KR100995983B1 - Cross printing method and apparatus of circuit board - Google Patents

Cross printing method and apparatus of circuit board Download PDF

Info

Publication number
KR100995983B1
KR100995983B1 KR1020080064665A KR20080064665A KR100995983B1 KR 100995983 B1 KR100995983 B1 KR 100995983B1 KR 1020080064665 A KR1020080064665 A KR 1020080064665A KR 20080064665 A KR20080064665 A KR 20080064665A KR 100995983 B1 KR100995983 B1 KR 100995983B1
Authority
KR
South Korea
Prior art keywords
metal material
printing
polymer
substrate
circuit
Prior art date
Application number
KR1020080064665A
Other languages
Korean (ko)
Other versions
KR20100004475A (en
Inventor
안성훈
김민생
김윤미
가르시아 아드리안
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080064665A priority Critical patent/KR100995983B1/en
Publication of KR20100004475A publication Critical patent/KR20100004475A/en
Application granted granted Critical
Publication of KR100995983B1 publication Critical patent/KR100995983B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1366Spraying coating

Abstract

본 발명은 녹는점이 낮은 저온납 내지 가융합금(Fusible alloy) 등의 전도성 금속재를 용융시켜 기판 위에 인쇄함으로써 전자회로를 구성하는 과정에 있어 교차인쇄 과정을 통하여 회로 배선작업의 자동화와 기판의 공간을 절약할 수 있는 방법으로서, 더욱 상세하게는, 저온납 내지 가융합금(fusible alloy) 등의 재료를 쾌속조형기(RP: rapid prototyping), 잉크제트 프린터 내지 3D프린터를 이용하여 기판에 인쇄하여 회로를 구성하는 과정에 있어, 소정의 금속재료를 용융하는 공정; 용융된 금속재료를 소정의 분사부를 이용하여 소정의 기판 상에 분사하여 인쇄하는 공정; 인쇄 공정 중에서 회로배선이 교차하는 부분에 대한 절연공정을 포함하는 기판 상에 금속재료를 인쇄하는 방법 및 장치에 관한 것이다.According to the present invention, in the process of constructing an electronic circuit by melting a conductive metal material such as low-temperature lead or fusible alloy having a low melting point and printing it on a substrate, automation of circuit wiring work and cross-printing process are saved. In more detail, the circuit may be formed by printing materials such as low temperature lead or fusible alloy on a substrate using rapid prototyping (RP), ink jet printer or 3D printer. In the process, the step of melting a predetermined metal material; Spraying the molten metal material onto a predetermined substrate using a predetermined spraying portion and printing the same; The present invention relates to a method and apparatus for printing a metal material on a substrate including an insulation process for a portion where circuit wiring intersects in a printing process.

절연회로, 교차인쇄, 저온납, 가융합금, 절연폴리머, 쾌속조형기, 잉크젯프린터, 3D프린터 Insulation Circuit, Cross Print, Low Temperature Lead, Fusible Alloy, Insulation Polymer, Rapid Molding Machine, Inkjet Printer, 3D Printer

Description

회로기판의 교차인쇄방법 및 장치{CROSS PRINTING METHOD AND APPARATUS OF CIRCUIT BOARD}CROSS PRINTING METHOD AND APPARATUS OF CIRCUIT BOARD

본 발명은 저온납과 가융합금을 용융하여 전자기판에 인쇄하는 방법에 관한 것으로서, 기판 상에 위치한 전자부품들을 회로에 연결하기 위하여 전도성을 가지며 저온에서 녹는 납과 가융합금으로 기판에 인쇄하는 과정에서 교차인쇄를 실시하여 기판의 공간 절약과 배선의 교차작업을 자동적으로 수행하여 기판의 인쇄시간 내지 비용을 줄일 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of melting low temperature lead and fusible alloy and printing the same on an electronic plate. By cross-printing, space saving of the board and cross-working of the wiring can be performed automatically, thereby reducing printing time or cost of the board.

저온납은 전자부품을 기판에 납땜할 때 인두에 의한 열이 전자부품으로 전달되어 손상되는 것을 방지하기 위하여 사용되고 있는데, 일반 납(lead)의 녹는점인 327.5℃보다 상대적으로 매우 낮은 150℃ 이하의 저온에서 녹는 장점이 있다. 부가하여 저온납은 포함되는 합금의 조성과 성분비를 조절하여 원하는 녹는점을 가지도록 할 수 있다. 가융합금(Fusible alloy)은 200°C 이하의 저융점 금속 합금을 의미하며, 비스무트, 주석, 납, 카드뮴, 아연 및 인듐 등의 원소를 2개 또는 그 이상으로 조합하여 제작한다. 상기 저온납과 가융합금은 전도성을 지님과 동시에 낮은 녹는점을 가진 금속이기 때문에 용융 이후 쾌속 조형기 내지 프린터를 이용하여 분 사함으로써, 전자기판에 회로를 인쇄하는데 사용할 수 있으나 아직 이루어진 바는 없다.Low temperature solder is used to prevent the heat transferred by the iron to the electronic component when soldering the electronic component to the board. It is 150 ℃ or less, which is relatively much lower than the melting point of general lead, 327.5 ℃. It has the advantage of melting at low temperatures. In addition, low-temperature lead may be adjusted to have a desired melting point by adjusting the composition and composition of the alloy. Fusable alloy means a low melting point metal alloy of 200 ° C or less, and is made by combining two or more elements such as bismuth, tin, lead, cadmium, zinc and indium. Since the low-temperature lead and the fusible alloy are conductive and at the same time have a low melting point, they can be used to print a circuit on an electromagnetic plate by spraying using a rapid molding machine or a printer after melting, but have not yet been made.

기판 상에 소정의 회로를 연결하는 방법으로는 와이어 (납선; lead wire, 도금 단선 동선; copper wire), PCB(인쇄회로기판) 등이 있다. 상기 와이어를 이용한 방법은 기판의 회로를 배선할 때 사용하는 일반적인 방법으로서 납선, 무연 석도금선, 은도금 단선 동선 등을 이용한다. 도금선과 동선의 경우는 사용 전에 절연체인 피복을 벗겨낸 이후 기판에 인두를 이용해서 납땜을 하여 배선을 완성하면 되는 방법이다. 하지만, 이와 같은 와이어를 이용한 방법은 전자부품과 와이어를 고정하기 위한 납땜 과정, 절연체를 벗겨내는 과정 등의 부가적인 공정을 요구하고, 와이어의 교차에 의한 단선(short)의 위험성도 크다. 상기 PCB는 에폭시나 베이클라이트 수지 등의 절연판을 먼저 제작한 이후 도체인 구리(copper)박을 압착하여 붙이고 회로 배선에 따라서 레지스터를 인쇄한 후, 구리를 녹이기 위해서 식각(etching)액에 제작한 절연판을 넣어서 레지스터가 인쇄된 부분을 제외한 나머지를 부식시켜 제거한 이후 부품이 들어가야 할 부분에 구멍을 뚫어서 도금하고, 전기가 통해서는 안 되는 부분을 레지스트로 도포하여 완성하는 방법인데, 최근에서 구리선 대신에 배선을 광섬유로 바꾼 방법도 개발되었다. 하지만, 상기 PCB 방법은 단층 설계만 가능하여 기판의 공간사용에 한계를 지니고 있다. As a method of connecting a predetermined circuit on a substrate, there are a wire (lead wire; lead wire, copper plated copper wire), a printed circuit board (PCB), and the like. The method using the wire uses a lead wire, a lead-free tin plated wire, a silver plated single wire copper wire, or the like as a general method used when wiring a circuit of a substrate. In the case of plated wires and copper wires, peel off the insulator coating before use, and solder the substrate to the substrate using iron to complete the wiring. However, such a method using a wire requires additional processes such as a soldering process for fixing the electronic component and the wire, and a process of peeling off the insulator, and there is also a high risk of a short circuit due to the intersection of the wires. The PCB is made of an insulating plate such as epoxy or bakelite resin first, and then a copper foil, which is a conductor, is pressed and pasted, and a resistor is printed according to the circuit wiring, and then an insulating plate manufactured in an etching solution is used to melt copper. It is a method to finish by inserting a hole in the part where the part should go and plating it, and applying the resist with a resist. A method of converting to fiber has also been developed. However, the PCB method has a limitation in using space of a substrate because only a single layer design is possible.

