KR100948557B1 - ???2 sputtering target and process for producing same - Google Patents

???2 sputtering target and process for producing same Download PDF

Info

Publication number
KR100948557B1
KR100948557B1 KR1020077018540A KR20077018540A KR100948557B1 KR 100948557 B1 KR100948557 B1 KR 100948557B1 KR 1020077018540 A KR1020077018540 A KR 1020077018540A KR 20077018540 A KR20077018540 A KR 20077018540A KR 100948557 B1 KR100948557 B1 KR 100948557B1
Authority
KR
South Korea
Prior art keywords
sno
sputtering target
film
sintering
sputtering
Prior art date
Application number
KR1020077018540A
Other languages
Korean (ko)
Other versions
KR20070096017A (en
Inventor
다이조 모리나카
Original Assignee
미쓰이 긴조꾸 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이 긴조꾸 고교 가부시키가이샤 filed Critical 미쓰이 긴조꾸 고교 가부시키가이샤
Publication of KR20070096017A publication Critical patent/KR20070096017A/en
Application granted granted Critical
Publication of KR100948557B1 publication Critical patent/KR100948557B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 높은 상대 밀도를 갖고, 이상 방전이나 파티클의 발생을 방지하면서, 높은 성막 속도로, 낮은 비저항 및 높은 투과율의 양쪽을 겸비한 스퍼터막을 형성할 수 있는, 고성능 스퍼터링 타깃을 제공한다.The present invention provides a high-performance sputtering target capable of forming a sputtering film having both a high specific density and a low specific resistance and a high transmittance at a high film formation rate while preventing abnormal discharge and generation of particles.

이 스퍼터링 타깃은 SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, 미소결의 성형체를 1550∼1650℃에서 소결하는 것을 포함하여 이루어지는 방법에 의해 제조된다.This sputtering target contains SnO 2 as a main component and contains 1.15 to 10 mass% of Nb 2 O 5 and Ta 2 O 5 in a total amount, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.90. And a sintered compact formed at 1550 to 1650 ° C.

SnO₂계 스퍼터링 타깃, 스퍼터막 SnO₂-based sputtering target, sputter film

Description

SnO₂계 스퍼터링 타깃 및 그 제조 방법{SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME}SnO₂-based sputtering target and manufacturing method thereof {SNOO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME}

[발명의 배경][Background of invention]

[발명의 분야][Field of Invention]

본 발명은 SnO2계 스퍼터링 타깃 및 그 제조 방법에 관한 것이며, 구체적으로는, 플랫 패널 디스플레이, 저항식 터치 패널, 태양전지 등의 투명 도전막의 형성에 사용되는 SnO2계 스퍼터링 타깃 및 그 제조 방법에 관한 것이다.The present invention relates to a SnO 2 -based sputtering target and a method for manufacturing the same, and specifically, to a SnO 2 -based sputtering target used for forming a transparent conductive film such as a flat panel display, a resistive touch panel, a solar cell, and a method for manufacturing the same. It is about.

최근, SnO2계 투명 도전막이 플랫 패널 디스플레이, 저항식 터치 패널, 태양전지 등 폭넓은 용도로 사용되고 있다. 이 SnO2계 투명 도전막은, 공업적으로는 스프레이법이나 CVD법에 의해 제조되는 것이 주류이다. 그러나 이들 방법은 막두께를 대면적으로 균일화하기에는 적합하지 않고, 성막 프로세스의 제어도 곤란하며, 더욱이 성막 시에 오염 물질인 염소계 가스를 생성할 수 있기 때문에, 이러한 결점이 없는 새로운 제조 방법이 요구되고 있다.In recent years, SnO 2 -based transparent conductive films have been used in a wide range of applications such as flat panel displays, resistive touch panels, and solar cells. The SnO 2 transparent conductive film is mainly produced industrially by a spray method or a CVD method. However, these methods are not suitable for uniformizing the film thickness in large areas, difficult to control the film formation process, and furthermore, chlorine-based gas, which is a contaminant, can be generated during film formation, so a new manufacturing method without such a defect is required. have.

한편, 스퍼터링법에 의한 SnO2계 투명 도전막의 제조도 시도되어 있다. 그러나 스퍼터링에의 사용에 견딜 수 있는 SnO2계의 스퍼터링 타깃의 입수가 곤란하기 때문에, 널리 보급되어 있지 않다. 이것은 SnO2가 난(難)소결성 물질이기 때문에, 스퍼터링에의 사용에 적합한 고밀도 소결체의 제조가 곤란함에 의한 것이다. 또한, 전극재로서 요구되는 낮은 저항의 스퍼터막을 얻기 위하여, Sb2O3을 첨가하여 SnO2의 비저항을 내린 SnO2계의 스퍼터링 타깃도 알려져 있지만, 소결성 개선 효과는 작은 것이었다.On the other hand, attempts are also prepared SnO 2 based transparent conductive film by sputtering. However, since it is difficult to obtain a SnO 2 -based sputtering target that can withstand the use for sputtering, it is not widely used. This is because SnO 2 is a poorly sinterable material, which makes it difficult to manufacture a high density sintered compact suitable for use in sputtering. In addition, although in order to obtain a sputtering film having low resistance required as an electrode material, Sb 2 O 3 by the addition of SnO known sputtering target of the SnO 2 type made a specific resistance of 2, sintering property improving effect was small.

Ta, Nb 등을 함유하는, 소결 밀도가 4.0g/cm3 이상의 SnO2계 스퍼터링 타깃이 알려져 있다(예를 들면, 특허문헌 1(일본 특개 2000-273622) 참조). 또한, Ta, Nb 등을 함유하는, 비저항이 1×107Ω·cm 이하의 SnO2계 스퍼터링 타깃도 알려져 있다(특허문헌 2(일본 특개 2000-281431) 참조). 이들 문헌의 실시예에서, 스퍼터링 타깃의 소결은 1500℃에서 행해져 있다. 그러나, 최근 수요가 높아지고 있는 플라스마 디스플레이 패널(PDP)용의 투명 전극막으로서 요구되는, 낮은 비저항 및 높은 투과율 양쪽의 특성을 겸비한 스퍼터막을 제조할 수 있는 SnO2계 스퍼터링 타깃에 대해서는 아직 보고되어 있지 않다.A SnO 2 -based sputtering target having a sintered density of 4.0 g / cm 3 or more containing Ta, Nb or the like is known (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-273622)). In addition, SnO 2 -based sputtering targets having a specific resistance of 1 × 10 7 Ω · cm or less containing Ta, Nb or the like are also known (see Patent Document 2 (Japanese Patent Laid-Open No. 2000-281431)). In the examples of these documents, the sintering of the sputtering target is performed at 1500 ° C. However, no reports have yet been made about SnO 2 -based sputtering targets capable of producing sputtered films having both low resistivity and high transmittance characteristics, which are required as transparent electrode films for plasma display panels (PDPs), which are in high demand. .

