JP4851777B2 - SnO2-based sputtering target and manufacturing method thereof - Google Patents

SnO2-based sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP4851777B2
JP4851777B2 JP2005324837A JP2005324837A JP4851777B2 JP 4851777 B2 JP4851777 B2 JP 4851777B2 JP 2005324837 A JP2005324837 A JP 2005324837A JP 2005324837 A JP2005324837 A JP 2005324837A JP 4851777 B2 JP4851777 B2 JP 4851777B2
Authority
JP
Japan
Prior art keywords
sno
sputtering target
based sputtering
sintering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324837A
Other languages
Japanese (ja)
Other versions
JP2007131891A (en
Inventor
中 泰 三 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005324837A priority Critical patent/JP4851777B2/en
Priority to CNA2006800062355A priority patent/CN101128618A/en
Priority to PCT/JP2006/322253 priority patent/WO2007055231A1/en
Priority to TW095141372A priority patent/TW200718797A/en
Priority to KR1020077018540A priority patent/KR100948557B1/en
Publication of JP2007131891A publication Critical patent/JP2007131891A/en
Application granted granted Critical
Publication of JP4851777B2 publication Critical patent/JP4851777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

発明の背景Background of the Invention

発明の分野
本発明は、SnO系スパッタリングターゲットおよびその製造方法に関するものであり、具体的には、フラットパネルディスプレイ、抵抗式タッチパネル、太陽電池等の透明導電膜の形成に使用されるSnO系スパッタターゲットおよびその製造方法に関するものである。
The present invention relates to a SnO 2 -based sputtering target and a method for producing the same, and specifically, SnO 2 -based used for forming transparent conductive films such as flat panel displays, resistive touch panels, and solar cells. The present invention relates to a sputtering target and a manufacturing method thereof.

背景技術
近年、SnO系透明導電膜が、フラットパネルディスプレイ、抵抗式タッチパネル、太陽電池等の幅広い用途に用いられている。このSnO系透明導電膜は、工業的には、スプレー法やCVD法により製造されるのが主流である。しかし、これらの方法は、膜厚を大面積に均一化することには適しておらず、成膜プロセスの制御も困難であり、さらには成膜時に汚染物質である塩素系ガスを生成し得ることから、これらの欠点の無い新たな製造方法が求められている。
Background Art In recent years, SnO 2 -based transparent conductive films have been used in a wide range of applications such as flat panel displays, resistive touch panels, and solar cells. The SnO 2 -based transparent conductive film is industrially mainly manufactured by a spray method or a CVD method. However, these methods are not suitable for making the film thickness uniform over a large area, it is difficult to control the film formation process, and furthermore, chlorine-based gas that is a contaminant during film formation can be generated. Therefore, a new production method without these drawbacks is required.

一方、スパッタリング法によるSnO系透明導電膜の製造も試みられている。しかし、スパッタリングへの使用に耐えうるSnO系のスパッタターゲットの入手が困難なため、広く普及していない。これは、SnOが難焼結性の物質であるため、スパッタリングへの使用に好適な高密度焼結体の製造が困難であることによるものである。また、電極材として要求される低抵抗なスパッタ膜を得るために、Sbを添加してSnOの比抵抗を下げたSnO系のスパッタターゲットも知られているが、焼結性改善効果は小さいものであった。 On the other hand, production of SnO 2 -based transparent conductive films by sputtering is also attempted. However, since it is difficult to obtain a SnO 2 -based sputtering target that can withstand use for sputtering, it has not been widely used. This is because it is difficult to produce a high-density sintered body suitable for use in sputtering because SnO 2 is a hardly sinterable substance. Further, in order to obtain a low resistance sputtered film required as an electrode material, but with the addition of Sb 2 O 3 is also known SnO 2 based sputter target having a reduced specific resistance of SnO 2, sinterability The improvement effect was small.

Ta、Nb等を含有する、焼結密度が4.0g・cm以上のSnO系スパッタリングターゲットが知られている(例えば、特許文献1(特開2000−273622)参照)。また、Ta、Nb等を含有する、比抵抗が1×10Ω・cm以下のSnO系スパッタリングターゲットも知られている(特許文献2(特開2000−281431)参照)。これらの文献の実施例において、スパッタリングターゲットの焼結は1500℃で行われている。しかしながら、近年需要が高まっているプラズマディスプレイパネル(PDP)用の透明電極膜として要求される、低い比抵抗および高い透過率の両方の特性を兼ね備えたスパッタ膜の製造を可能とするSnO系スパッタリングターゲットについては、未だ報告がなされていない。 An SnO 2 -based sputtering target containing Ta, Nb or the like and having a sintered density of 4.0 g · cm 3 or more is known (see, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-273622)). An SnO 2 -based sputtering target containing Ta, Nb, etc. and having a specific resistance of 1 × 10 7 Ω · cm or less is also known (see Patent Document 2 (Japanese Patent Laid-Open No. 2000-281431)). In the examples of these documents, the sputtering target is sintered at 1500 ° C. However, SnO 2 -based sputtering that enables the production of sputtered films that have both low resistivity and high transmittance, which are required as transparent electrode films for plasma display panels (PDPs), which are in increasing demand in recent years. The target has not yet been reported.