기판에 재료를 분사하는 방법으로는 잉크제트 기술을 이용하는 것과 쾌속 조형기를 이용하는 방법이 있는데, 상기 잉크제트 기술은 공정, 노광, 현상, 에칭 등의 여러 공정과 유해물질의 사용, 그리고 재료의 많은 손실을 갖는 리소그라피 작 업 대체하는 인쇄기술로써 대기압 하에서 한 번의 인쇄와 건조의 간단한 공정을 가진다는 장점으로, 이 기술은 대형기판에서의 경쟁력 증대, 맞춤형의 다양한 설계, 필요부분만의 인쇄, 환경친화형, 및 재료이용 효율의 향상 등으로 전자회로기판 인쇄에 사용되고 있다. 또한, 잉크재료 역시 고속 분사에 필요한 저점도 특성과 장기 신뢰성을 가져야 하며, 유연기판의 플라스틱 재료의 용융온도 이하에서 잉크의 금속입자 소결이 가능하고, 충분한 전기전도성과 분산성을 갖기 위해서는 금속입자가 나노 크기가 되어야 한다. 그리고 기판재질과 적당한 젖음성을 가져야 건조 후 패턴을 설계대로 형성할 수 있어야 하고, 나노입자 사이의 엉킴 대책도 필요하다. 잉크제트 기술의 재료로는 이미 은과 금의 나노입자 잉크 페이스트가 판매되고 있으나, 가격이 비싸다는 단점이 있어 현재 동(Cu)에 대한 연구도 진행되고 있다. 동은 은에 비해 Migration의 문제가 적고, 재료비도 낮은 장점이 있는 반면, 산화하기 쉬운 단점이 있다.The method of spraying the material onto the substrate includes ink jet technology and rapid molding machine. The ink jet technology uses various processes such as process, exposure, development, etching, use of harmful substances, and loss of material. It is a printing technology that replaces lithography work with the advantage of having a simple process of printing and drying under atmospheric pressure. This technology increases competitiveness on large substrates, various designs of customized parts, printing only necessary parts, and environmentally friendly type. And printed circuit boards have been used to improve the efficiency of material use. In addition, the ink material must also have a low viscosity characteristic and long-term reliability required for high-speed injection, and the metal particles can be sintered below the melting temperature of the plastic material of the flexible substrate, and the metal particles must have sufficient electrical conductivity and dispersibility. It should be nano sized. In addition, the substrate material and proper wettability must be able to form a pattern after drying, and countermeasures between the nanoparticles are also required. Silver and gold nanoparticle ink pastes are already sold as the inkjet material, but research on copper is currently underway due to the high price. Copper has less migration problems and lower material costs than silver, but it is easy to oxidize.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 녹는점이 일반적인 금속재료에 비해서 낮은 저온납과 가융합금(fusible alloy)을 이용하여 기판에 인쇄하는 방법에 있어, 기판의 공간을 절약하기 위해서 회로가 교차하는 부분에 폴리머를 부분 인쇄함으로써 절연 교차하는 공정을 포함하여 회로의 단선(short)을 방지하는 공정을 포함한다.SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems as described above, and an object of the present invention is a method of printing on a substrate using low temperature lead and fusible alloy having a lower melting point than a general metal material. It includes a process of preventing short circuit of the circuit, including the process of insulation crossing by partially printing the polymer at the intersection of the circuit to save space.

본 발명은 상기 목적을 달성하기 위해서, 소정의 금속재료를 용융하는 공정; 용융된 금속재료를 소정의 압축기와 분사노즐을 이용하여 소정의 기판 상에 분사하는 공정; 인쇄 공정 중에서 교차되는 부분에 대한 절연공정을 수행하며, 상기의 공정은 쾌속조형기, 잉크제트 프린터 내지 3D프린터를 이용하여 수행된다.The present invention, in order to achieve the above object, a step of melting a predetermined metal material; Spraying the molten metal material onto a predetermined substrate using a predetermined compressor and a spray nozzle; An insulation process is performed on the crossover part of the printing process, and the above process is performed using a rapid molding machine, an ink jet printer, or a 3D printer.

본 발명은 저온납과 가융합금을 용융시킨 후 쾌속조형기, 잉크젯프린터, 3D프린터 등을 이용하여 기판에 인쇄하여 회로를 구성함에 있어, 회로를 교차하게 인쇄하되 교차지점에서 발생할 수 있는 단선을 예방하기 위하여 폴리머를 이용하여 절연 공정을 추가함으로써 공간을 절약하는 효과를 기대할 수 있으며, 이에 국한되지 않고 저온에서 녹는 다양한 금속재료를 이용할 수 있을 뿐만 아니라, 인쇄하는 대상물 역시 상기의 금속재료와 결합력을 갖는 만능기판, 유연기판(Flexible circuit) 등 다양한 재료에 이용할 수 있는 매우 유용한 효과가 있다.The present invention is to form a circuit by printing on a substrate using a rapid molding machine, an inkjet printer, a 3D printer after melting the low-temperature lead and the fusible alloy, to prevent the disconnection that may occur at the intersection of the printed circuit In order to save space by adding an insulation process using a polymer in order to be able to expect the effect, not only limited to a variety of metal materials that can be melted at low temperatures, but also the printing object is a universal having a bonding force with the metal material There are very useful effects that can be used for various materials such as substrates and flexible circuits.

이하, 본 발명의 실시 예가 도시된 첨부도면을 참고하여 다음과 같이 설명하겠다. 하기의 실시 예는 본 발명이 이루고자하는 교차 인쇄장치 및 방법의 하나의 예이며, 본 발명의 범위가 하기의 실시 예에 국한하는 것은 아니다.Hereinafter, with reference to the accompanying drawings showing an embodiment of the present invention will be described as follows. The following embodiment is one example of the cross-printing apparatus and method to be achieved by the present invention, the scope of the present invention is not limited to the following embodiment.