<특허문헌 1> 일본 특개 2000-273622호 공보<Patent Document 1> Japanese Patent Application Laid-Open No. 2000-273622

<특허문헌 2> 일본 특개 2000-281431호 공보<Patent Document 2> Japanese Patent Application Laid-Open No. 2000-281431

[발명의 개요][Overview of invention]

본 발명자들은 이번, SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, 미소결의 성형체를 1550∼1650℃에서 소결함으로써, 높은 상대 밀도를 갖고, 이상 방전이나 파티클의 발생을 방지하면서, 높은 성막 속도로, 낮은 비저항 및 높은 투과율의 양쪽을 겸비한 스퍼터막을 형성할 수 있는, 고성능 SnO2계 스퍼터링 타깃을 제조할 수 있다는 지견을 얻었다.The present inventors have, as a main component and the SnO 2, Nb 2 O 5 and Ta 2 O is made to contain the total amount of 1.15~10% by weight of a 5, Nb 2 O 5 / Ta 2 O 5 content mass ratio of 0.15 to 0.90 By sintering the molded product of phosphorus and microcrystalline at 1550-1650 ° C, a sputtered film having both a high specific density and a low specific resistance and high transmittance can be formed at a high film formation rate while preventing abnormal discharge and generation of particles. And knowledge that a high performance SnO 2 -based sputtering target can be produced.

따라서, 본 발명은 높은 상대 밀도를 갖고, 이상 방전이나 파티클의 발생을 방지하면서, 높은 성막 속도로, 낮은 비저항 및 높은 투과율의 양쪽을 겸비한 스퍼터막을 형성할 수 있는, 고성능 SnO2계 스퍼터링 타깃을 제조함을 그 목적으로 하고 있다.Accordingly, the present invention provides a high-performance SnO 2 -based sputtering target having a high relative density and capable of forming a sputtered film having both a low specific resistance and a high transmittance at a high film formation rate while preventing abnormal discharge and generation of particles. It is for that purpose.

그리고, 본 발명에 의한 SnO2계 스퍼터링 타깃의 제조 방법은,And, the manufacturing method of SnO 2 based sputtering target according to the present invention,

SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, 미소결의 성형체를 준비하고, SnO 2 as a main component, Nb 2 O 5 and Ta 2 O 5 containing 1.15 to 10% by mass in a total amount, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.90 To prepare,

그 성형체를 1550∼1650℃에서 소결하는 것Sintering the molded body at 1550 to 1650 ° C

을 포함하여 이루어지는 방법이다.It comprises a method.

또한, 본 발명에 의한 SnO2계 스퍼터링 타깃은 SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함 유량 질량비가 0.15∼0.90인, SnO2계 스퍼터링 타깃으로서, In addition, the SnO 2 -based sputtering target according to the present invention comprises SnO 2 as a main component and contains 1.15 to 10% by mass of Nb 2 O 5 and Ta 2 O 5 in a total amount, and Nb 2 O 5 / Ta 2 O 5 As a SnO 2 -based sputtering target having a flow rate mass ratio of 0.15 to 0.90,

X선원으로서 CuKα를 사용한 X선 회절에 의하여, 회절각 2θ가 22∼23°및 28∼29°에 있어서의 Nb2O5에 기인하는 피크가 실질적으로 관찰되지 않는 것이다.By X-ray diffraction using CuKα as the X-ray source, the peak attributable to Nb 2 O 5 at the diffraction angles 2θ at 22 to 23 degrees and 28 to 29 degrees is substantially not observed.

[도 1] 실시예 2 및 비교예 6에서 제작된 스퍼터링 타깃을 사용하여 얻어진 스퍼터막에 대한, 어닐링 후의 비저항 및 투과율 피크값과, 산소 유량(분압)의 관계를 나타낸 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the relationship between the specific resistance and transmittance peak value after annealing, and oxygen flow rate (partial pressure) with respect to the sputter film obtained using the sputtering target produced in Example 2 and the comparative example 6.

[도 2] 실시예 4에서 제작된 스퍼터링 타깃의 X선 회절을 나타낸 도면이다.2 is a diagram showing X-ray diffraction of the sputtering target produced in Example 4. FIG.

[도 3] 실시예 8에서 제작된 스퍼터링 타깃의 X선 회절을 나타낸 도면이다.FIG. 3 is a diagram showing X-ray diffraction of the sputtering target produced in Example 8. FIG.

[도 4] 비교예 7에서 제작된 스퍼터링 타깃의 X선 회절을 나타낸 도면이다.4 is a diagram showing X-ray diffraction of the sputtering target produced in Comparative Example 7. FIG.

[발명의 구체적 설명][Detailed Description of the Invention]

SnOSnO 22 system 스퍼터링Sputtering 타깃의 제조 방법 Manufacturing method of target

본 발명의 방법에서는, 우선, SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, 미소결의 성형체를 준비한다. Nb2O5 및 Ta2O5가 합계량으로 1.15∼10질량%이면, 소결 밀도를 향상시키면서, 고용할 수 없는 Ta 및 Nb의 증가에 의한 막 비저항의 상승을 방지하여 낮은 막 비저항을 실현하기 쉬워진다. 바람직한 Nb2O5 및 Ta2O5의 합계량은 1.15∼8질량%이며, 보다 바람직하게는 3.5∼6질량%, 더 바람직하 게는 4∼6질량%이다. 또한, Nb2O5/Ta2O5의 함유량 질량비를 0.15∼0.90으로 함으로써, 액상 소결에 의해 고밀도화에 기여하는 Nb2O5량을 확보하여 소결 밀도의 저하를 방지하면서, 스퍼터 성막한 막 비저항의 상승을 방지할 수 있다. 바람직한 Nb2O5/Ta2O5의 함유량 질량비는 0.15∼0.60이며, 보다 바람직하게는 0.17∼0.33이며, 더 바람직하게는 0.20∼0.33이다.In the method of the present invention, first, SnO 2 is used as a main component, and Nb 2 O 5 and Ta 2 O 5 are contained in a total amount of 1.15 to 10% by mass, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is The green body molded product which is 0.15-0.90 is prepared. When the total amount of Nb 2 O 5 and Ta 2 O 5 is 1.15 to 10% by mass, it is easy to realize a low film specific resistance while improving the sintered density while preventing the increase of the film specific resistance due to the increase of unsolvable Ta and Nb. Lose. Preferred total amounts of Nb 2 O 5 and Ta 2 O 5 are 1.15 to 8% by mass, more preferably 3.5 to 6% by mass, still more preferably 4 to 6% by mass. Furthermore, by setting the content mass ratio of Nb 2 O 5 / Ta 2 O 5 to 0.15 to 0.90, the film resistivity formed by sputtering film while ensuring the amount of Nb 2 O 5 contributing to densification by liquid phase sintering and preventing a decrease in sintering density. The rise of can be prevented. The content mass ratio of preferable Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.60, more preferably 0.17 to 0.33, still more preferably 0.20 to 0.33.