特開2000−273622号公報JP 2000-273622 A 特開2000−281431号公報JP 2000-281431 A

発明の概要Summary of the Invention

本発明者らは、今般、SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、未焼結の成形体を1550〜1650℃で焼結することにより、高い相対密度を有し、異常放電やパーティクルの発生を防止しながら、高い成膜速度で、低い比抵抗および高い透過率の両方を兼ね備えたスパッタ膜を形成することができる、高性能なSnO系スパッタターゲットを製造できるとの知見を得た。 The inventors of the present invention have SnO 2 as a main component, Nb 2 O 5 and Ta 2 O 5 are included in a total amount of 1.15 to 10% by mass, and contain Nb 2 O 5 / Ta 2 O 5 By sintering an unsintered compact having a mass to mass ratio of 0.15 to 0.90 at 1550 to 1650 ° C., it has a high relative density, while preventing abnormal discharge and generation of particles, It was found that a high-performance SnO 2 -based sputtering target capable of forming a sputtered film having both a low specific resistance and a high transmittance at a high film formation rate can be produced.

したがって、本発明は、高い相対密度を有し、異常放電やパーティクルの発生を防止しながら、高い成膜速度で、低い比抵抗および高い透過率の両方を兼ね備えたスパッタ膜を形成することができる、高性能なSnO系スパッタターゲットを製造することをその目的としている。 Therefore, the present invention can form a sputtered film having both a low specific resistance and a high transmittance at a high film formation rate while having a high relative density and preventing abnormal discharge and generation of particles. The purpose is to produce a high-performance SnO 2 -based sputtering target.

そして、本発明によるSnO系スパッタリングターゲットの製造方法は、
SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、未焼結の成形体を用意し、
該成形体を1550〜1650℃で焼結すること
を含んでなる方法である。
The manufacturing method of SnO 2 based sputtering target according to the present invention,
SnO 2 is the main component, Nb 2 O 5 and Ta 2 O 5 are included in a total amount of 1.15 to 10% by mass, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.15. Prepare a green compact that is 0.90,
It is a method comprising sintering the molded body at 1550 to 1650 ° C.

また、本発明によるSnO系スパッタリングターゲットは、SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、SnO系スパッタリングターゲットであって、
X線源としてCuKαを用いたX線回折により、回折角2θが22〜23°および28〜29°におけるNbに起因するピークが実質的に観察されないものである。
The SnO 2 -based sputtering target according to the present invention contains SnO 2 as a main component and includes 1.15 to 10% by mass of Nb 2 O 5 and Ta 2 O 5 in a total amount, and Nb 2 O 5 / Ta 2. The content mass ratio of O 5 is a SnO 2 -based sputtering target having a content ratio of 0.15 to 0.90,
By X-ray diffraction using CuKα as the X-ray source, peaks due to Nb 2 O 5 at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° are not substantially observed.

発明の具体的説明Detailed description of the invention

SnO 系スパッタリングターゲットの製造方法
本発明の方法においては、まず、SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、未焼結の成形体を用意する。NbおよびTaが合計量で1.15〜10質量%であると、焼結密度を向上させながら、固溶できないTaおよびNbの増加による膜比抵抗の上昇を防止して低い膜比抵抗を実現しやすくなる。好ましいNbおよびTaの合計量は、1.15〜8質量%であり、より好ましくは3.5〜6質量%、さらに好ましくは4〜6質量%である。また、Nb/Taの含有量質量比を0.15〜0.90とすることにより、液相焼結により高密度化に寄与するNb量を確保して焼結密度の低下を防止しながら、スパッタ成膜した膜比抵抗の上昇を防止することができる。好ましいNb/Taの含有量質量比は、0.15〜0.60であり、より好ましくは0.17〜0.33であり、さらに好ましくは0.20〜0.33である。
Manufacturing method of SnO 2 -based sputtering target In the method of the present invention, first, SnO 2 is the main component, Nb 2 O 5 and Ta 2 O 5 are included in a total amount of 1.15 to 10% by mass, and Nb 2 An unsintered molded body having an O 5 / Ta 2 O 5 content mass ratio of 0.15 to 0.90 is prepared. When the total amount of Nb 2 O 5 and Ta 2 O 5 is 1.15 to 10% by mass, it is possible to prevent an increase in film resistivity due to an increase in Ta and Nb that cannot be dissolved while improving the sintered density. It becomes easy to realize a low film specific resistance. The total amount of preferably Nb 2 O 5 and Ta 2 O 5 is from 1.15 to 8 wt%, more preferably from 3.5 to 6 wt%, more preferably from 4 to 6 wt%. Further, by setting the content mass ratio of Nb 2 O 5 / Ta 2 O 5 to 0.15 to 0.90, the amount of Nb 2 O 5 that contributes to high density by liquid phase sintering is ensured and sintered. It is possible to prevent an increase in the specific resistance of the sputtered film while preventing a decrease in the consolidation density. The content mass ratio of preferably Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.60, more preferably 0.17 to 0.33, more preferably 0.20 to 0.33 It is.

