한, 상기 유기 반도체 박막 및 보호막 형성 후, 상기 게이트 전극 위의 보호막 상에 감광막 패턴을 형성하는 단계; 및 상기 보호막 상의 감광막 패턴을 식각 마스크로 하여 상기 유기 반도체 박막 및 보호막을 선택적으로 식각하는 단계를 더 포함할 수 있다.
본 발명의 실시형태에 따르면, 상기 필드 영역의 감광막만을 선택적으로 감광시키는 단계는, 소스 전극 형상과 드레인 전극 형상이 서로 연결되어 통합된 소스-드레인 전극용 마스크를 접촉형 정렬 노광 장비에 적용하여 상기 필드 영역만을 선택적으로 노광시키는 단계를 포함할 수 있다.
상기 게이트 전극 상부의 감광막을 감광시키는 전면 노광 단계는, 상기 게이트 전극 상부의 감광막만이 노광되고 상기 소스-드레인 전극 형성 영역의 감광막은 상기 광 표백물질막에 의해 차단되도록 하는 노광 에너지를 적용하는 단계를 포함할 수 있다.
상기 형상반전 감광막 및 광 표백물질막 도포 단계에서, 상기 형상반전 감광막과 광 표백물질막은 상기 게이트 전극 상부 영역에서 다른 영역에 비하여 낮은 두께로 도포될 수 있다. 또한, 상기 게이트 전극 상부의 감광막을 감광시키는 전면 노광 단계에서, 상기 게이트 전극 상부 영역에서는 광 표백물질을 투과하여 형상반전 감광막을 감광시키지만, 상기 소스-드레인 전극 형성 영역에서는 광 표백물질을 비투과하거나 감광이 안되는 노광 에너지 범위에서 전면 노광을 실시할 수 있다.
본 발명의 실시형태에 따르면, 상기 기판은 플라스틱 기판일 수 있다. 상기 게이트 절연막은 유기물질로 형성될 수 있다. 상기 게이트 전극은 알루미늄과 같은 고반사율의 금속막으로 형성될 수 있다. 상기 게이트 전극은 상기 기판 상에서 300 nm 이상의 단차를 갖도록 형성될 수 있다.
본 발명에 따르면, 종래의 하부 게이트형 유기박막 트랜지스터의 제조 방법에 있어서 소스-드레인 전극 형상을 얻기 위한 정렬 과정에서 불가피하게 초래되는 소스-드레인 전극 형상과 게이트 전극 간의 오정렬로 인한 소자 성능의 저하 및 플라스틱 기판 사용시 기판의 평탄 특성으로 인한 수율 저하의 문제점을 자기 정렬 방식의 공정을 통해 효과적으로 방지할 수 있다. 또한 별도의 추가적인 마스크 제작 없이 용이하게 소스-드레인 전극 형상을 구현하는 감광막 패턴을 형성할 수 있다. 노광시 통상적으로 발생하는 포토마스크 정렬의 오차에도 불구하고 게이트 전극과 소스-드레인 전극 형상 간에는 오정렬이 발생하지 않게 된다. 결과적으로, 유기박막 트랜지스터 소자를 용이하게 제작할 수 있고 소자 성능 및 제조 수율을 크게 향상시킬 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로만 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 3a 내지 도 3l은 본 발명의 실시형태에 따른 유기박막 트랜지스터, 특히 하부 게이트형 유기박막 트랜지스터의 제조 방법을 설명하기 위한 단면도들이다.
먼저, 도 3a를 참조하면, 플라스틱 또는 실리콘 등의 기판(101) 상에 반사율이 높은 게이트 전극용 금속막을 300 nm 이상의 두께로 증착하고 이를 패터닝하여 게이트 전극(102)을 형성한다. 이 실시형태에서 게이트 전극(102)의 반사도는 기판 의 반사도보다 크다.
다음으로, 도 3b에 도시된 바와 같이, 게이트 전극(102)을 포함한 기판(101) 전면 상에 게이트 절연막(103)을 형성한다. 이 때 사용되는 게이트 절연막(103) 물질로는 유기물질, 예를 들어 폴리비닐페놀과 같은 폴리머 물질을 사용할 수 있다. 이러한 유기물질 게이트 절연막(103)은 절연 역할을 할 수 있는 최소 두께 이상 150 nm 이하로 가능한 한 얇게 도포될 수 있다. 이와 같이 유기물질 게이트 절연막(103)을 가능한 한 얇게 도포함으로써, 이후 게이트 전극 위의 영역에서 다른 영역보다 가능한 한 반사도를 높여 반사도 차이를 생기게 할 수 있다. 이러한 반사도 차이는, 차후 형상반전 공정을 이용하여 자기정렬 방식으로 게이트 전극 위의 감광막 영역만을 선택적으로 감광시키고자 할 때 다른 영역보다 상대적으로 더 낮은 노광 에너지로 용이하게 감광시킬 수 있게 된다(도 3e 참조).