본 발명에서 미소결의 성형체는, 상기 조성을 함유하는 원료 분말을 성형한 것이면 어떠한 방법에 의해 성형된 것이어도 되며, 예를 들면 SnO2 분말, Nb2O5 분말, Ta2O5 분말을 상기 조성을 만족시키는 배합량비로 혼합하여 원료 분말을 제조하고, 이 원료 분말을 성형함으로써 제조할 수 있다.In the present invention, the molded product of the micro grains may be molded by any method as long as the raw material powder containing the composition is molded. For example, SnO 2 Powder, Nb 2 O 5 The powder and Ta 2 O 5 powder may be mixed at a blending ratio that satisfies the above composition to produce a raw powder, and may be produced by molding the raw powder.

본 발명의 바람직한 태양에 의하면, 원료 분말을 사용한 미소결체의 성형체는 원료 분말에 바인더를 첨가하여 소정의 형상을 부여하기 쉽게 하는 것이 바람직하다. 이와 같은 바인더로서는, 가열에 의해 소실 또는 비산하는 공지의 바인더이면 한정되지 않으며, 폴리비닐알코올 수용액 등이 사용 가능하다. 따라서, 이 태양에서는, 소결에 앞서, 바인더가 비산 또는 소실하도록, 미소결의 성형체가 건조되고, 그 후 가열(탈지)되는 것이 바람직하다. 건조 및 가열의 방법은 한정되지 않지만, 우선 50∼130℃에서 5∼30시간 건조를 행하고, 그 다음에 500∼800℃에서 6∼24시간 가열하여 탈지를 행하는 것이 바람직하다.According to a preferred aspect of the present invention, it is preferable that the molded article of the green body using the raw material powder is made easy to give a predetermined shape by adding a binder to the raw material powder. Such a binder is not limited as long as it is a known binder that is lost or scattered by heating, and an aqueous polyvinyl alcohol solution or the like can be used. Therefore, in this aspect, it is preferable that the green body is dried and then heated (degreased) so that the binder scatters or disappears prior to sintering. Although the method of drying and a heating is not limited, It is preferable to dry at 50-130 degreeC for 5 to 30 hours first, and to carry out degreasing by heating at 500-800 degreeC for 6 to 24 hours next.

본 발명의 바람직한 태양에 의하면, 미소결의 성형체는 소결 밀도를 더욱 향 상시키기 위하여, Fe2O3, NiO2, CoO, In2O3, 또는 이들의 혼합물을 더 함유할 수 있다. 이들 금속 산화물을 첨가하는 경우, 그 합계 첨가량은 100∼7000ppm으로 하는 것이 바람직하고, 보다 바람직하게는 350∼7000ppm, 더 바람직하게는 700∼7000pp m이다. According to a preferred aspect of the present invention, the green body compact may further contain Fe 2 O 3 , NiO 2 , CoO, In 2 O 3 , or a mixture thereof in order to further improve the sintered density. When adding these metal oxides, it is preferable to make the total addition amount into 100-7000 ppm, More preferably, it is 350-7000 ppm, More preferably, it is 700-7000 ppm.

본 발명의 다른 바람직한 태양에 의하면, 미소결의 성형체는 스퍼터링 타깃의 비저항을 더욱 저하시키기 위하여, Al2O3, Si02, Y2O3, 또는 그들의 혼합물을 더 함유할 수 있다. 이들 금속 산화물을 첨가하는 경우, 이들 금속 산화물, Nb2O5, 및 Ta2O5의 합계 첨가량이 20질량% 이하로 되는 첨가량으로 하는 것이 바람직하다.According to another preferred aspect of the present invention, the green body compact may further contain Al 2 O 3 , SiO 2 , Y 2 O 3 , or a mixture thereof in order to further lower the resistivity of the sputtering target. If the addition of these metal oxides, it is preferable that these metal oxides, Nb 2 O 5, and the added amount is below this 20% by weight the total amount of Ta 2 O 5.

본 발명의 또 다른 바람직한 태양에 의하면, 미소결의 성형체는 소결 밀도를 더욱 향상시키기 위하여, Ga2O3, Bi2O3, Mn2O3, Fe2O3, NiO, CoO, 또는 그들의 혼합물을 더 함유할 수 있다. 이들 금속 산화물을 첨가하는 경우, 이들 금속 산화물, Nb2O5, 및 Ta2O5의 합계 첨가량이 20질량% 이하로 되는 첨가량으로 하는 것이 바람직하다.According to another preferred aspect of the present invention, the green body is formed of Ga 2 O 3 , Bi 2 O 3 , Mn 2 O 3 , Fe 2 O 3 , NiO, CoO, or a mixture thereof in order to further improve the sintered density. It may contain more. If the addition of these metal oxides, it is preferable that these metal oxides, Nb 2 O 5, and the added amount is below this 20% by weight the total amount of Ta 2 O 5.

다음에, 본 발명의 방법에서는, 상기한 바와 같이 준비된 미소결의 성형체를 1550∼1650℃에서 소결한다. 이 온도 범위 내에서 소결을 행함으로써, 액상 소결이 충분히 진행되어 소결 밀도를 높일 수 있고, 스퍼터막에서 비저항값이 최소일 때의 투과율을 높일 수 있으며, 또한 SnO2의 용융을 방지하여 원하는 형상의 소결체 제작을 쉽게 행할 수 있다. 바람직한 소결 온도는 1550∼1600℃이다. 이 온도 범 위 내에서는, 소결체 내부의 온도차를 작게 할 수 있으므로, 소결체의 휘어짐을 유효하게 방지하여 생산성을 더욱 향상시킬 수 있다. Next, in the method of the present invention, the green body molded product prepared as described above is sintered at 1550 to 1650 ° C. By performing sintering within this temperature range, liquid phase sintering is sufficiently proceeded to increase the sintered density, the transmittance when the resistivity value is minimum in the sputter film can be increased, and the melting of SnO 2 is prevented to prevent the sintering of the desired shape. The sintered compact can be manufactured easily. Preferable sintering temperature is 1550-1600 degreeC. Within this temperature range, since the temperature difference inside the sintered compact can be made small, the warpage of the sintered compact can be effectively prevented and the productivity can be further improved.