도 1은 본 발명의 실시 예에 따른 교차 인쇄 장치의 개략도이다. 1 is a schematic diagram of a cross-printing apparatus according to an embodiment of the present invention.

도 1에서 알 수 있듯이, 교차 인쇄 장치는 통제제어부(100), X, Y축 마이크로 스테이지부(200), Z축 마이크로 스테이지부(300), 금속재료 분사부(400), 폴리머 분사부(450), 압력 제어부(500), 온도 제어부(600), 및 압축펌프부(700)를 포함하여 구성된다. As can be seen in Figure 1, the cross-printing device is a control unit 100, X, Y-axis micro-stage unit 200, Z-axis micro-stage unit 300, metal material injection unit 400, polymer injection unit 450 ), A pressure controller 500, a temperature controller 600, and a compression pump 700.

상기 소정의 금속재료의 녹는점은 70 ~ 200℃이고, 상기 금속재료를 기판 상에 분사하는 공정은 1 ~ 100 kPa의 압력으로 조정하였으며, 교차 지점에 절연을 위한 폴리머의 녹이기 위해서 80 ~ 200℃로 온도를 조절하고, 분사 압력은 10 ~ 500 kPa 범위로 설정하였다. 또한, 분사되어 기판에서 인쇄되는 저온납과 가융합금의 두께를 결정하기 위하여 마이크로 스테이지의 이송속도는 0.1 ~ 25 mm/s로 하였고, 분사 노즐(nozzle)의 직경은 100 ~ 1,000 ㎛, 분사 노즐과 기판과의 높이는 10 ~ 100 mm 범위로 하였다. 또한, 인쇄 도중 분사를 멈추기 위해서 진공 기능을 사용하였는데 이를 위해서 압력 공급 장치에 진공 기능을 추가하였다.The melting point of the predetermined metal material is 70 ~ 200 ℃, the process of spraying the metal material on the substrate was adjusted to a pressure of 1 ~ 100 kPa, 80 ~ 200 ℃ to melt the polymer for insulation at the intersection point The temperature was adjusted, and the spray pressure was set in the range of 10 to 500 kPa. In addition, in order to determine the thickness of the low-temperature lead and fusible alloy sprayed and printed on the substrate, the feed rate of the micro stage was 0.1 to 25 mm / s, and the diameter of the spray nozzle was 100 to 1,000 μm, The height with the board | substrate was 10-100 mm. In addition, a vacuum function was used to stop the spraying during printing, which added a vacuum function to the pressure supply.

상기 통제 제어부(100)는 NC 코드를 수행할 수 있는 프로그램이 내장되어 이를 통해 상기 X, Y축 마이크로 스테이지부(200), Z축 마이크로 스테이지부(300)의 이동을 조성하고, 압력 제어부(500)를 통제하여 금속재료 분사부(400)와 폴리머 분 사부(450)에 제공되는 압력을 조절함으로써 기판(S)에 교차 인쇄가 가능하게 된다.The control control unit 100 has a program capable of executing an NC code is built therein to facilitate the movement of the X, Y-axis micro-stage unit 200, Z-axis micro-stage unit 300, the pressure control unit 500 ) By controlling the pressure provided to the metal material injection unit 400 and the polymer injection unit 450, it is possible to cross-print the substrate (S).

상기 X, Y축 마이크로 스테이지부(200)는 인쇄하고자 하는 기판(S)을 위치시켜 고정함으로써 통제 제어부(100)에 의해서 각각 X, Y축으로 이동이 가능하게 되고, Z축 마이크로 스테이지부(300)는 분사부(400, 450)를 고정하여 통제 제어부(100)에 의해서 Z축으로 이동가능하게 된다. The X and Y-axis micro-stage unit 200 is moved to the X, Y-axis by the control control unit 100 by positioning and fixing the substrate S to be printed, Z-axis micro-stage unit 300 ) Is movable to the Z axis by the control unit 100 by fixing the injection unit (400, 450).

상기 금속 재료 분사부(400)와 폴리머 분사부(450)는 통제 제어부(100) 제어에 따른 Z축 마이크로 스테이지(300)의 이동에 의해서 기판(S)과의 높이가 조절되고, 압력 제어부(500)에 의해서 압력, 진공이 제어되어 분사 및 분사 중지가 가능하게 되고, 온도 제어부(600)에 의해서 재료의 용융이 가능하게 된다. The height of the metal material injection unit 400 and the polymer injection unit 450 is adjusted with the substrate S by the movement of the Z-axis micro stage 300 according to the control of the control unit 100, and the pressure control unit 500. The pressure and the vacuum are controlled to control the injection and the injection stop, and the material can be melted by the temperature control unit 600.

상기 압력 제어부(500)는 압축펌프부(700)와 연결되어 통제 제어부(100)의 제어와 압축펌프부(700)작동에 의해서 분사부(400, 450)로 압력과 진공을 제공한다.The pressure control unit 500 is connected to the compression pump unit 700 to provide pressure and vacuum to the injection units 400 and 450 by the control of the control control unit 100 and the operation of the compression pump unit 700.

상기 온도 제어부(600)는 온도 조절장치가 수용되어 있어서 분사부(400, 450)에 대한 온도 조절이 가능하게 한다.The temperature control unit 600 is accommodated in the temperature control device to enable the temperature control for the injection unit (400, 450).

이하에서는 본 발명에 따른 교차 인쇄 방법에 대해서 도 1 내지 도 2에 따른 교차 인쇄 장치를 참조하여 설명하기로 한다. 다만, 본 발명에 따른 교차 인쇄 방법은 반드시 도 1 내지 도 2에 따른 교차 인쇄 장치만을 이용하는 것으로 국한되는 것은 아니다.Hereinafter, a cross printing method according to the present invention will be described with reference to the cross printing apparatus according to FIGS. 1 to 2. However, the cross printing method according to the present invention is not necessarily limited to using only the cross printing apparatus according to FIGS. 1 to 2.

우선, 도 1 및 도 2에서와 같이 소정의 금속재료(M)인 저온납 또는 가융합금을 금속 분사부(400)의 내부배럴(410) 공급한다.First, as shown in FIGS. 1 and 2, the low temperature lead or fusible alloy, which is a predetermined metal material M, is supplied to the inner barrel 410 of the metal injection unit 400.

이때 내부 배럴(410) 하부에는 인쇄되는 배선의 두께를 조절하기 위하여 부착되는 분사 니들(440) 직경의 크기는 100 ~ 1,000 ㎛ 범위를 가진다. 또한, 인쇄 재료(M)의 용융 및 분사시 분사 니들(440) 부위 냉각에 의한 막힘 현상을 방지하기 위하여 방열 캡(430)을 위치시킨다. At this time, the diameter of the injection needle 440 attached to the lower portion of the inner barrel 410 to adjust the thickness of the printed wiring has a range of 100 ~ 1,000 ㎛. In addition, the heat dissipation cap 430 is positioned to prevent clogging due to cooling of the injection needle 440 when the printing material M is melted and sprayed.