本発明において未焼結の成形体は、上記組成を含む原料粉を成形したものであればいかなる方法により成形されたものであってもよく、例えば、SnO粉末、Nb粉末、Ta粉末を上記組成を満たすような配合量比で混合して原料粉を調製し、この原料粉を成形することにより作製することができる。 In the present invention, the unsintered molded body may be formed by any method as long as the raw material powder containing the above composition is molded. For example, SnO 2 powder, Nb 2 O 5 powder, Ta The raw material powder can be prepared by mixing 2 O 5 powder at a blending ratio that satisfies the above composition, and the raw material powder can be formed.

本発明の好ましい態様によれば、原料粉を用いた未焼結体の成形体は、原料粉にバインダーを添加して所定の形状を付与し易くするのが好ましい。このようなバインダーとしては、加熱により消失ないし飛散する公知のバインダーであれば限定されず、ポリビニルアルコール水溶液等が使用可能である。したがって、この態様にあっては、焼結に先立ち、バインダーが飛散ないし消失するように、未焼結の成形体が乾燥され、その後加熱(脱脂)されるのが好ましい。乾燥および加熱の方法は限定されるものではないが、先ず50〜130℃で5〜30時間乾燥を行い、次いで500〜800℃で6〜24時間加熱して脱脂を行うのが好ましい。   According to a preferred embodiment of the present invention, it is preferable that the green compact formed from the raw material powder is easily given a predetermined shape by adding a binder to the raw material powder. Such a binder is not limited as long as it is a known binder that disappears or scatters by heating, and an aqueous polyvinyl alcohol solution or the like can be used. Therefore, in this embodiment, it is preferable that the green compact is dried and then heated (degreasing) so that the binder is scattered or disappears prior to sintering. Although the method of drying and heating is not limited, it is preferable to first dry at 50 to 130 ° C. for 5 to 30 hours, and then degrease by heating at 500 to 800 ° C. for 6 to 24 hours.

本発明の好ましい態様によれば、未焼結の成形体は、焼結密度をさらに向上させるため、Fe、NiO、CoO、In、またはこれらの混合物をさらに含有することができる。これらの金属酸化物を添加する場合、その合計添加量は100〜7000ppmとするのが好ましく、より好ましくは350〜7000ppm、さらに好ましくは700〜7000ppmである。 According to a preferred embodiment of the present invention, the green compact further contains Fe 2 O 3 , NiO 2 , CoO, In 2 O 3 , or a mixture thereof to further improve the sintered density. Can do. When adding these metal oxides, the total addition amount is preferably 100 to 7000 ppm, more preferably 350 to 7000 ppm, and still more preferably 700 to 7000 ppm.

本発明の別の好ましい態様によれば、未焼結の成形体は、スパッタリングターゲットの比抵抗をさらに低下させるため、Al、SiO、Y、またはそれらの混合物をさらに含有することができる。これらの金属酸化物を添加する場合、これらの金属酸化物、Nb、およびTaの合計添加量が20質量%以下となるような添加量とするのが好ましい。 According to another preferred embodiment of the present invention, the green compact further contains Al 2 O 3 , SiO 2 , Y 2 O 3 , or a mixture thereof to further reduce the specific resistance of the sputtering target. can do. When adding these metal oxides, it is preferable that the total amount of these metal oxides, Nb 2 O 5 , and Ta 2 O 5 be 20 mass% or less.

本発明の更に別の好ましい態様によれば、未焼結の成形体は、焼結密度をさらに向上させるため、Ga、Bi、Mn、Fe、NiO、CoO、またはそれらの混合物をさらに含有することができる。これらの金属酸化物を添加する場合、これらの金属酸化物、Nb、およびTaの合計添加量が20質量%以下となるような添加量とするのが好ましい。 According to still another preferred embodiment of the present invention, the green compact is further improved in the sintered density by Ga 2 O 3 , Bi 2 O 3 , Mn 2 O 3 , Fe 2 O 3 , NiO. , CoO, or a mixture thereof. When adding these metal oxides, it is preferable that the total amount of these metal oxides, Nb 2 O 5 , and Ta 2 O 5 be 20 mass% or less.

次に、本発明の方法においては、上記の通り用意された未焼結の成形体を1550〜1650℃で焼結する。この温度範囲内で焼結を行うことにより、液相焼結が充分に進行して焼結密度を高くすることができ、スパッタ膜において比抵抗値最小時の透過率を高くすることができ、さらには、SnOの溶融を防止して所望の形状の焼結体の作製を行い易くすることができる。好ましい焼結温度は1550〜1600℃である。この温度範囲内においては、焼結体内部の温度差を小さくできるので、焼結体の反りを有効に防止して生産性を更に向上することができる。 Next, in the method of the present invention, the green compact prepared as described above is sintered at 1550 to 1650 ° C. By performing the sintering within this temperature range, the liquid phase sintering can proceed sufficiently to increase the sintering density, and the transmittance at the time of the specific resistance value can be increased in the sputtered film. Furthermore, it is possible to prevent the SnO 2 from melting and to easily produce a sintered body having a desired shape. The preferred sintering temperature is 1550-1600 ° C. Within this temperature range, the temperature difference inside the sintered body can be reduced, so that the warping of the sintered body can be effectively prevented and the productivity can be further improved.