다음으로, 도 3c에 도시된 바와 같이, 게이트 절연막(103) 상에 형상반전 감광막(104)을 약 600 nm의 두께로 도포하고 이어서 그 위에 광 표백물질막(105)을 약 200 nm의 두께로 도포한다. 형상반전 감광막(104)으로는, 예를 들어 AZ5206E(Clariant사 제조)를 사용할 수 있고, 광 표백물질막(105)로는 예를 들어 CEM(Shin Etsu사 제조)를 사용할 수 있다. 이 때, 게이트 전극(102) 위에 도포되는 형상반전 감광막(104)과 광 표백물질(105)은 게이트 전극 두께에 의한 단차로 인해, 도 3에 나타난 바와 같이 다른 영역에 비하여 얇은 두께로 도포되게 된다.
그 후, 도 3d에 도시된 바와 같이, 마스크(106)를 접촉형 정렬 노광 장비(Contact aligner)에 적용하여 정렬 노광한다. 이 때 마스크(106)의 차광 패턴(106a)에 의해 필드 영역의 광 표백물질막 및 형상반전 감광막에만 자외선(7) 노광이 이루어짐으로써 필드 영역의 형상반전 감광막(104a)만이 감광된다. 이 노광 공정에서 노광 에너지는, 광 표백물질막(105)을 통과하여 형상반전 감광막이 감광됨으로써 추후 열처리에 의해 형상반전이 이루어질 수 있는 충분한 크기의 노광 에너지를 적용한다.
도 3d의 노광 단계에서 기존의 마스크(도 4(b) 참조)와 다른 새로운 형상의 마스크(도 4(a) 참조)를 사용함으로써, 접촉형 노광 장비 적용시 통상적으로 발생하는 정렬 오차에도 불구하고 추후 단계에서 형성될 소스-드레인 전극 형상과 게이트 전극 간의 오정렬을 방지할 수 있다(도 5 참조). 기존의 소스-드레인 전극용 마스크는 도 4(b)에 도시된 바와 같이 소스 전극 형상(32)과 드레인 전극 형상(32')이 서로 분리되어 있다. 그러나 본 실시형태의 노광 단계에서는 도 4(a)에 도시된 바와 같이 소스 전극 형상과 드레인 전극 형상이 서로 연결되어 통합된 형상(31)의 마스크 패턴을 갖는 새로운 소스-드레인 전극용 마스크를 사용한다. 이로써 상기 통합된 형상(31)이외의 영역(33)을 통해서 자외선(7) 노광이 이루어져 필드 영역의 감광막이 선택적으로 감광된다.
그 후, 도 3e를 참조하면, 마스크 없이 (또는 마스크 패턴이 없는 블랭크 마스크를 적용하여) 기판 전면에 대해 자외선(9)으로 전면 노광(flood exposure)을 실시한다. 이 경우, 게이트 전극(102) 상부 영역의 감광막(104b)만이 감광되고 다른 영역(특히, 소스-드레인 전극 형성 영역)의 감광막은 감광되지 않도록 한다. 전면 노광을 통하여 이와 같은 선별적인 감광 특성을 얻을 수 있는 것은, 다음과 같은 현상에 기인한다. 첫째, 게이트 전극(102)이 높은 반사도를 갖는 물질을 사용하고 있기 때문에 게이트 전극(102) 위에 위치한 감광막은 다른 영역에 비하여 노광 에너지에 의한 영향을 많이 받게 된다. 둘째, 게이트 전극(102) 위의 저에너지 차단막인 광 표백물질막(105)은 구조상으로(즉, 게이트 전극에 의한 단차로 인해) 다른 영역에 비해 얇게 도포되기 때문에 다른 영역에 비해 상대적으로 적은 노광 에너지에서 투과되어 하부의 감광막을 감광시키게 된다. 세째, 게이트 전극(102) 위의 형상반전 감광막(104b)은 구조상으로(즉, 게이트 전극에 의한 단차로 인해) 다른 영역에 비해 얇게 도포되기 때문에 다른 영역에 비해 상대적으로 적은 노광 에너지에 의해 감광되기 때문이다.