또한, 내부배럴(410)의 상부에는 압력 제어부(500)와 연결되는 압력 캡(510)을 끼운다.In addition, the upper portion of the inner barrel 410 is fitted with a pressure cap 510 connected to the pressure control unit 500.

동일한 방법으로 절연재료(M)인 폴리머를 폴리머 분사부(450)의 내부배럴(410)에 공급한 이후 전술한 방법과 동일하게 압력캡(510)을 끼우지만, 점성이 높은 폴리머의 원활한 분사를 위하여 분사 니들(440) 및 방열 캡(430)은 제거한다.In the same way, after supplying the polymer, which is the insulating material M, to the inner barrel 410 of the polymer injection part 450, the pressure cap 510 is inserted in the same manner as described above, but the injection of the highly viscous polymer is smooth. In order to remove the injection needle 440 and the heat dissipation cap 430.

상기 공급된 금속재료, 폴리머 재료(M)를 녹이기 위해서 온도 제어부(600)에서 온도를 재료의 녹는점 이상으로 높이게 되면, 분사부(400, 450)에 위치한 세라믹 실린더(420)의 온도가 연동하여 올라가게 된다. 그리고 일정한 시간이 지나게 되면 세라믹 실린더(420)와 접촉하고 있는 스틸 내부배럴(410) 안에 위치한 재료(M)가 녹게 된다. When the temperature controller 600 increases the temperature above the melting point of the material in order to melt the supplied metal material and the polymer material M, the temperature of the ceramic cylinder 420 located in the injection parts 400 and 450 is interlocked. Goes up. When a certain time passes, the material M located in the steel inner barrel 410 in contact with the ceramic cylinder 420 is melted.

압력 제어부(500)를 통해서 용융된 금속재료 및 폴리머 재료(M)가 분사될 수 있는 최적의 압력으로 맞추어 놓는데, 금속재료인 경우에는 점성이 낮기 때문에 1 ~ 100 kPa으로 하고, 폴리머 재료는 상대적으로 점성이 높으므로 10 ~ 500 kPa의 고압력으로 설정한다. The pressure control unit 500 adjusts the molten metal material and the polymer material M to an optimal pressure to be injected. In the case of the metal material, since the viscosity is low, it is set to 1 to 100 kPa, and the polymer material is relatively Since the viscosity is high, set it at a high pressure of 10 to 500 kPa.

통제 제어부(100)의 컴퓨터상에서 NC 코드를 완성하여 마이크로 스테이지(200, 300)의 이송속도를 0.1 ~ 25 mm/s 범위에서 설정하고, Z축 마이크로 스테 이지(300)의 분사 높이를 10 ~ 100 mm 범위로 조절한다. 그리고 인쇄하고자 하는 회로 배선 및 교차 지점에 대한 폴리머 부분 인쇄 지정을 완성한다.Complete the NC code on the computer of the control controller 100 to set the feed rates of the micro stages 200 and 300 in the range of 0.1 to 25 mm / s, and set the injection height of the Z-axis micro stage 300 to 10 to 100. Adjust to mm range. Then complete the polymer partial print designation for the circuit wiring and intersection points you wish to print.

다음, 장치를 작동하면 녹는점이 낮고 전도성을 갖는 금속재료(M)인 저온납 또는 가융합금이 기판(S)에 교차 인쇄되고, 이때 교차 지점은 전술한 절연의 폴리머에 의해서 부분 인쇄되어 단선(short)을 예방하게 된다. Next, when the device is operated, low-temperature lead or fusible alloy, which is a low melting point and conductive metal material (M), is cross-printed on the substrate (S), where the cross-point is partially printed by the polymer of the above-described insulation to short circuit (short). ) Will be prevented.

상기의 실시 예에 따라 하기와 같이 실험을 하였다. 하기의 실험 예는 본 발명을 통해 이루고자 하는 하나의 형태일 뿐이며, 본 발명은 하기의 실험 예에 국한되지 않는다.According to the above embodiment, the experiment was performed as follows. The following experimental examples are only one form to be achieved through the present invention, and the present invention is not limited to the following experimental examples.

절연회로 인쇄를 위한 금속 재료는 저온납(녹는점; 105℃, Pb, Bi, Sn 합금)을 준비하고, 절연을 위한 폴리머 재료는 PCL(polycaprolactone, Mn 80,000)을 준비하였으며, 기판은 가로와 세로에 전자부품을 꽂기 위한 구멍(hole)이 각각 20개씩 있는 만능기판(81mm × 81mm)을 준비하였다. Low-temperature lead (melting point; 105 ° C, Pb, Bi, Sn alloy) was prepared for the printing of the insulated circuit, and polymer material for the insulation was prepared with polycaprolactone (Mn 80,000). A universal substrate (81 mm x 81 mm), each having 20 holes for inserting electronic components, was prepared.

도 3a,b는 기존의 전선에 의한 회로 연결한 앞,뒷면을 개략화하여 도시하였고, 도 4a,b는 상기의 실시 예를 통하여 구성할 회로의 앞, 뒷면의 개략적인 형상을 도시하였다. 상기의 실시 예에 따른 교차공정장치 및 방법에 하기의 표 1과 같은 공정 조건을 적용하여 도 5와 같은 소정의 전자키트 배선을 완성하였는데, 공간의 절약 내지 공정의 단순성으로 시간의 절약도 도모할 수 있었다.3A and 3B schematically illustrate the front and rear surfaces of a circuit connected by a conventional wire, and FIGS. 4A and 4B illustrate schematic shapes of the front and rear surfaces of a circuit to be constructed through the above embodiments. By applying the process conditions shown in Table 1 to the cross-process apparatus and method according to the above embodiment, the predetermined electronic kit wiring as shown in FIG. 5 was completed, and the time can be saved by saving space or simplicity of the process. Could.

표 1TABLE 1

Figure 112008048321202-pat00001
Figure 112008048321202-pat00001

도 1은 본 발명의 실시 예에 따른 교차 인쇄 장치의 개략도,1 is a schematic diagram of a cross printing apparatus according to an embodiment of the present invention;

도 2는 본 발명의 실시 예에 따른 분사부 장치의 개략도,2 is a schematic view of an injection device according to an embodiment of the present invention;

도 3a는 기존 방식에 따른 만능기판 회로 배선의 윗면 개략도,3A is a schematic top view of a universal substrate circuit wiring line according to the conventional scheme,

도 3a는 기존 방식에 따른 만능기판 회로 배선의 뒷면 개략도,Figure 3a is a schematic rear view of the universal circuit board wiring according to the conventional scheme,

도 4a는 본 발명의 실시 예에 따른 교차인쇄 절연회로 배선의 윗면 개략도,4A is a schematic top view of a cross-printed insulation circuit wiring according to an embodiment of the present invention;

도 4b는 본 발명의 실시 예에 따른 교차인쇄 절연회로 배선의 윗면 개략도,4B is a schematic top view of a cross-printed insulation circuit wiring according to an embodiment of the present invention;

도 5는 본 발명의 실시 예에 따른 교차 인쇄된 절연회로의 광학 이미지.5 is an optical image of a cross printed insulating circuit according to an embodiment of the present invention.