본 발명의 바람직한 태양에 의하면, 소결은 2∼20시간 행해지는 것이 바람직하고, 보다 바람직하게는 3∼12시간이며, 더 바람직하게는 4∼8시간이다. 이 범위 내이면, 전력 소비량을 억제하고, 또한 높은 생산성을 확보하면서, 충분히 소결을 행할 수 있다.According to a preferable aspect of the present invention, the sintering is preferably performed for 2 to 20 hours, more preferably 3 to 12 hours, still more preferably 4 to 8 hours. If it is in this range, sintering can fully be carried out, suppressing a power consumption and ensuring high productivity.

본 발명의 바람직한 태양에 의하면, 소결은 높은 소결 밀도를 확보하기 위하여, 산소 함유 분위기하에서 행해지는 것이 바람직하고, 예를 들면, 산소 가압 분위기하, 산소 분위기하, 또는 대기 분위기하에서 행할 수 있다.According to a preferred aspect of the present invention, the sintering is preferably performed in an oxygen-containing atmosphere in order to secure a high sintered density. For example, the sintering can be performed in an oxygen pressurized atmosphere, an oxygen atmosphere, or an atmospheric atmosphere.

SnOSnO 22 system 스퍼터링Sputtering 타깃 target

상술한 본 발명의 제조 방법에 의해 제조된 SnO2계 스퍼터링 타깃은 SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90으로 되고, X선원으로서 CuKα선(λ=1.54050Å)을 사용한 X선 회절에 의해, 회절각 2θ가 22∼23°및 28∼29°에 있어서의 Nb2O5에 기인하는 피크가 실질적으로 관찰되지 않는 것일 수 있지만, 본 발명의 제조 방법에 의해 제조된 것이면 반드시 이것에 한정되는 것은 아니다. 즉, 본 발명의 제조 방법에서, 미소결의 성형체는 1550∼1650℃에서 소결되지만, 본 발명자들의 지견에 의하면, 이 범위 내의 소결 온도에서 얻어지는 소결체에서는, X선원 으로서 Cu를 사용한 X선 회절에 의해, 회절각 2θ가 22∼23°및 28∼29°에 있어서의 Nb2O5에 기인하는 피크가 관찰되지 않는다. 이와 같은 본 발명의 SnO2계 스퍼터링 타깃은 높은 상대 밀도를 갖고, 이상 방전이나 파티클의 발생을 방지하면서, 높은 성막 속도로, 낮은 비저항 및 높은 투과율의 양쪽을 겸비한 스퍼터막을 형성할 수 있다.The SnO 2 -based sputtering target produced by the above-described production method of the present invention contains SnO 2 as a main component and Nb 2 O 5 And 1.15 to 10% by mass of Ta 2 O 5 in a total amount, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.90, and CuKα rays (λ = 1.54050 Hz) are used as X-ray sources. By X-ray diffraction, the peak attributable to Nb 2 O 5 at the diffraction angles 2θ at 22 to 23 ° and 28 to 29 ° may not be substantially observed, but is produced by the production method of the present invention. It is not necessarily limited to this. That is, in the production method of the present invention, the compacted molded product is sintered at 1550-1650 ° C, but according to the findings of the present inventors, in the sintered body obtained at the sintering temperature within this range, by X-ray diffraction using Cu as the X-ray source, Peaks attributable to Nb 2 O 5 at diffraction angles 2θ of 22 to 23 degrees and 28 to 29 degrees are not observed. Such a SnO 2 -based sputtering target of the present invention has a high relative density, and can form a sputtered film having both a low specific resistance and a high transmittance at a high film formation rate while preventing abnormal discharge and generation of particles.

본 발명의 바람직한 태양에 의하면, 상기 X선 회절의 측정은 X선 회절 장치(MXP3, MAC Science사제)를 사용하여, 관전압 : 40kV, 관전류 : 30mA, 샘플링 간격 : 0.02°, 스캔 속도 : 4℃/분, 발산 슬릿 : 1°, 산란 슬릿 1°, 수광 슬릿 : 0.3mm의 조건에서 행해지는 것이 바람직하다. 그리고, 본 발명의 바람직한 태양에 의하면, 상기 적합 조건에서의 X선 회절에 의해, 회절각 2θ가 22∼23°및 28∼29°에 있어서 X선 강도(Intensity)의 최고값이 100 미만인 것이 바람직하다. 또한, 만일 가령 상기 적합 조건의 X선 회절보다도 더 높은 감도의 X선 회절에 의해 Nb2O5에 기인하는 피크가 관찰되었다고 하더라도, 상기 적합 조건하에서의 X선 회절에 의해 Nb2O5에 기인하는 피크가 실질적으로 관찰되지 않는 한, 본 발명의 범위에 포함된다.According to a preferred aspect of the present invention, the X-ray diffraction is measured using an X-ray diffraction apparatus (MXP3, manufactured by MAC Science), and the tube voltage is 40 kV, the tube current is 30 mA, the sampling interval is 0.02 °, and the scan rate is 4 ° C. /. It is preferable to carry out on conditions of 1 degree of scattering slits: 1 degree, 1 degree of scattering slits, and a light receiving slit: 0.3 mm. And according to the preferable aspect of this invention, it is preferable that the highest value of an X-ray intensity is less than 100 at the diffraction angle 2 (theta) 22-23 degrees and 28-29 degrees by X-ray diffraction on the said suitable conditions. Do. In addition, if, for example, even if that peak is observed due to Nb 2 O 5 by X-ray diffraction of the more sensitive than X-ray diffraction of the above-described favorable conditions, due to Nb 2 O 5 by X-ray diffraction under the appropriate conditions, Unless a peak is substantially observed, it is included in the scope of the present invention.

본 발명의 바람직한 태양에 의하면, SnO2계 스퍼터링 타깃은 90% 이상의, 아르키메데스법에 의해 측정되는 상대 밀도를 갖는 것이 바람직하고, 보다 바람직하게는 93% 이상, 더 바람직하게는 96% 이상이다. 이와 같이 높은 상대 밀도를 가짐으로써, 스퍼터링 도중의 이상 방전이나 파티클의 발생을 유효하게 방지할 수 있 다. 또한, 이 아르키메데스법에 의한 측정은 실온에서 행해지는 것이 바람직하다.According to a preferred aspect of the present invention, the SnO 2 -based sputtering target preferably has a relative density of 90% or more and measured by the Archimedes method, more preferably 93% or more, and still more preferably 96% or more. By having such a high relative density, it is possible to effectively prevent abnormal discharge and generation of particles during sputtering. In addition, it is preferable that the measurement by this Archimedes method is performed at room temperature.