상술한 3가지 특성들 중 하나 이상에 기인하여 도 3e의 전면 노광 과정에서 게이트 전극(102) 상층부의 감광막(104b)만이 노광되고, 다른 영역(특히, 소스-드레인 전극 형성 영역)은 노광되지 않는 선별적인 노광 특성이 가능한 특정 노광 에너지 범위가 존재하게 된다. 접촉형 노광 장비를 사용하여 상술한 특정 범위의 노광 에너지를 적용함으로써 전면 노광을 통하여 게이트 전극(102) 상층부의 형상반 전 감광막(104b)만이 감광되는 결과를 얻는다. 이 때, 게이트 전극(102) 상부 영역에서는 노광 에너지가 광 표백물질을 투과하여 형상반전 감광막을 감광시키지만, 소스-드레인 전극 형성 영역에서는 노광 에너지가 광 표백물질을 비투과하거나 감광막의 감광이 이루어지지 않게 된다.
다음으로, 도 3f를 참조하면, 탈이온수를 이용하여 광 표백물질막(105)을 제거한 후, 열판 등을 이용하여 열처리(11)를 수행함으로써 전 단계에서 감광된 부분, 즉 도 3d 단계에서 감광된 필드 영역의 감광막(104a)와 도 3e 단계에서 자기정렬로 감광된 게이트 전극 상부 영역의 감광막(104b)에서 형상반전이 이루어진다.
다음으로, 도 3g를 참조하면, 접촉형 노광 장비를 이용하여 자외선(12)으로 전면 노광하여 형상반전이 이루어진 부분(즉, 게이트 전극(102) 상부 영역 및 필드 영역의 감광막(104a, 104b)은 감광되지 않고, 형상반전이 이루어지지 않은 부분(즉, 소스-드레인 전극 형성 영역의 감광막)만이 감광이 이루어진다.
그 후, 도 3h에 도시된 바와 같이, 현상액을 이용하여 최종 감광된 소스-드레인 전극 형성 영역의 감광막이 중화반응을 통해 제거되고 소스-드레인 전극 형상(130)이 감광막에 구현됨으로써, 소스-드레인 전극 형상(130)을 정의하는 감광막 패턴(104a, 104b)을 얻게 된다. 이 경우, 이전 단계에서의 접촉형 노광 장비 사용시 발생하는 통상적인 정렬 오차에도 불구하고, 자기 정렬된 감광막 패턴을 얻음으 로써 게이트 전극(102)과의 정렬 상태가 잘 이루어진 소스-드레인 전극 형상(130)을 얻게 된다.
그 후, 도 3i에 도시된 바와 같이, 기판 전면 상에 소스-드레인 전극용 금속막(140)을 증착한다. 이 때 사용되는 금속으로는 소자 특성을 위해 일함수가 큰 금(Au), 백금(Pt), 팔라듐(Pd) 등을 사용할 수 있다.
다음으로, 도 3j에 도시된 바와 같이, 스트립용 솔벤트를 이용하여 남아있는 감광막(104a, 104b)을 리프트-오프 공정에 의해 제거함으로써, 소스-드레인 전극(140a)을 얻는다. 이 소스-드레인 전극(140a)은 이전 단계에서 자기 정렬된 소스-드레인 전극 형상(130)에 위치하므로, 게이트 전극(102)과의 오정렬 없이 잘 정렬된 상태를 유지하게 된다.
다음으로, 도 3k에 도시된 바와 같이, 소스-드레인 전극(140a)이 형성된 기판 전면 상에 유기 반도체 박막(160)을 증착한다. 유기 반도체 박막(160)으로는 저분자 유기 반도체인 펜타센(pentacene)을 사용할 수 있다. 펜타센 유기 반도체 박막(160)은 유기용매에 취약하므로, 이를 보호하기 위해 진공상태의 폴리머 보호막(170)(예컨대, 파릴렌(Parylen)막 등)을 유기 반도체 박막(160) 위에 증착한다. 또한 유기 반도체 박막과 보호막(170)을 패터닝하기 위한 감광막 패턴(180)을 게이트 전극(102) 위의 보호막(170) 상에 형성한다.
그 후, 도 3l에 도시된 바와 같이, 감광막 패턴(180)을 식각 마스크로 하여 보호막(170)과 유기 반도체 박막(160)을 선택적으로 식각함으로써 유기 반도체 박막 패턴(160a)과 보호막 패턴(170a)을 형성한다. 이에 의해 유기박막 트랜지스터 소자(100)가 얻어진다. 이 때, 산소 플라즈마를 이용하여 보호막(170)과 유기 반도체 박막(160)을 선택적으로 식각할 수 있고, 산소 플라즈마를 이용한 식각 후에 솔벤트를 이용하여 잔류한 감광막 등을 제거할 수 있다.