本発明の好ましい態様によれば、焼結は、2〜20時間行われるのが好ましく、より好ましくは3〜12時間であり、さらに好ましくは4〜8時間である。この範囲内であると、電力消費量を抑制し、かつ高い生産性を確保しながら、充分に焼結を行うことができる。   According to a preferred embodiment of the present invention, the sintering is preferably performed for 2 to 20 hours, more preferably 3 to 12 hours, and further preferably 4 to 8 hours. Within this range, it is possible to sufficiently sinter while suppressing power consumption and ensuring high productivity.

本発明の好ましい態様によれば、焼結は、高い焼結密度を確保するために酸素含有雰囲気下で行われるのが好ましく、例えば、酸素加圧雰囲気下、酸素雰囲気下、あるいは大気雰囲気下でが行うことができる。   According to a preferred embodiment of the present invention, the sintering is preferably performed in an oxygen-containing atmosphere in order to ensure a high sintering density, for example, in an oxygen-pressurized atmosphere, an oxygen atmosphere, or an air atmosphere. Can be done.

SnO 系スパッタリングターゲット
上述した本発明の製造方法により製造されたSnO系スパッタリングターゲットは、SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90でなり、X線源としてCuKα線(λ=1.54050Å)を用いたX線回折により、回折角2θが22〜23°および28〜29°におけるNbに起因するピークが実質的に観察されないものであることができるが、本発明の製造方法により製造されたものであれば必ずしもこれに限定されるものではない。すなわち、本発明の製造方法において、未焼結の成形体は1550〜1650℃で焼結されるが、本発明者らの知見によれば、この範囲内の焼結温度で得られる焼結体にあっては、X線源としてCuを用いたX線回折により、回折角2θが22〜23°および28〜29°におけるNbに起因するピークが観察されない。このような本発明のSnO系スパッタリングターゲットは、高い相対密度を有し、異常放電やパーティクルの発生を防止しながら、高い成膜速度で、低い比抵抗および高い透過率の両方を兼ね備えたスパッタ膜を形成することができる。
SnO 2 based sputtering target produced by the method of the present invention described above SnO 2 based sputtering target, an SnO 2 as a main component, 1.15 to 10 wt% of Nb 2 O 5 and Ta 2 O 5 in the total amount The content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.90, and by X-ray diffraction using CuKα ray (λ = 1.54050Å) as an X-ray source, The peaks attributable to Nb 2 O 5 at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° can be substantially not observed, but are not necessarily limited to those manufactured by the manufacturing method of the present invention. It is not limited to this. That is, in the production method of the present invention, an unsintered molded body is sintered at 1550 to 1650 ° C., but according to the knowledge of the present inventors, a sintered body obtained at a sintering temperature within this range. In that case, by X-ray diffraction using Cu as an X-ray source, no peaks due to Nb 2 O 5 at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° are observed. Such a SnO 2 -based sputtering target of the present invention has a high relative density and prevents both abnormal discharge and generation of particles while at the same time having a high film formation rate and a low specific resistance and a high transmittance. A film can be formed.

本発明の好ましい態様によれば、上記X線回折の測定は、X線回折装置(MXP3、MAC Science社製)を用いて、管電圧:40kV、管電流:30mA、サンプリング間隔:0.02°、スキャン速度:4℃/分、発散スリット:1°、散乱スリット:1°、受光スリット:0.3mmの条件で行われるのが好ましい。そして、本発明の好ましい態様によれば、上記好適条件でのX線回折により、回折角2θが22〜23°および28〜29°においてX線強度(Intensity)の最高値が100未満であるのが好ましい。なお、もし仮に上記好適条件のX線回折よりも更に高い感度のX線回折によりNbに起因するピークが観察されたとしても、上記好適条件下でのX線回折によりNbに起因するピークが実質的に観察されない限り、本発明の範囲に包含される。 According to a preferred aspect of the present invention, the X-ray diffraction is measured using an X-ray diffractometer (MXP3, manufactured by MAC Science), tube voltage: 40 kV, tube current: 30 mA, sampling interval: 0.02 °. The scanning speed is preferably 4 ° C./min, the diverging slit: 1 °, the scattering slit: 1 °, and the light receiving slit: 0.3 mm. According to a preferred aspect of the present invention, the maximum value of the X-ray intensity (Intensity) is less than 100 at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° by X-ray diffraction under the above-mentioned preferred conditions. Is preferred. Even if a peak due to Nb 2 O 5 is observed by X-ray diffraction with higher sensitivity than the X-ray diffraction under the above-mentioned preferred conditions, Nb 2 O 5 is obtained by X-ray diffraction under the above-mentioned preferred conditions. Unless a peak due to is substantially observed, it is included in the scope of the present invention.

本発明の好ましい態様によれば、SnO系スパッタリングターゲットは、90%以上の、アルキメデス法により測定される相対密度を有するのが好ましく、好ましくは93%以上、さらに好ましくは96%以上である。このように高い相対密度を有することにより、スパッタリング中における異常放電やパーティクルの発生を有効に防止することができる。なお、このアルキメデス法による測定は室温で行われるのが好ましい。 According to a preferred embodiment of the present invention, the SnO 2 -based sputtering target preferably has a relative density of 90% or more as measured by the Archimedes method, preferably 93% or more, and more preferably 96% or more. By having such a high relative density, abnormal discharge and generation of particles during sputtering can be effectively prevented. The measurement by the Archimedes method is preferably performed at room temperature.