Claims (8)

금속재료를 용융하는 공정;Melting a metal material; 금속재료 분사부를 이용하여 기판 상에 용융된 금속재료를 분사하는 회로인쇄공정; 및A circuit printing process of spraying the molten metal material on the substrate using the metal material spraying unit; And 폴리머 분사부를 이용하여 회로가 교차되는 부분에 폴리머를 분사하는 절연공정을 포함하는 회로기판의 교차인쇄방법.A cross-printing method of a circuit board comprising an insulation process of injecting a polymer to a portion where a circuit crosses by using a polymer injection unit. 제 1 항에 있어서,The method of claim 1, 상기 금속재료는 녹는점이 200℃이하인 전도성의 저온납 또는 가융합금(fusible alloy)이고, 상기 폴리머는 점성과 절연특성을 갖는 폴리머인 것을 특징으로 하는 회로기판의 교차인쇄방법.The metal material is a conductive low-temperature lead or fusible alloy having a melting point of 200 ° C or less, and the polymer is a polymer having a viscosity and insulation characteristics. 제 1 항에 있어서,The method of claim 1, 상기 기판은 만능기판 또는 유동기판(flexible circuit)인 것을 특징으로 하는 회로기판의 교차인쇄방법.And said substrate is a universal substrate or a flexible circuit. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 금속재료 분사부의 실린더 온도를 70~200℃로, 압력을 1~100kPa로 조절하여 금속재료를 용융시키며,Melting the metal material by adjusting the cylinder temperature of the metal material injection unit to 70 ~ 200 ℃, the pressure to 1 ~ 100kPa, 상기 기판에 인쇄되는 배선의 두께를 조절할 수 있도록 상기 분사부의 분사니들 직경이 100~1,000㎛인 것을 특징으로 하는 회로기판의 교차인쇄방법.The cross-printing method of the circuit board, characterized in that the injection needle diameter of the injection portion is 100 ~ 1,000㎛ to adjust the thickness of the wiring printed on the substrate. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 폴리머 분사부의 세라믹 실린더 온도를 80~200℃로, 압력을 10~500kPa로 조절하여 폴리머를 용융시키는 것을 특징으로 하는 회로기판의 교차인쇄방법.The method of cross-printing a circuit board, characterized in that to melt the polymer by adjusting the ceramic cylinder temperature of the polymer injection unit to 80 ~ 200 ℃, the pressure to 10 ~ 500kPa. 청구항 1에 따른 회로기판의 교차인쇄방법을 이용한 교차인쇄장치에 있어서,In the cross-printing apparatus using the cross-printing method of the circuit board according to claim 1, 기판을 X축, Y축 및 X축으로 이동시키는 마이크로 스테이지부;Micro stage unit for moving the substrate in the X-axis, Y-axis and X-axis; 상기 기판에 용융된 금속재료를 분사하여 회로를 인쇄하는 금속재료 분사부;A metal material injection unit for printing a circuit by injecting a molten metal material on the substrate; 상기 회로의 교차부에 용융된 폴리머를 분사하여 절연하는 폴리머 분사부;A polymer injector for insulating by injecting a molten polymer at an intersection of the circuits; 상기 금속재료 분사부와 상기 폴리머 분사부의 온도를 조절하는 온도 제어부;A temperature control unit for controlling the temperature of the metal material injection unit and the polymer injection unit; 상기 금속재료 분사부와 상기 폴리머 분사부의 압력을 조절하는 압력 제어부;A pressure controller configured to adjust pressures of the metal material injection unit and the polymer injection unit; 상기 마이크로 스테이지부, 상기 금속재료 분사부, 상기 폴리머 분사부, 상기 온도 제어부, 상기 압력 제어부의 작동을 제어하는 통제 제어부를 포함하는 회로기판의 교차인쇄장치.And a control control unit for controlling the operation of the micro stage unit, the metal material injection unit, the polymer injection unit, the temperature control unit, and the pressure control unit. 삭제delete 삭제delete
KR1020080064665A 2008-07-04 2008-07-04 Cross printing method and apparatus of circuit board KR100995983B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080064665A KR100995983B1 (en) 2008-07-04 2008-07-04 Cross printing method and apparatus of circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080064665A KR100995983B1 (en) 2008-07-04 2008-07-04 Cross printing method and apparatus of circuit board

Publications (2)

Publication Number Publication Date
KR20100004475A KR20100004475A (en) 2010-01-13
KR100995983B1 true KR100995983B1 (en) 2010-11-23

Family

ID=41814045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080064665A KR100995983B1 (en) 2008-07-04 2008-07-04 Cross printing method and apparatus of circuit board

Country Status (1)

Country Link
KR (1) KR100995983B1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9370896B2 (en) 2013-06-05 2016-06-21 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9548430B2 (en) 2014-10-23 2017-01-17 Samsung Electronics Co., Ltd. Method of manufacturing light emitting diode package
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9840035B2 (en) 2016-04-15 2017-12-12 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US10076876B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Three dimensional printing
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US10216165B2 (en) 2016-09-06 2019-02-26 Cc3D Llc Systems and methods for controlling additive manufacturing
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10345068B2 (en) 2017-02-13 2019-07-09 Cc3D Llc Composite sporting equipment
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US10589463B2 (en) 2017-06-29 2020-03-17 Continuous Composites Inc. Print head for additive manufacturing system
US10603840B2 (en) 2016-09-06 2020-03-31 Continuous Composites Inc. Additive manufacturing system having adjustable energy shroud
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10717512B2 (en) 2016-11-03 2020-07-21 Continuous Composites Inc. Composite vehicle body
US10723073B2 (en) 2017-01-24 2020-07-28 Continuous Composites Inc. System and method for additively manufacturing a composite structure
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
US10821720B2 (en) 2016-11-04 2020-11-03 Continuous Composites Inc. Additive manufacturing system having gravity-fed matrix
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11110654B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11235539B2 (en) 2018-09-13 2022-02-01 Continuous Composites Inc. Fiber management arrangement and method for additive manufacturing system
US11247395B2 (en) 2018-10-26 2022-02-15 Continuous Composites Inc. System for additive manufacturing
US11292192B2 (en) 2018-11-19 2022-04-05 Continuous Composites Inc. System for additive manufacturing
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11338503B2 (en) 2019-01-25 2022-05-24 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11760021B2 (en) 2021-04-27 2023-09-19 Continuous Composites Inc. Additive manufacturing system
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
US11958245B2 (en) 2022-03-09 2024-04-16 Continuous Composites Inc. System for additively manufacturing composite structure