상술한 유기박막 트랜지스터 제조 공정에 의하면, 게이트 전극과 소스-드레인 전극이 자기 정렬에 의하여 서로 정렬된다. 특히, 도 3h 단계에서 얻어지는 감광막 패턴(104b)과 소스-드레인 전극 형상(130)은, 접촉형 노광 장비 적용시 발생하는 통상적인 정렬 오차(이 정렬 오차는 도 3d의 노광 단계에서 발생할 수 있음)에도 불구하고, 자기정렬에 의해 게이트 전극(102)과는 양호한 정렬 상태를 유지할 수 있다.
도 5는 도 3h 단계에서 얻어지는 감광막 패턴(104b)에 의해 정의되는 소스-드레인 전극 형상(103)과 게이트 전극(102) 간의 정렬 상태들을 나타낸 평면도들이다. 도 5(a)에 도시된 바와 같이 도 3d의 노광 단계(이 노광 단계에서는 도 4(a)에 도시된 바와 같은 형상의 마스크를 사용함)에서 노광 영역이 잘 정렬된 경우뿐만 아니라, 도 5(b)에 도시된 바와 같이 도 3d에서의 노광 영역이 통상적인 정렬 오차 로 좌로 치우친 경우에도 도 3h 단계에서 얻어지는 소스-드레인 전극 형상(130)은 노광 장비 적용시의 통상적인 오정렬에 무관하게 일정하게 게이트 전극(120)과 정렬된다. 또한, 도 5(c)에 도시된 바와 같이 도 3d에서의 노광 영역이 우측으로 치우친 경우에도 도 3h 단계에서 얻어지는 소스-드레인 전극 형상(130)의 위치는 게이트 전극과 잘 정렬된 위치이다. 도 5에서 도면부호 24는 필드 영역을 나타낸다.
본 실시형태에 따르면, 접촉형 노광 장비 적용시 노광 영역의 오정렬로 인해 소자 성능에 덜 민감한 요소인 소스-드레인 전극 형상의 크기에 있어서 차이가 발생할 수 있지만, 소자 성능에 중요한 요소로 작용하는 소스-드레인 전극 형상의 위치(게이트 전극과의 상대적인 위치)는 통상적인 노광 영역의 오정렬에 무관하게 일정하게 구현된다. 이에 반하여, 기존의 마스크(도 4(b))를 사용하여 얻어지는 소스-드레인 전극 형상은 통상적인 노광 영역의 정렬 오차로 인해 게이트 전극과 오정렬될 우려가 높다(도 1 참조).
플라스틱 기판을 사용할 경우, 기판의 평탄도가 위치에 따라 다양하게 나타난다. 따라서, 기존의 통상적인 소스-드레인 전극 정렬 방법에서는, 플라스틱 기판의 평탄도 특성은 결국 위치에 따라 정렬 상태간의 차이를 초래한다. 그러나, 본 실시형태에 따른 자기 정렬 방식은 이러한 플라스틱 기판의 평탄도 특성에 무관하게 일정한 소스-드레인 전극 정렬 결과를 얻을 수 있다. 따라서, 본 실시형태의 자기 정렬 방식을 통하여 제조 수율의 향상을 도모할 수 있다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되지 아니한다. 첨부된 청구범위에 의해 권리범위를 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.
도 1(a) 내지 (d)는 종래의 유기박막 트랜지스터 제조 공정에 있어서, 게이트와 소스-드레인 전극 형상 간의 여러가지 정렬 상태를 나타내는 평면도들이다.
도 2(a) 내지 (d)는 도 1(a) 내지 (d)에 각각 대응되는 AA' 라인을 따라 자른 단면도들이다.
도 3a 내지 도 3l은 본 발명의 실시형태에 따른 유기박막 트랜지스터의 제조 방법을 설명하기 위한 단면도들이다.
도 4는 종래의 소스-드레인 전극용 마스크 형상과 본 발명의 실시형태에서 사용되는 소스-드레인 전극용 마스크 형상을 나타낸 평면도이다.
도 5는 본 발명의 실시형태에에 따른 유기박막 트랜지스터 제조 공정에 있어서, 게이트와 소스-드레인 전극 형상 간의 정렬 상태를 나타내는 평면도들이다.
<도면의 주요 부분에 대한 부호의 설명>
101: 기판 102: 게이트 전극
103: 게이트 절연막 104: 형상반전 감광막
104a: 필드 영역의 감광막 104b: 게이트 전극 상부의 감광막
105: 광 표백물질막 140: 소스-드레인 전극용 금속막
140a: 소스-드레인 전극 160: 유기 반도체 박막
160a: 유기 반도체 박막 패턴 170: 보호막
170a: 보호막 패턴 180: 감광막 패턴