本発明の好ましい態様によれば、SnO系スパッタリングターゲットは、膜比抵抗値が1×10−2Ω・cm以下のスパッタ膜の製造に使用されるのが好ましい。本発明のSnO系スパッタリングターゲットによれば、このように低い膜比抵抗値を確保しながら、透過率の高いスパッタ膜を製造することができる。 According to a preferred aspect of the present invention, the SnO 2 -based sputtering target is preferably used for the production of a sputtered film having a film specific resistance value of 1 × 10 −2 Ω · cm or less. According to the SnO 2 -based sputtering target of the present invention, it is possible to produce a sputtered film having a high transmittance while ensuring such a low film specific resistance value.

本発明の好ましい態様によれば、SnO系スパッタリングターゲットは、紫外可視分光光度計により測定される波長500〜600nmの光の透過率のピーク値が96%以上であるスパッタ膜の製造に使用されるのが好ましい。本発明のSnO系スパッタリングターゲットによれば、このように高い光透過率を確保しながら、膜抵抗値の低いスパッタ膜を製造することができる。 According to a preferred embodiment of the present invention, the SnO 2 -based sputtering target is used for manufacturing a sputtered film having a peak transmittance of light of a wavelength of 500 to 600 nm measured by an ultraviolet-visible spectrophotometer of 96% or more. It is preferable. According to the SnO 2 -based sputtering target of the present invention, it is possible to produce a sputtered film having a low film resistance value while ensuring such a high light transmittance.

実施例1
まず、以下の3種類の原料粉末を用意した。
SnO粉末:純度99.99%(4N)、平均粒径0.7〜1.1μm、比表面積2.0〜2.7m/g
Ta粉末:純度99.9%(3N)、平均粒径0.6〜0.8μm、比表面積2.0〜3.1m/g
Nb粉末:純度99.9%(3N)、平均粒径0.6〜1.0μm、比表面積2.1〜2.7m/g
Example 1
First, the following three kinds of raw material powders were prepared.
SnO 2 powder: purity 99.99% (4N), average particle size 0.7 to 1.1 μm, specific surface area 2.0 to 2.7 m 2 / g
Ta 2 O 5 powder: purity 99.9% (3N), average particle size 0.6 to 0.8 μm, specific surface area 2.0 to 3.1 m 2 / g
Nb 2 O 5 powder: purity 99.9% (3N), average particle size 0.6-1.0 μm, specific surface area 2.1-2.7 m 2 / g

次いで、上記SnO粉末96.5質量%と、上記Ta粉末3質量%と、上記Nb粉末0.5質量%とを、ボールミルで21時間混合した。この混合粉にポリビニルアルコール水溶液を添加し、400×800mm寸法の金型に充填し、800kg/cmの圧力にてプレス成形した。この成形体を80℃で12時間乾燥させた後、600℃で4時間脱脂した。この脱脂体を、大気雰囲気において、焼成温度1600℃で4時間焼成し、焼結体を得た。この際、昇温速度および降温速度は共に100℃/時間に制御した。得られた焼結体を加工して、直径6インチ(152mm)、厚さ5mmの大きさのSnO系スパッタリングターゲットとした。 Next, 96.5% by mass of the SnO 2 powder, 3% by mass of the Ta 2 O 5 powder, and 0.5% by mass of the Nb 2 O 5 powder were mixed with a ball mill for 21 hours. An aqueous polyvinyl alcohol solution was added to the mixed powder, filled in a 400 × 800 mm mold, and press molded at a pressure of 800 kg / cm 2 . The molded body was dried at 80 ° C. for 12 hours and then degreased at 600 ° C. for 4 hours. This degreased body was fired at a firing temperature of 1600 ° C. for 4 hours in an air atmosphere to obtain a sintered body. At this time, the rate of temperature rise and the rate of temperature fall were both controlled to 100 ° C./hour. The obtained sintered body was processed to obtain a SnO 2 -based sputtering target having a diameter of 6 inches (152 mm) and a thickness of 5 mm.

実施例2〜7ならびに比較例1〜5および9
表1に示される組成比率で原料粉末を混合したこと以外は、実施例1と同様にして、SnO系スパッタリングターゲットを作製した。
Examples 2-7 and Comparative Examples 1-5 and 9
A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powder was mixed at the composition ratio shown in Table 1.

実施例8
表1に示される組成比率で原料粉末を混合したこと、および焼成温度を1550℃にしたこと以外は、実施例1と同様にして、SnO系スパッタリングターゲットを作製した。
Example 8
A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratio shown in Table 1 and the firing temperature was 1550 ° C.

比較例6および7
表1に示される組成比率で原料粉末を混合したこと、および焼成温度を1500℃にしたこと以外は、実施例1と同様にして、SnO系スパッタリングターゲットを作製した。
Comparative Examples 6 and 7
A SnO 2 -based sputtering target was produced in the same manner as in Example 1 except that the raw material powders were mixed at the composition ratio shown in Table 1 and the firing temperature was 1500 ° C.