본 발명의 바람직한 태양에 의하면, SnO2계 스퍼터링 타깃은 막 비저항값이 1×10-2Ω·cm 이하의 스퍼터막의 제조에 사용되는 것이 바람직하다. 본 발명의 SnO2계 스퍼터링 타깃에 의하면, 이와 같이 낮은 막 비저항값을 확보하면서, 투과율이 높은 스퍼터막을 제조할 수 있다.According to a preferred aspect of the present invention, the SnO 2 -based sputtering target is preferably used for the production of a sputtered film having a film specific resistance of 1 × 10 −2 Ω · cm or less. According to the SnO 2 -based sputtering target of the present invention, a sputtered film having a high transmittance can be produced while ensuring a low film specific resistance value.

본 발명의 바람직한 태양에 의하면, SnO2계 스퍼터링 타깃은 자외 가시 분광 광도계에 의해 측정되는 파장 500∼600nm 광의 투과율의 피크값이 96% 이상인 스퍼터막의 제조에 사용되는 것이 바람직하다. 본 발명의 SnO2계 스퍼터링 타깃에 의하면, 이와 같이 높은 광투과율을 확보하면서, 막저항값이 낮은 스퍼터막을 제조할 수 있다.According to a preferred aspect of the present invention, the SnO 2 -based sputtering target is preferably used for producing a sputtered film having a peak value of transmittance of 96% or more at a wavelength of 500 to 600 nm measured by an ultraviolet visible spectrophotometer. According to the SnO 2 -based sputtering target of the present invention, a sputtered film having a low film resistance value can be manufactured while securing a high light transmittance in this manner.

실시예Example 1 One

우선, 이하의 3종류의 원료 분말을 준비한다.First, the following three types of raw material powders are prepared.

SnO2 분말 : 순도 99.99%(4N), 평균 입경 0.7∼1.1μm, 비표면적 2.0∼2.7m2/gSnO 2 Powder: Purity 99.99% (4N), Average particle size 0.7-1.1 μm, Specific surface area 2.0-2.7 m 2 / g

Ta2O5 분말 : 순도 99.9%(3N), 평균 입경 0.6∼0.8μm, 비표면적 2.0∼3.1m2/gTa 2 O 5 Powder: Purity 99.9% (3N), Average particle size 0.6 ~ 0.8μm, Specific surface area 2.0 ~ 3.1m 2 / g

Nb2O5 분말 : 순도 99.9%(3N), 평균 입경 0.6∼1.0μm, 비표면적 2.1∼2.7m2/gNb 2 O 5 powder: Purity 99.9% (3N), average particle diameter 0.6-1.0μm, specific surface area 2.1-2.7m 2 / g

그 다음에, 상기 SnO2 분말 96.5질량%와, 상기 Ta2O5 분말 3질량%와, 상기 Nb2O5 분말 0.5질량%를 볼밀로 21시간 혼합했다. 이 혼합 분말에 폴리비닐알코올 수용액을 첨가하여, 400×800mm 치수의 금형에 충전하고, 800kg/cm2의 압력으로 프레스 성형했다. 이 성형체를 80℃에서 12시간 건조시킨 후, 600℃에서 4시간 탈지했다. 이 탈지체를 대기 분위기에서, 소성 온도 1600℃에서 4시간 소성하여, 소결체를 얻었다. 이때, 승온 속도 및 강온 속도는 모두 100℃/시간으로 제어했다. 얻어진 소결체를 가공하여, 직경 6인치(152mm), 두께 5mm 크기의 SnO2계 스퍼터링 타깃으로 했다.Then, the SnO 2 And powder 96.5% by weight and the Ta 2 O 5 powder, 3% by weight, the Nb 2 O 5 powder was mixed with 0.5% by weight 21 hours by a ball mill. A polyvinyl alcohol aqueous solution was added to this mixed powder, it filled into the metal mold | die of 400 * 800mm dimension, and it press-molded at the pressure of 800 kg / cm <2> . After drying this molded object at 80 degreeC for 12 hours, it degreased at 600 degreeC for 4 hours. This degreasing body was baked for 4 hours at the baking temperature of 1600 degreeC in air | atmosphere atmosphere, and the sintered compact was obtained. At this time, both the temperature increase rate and the temperature decrease rate were controlled at 100 ° C / hour. By processing the obtained sintered body, the diameter was 6 inches (152mm), SnO 2 based sputtering target having a thickness of 5mm in size.

실시예Example 2∼7 및  2 to 7 and 비교예Comparative example 1∼5 및 9 1 to 5 and 9

표 1에 나타낸 조성 비율로 원료 분말을 혼합한 것 이외는, 실시예 1과 마찬가지 방법으로, SnO2계 스퍼터링 타깃을 제작했다.A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratios shown in Table 1.

실시예Example 8 8

표 1에 나타낸 조성 비율로 원료 분말을 혼합하고, 소성 온도를 1550℃로 한 것 이외는, 실시예 1과 마찬가지 방법으로, SnO2계 스퍼터링 타깃을 제작했다.A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratios shown in Table 1 and the firing temperature was set to 1550 ° C.

비교예Comparative example 6 및 7 6 and 7

표 1에 나타낸 조성 비율로 원료 분말을 혼합하고, 소성 온도를 1500℃로 한 것 이외는, 실시예 1과 마찬가지 방법으로, SnO2계 스퍼터링 타깃을 제작했다.A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratios shown in Table 1 and the firing temperature was set to 1500 ° C.

비교예Comparative example 8 8

표 1에 나타낸 조성 비율로 원료 분말을 혼합하고, 소성 온도를 1700℃로 한 것 이외는, 실시예 1과 마찬가지 방법으로, 소결체로서의 SnO2계 스퍼터링 타깃의 제작을 시도하였다. 그러나, SnO2가 용융했기 때문에, 형상이 망가져, 원하는 형상을 얻을 수는 없었다.Production of SnO 2 -based sputtering targets as sintered bodies was attempted in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratios shown in Table 1 and the firing temperature was 1700 ° C. However, since SnO 2 melted, the shape was broken, and a desired shape could not be obtained.

평가evaluation

실시예 1∼8 및 비교예 1∼7 및 9에서 제작된 스퍼터링 타깃에 대하여, (1)∼ (3)의 평가를 행했다(1)-(3) was evaluated about the sputtering target produced in Examples 1-8 and Comparative Examples 1-7 and 9.