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835031A1 (en) * 2013-09-19 2021-06-16 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10195778B2 (en) 2013-10-15 2019-02-05 Wolf & Associates, Inc. Three-dimensional printer systems and methods
USD733196S1 (en) 2014-02-03 2015-06-30 Wolf And Associates, Inc. 3D printer enclosure
KR101721898B1 (en) * 2014-08-13 2017-03-31 주식회사 이엠따블유 Metal powder spraying apparatus for forming metal pattern
KR101602063B1 (en) 2014-10-17 2016-03-09 목포해양대학교 산학협력단 3-dimension printing apparatus and method for packaging a chip using the same
EP3345742A1 (en) * 2014-11-17 2018-07-11 Markforged, Inc. Multilayer fiber reinforcement design for 3d printing
USD760306S1 (en) 2015-03-20 2016-06-28 Wolf & Associates, Inc. 3D printer enclosure
KR101753962B1 (en) 2015-07-03 2017-07-06 목포해양대학교 산학협력단 Method for fabricating case of electronics using 3-dimension printing apparatus
WO2017123726A1 (en) * 2016-01-12 2017-07-20 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
AU2017208085B2 (en) * 2016-01-15 2019-09-12 Markforged, Inc. Continuous and random reinforcement in a 3D printed part
US10994480B2 (en) 2016-06-08 2021-05-04 Wolf & Associates, Inc. Three-dimensional printer systems and methods
CN106211610A (en) * 2016-07-27 2016-12-07 无锡深南电路有限公司 A kind of PCB circuit processing method and spraying equipment
CN106507579A (en) * 2016-11-30 2017-03-15 上海摩软通讯技术有限公司 Integrated circuit board manufacturing method and device based on 3D printing technique
CN108566736B (en) * 2018-06-22 2023-09-26 北京梦之墨科技有限公司 Printing device and preparation method of printed circuit
CN109246939B (en) * 2018-09-26 2020-08-11 有研粉末新材料(北京)有限公司 Method for manufacturing copper circuit board pattern in additive mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561009B1 (en) 2003-01-28 2006-03-16 가시오게산키 가부시키가이샤 Liquid ejecting apparatus and method thereof
KR100572606B1 (en) * 2002-11-19 2006-04-24 세이코 엡슨 가부시키가이샤 Multilayer circuit board, manufacturing method therefor, electronic device, and electronic apparatus
KR100633846B1 (en) * 2005-03-23 2006-10-13 삼성전기주식회사 Conductive wiring material, method for manufacturing wiring borard and wiring borard
KR100729838B1 (en) * 2006-03-27 2007-06-18 한국기계연구원 Via hole conducting system of circuit board and the conducting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572606B1 (en) * 2002-11-19 2006-04-24 세이코 엡슨 가부시키가이샤 Multilayer circuit board, manufacturing method therefor, electronic device, and electronic apparatus
KR100561009B1 (en) 2003-01-28 2006-03-16 가시오게산키 가부시키가이샤 Liquid ejecting apparatus and method thereof
KR100633846B1 (en) * 2005-03-23 2006-10-13 삼성전기주식회사 Conductive wiring material, method for manufacturing wiring borard and wiring borard
KR100729838B1 (en) * 2006-03-27 2007-06-18 한국기계연구원 Via hole conducting system of circuit board and the conducting method