比較例8
表1に示される組成比率で原料粉末を混合したこと、および焼成温度を1700℃にしたこと以外は、実施例1と同様にして、焼結体としてのSnO系スパッタリングターゲットを作製を試みた。しかし、SnOが溶融したため、形状が崩れ、所望の形状を得ることは出来なかった。
Comparative Example 8
An attempt was made to produce a SnO 2 -based sputtering target as a sintered body in the same manner as in Example 1 except that the raw material powder was mixed at the composition ratio shown in Table 1 and the firing temperature was 1700 ° C. . However, since SnO 2 was melted, the shape collapsed and a desired shape could not be obtained.

評価
実施例1〜8ならびに比較例1〜7および9において作製されたスパッタターゲットについて、(1)〜(3)の評価を行った。
(1)相対密度の測定
各スパッタリングターゲットの相対密度をアルキメデス法によりを測定した。このとき、各原料の密度をSnO:6.95g/cm、Ta:8.74g/cm、Nb:4.47g/cmとして加重平均密度(理論密度)を算出し、この加重平均密度を100%として相対密度を算出した。その結果は、表1に示される通りであった。
Evaluations (1) to (3) were performed on the sputtering targets produced in Evaluation Examples 1 to 8 and Comparative Examples 1 to 7 and 9.
(1) Measurement of relative density The relative density of each sputtering target was measured by the Archimedes method. In this case, each raw material density of SnO 2: 6.95g / cm 3, Ta 2 O 5: 8.74g / cm 3, Nb 2 O 5: Weighted average density of 4.47 g / cm 3 (theoretical density) The relative density was calculated with the weighted average density as 100%. The results were as shown in Table 1.

(2)成膜速度の測定
各スパッタリングターゲットを無酸素銅製のバッキングプレートにメタルボンディングした。この時、スパッタリングターゲットのスパッタ面の中心線平均粗さRaを測定したところ、0.6μm以下であった。また、各スパッタリングターゲットの組成をICP分析したところ、原料として用いた混合粉の組成と同一であった。そして、メタルボンディングした各スパッタリングターゲットについて、以下に示される条件で、直流電源を用いたマグネトロンスパッタリングを行い、無アルカリガラス基板にスパッタ成膜した。
到達圧力:1×10−4Pa
基板温度:室温
導入アルゴン分圧:0.5Pa
導入酸素流量(分圧):0〜3sccm (0〜2×10−2Pa)
直流印加電力:300W
膜厚:約140nm
基板:無アルカリガラス
(2) Measurement of film formation rate Each sputtering target was metal bonded to a backing plate made of oxygen-free copper. At this time, when the center line average roughness Ra of the sputtering surface of the sputtering target was measured, it was 0.6 μm or less. Moreover, when the composition of each sputtering target was analyzed by ICP, it was the same as the composition of the mixed powder used as a raw material. And about each sputtering target which carried out metal bonding, magnetron sputtering using a DC power supply was performed on the conditions shown below, and it sputter-deposited on the alkali free glass substrate.
Ultimate pressure: 1 × 10 −4 Pa
Substrate temperature: room temperature Argon partial pressure introduced: 0.5 Pa
Introduced oxygen flow rate (partial pressure): 0 to 3 sccm (0 to 2 × 10 −2 Pa)
DC applied power: 300W
Film thickness: about 140nm
Substrate: alkali-free glass

形成された膜の厚さを触針式表面形状測定器(Dektak6M、ULVAC社製)により測定し、得られた厚さを成膜時間で割ることにより、成膜速度を算出した。導入酸素流量0sccmの時における成膜速度の結果は、表1に示される通りであった。   The thickness of the formed film was measured with a stylus type surface shape measuring instrument (Dektak 6M, manufactured by ULVAC), and the obtained film thickness was divided by the film forming time, thereby calculating the film forming speed. The results of the film formation rate when the introduced oxygen flow rate was 0 sccm were as shown in Table 1.

(3)膜比抵抗の測定
スパッタ成膜後、大気雰囲気において、500℃で1時間アニールを行った。それぞれの膜比抵抗の最小値を測定したところ、表1に示される通りの結果が得られた。比抵抗は、シート抵抗測定器(MCP−TP06P、ダイアインスツルメント社製)を用いて四探針法でシート抵抗を測定し、得られたシート抵抗に、触針式表面形状測定器(Dektak6M、ULVAC社製)により測定した膜厚を掛けることにより算出した。
(3) Measurement of film specific resistance After sputtering film formation, annealing was performed at 500 ° C. for 1 hour in an air atmosphere. When the minimum value of each film specific resistance was measured, the result as shown in Table 1 was obtained. The specific resistance was measured by a four-probe method using a sheet resistance measuring instrument (MCP-TP06P, manufactured by Dia Instruments Co., Ltd.). The obtained sheet resistance was measured with a stylus type surface shape measuring instrument (Dektak 6M). And the film thickness measured by ULVAC).