(1) 상대 밀도의 측정(1) Measurement of relative density

각 스퍼터링 타깃의 상대 밀도를 아르키메데스법에 의하여 측정했다. 이때, 각 원료의 밀도를 SnO2 : 6.95g/cm3, Ta2O5 : 8.74g/cm3, Nb2O5 : 4.47g/cm3로 하여 가중 평균 밀도(이론 밀도)를 산출하고, 이 가중 평균 밀도를 100%로 하여 상대 밀도를 산출했다. 그 결과는 표 1에 나타낸 바와 같았다. The relative density of each sputtering target was measured by the Archimedes method. At this time, the density of each raw material is SnO 2 : 6.95g / cm 3 , Ta 2 O 5 : 8.74g / cm 3 , Nb 2 O 5 : The weighted average density (theoretical density) was computed as 4.47 g / cm <3> , and the relative density was computed using this weighted average density as 100%. The results were as shown in Table 1.

(2) 성막 속도의 측정(2) measurement of film formation speed

각 스퍼터링 타깃을 무산소 구리제의 배킹 플레이트에 메탈 본딩했다. 이때, 스퍼터링 타깃의 스퍼터면의 중심선 평균 거칠기 Ra를 측정한 바, 0.6μm 이하 였다. 또한, 각 스퍼터링 타깃의 조성을 ICP 분석한 바, 원료로서 사용한 혼합 분말의 조성과 동일했다. 그리고, 메탈 본딩한 각 스퍼터링 타깃에 대하여, 이하에 나타낸 조건에서, 직류 전원을 사용한 마그네트론 스퍼터링을 행하여, 무알칼리 유리 기판에 스퍼터 성막했다.Each sputtering target was metal-bonded to the backing plate made of oxygen-free copper. At this time, when the centerline average roughness Ra of the sputtering surface of a sputtering target was measured, it was 0.6 micrometers or less. In addition, when the composition of each sputtering target was analyzed by ICP, it was the same as the composition of the mixed powder used as a raw material. And magnetron sputtering using a DC power supply was performed about the metal-bonded sputtering target on the conditions shown below, and sputter film-forming was carried out on the alkali free glass substrate.

도달 압력 : 1×10-4Pa Reach Pressure: 1 × 10 -4 Pa

기판 온도 : 실온Substrate Temperature: Room Temperature

도입 아르곤 분압 : 0.5PaArgon partial pressure introduced: 0.5Pa

도입 산소 유량(분압) : 0∼3sccm(0∼2×10-2Pa)Introduced oxygen flow rate (partial pressure): 0 to 3 sccm (0 to 2 × 10 -2 Pa)

직류 인가 전력 : 300WDC applied power: 300W

막두께 : 약 140nmFilm thickness: about 140nm

기판 : 무알칼리 유리Substrate: Alkali-Free Glass

형성된 막의 두께를 촉침식 표면 형상 측정기(Dektak6M, ULVAC사제)에 의해 측정하고, 얻어진 두께를 성막 시간으로 나눔으로써, 성막 속도를 산출했다. 도입 산소 유량 0sccm일 때의 성막 속도의 결과는 표 1에 나타낸 바와 같았다.The film formation speed was computed by measuring the thickness of the formed film | membrane by the stylus type surface shape measuring device (Dektak6M, ULVAC Corporation make), and dividing the obtained thickness by film-forming time. The results of the film formation rate at the introduced oxygen flow rate of 0 sccm were as shown in Table 1.

(3) 막 비저항의 측정(3) Measurement of membrane resistivity

스퍼터 성막 후, 대기 분위기에서, 500℃에서 1시간 어닐링을 행했다. 각각의 막 비저항의 최소값을 측정한 바, 표 1에 나타낸 바와 같은 결과가 얻어졌다. 비저항은 시트 저항 측정기(MCP-TP06P, 다이아 인스트루먼트사제)를 사용하여 4탐침법으로 시트 저항을 측정하고, 얻어진 시트 저항에, 촉침식 표면 형상 측정 기(Dektak6M, ULVAC사제)에 의해 측정한 막두께를 곱함으로써 산출했다.After sputter film deposition, annealing was performed at 500 ° C. for 1 hour in an air atmosphere. The minimum value of each film specific resistance was measured, and the result as shown in Table 1 was obtained. The specific resistance was measured by a four-probe method using a sheet resistance measuring instrument (MCP-TP06P, manufactured by Diamond Instruments), and the film thickness measured by a stylus type surface shape measuring instrument (Dektak6M, manufactured by ULVAC) on the sheet resistance obtained. Calculated by multiplying.

(4) 투과율의 측정(4) Measurement of transmittance

실시예 2 및 4 및 비교예 6 및 7에 대하여, 투과율의 측정을 이하와 같이 행했다. 어닐링 후에 비저항값이 최소로 된 산소 분압 조건의 시료에 대하여, 자외 가시 분광 광도계(UV-2550, 시마즈사제)를 사용하여 파장 300∼800nm 광의 투과율을 측정했다. 이때, 레퍼런스로서, 블랭크 유리를 사용했다. 실시예 2 및 4 및 비교예 6 및 7의 모든 시료에 대하여 파장 500∼600nm에 투과율의 피크가 관찰되었고, 그 투과율의 피크값은 표 2에 나타낸 바와 같았다. For Examples 2 and 4 and Comparative Examples 6 and 7, the transmittance was measured as follows. The transmittance | permeability of the light of wavelength 300-800 nm was measured using the ultraviolet visible spectrophotometer (UV-2550, the Shimadzu Corporation) with respect to the sample of the oxygen partial pressure conditions which the specific resistance value after annealing was minimum. At this time, blank glass was used as a reference. The peak of transmittance | permeability was observed in the wavelength of 500-600 nm with respect to all the samples of Example 2 and 4 and the comparative examples 6 and 7, The peak value of the transmittance was as shown in Table 2.

(5) 어닐링 후의 비저항 및 투과율 피크값의 산소 유량(분압) 의존성의 평가(5) Evaluation of oxygen flow rate (partial pressure) dependence of specific resistance and transmittance peak value after annealing