Claims (10)

  1. 게이트 전극이 형성된 기판 전면 상에 게이트 절연막을 형성하고, 상기 게이트 절연막 상에 형상반전 감광막과 광 표백물질막을 순차 도포하는 단계;
    마스크를 사용한 노광 공정을 통해 상기 형상반전 감광막 중에서 필드 영역의 감광막만을 선택적으로 감광시키는 단계;
    상기 형상반전 감광막 중에서 상기 게이트 전극 상부에 위치한 감광막이 감광되고 소스-드레인 전극 형성 영역의 감광막은 감광되지 않도록 상기 기판에 대해 전면 노광을 실시하는 단계;
    상기 전면 노광 후, 상기 광 표백물질막을 제거하고, 감광된 상기 필드 영역 및 게이트 전극 상부의 감광막을 열처리를 통해 형상 반전시키는 단계;
    상기 형상 반전 후, 전면 노광을 실시하여, 형상 반전되지 않은 상기 소스-드레인 전극 형성 영역의 감광막을 감광시키는 단계; 및
    현상액을 이용하여 상기 감광된 소스-드레인 전극 형성 영역의 감광막을 제거함으로써 소스-드레인 전극 형상이 구현된 감광막 패턴을 형성하는 단계;를 포함하는 유기박막 트랜지스터의 제조 방법.
  2. 제1항에 있어서,
    상기 소스-드레인 전극 형상이 구현된 감광막 패턴 형성 후, 상기 기판 전면 상에 소스-드레인 전극용 금속막을 증착하고 상기 감광막 패턴을 리프트-오프 공정에 의해 제거함으로써 소스-드레인 전극을 형성하는 단계; 및
    상기 소스-드레인 전극이 형성된 기판 상에 유기 반도체 박막 및 보호막을 순차 형성하는 단계를 더 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  3. 제1항에 있어서,
    상기 유기 반도체 박막 및 보호막 형성 후, 상기 게이트 전극 위의 보호막 상에 감광막 패턴을 형성하는 단계; 및
    상기 보호막 상의 감광막 패턴을 식각 마스크로 하여 상기 유기 반도체 박막 및 보호막을 선택적으로 식각하는 단계를 더 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  4. 제1항에 있어서,
    상기 필드 영역의 감광막만을 선택적으로 감광시키는 단계는, 소스 전극 형상과 드레인 전극 형상이 서로 연결되어 통합된 소스-드레인 전극용 마스크를 접촉형 정렬 노광 장비에 적용하여 상기 필드 영역만을 선택적으로 노광시키는 단계를 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  5. 제1항에 있어서,
    상기 게이트 전극 상부의 감광막을 감광시키는 전면 노광 단계는, 상기 게이트 전극 상부의 감광막만이 노광되고 상기 소스-드레인 전극 형성 영역의 감광막은 상기 광 표백물질막에 의해 차단되도록 하는 노광 에너지를 적용하는 단계를 포함하는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  6. 제1항에 있어서,
    상기 형상반전 감광막 및 광 표백물질막 도포 단계에서, 상기 형상반전 감광막과 광 표백물질막은 상기 게이트 전극 상부 영역에서 다른 영역에 비하여 낮은 두께로 도포되는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  7. 제1항에 있어서,
    상기 게이트 전극 상부의 감광막을 감광시키는 전면 노광 단계에서, 상기 게이트 전극 상부 영역에서는 광 표백물질을 투과하여 형상반전 감광막을 감광시키지만, 상기 소스-드레인 전극 형성 영역에서는 광 표백물질을 비투과하거나 감광이 안되는 노광 에너지 범위에서 전면 노광을 실시하는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  8. 제1항에 있어서,
    상기 기판은 플라스틱 기판인 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  9. 제1항에 있어서,
    상기 게이트 절연막은 유기물질로 형성되는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
  10. 제1항에 있어서,
    상기 게이트 전극은 상기 기판 상에서 300 nm 이상의 단차를 갖도록 고반사율의 금속막으로 형성되는 것을 특징으로 하는 유기박막 트랜지스터의 제조 방법.
KR1020080124277A 2008-12-08 2008-12-08 자기정렬에 의한 유기박막 트랜지스터 제조 방법 KR101016441B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080124277A KR101016441B1 (ko) 2008-12-08 2008-12-08 자기정렬에 의한 유기박막 트랜지스터 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080124277A KR101016441B1 (ko) 2008-12-08 2008-12-08 자기정렬에 의한 유기박막 트랜지스터 제조 방법