(4)透過率の測定
実施例2および4ならびに比較例6および7について、透過率の測定を以下の通り行った。アニール後に比抵抗値が最小となった酸素分圧条件の試料について、紫外可視分光光度計(UV−2550、島津社製)を用いて波長300〜800nmの光の透過率を測定した。このとき、リファレンスとして、ブランクガラスを使用した。実施例2および4ならびに比較例6および7の全ての試料について波長500〜600nmに透過率のピークが観察され、その透過率のピーク値は表2に示される通りであった。
(4) Measurement of transmittance For Examples 2 and 4 and Comparative Examples 6 and 7, the transmittance was measured as follows. About the sample of the oxygen partial pressure conditions whose specific resistance value became the minimum after annealing, the transmittance | permeability of light with a wavelength of 300-800 nm was measured using the ultraviolet visible spectrophotometer (UV-2550, Shimadzu Corporation make). At this time, blank glass was used as a reference. For all the samples of Examples 2 and 4 and Comparative Examples 6 and 7, a transmittance peak was observed at a wavelength of 500 to 600 nm, and the transmittance peak value was as shown in Table 2.

(5)アニール後の比抵抗および透過率ピーク値の酸素流量(分圧)依存性の評価
実施例2および比較例6で作製されたスパッタリングターゲットを用いて得られた上記スパッタ膜についての、アニール後の比抵抗および透過率ピーク値と、酸素流量(分圧)との関係は、図1に示される通りとなった。図1から分かるように、焼成が1600℃で行われた実施例2で作製されたスパッタリングターゲットを用いて得られたスパッタ膜の方が、焼成が1500℃で行われた比較例6で作製されたスパッタリングターゲットを用いて得られたスパッタ膜と比べて、低い比抵抗が得られる導入酸素流量と高い透過率が得られる導入酸素流量との差が小さく、比抵抗が最小またはそれに近い酸素分圧下において同時に高い透過率を実現できることが分かる。すなわち、本発明のスパッタリングターゲットを用いてスパッタ成膜を行うことにより、低い比抵抗および高い透過率という二つの重要な性能を、広い導入酸素流量範囲、好ましくは0.8〜3.0sccm以上、より好ましくは0.9〜2.5sccm、さらに好ましくは1.0〜2.0sccm、最も好ましくは1.0〜1.5sccmの導入酸素流量範囲、にわたって、同時に実現できることが分かる。
(5) Evaluation of oxygen flow rate (partial pressure) dependency of specific resistance and transmittance peak value after annealing Annealing of the sputtered films obtained using the sputtering targets prepared in Example 2 and Comparative Example 6 The relationship between the subsequent specific resistance and transmittance peak values and the oxygen flow rate (partial pressure) was as shown in FIG. As can be seen from FIG. 1, the sputtered film obtained using the sputtering target produced in Example 2 that was fired at 1600 ° C. was produced in Comparative Example 6 that was fired at 1500 ° C. Compared with a sputtered film obtained using a sputtering target, the difference between the introduced oxygen flow rate at which a low specific resistance is obtained and the introduced oxygen flow rate at which a high transmittance is obtained is small, and the specific resistance is at or near the minimum oxygen partial pressure. It can be seen that a high transmittance can be realized at the same time. That is, by performing sputter film formation using the sputtering target of the present invention, two important performances of low specific resistance and high transmittance are achieved in a wide range of introduced oxygen flow rate, preferably 0.8 to 3.0 sccm or more, It can be seen that it can be realized simultaneously over an introduced oxygen flow rate range of 0.9 to 2.5 sccm, more preferably 1.0 to 2.0 sccm, and most preferably 1.0 to 1.5 sccm.

Figure 0004851777
Figure 0004851777

Figure 0004851777
Figure 0004851777

(6)X線回折法による評価
実施例4、8、および比較例7で作製された厚さ5mmのスパッタリングターゲットのX線回折をX線回折装置(MXP3、MAC Science社製)を用いて、以下の条件で測定したところ、それぞれ図2〜4に示される通りの結果が得られた。
線源:CuKα線(λ=1.54050Å)
管電圧:40kV
管電流:30mA
回折角2θの範囲:20〜40°
サンプリング間隔:0.02°
スキャン速度:4℃/分
発散スリット:1°
散乱スリット:1°
受光スリット:0.3mm
(6) Evaluation by X-ray diffraction method X-ray diffraction of the sputtering target having a thickness of 5 mm produced in Examples 4 and 8 and Comparative Example 7 was performed using an X-ray diffractometer (MXP3, manufactured by MAC Science). When measured under the following conditions, the results shown in FIGS. 2 to 4 were obtained.
Radiation source: CuKα ray (λ = 1.54050 mm)
Tube voltage: 40 kV
Tube current: 30 mA
Diffraction angle 2θ range: 20-40 °
Sampling interval: 0.02 °
Scanning speed: 4 ° C / min Diverging slit: 1 °
Scattering slit: 1 °
Receiving slit: 0.3mm