실시예 2 및 비교예 6에서 제작된 스퍼터링 타깃을 사용하여 얻어진 상기 스퍼터막에 대한, 어닐링 후의 비저항 및 투과율 피크값과, 산소 유량(분압)의 관계는 도 1에 나타낸 바와 같았다. 도 1에서 알 수 있는 바와 같이, 소성이 1600℃에서 행해진 실시예 2에서 제작된 스퍼터링 타깃을 사용하여 얻어진 스퍼터막 쪽이, 소성이 1500℃에서 행해진 비교예 6에서 제작된 스퍼터링 타깃을 사용하여 얻어진 스퍼터막에 비하여, 낮은 비저항이 얻어지는 도입 산소 유량과 높은 투과율이 얻어지는 도입 산소 유량의 차가 작아, 비저항이 최소 또는 그것에 가까운 산소 분압하에서 동시에 높은 투과율을 실현할 수 있음을 알 수 있다. 즉, 본 발명의 스퍼터링 타깃을 사용하여 스퍼터 성막을 행함으로써, 낮은 비저항 및 높은 투과율이라는 두 가지 중요한 성능을, 넓은 도입 산소 유량 범위, 바람직하게는 0.8∼3.0sccm 이상, 보다 바람직하게는 0.9∼2.5sccm, 더 바람직하게는 1.0∼2.0sccm, 가장 바람직 하게는 1.0∼1.5sccm의 도입 산소 유량 범위에 걸쳐 동시에 실현할 수 있음을 알 수 있다. The relationship between the specific resistance and transmittance peak value after annealing, and the oxygen flow rate (partial pressure) of the sputtered film obtained using the sputtering targets produced in Example 2 and Comparative Example 6 were as shown in FIG. 1. As can be seen from FIG. 1, the sputtering film obtained using the sputtering target produced in Example 2 in which the baking was performed at 1600 ° C. was obtained using the sputtering target produced in Comparative Example 6 in which the baking was performed at 1500 ° C. FIG. Compared with the sputter film, it is understood that the difference between the introduced oxygen flow rate at which the low specific resistance is obtained and the introduced oxygen flow rate at which the high transmittance is obtained is small, so that a high transmittance can be simultaneously realized under an oxygen partial pressure of which the specific resistance is minimum or close thereto. That is, by sputtering film formation using the sputtering target of this invention, two important performances, a low specific resistance and a high transmittance | permeability, have a wide introduction oxygen flow range, Preferably it is 0.8-3.0sccm or more, More preferably, it is 0.9-2.5 It can be seen that it can be realized simultaneously over the introduced oxygen flow rate range of sccm, more preferably 1.0 to 2.0 sccm, most preferably 1.0 to 1.5 sccm.

<표 1>TABLE 1

Figure 112007058544748-pct00001
Figure 112007058544748-pct00001

<표 2>TABLE 2

Figure 112007058544748-pct00002
Figure 112007058544748-pct00002

(6) X선 회절법에 의한 평가(6) Evaluation by X-ray Diffraction

실시예 4, 8, 및 비교예 7에서 제작된 두께 5mm의 스퍼터링 타깃의 X선 회절을 X선 회절 장치(MXP3, MAC Science사제)를 사용하여, 이하의 조건에서 측정한 바, 각각 도 2∼4에 나타낸 바와 같은 결과가 얻어졌다.X-ray diffraction of the sputtering target having a thickness of 5 mm produced in Examples 4, 8 and Comparative Example 7 was measured under the following conditions using an X-ray diffractometer (MXP3, manufactured by MAC Science). The result as shown in 4 was obtained.

선원 : CuKα선(λ=1.54050Å)Source: CuKα line (λ = 1.54050 Hz)

관전압 : 40kVTube voltage: 40kV

관전류 : 30mATube Current: 30mA

회절각 2θ의 범위 : 20∼40°Range of diffraction angle 2θ: 20 to 40 °

샘플링 간격 : 0.02° Sampling interval: 0.02 °

스캔 속도 : 4℃/분Scan Speed: 4 ° C / min

발산 슬릿 : 1°Diving Slit: 1 °

산란 슬릿 : 1°Scattering Slit: 1 °

수광 슬릿 : 0.3mmReceiver Slit: 0.3mm

도 2∼4에 나타낸 바와 같이, 소성이 1550℃ 이상에서 행해진 실시예 4 및 8의 스퍼터링 타깃의 X선 회절에서는, 소성이 1500℃에서 행해진 비교예 7의 스퍼터링 타깃의 X선 회절에서, 회절각 2θ가 22∼23°및 28∼29°에 관찰되는 Nb2O5에 기인하는 피크가 관찰되지 않았다. 또한, 상기 2θ 범위에서의 X선 회절 강도(Intensity)는 표 3에 나타낸 바와 같으며, 상기 측정 조건에서는, X선 회절 강도(Intensity)의 최고값이 100 미만이면 Nb2O5에 기인하는 피크가 실질적으로 관찰되지 않았다고 할 수 있을 것이다. 이로부터, 본 발명의 조성 범위 내에서는, 소성이 1500℃를 초과하는 온도, 예를 들면 1550℃ 이상의 온도에서 행해짐으로써, Nb2O5에 기인하는 X선 회절 피크가 소멸하는 것으로 생각된다.As shown in FIGS. 2-4, in the X-ray diffraction of the sputtering target of Example 4 and 8 in which baking was performed at 1550 degreeC or more, the diffraction angle in the X-ray diffraction of the sputtering target of the comparative example 7 in which baking was performed at 1500 degreeC The peak attributable to Nb 2 O 5 in which 2θ was observed at 22 to 23 degrees and 28 to 29 degrees was not observed. In addition, the X-ray diffraction intensity (Intensity) in the 2θ range is shown in Table 3, in the measurement conditions, the peak attributable to Nb 2 O 5 if the maximum value of the X-ray diffraction intensity (Intensity) is less than 100 It can be said that is not substantially observed. From this, within the composition range of the present invention, it is believed that the calcination temperature, for example by haenghaejim at a temperature of at least 1550 ℃, the X-ray diffraction peak due to Nb 2 O 5 lapse exceeding 1500 ℃.

<표 3>TABLE 3

Figure 112007058544748-pct00003
Figure 112007058544748-pct00003

Claims (9)

SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, 미소결의 성형체를 준비하고, SnO 2 as a main component, Nb 2 O 5 and Ta 2 O 5 containing 1.15 to 10% by mass in a total amount, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.90 To prepare, 그 성형체를 1550∼1650℃에서 소결하는 것Sintering the molded body at 1550 to 1650 ° C 을 포함하여 이루어지는, SnO2계 스퍼터링 타깃의 제조 방법.A method for producing a SnO 2 -based sputtering target, comprising a. 제1항에 있어서,The method of claim 1, 상기 소결이 2∼20시간 행해지는, SnO2계 스퍼터링 타깃의 제조 방법.The sintered 2-20 hours is carried out, SnO 2 based process for producing a sputtering target. 제1항에 있어서,The method of claim 1, 상기 소결이 산소 함유 분위기하에서 행해지는, SnO2계 스퍼터링 타깃의 제조 방법.Is, SnO 2 based method of manufacturing a sputtering target is performed in an atmosphere wherein the oxygen-containing sintering. 제1항에 있어서,The method of claim 1, 상기 미소결의 성형체가 바인더를 더 함유하여 이루어지고, 상기 소성에 앞서, 상기 바인더가 비산 또는 소실하도록, 상기 미소결의 성형체가 건조되고, 그 후 가열되는, SnO2계 스퍼터링 타깃의 제조 방법.The molded article of the microcrystalline grains further comprises a binder, and the molded article of the microcrystalline grains is dried and then heated so that the binder scatters or disappears prior to the firing, and then the SnO 2 based sputtering target is produced. SnO2를 주성분으로 하고, Nb2O5 및 Ta2O5를 합계량으로 1.15∼10질량% 함유하여 이루어지며, Nb2O5/Ta2O5의 함유량 질량비가 0.15∼0.90인, SnO2계 스퍼터링 타깃으로서, Of SnO 2 as a main component becomes the place and contain 1.15~10% by weight of Nb 2 O 5 and Ta 2 O 5 with the total amount, Nb 2 O 5 / Ta 2 O 5 mass ratio of the content is 0.15~0.90, SnO 2 based As a sputtering target, X선원으로서 CuKα선을 사용한 X선 회절에 의해, 회절각 2θ가 22∼23°및 28∼29°에 있어서의 Nb2O5에 기인하는 피크가 실질적으로 관찰되지 않는, SnO2계 스퍼터링 타깃.SnO 2 -based sputtering target in which the peak resulting from Nb 2 O 5 at the diffraction angles 2θ is 22 to 23 ° and 28 to 29 ° is not substantially observed by X-ray diffraction using CuKα rays as the X-ray source. 제5항에 있어서,The method of claim 5, 아르키메데스법에 의해 측정되는 상대 밀도가 90% 이상인, SnO2계 스퍼터링 타깃.SnO 2 type sputtering target whose relative density measured by the Archimedes method is 90% or more. 제5항에 있어서,The method of claim 5, 막 비저항값이 1×10-2Ω·cm 이하의 스퍼터막의 제조에 사용되는, SnO2계 스퍼터링 타깃.SnO 2 type sputtering target used for manufacture of a sputtering film whose film specific resistance value is 1 * 10 <-2> ( ohm) * cm or less. 제5항에 있어서,The method of claim 5, 자외 가시 분광 광도계에 의해 측정되는 파장 500∼600nm 광의 투과율의 피크값이 96% 이상인 스퍼터막의 제조에 사용되는, SnO2계 스퍼터링 타깃.SnO 2 type sputtering target used for manufacture of the sputtering film whose peak value of the transmittance | permeability of wavelength 500-600 nm light measured by an ultraviolet-visible spectrophotometer is 96% or more. 제5항에 있어서,The method of claim 5, 제1항 내지 제4항 중 어느 한 항에 기재된 제조 방법에 의해 제조된, SnO2계 스퍼터링 타깃.The SnO 2 type sputtering target manufactured by the manufacturing method in any one of Claims 1-4.
KR1020077018540A 2005-11-09 2006-11-08 ???2 sputtering target and process for producing same KR100948557B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00324837 2005-11-09
JP2005324837A JP4851777B2 (en) 2005-11-09 2005-11-09 SnO2-based sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20070096017A KR20070096017A (en) 2007-10-01
KR100948557B1 true KR100948557B1 (en) 2010-03-18

Family

ID=38023233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077018540A KR100948557B1 (en) 2005-11-09 2006-11-08 ???2 sputtering target and process for producing same

Country Status (5)

Country Link
JP (1) JP4851777B2 (en)
KR (1) KR100948557B1 (en)
CN (1) CN101128618A (en)
TW (1) TW200718797A (en)
WO (1) WO2007055231A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007142330A1 (en) * 2006-06-08 2009-10-29 旭硝子株式会社 Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
US7452488B2 (en) 2006-10-31 2008-11-18 H.C. Starck Inc. Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
JP5437919B2 (en) * 2010-06-04 2014-03-12 三井金属鉱業株式会社 ITO sputtering target and manufacturing method thereof
JP5947413B1 (en) * 2015-02-13 2016-07-06 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP2018206467A (en) * 2017-05-30 2018-12-27 株式会社アルバック Transparent conductive film
WO2023032456A1 (en) 2021-09-01 2023-03-09 三井金属鉱業株式会社 Oxide sintered body, production method for same, and sputtering target material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273622A (en) 1999-03-26 2000-10-03 Mitsui Mining & Smelting Co Ltd Material for forming thin film
JP2000281431A (en) * 1999-03-30 2000-10-10 Mitsui Mining & Smelting Co Ltd Tin dioxide-based sintered compact, material for thin film formation and electroconductive film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256506A (en) * 1985-05-08 1986-11-14 工業技術院長 Low resistance transparent conductive film and generation thereof
JPH03101202A (en) * 1989-06-13 1991-04-26 Hitachi Maxell Ltd Soft magnetic thin film and manufacture thereof
JP3616128B2 (en) * 1994-03-27 2005-02-02 グンゼ株式会社 Method for producing transparent conductive film
JPH11106217A (en) * 1997-09-30 1999-04-20 Sumitomo Chem Co Ltd Production of high-density ito sintered compact and high-density ito sintered compact, and ito sputter target using the same
JP3636914B2 (en) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ High resistance transparent conductive film, method for producing high resistance transparent conductive film, and sputtering target for forming high resistance transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273622A (en) 1999-03-26 2000-10-03 Mitsui Mining & Smelting Co Ltd Material for forming thin film
JP2000281431A (en) * 1999-03-30 2000-10-10 Mitsui Mining & Smelting Co Ltd Tin dioxide-based sintered compact, material for thin film formation and electroconductive film

Also Published As

Publication number Publication date
CN101128618A (en) 2008-02-20
KR20070096017A (en) 2007-10-01
TWI336731B (en) 2011-02-01
JP4851777B2 (en) 2012-01-11
TW200718797A (en) 2007-05-16
WO2007055231A1 (en) 2007-05-18
JP2007131891A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US8637124B2 (en) Oxide material and sputtering target
JP3746094B2 (en) Target and manufacturing method thereof
KR101184353B1 (en) Transparent conductive film, sintered body target for transparent conductive film fabrication, and transparent conductive base material and display device using the same
KR100948557B1 (en) ???2 sputtering target and process for producing same
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
KR20070088246A (en) Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
JPWO2007142330A1 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
JP2009132998A (en) SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP2016132609A (en) Oxide sintered body, sputtering target and oxide thin film
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
CN107207356B (en) Oxide sintered body, oxide sputtering target, and oxide thin film
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP4859726B2 (en) SnO2-based sputtering target and sputtered film
JP2011063866A (en) Compound oxide sintered compact, oxide transparent conductive film, and method for producing the same
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
WO2012121298A1 (en) Oxide sintered body, method for manufacturing same, and target using same
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5613926B2 (en) Sputtering target for transparent conductive film and method for producing the same
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP6280737B2 (en) Manufacturing method of ZnO target material and transparent conductive film
TW202314012A (en) Sputtering target and method for manufacturing same
JP2012131689A (en) Oxide sintered body, oxide mixture, manufacturing methods these, and target using these

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190219

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 11