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9987798B2 (en) 2012-08-29 2018-06-05 Cc3D Llc. Method and apparatus for continuous composite three-dimensional printing
US11161297B2 (en) 2012-08-29 2021-11-02 Continuous Composites Inc. Control methods for additive manufacturing system
US10744708B2 (en) 2012-08-29 2020-08-18 Continuous Compostites Inc. Method and apparatus for continuous composite three-dimensional printing
US11173660B2 (en) 2012-08-29 2021-11-16 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US11577455B2 (en) 2012-08-29 2023-02-14 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US10603836B2 (en) 2012-08-29 2020-03-31 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US11584069B2 (en) 2012-08-29 2023-02-21 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US10449711B2 (en) 2012-08-29 2019-10-22 Continuous Composites Inc. Method and apparatus for continuous composite three dimensional printing
US11590699B2 (en) 2012-08-29 2023-02-28 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US10744707B2 (en) 2012-08-29 2020-08-18 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US10315355B2 (en) 2012-08-29 2019-06-11 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US10315356B2 (en) 2012-08-29 2019-06-11 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US10759109B2 (en) 2012-08-29 2020-09-01 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US11865775B2 (en) 2012-08-29 2024-01-09 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US11926094B2 (en) 2012-08-29 2024-03-12 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US11945160B2 (en) 2012-08-29 2024-04-02 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10821662B2 (en) 2013-03-22 2020-11-03 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US10016942B2 (en) 2013-03-22 2018-07-10 Markforged, Inc. Three dimensional printing
US10040252B2 (en) 2013-03-22 2018-08-07 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US10076875B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US10076876B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Three dimensional printing
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US10099427B2 (en) 2013-03-22 2018-10-16 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10953610B2 (en) 2013-03-22 2021-03-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US11148409B2 (en) 2013-03-22 2021-10-19 Markforged, Inc. Three dimensional printing of composite reinforced structures
US11787104B2 (en) 2013-03-22 2023-10-17 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US11014305B2 (en) 2013-03-22 2021-05-25 Markforged, Inc. Mid-part in-process inspection for 3D printing
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US11065861B2 (en) 2013-03-22 2021-07-20 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US11759990B2 (en) 2013-03-22 2023-09-19 Markforged, Inc. Three dimensional printing
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US10717228B2 (en) 2013-03-22 2020-07-21 Markforged, Inc. Three dimensional printing
US10434702B2 (en) 2013-03-22 2019-10-08 Markforged, Inc. Additively manufactured part including a compacted fiber reinforced composite filament
US9327453B2 (en) 2013-03-22 2016-05-03 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9327452B2 (en) 2013-03-22 2016-05-03 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US11577462B2 (en) 2013-03-22 2023-02-14 Markforged, Inc. Scanning print bed and part height in 3D printing
US10603841B2 (en) 2013-03-22 2020-03-31 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US10611082B2 (en) 2013-03-22 2020-04-07 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US11420382B2 (en) 2013-03-22 2022-08-23 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10696039B2 (en) 2013-03-22 2020-06-30 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9370896B2 (en) 2013-06-05 2016-06-21 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
US10814604B2 (en) 2014-07-29 2020-10-27 Continuous Composites Inc. Method and apparatus for additive mechanical growth of tubular structures
US9548430B2 (en) 2014-10-23 2017-01-17 Samsung Electronics Co., Ltd. Method of manufacturing light emitting diode package
US10668663B2 (en) 2016-04-15 2020-06-02 Continuous Composites Inc. Head and system for continuously manufacturing composite hollow structure
US10335999B2 (en) 2016-04-15 2019-07-02 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10272615B2 (en) 2016-04-15 2019-04-30 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10232551B2 (en) 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10213957B2 (en) 2016-04-15 2019-02-26 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10981327B2 (en) 2016-04-15 2021-04-20 Continuous Composites Inc. Head and system for continuously manufacturing composite tube
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure
US9840035B2 (en) 2016-04-15 2017-12-12 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10901386B2 (en) 2016-09-06 2021-01-26 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10895858B2 (en) 2016-09-06 2021-01-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10216165B2 (en) 2016-09-06 2019-02-26 Cc3D Llc Systems and methods for controlling additive manufacturing
US10543640B2 (en) 2016-09-06 2020-01-28 Continuous Composites Inc. Additive manufacturing system having in-head fiber teasing
US11579579B2 (en) 2016-09-06 2023-02-14 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10603840B2 (en) 2016-09-06 2020-03-31 Continuous Composites Inc. Additive manufacturing system having adjustable energy shroud
US10625467B2 (en) 2016-09-06 2020-04-21 Continuous Composites Inc. Additive manufacturing system having adjustable curing
US10632673B2 (en) 2016-09-06 2020-04-28 Continuous Composites Inc. Additive manufacturing system having shutter mechanism
US10647058B2 (en) 2016-09-06 2020-05-12 Continuous Composites Inc. Control methods for additive manufacturing system
US10759113B2 (en) 2016-09-06 2020-09-01 Continuous Composites Inc. Additive manufacturing system having trailing cure mechanism
US11029658B2 (en) 2016-09-06 2021-06-08 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11000998B2 (en) 2016-09-06 2021-05-11 Continous Composites Inc. Additive manufacturing system having in-head fiber-teasing
US10994481B2 (en) 2016-09-06 2021-05-04 Continuous Composites Inc. Additive manufacturing system having in-head fiber-teasing
US10864715B2 (en) 2016-09-06 2020-12-15 Continuous Composites Inc. Additive manufacturing system having multi-channel nozzle
US10766191B2 (en) 2016-09-06 2020-09-08 Continuous Composites Inc. Additive manufacturing system having in-head fiber weaving
US10908576B2 (en) 2016-09-06 2021-02-02 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10884388B2 (en) 2016-09-06 2021-01-05 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US10766594B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10787240B2 (en) 2016-11-03 2020-09-29 Continuous Composites Inc. Composite vehicle body
US11383819B2 (en) 2016-11-03 2022-07-12 Continuous Composites Inc. Composite vehicle body
US10773783B2 (en) 2016-11-03 2020-09-15 Continuous Composites Inc. Composite vehicle body
US10717512B2 (en) 2016-11-03 2020-07-21 Continuous Composites Inc. Composite vehicle body
US10766595B2 (en) 2016-11-03 2020-09-08 Continuous Composites Inc. Composite vehicle body
US10933584B2 (en) 2016-11-04 2021-03-02 Continuous Composites Inc. Additive manufacturing system having dynamically variable matrix supply
US10843406B2 (en) 2016-11-04 2020-11-24 Continuous Composites Inc. Additive manufacturing system having multi-flex nozzle
US10828829B2 (en) 2016-11-04 2020-11-10 Continuous Composites Inc. Additive manufacturing system having adjustable nozzle configuration
US10864677B2 (en) 2016-11-04 2020-12-15 Continuous Composites Inc. Additive manufacturing system implementing in-situ anchor-point fabrication
US10870233B2 (en) 2016-11-04 2020-12-22 Continuous Composites Inc. Additive manufacturing system having feed-tensioner
US10953598B2 (en) 2016-11-04 2021-03-23 Continuous Composites Inc. Additive manufacturing system having vibrating nozzle
US10967569B2 (en) 2016-11-04 2021-04-06 Continuous Composites Inc. Additive manufacturing system having interchangeable nozzle tips
US10821720B2 (en) 2016-11-04 2020-11-03 Continuous Composites Inc. Additive manufacturing system having gravity-fed matrix
US10723073B2 (en) 2017-01-24 2020-07-28 Continuous Composites Inc. System and method for additively manufacturing a composite structure
US10857726B2 (en) 2017-01-24 2020-12-08 Continuous Composites Inc. Additive manufacturing system implementing anchor curing
US10843396B2 (en) 2017-01-24 2020-11-24 Continuous Composites Inc. Additive manufacturing system
US11014290B2 (en) 2017-01-24 2021-05-25 Continuous Composites Inc. Additive manufacturing system having automated reinforcement threading
US10850445B2 (en) 2017-01-24 2020-12-01 Continuous Composites Inc. Additive manufacturing system configured for sheet-printing composite material
US10040240B1 (en) 2017-01-24 2018-08-07 Cc3D Llc Additive manufacturing system having fiber-cutting mechanism
US10919204B2 (en) 2017-01-24 2021-02-16 Continuous Composites Inc. Continuous reinforcement for use in additive manufacturing
US10940638B2 (en) 2017-01-24 2021-03-09 Continuous Composites Inc. Additive manufacturing system having finish-follower
US10345068B2 (en) 2017-02-13 2019-07-09 Cc3D Llc Composite sporting equipment
US10794650B2 (en) 2017-02-13 2020-10-06 Continuous Composites Composite sporting equipment
US10798783B2 (en) 2017-02-15 2020-10-06 Continuous Composites Inc. Additively manufactured composite heater
US10932325B2 (en) 2017-02-15 2021-02-23 Continuous Composites Inc. Additive manufacturing system and method for discharging coated continuous composites
US10993289B2 (en) 2017-02-15 2021-04-27 Continuous Composites Inc. Additive manufacturing system for fabricating custom support structure
US10814569B2 (en) 2017-06-29 2020-10-27 Continuous Composites Inc. Method and material for additive manufacturing
US11130285B2 (en) 2017-06-29 2021-09-28 Continuous Composites Inc. Print head and method for printing composite structure and temporary support
US11135769B2 (en) 2017-06-29 2021-10-05 Continuous Composites Inc. In-situ curing oven for additive manufacturing system
US10589463B2 (en) 2017-06-29 2020-03-17 Continuous Composites Inc. Print head for additive manufacturing system
US11052602B2 (en) 2017-06-29 2021-07-06 Continuous Composites Inc. Print head for additively manufacturing composite tubes
US10906240B2 (en) 2017-06-29 2021-02-02 Continuous Composites Inc. Print head for additive manufacturing system
US10319499B1 (en) 2017-11-30 2019-06-11 Cc3D Llc System and method for additively manufacturing composite wiring harness
US10131088B1 (en) 2017-12-19 2018-11-20 Cc3D Llc Additive manufacturing method for discharging interlocking continuous reinforcement
US11167495B2 (en) 2017-12-29 2021-11-09 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10857729B2 (en) 2017-12-29 2020-12-08 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10807303B2 (en) 2017-12-29 2020-10-20 Continuous Composites, Inc. Additive manufacturing system implementing hardener pre-impregnation
US11110655B2 (en) 2017-12-29 2021-09-07 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US11623394B2 (en) 2017-12-29 2023-04-11 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US10759114B2 (en) 2017-12-29 2020-09-01 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US10919222B2 (en) 2017-12-29 2021-02-16 Continuous Composites Inc. System and method for additively manufacturing functional elements into existing components
US10081129B1 (en) 2017-12-29 2018-09-25 Cc3D Llc Additive manufacturing system implementing hardener pre-impregnation
US11623393B2 (en) 2017-12-29 2023-04-11 Continuous Composites Inc. System, print head, and compactor for continuously manufacturing composite structure
US11135770B2 (en) 2017-12-29 2021-10-05 Continuous Composites Inc. System for continuously manufacturing composite structure
US11135764B2 (en) 2017-12-29 2021-10-05 Continuous Composites Inc. Additive manufacturing system implementing hardener pre-impregnation
US11161300B2 (en) 2018-04-11 2021-11-02 Continuous Composites Inc. System and print head for additive manufacturing system
US11110654B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System and print head for continuously manufacturing composite structure
US11130284B2 (en) 2018-04-12 2021-09-28 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11110656B2 (en) 2018-04-12 2021-09-07 Continuous Composites Inc. System for continuously manufacturing composite structure
US11052603B2 (en) 2018-06-07 2021-07-06 Continuous Composites Inc. Additive manufacturing system having stowable cutting mechanism
US11338528B2 (en) 2018-09-13 2022-05-24 Continouos Composites Inc. System for additively manufacturing composite structures
US11235539B2 (en) 2018-09-13 2022-02-01 Continuous Composites Inc. Fiber management arrangement and method for additive manufacturing system
US11752696B2 (en) 2018-10-04 2023-09-12 Continuous Composites Inc. System for additively manufacturing composite structures
US11235522B2 (en) 2018-10-04 2022-02-01 Continuous Composites Inc. System for additively manufacturing composite structures
US11787112B2 (en) 2018-10-04 2023-10-17 Continuous Composites Inc. System for additively manufacturing composite structures
US11760013B2 (en) 2018-10-04 2023-09-19 Continuous Composites Inc. System for additively manufacturing composite structures
US11325304B2 (en) 2018-10-26 2022-05-10 Continuous Composites Inc. System and method for additive manufacturing
US11511480B2 (en) 2018-10-26 2022-11-29 Continuous Composites Inc. System for additive manufacturing
US11806923B2 (en) 2018-10-26 2023-11-07 Continuous Composites Inc. System for additive manufacturing
US11607839B2 (en) 2018-10-26 2023-03-21 Continuous Composites Inc. System for additive manufacturing
US11279085B2 (en) 2018-10-26 2022-03-22 Continuous Composites Inc. System for additive manufacturing
US11247395B2 (en) 2018-10-26 2022-02-15 Continuous Composites Inc. System for additive manufacturing
US11420390B2 (en) 2018-11-19 2022-08-23 Continuous Composites Inc. System for additively manufacturing composite structure
US11358331B2 (en) 2018-11-19 2022-06-14 Continuous Composites Inc. System and head for continuously manufacturing composite structure
US11292192B2 (en) 2018-11-19 2022-04-05 Continuous Composites Inc. System for additive manufacturing
US11338503B2 (en) 2019-01-25 2022-05-24 Continuous Composites Inc. System for additively manufacturing composite structure
US11485070B2 (en) 2019-01-25 2022-11-01 Continuous Composites Inc. System for additively manufacturing composite structure
US11400643B2 (en) 2019-01-25 2022-08-02 Continuous Composites Inc. System for additively manufacturing composite structure
US11618208B2 (en) 2019-01-25 2023-04-04 Continuous Composites Inc. System for additively manufacturing composite structure
US11478980B2 (en) 2019-01-25 2022-10-25 Continuous Composites Inc. System for additively manufacturing composite structure
US11312083B2 (en) 2019-05-28 2022-04-26 Continuous Composites Inc. System for additively manufacturing composite structure
US11541603B2 (en) 2019-05-28 2023-01-03 Continuous Composites Inc. System for additively manufacturing composite structure
US11840022B2 (en) 2019-12-30 2023-12-12 Continuous Composites Inc. System and method for additive manufacturing
US11904534B2 (en) 2020-02-25 2024-02-20 Continuous Composites Inc. Additive manufacturing system
US11926100B2 (en) 2020-06-23 2024-03-12 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11760030B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11760029B2 (en) 2020-06-23 2023-09-19 Continuous Composites Inc. Systems and methods for controlling additive manufacturing
US11813793B2 (en) 2020-09-11 2023-11-14 Continuous Composites Inc. Print head for additive manufacturing system
US11465348B2 (en) 2020-09-11 2022-10-11 Continuous Composites Inc. Print head for additive manufacturing system
US11541598B2 (en) 2020-09-11 2023-01-03 Continuous Composites Inc. Print head for additive manufacturing system
US11613080B2 (en) 2020-09-11 2023-03-28 Continuous Composites Inc. Print head for additive manufacturing system
US11760021B2 (en) 2021-04-27 2023-09-19 Continuous Composites Inc. Additive manufacturing system
US11958243B2 (en) 2021-07-23 2024-04-16 Continuous Composites Inc. System for continuously manufacturing composite structure
US11958245B2 (en) 2022-03-09 2024-04-16 Continuous Composites Inc. System for additively manufacturing composite structure
US11958247B2 (en) 2022-04-05 2024-04-16 Continuous Composites Inc. Additive manufacturing system
US11958238B2 (en) 2022-07-20 2024-04-16 Continuous Composites Inc. System for additively manufacturing composite structure utilizing comparison of data cloud and virtual model of structure during discharging material
US11964426B2 (en) 2023-01-18 2024-04-23 Continuous Composites Inc. Method and apparatus for continuous composite three-dimensional printing