Publications (2)

Publication Number Publication Date
KR20100065766A KR20100065766A (ko) 2010-06-17
KR101016441B1 true KR101016441B1 (ko) 2011-02-21

Family

ID=42364957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080124277A KR101016441B1 (ko) 2008-12-08 2008-12-08 자기정렬에 의한 유기박막 트랜지스터 제조 방법

Country Status (1)

Country Link
KR (1) KR101016441B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110139A (ko) * 2000-06-02 2001-12-12 포만 제프리 엘 개량된 프로세스 윈도우를 구비한 완전 셀프-얼라인된tft를 형성하는 방법
JP2002050638A (ja) 2000-06-02 2002-02-15 Internatl Business Mach Corp <Ibm> プロセス・ウィンドウが改良された完全自己整合tftの形成方法
KR100832873B1 (ko) 2007-07-02 2008-06-02 한국기계연구원 자기정렬 유기박막 트랜지스터 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110139A (ko) * 2000-06-02 2001-12-12 포만 제프리 엘 개량된 프로세스 윈도우를 구비한 완전 셀프-얼라인된tft를 형성하는 방법
JP2002050638A (ja) 2000-06-02 2002-02-15 Internatl Business Mach Corp <Ibm> プロセス・ウィンドウが改良された完全自己整合tftの形成方法
KR100832873B1 (ko) 2007-07-02 2008-06-02 한국기계연구원 자기정렬 유기박막 트랜지스터 및 그 제조 방법

Also Published As

Publication number Publication date
KR20100065766A (ko) 2010-06-17

Similar Documents

Publication Publication Date Title
US7646442B2 (en) Liquid crystal display device including polycrystalline silicon thin film transistor and method of fabricating the same
KR940007451B1 (ko) 박막트랜지스터 제조방법
US9349760B2 (en) Method of manufacturing a TFT-LCD array substrate having light blocking layer on the surface treated semiconductor layer
KR101344980B1 (ko) 박막 트랜지스터 및 어레이 기판의 제조 방법, 및 마스크
JP2011023740A (ja) アモルファスシリコン薄膜トランジスタを基板の表面に形成する方法
TW200609633A (en) Organic thin film transistor array panel and manufacturing method thereof
KR20070004229A (ko) 박막트랜지스터기판 및 이의 제조방법
US20050017318A1 (en) Circuit array substrate and method of manufacturing the same
KR101050351B1 (ko) 박막트랜지스터 및 그 제조방법
US11676888B2 (en) Semiconductor devices
KR20100033748A (ko) 박막 트랜지스터 기판 및 그 제조 방법
US20200035709A1 (en) Method for manufacturing thin-film transistor array substrate and thin-film transistor array substrate
KR101016441B1 (ko) 자기정렬에 의한 유기박막 트랜지스터 제조 방법
KR100552296B1 (ko) 다결정규소박막트랜지스터기판의제조방법
JP2948965B2 (ja) 薄膜トランジスタの製造方法
KR20030018667A (ko) 액정 표시소자의 데이터 배선 형성방법
KR20090115449A (ko) 박막 트랜지스터 표시판 및 그 제조 방법
KR20080021909A (ko) 액정 표시 장치의 제조 방법
KR101022569B1 (ko) 박막트랜지스터 및 그 제조방법
KR100865257B1 (ko) 액정표시장치용 박막트랜지스터의 제조방법
US11417849B2 (en) Fabrication of corrugated gate dielectric structures using atomic layer etching
KR20200024327A (ko) 탑 게이트 박막 트랜지스터의 제조 방법
KR101273671B1 (ko) 산화물 반도체 박막 트랜지스터 제조방법, 이에 따라 제조된 산화물 반도체 박막 트랜지스터를 포함하는 디스플레이 장치 및 능동구동센서 장치
KR20080030761A (ko) 박막 트랜지스터 표시판의 제조 방법
JPH05152326A (ja) 薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 18