Also Published As

Publication number Publication date
KR20100004475A (en) 2010-01-13

Similar Documents

Publication Publication Date Title
KR100995983B1 (en) Cross printing method and apparatus of circuit board
CN100501957C (en) Method of forming solder bump and method of mounting semiconductor device
US11470724B2 (en) Manufacturing apparatus for performing additive manufacturing of an electrical device
JP2008508703A (en) Method for manufacturing an electronic circuit assembly
US20090027864A1 (en) Printed circuit board and manufacturing method thereof
US20160128201A1 (en) Method for forming vias on printed circuit boards
EP3716741A1 (en) Three-dimensional multi-layer electronic device production method and three-dimensional multi-layer electronic device
JP2010529667A (en) Circuit board manufacturing method
CN110972403A (en) Forming method of fine embedded circuit based on nano copper
JP2007150051A (en) Method of forming solder pattern on substrate
CN114203582A (en) Chip transfer system and chip transfer method
JP2009099963A (en) Method of forming wiring board having solder bump
KR102218059B1 (en) Method for forming multilayer pcb using three dimensional printing
US7900808B2 (en) Soldering method and system thereof
Jäger et al. Contacting inkjet-printed silver structures and SMD by ICA and solder
JP4847499B2 (en) Manufacturing method of wireless IC tag
CN115052428B (en) Manufacturing method of metal upright post in high-precision multilayer circuit board
JP2016086013A (en) Film-like printed circuit board and method for manufacturing the same
JP2012227321A (en) Method of manufacturing circuit board
CN113784534A (en) Open circuit repairing method and open circuit repairing device
KR20090112506A (en) Method for forming thin film bump electrode pad of board by ink jet process
EP4249250A1 (en) Production method and production device for three-dimensionally fabricated object
KR100776376B1 (en) Apparatus for patterning conductor line
JP2005019274A (en) Manufacturing method of anisotropic conductive film
EP1286577B1 (en) Method of fixing electronic part

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131106

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141110

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151028

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171023

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 9