図2〜4に示されるように、焼成が1550℃以上で行われた実施例4および8のスパッタリングターゲットのX線回折にあっては、焼成が1500℃で行われた比較例7のスパッタリングターゲットのX線回折で、回折角2θが22〜23°および28〜29°に観察されるNbに起因するピークが観察されなかった。なお、上記2θ範囲におけるX線回折強度(Intensity)は表3に示される通りであり、上記測定条件においては、X線回折強度(Intensity)の最高値が100未満であればNbに起因するピークが実質的に観察されなかったと言うことができるであろう。このことから、本発明の組成範囲内においては、焼成が1500℃を超える温度、例えば1550℃以上の温度、で行われることにより、Nbに起因するX線回折ピークが消滅するものと考えられる。 As shown in FIGS. 2 to 4, in the X-ray diffraction of the sputtering targets of Examples 4 and 8 that were fired at 1550 ° C. or higher, the sputtering target of Comparative Example 7 that was fired at 1500 ° C. In X-ray diffraction, no peak due to Nb 2 O 5 observed at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° was observed. The X-ray diffraction intensity (Intensity) in the 2θ range is as shown in Table 3. Under the above measurement conditions, if the maximum value of the X-ray diffraction intensity (Intensity) is less than 100, Nb 2 O 5 It can be said that the resulting peak was not substantially observed. From this, within the composition range of the present invention, when the firing is performed at a temperature exceeding 1500 ° C., for example, a temperature of 1550 ° C. or more, the X-ray diffraction peak due to Nb 2 O 5 disappears. Conceivable.

Figure 0004851777
Figure 0004851777

実施例2および比較例6で作製されたスパッタリングターゲットを用いて得られたスパッタ膜についての、アニール後の比抵抗および透過率ピーク値と、酸素流量(分圧)との関係を示す図である。It is a figure which shows the relationship between the specific resistance and transmittance | permeability peak value after annealing, and oxygen flow rate (partial pressure) about the sputtered film obtained using the sputtering target produced in Example 2 and Comparative Example 6. . 実施例4で作製されたスパッタリングターゲットのX線回折を示す図である。6 is a diagram showing X-ray diffraction of a sputtering target produced in Example 4. FIG. 実施例8で作製されたスパッタリングターゲットのX線回折を示す図である。10 is a diagram showing X-ray diffraction of a sputtering target produced in Example 8. FIG. 比較例7で作製されたスパッタリングターゲットのX線回折を示す図である。10 is a diagram showing X-ray diffraction of a sputtering target produced in Comparative Example 7. FIG.

Claims (9)

SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、未焼結の成形体を用意し、
該成形体を1550〜1650℃で焼結すること
を含んでなる、SnO系スパッタリングターゲットの製造方法。
SnO 2 is the main component, Nb 2 O 5 and Ta 2 O 5 are included in a total amount of 1.15 to 10% by mass, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.15. Prepare a green compact that is 0.90,
Comprising the sintering the molded body at 1550 to 1650 ° C., the manufacturing method of SnO 2 based sputtering target.
前記焼結が、2〜20時間行われる、請求項1に記載の方法。   The method according to claim 1, wherein the sintering is performed for 2 to 20 hours. 前記焼結が、酸素含有雰囲気下で行われる、請求項1または2に記載の方法。   The method according to claim 1, wherein the sintering is performed in an oxygen-containing atmosphere. 前記未焼結の成形体がバインダーをさらに含んでなり、前記焼成に先立ち、前記バインダーが飛散ないし消失するように、前記未焼結の成形体が乾燥され、その後加熱される、請求項1〜3のいずれか一項に記載の方法。   The green body further comprises a binder, and the green body is dried and then heated so that the binder scatters or disappears prior to the firing. 4. The method according to any one of 3. SnOを主成分とし、NbおよびTaを合計量で1.15〜10質量%含んでなり、Nb/Taの含有量質量比が0.15〜0.90である、SnO系スパッタリングターゲットであって、
X線源としてCuKα線を用いたX線回折により、回折角2θが22〜23°および28〜29°におけるNbに起因するピークが実質的に観察されない、SnO系スパッタリングターゲット。
SnO 2 is the main component, Nb 2 O 5 and Ta 2 O 5 are included in a total amount of 1.15 to 10% by mass, and the content mass ratio of Nb 2 O 5 / Ta 2 O 5 is 0.15 to 0.15. An SnO 2 -based sputtering target of 0.90,
A SnO 2 -based sputtering target in which peaks due to Nb 2 O 5 at diffraction angles 2θ of 22 to 23 ° and 28 to 29 ° are not substantially observed by X-ray diffraction using CuKα rays as an X-ray source.
アルキメデス法により測定される相対密度が90%以上である、請求項5に記載のSnO系スパッタリングターゲット。 The relative density measured by the Archimedes method is 90% or more, SnO 2 based sputtering target according to claim 5. 膜比抵抗値が1×10−2Ω・cm以下のスパッタ膜の製造に使用される、請求項5または6に記載のSnO系スパッタリングターゲット。 Film resistivity values are used in the manufacture of the following sputtered film 1 × 10 -2 Ω · cm, SnO 2 based sputtering target according to claim 5 or 6. 紫外可視分光光度計により測定される波長500〜600nmの光の透過率のピーク値が96%以上であるスパッタ膜の製造に使用される、請求項5〜7のいずれか一項に記載のSnO系スパッタリングターゲット。 SnO as described in any one of Claims 5-7 used for manufacture of the sputtered film whose peak value of the transmittance | permeability of the light of the wavelength of 500-600 nm measured with an ultraviolet visible spectrophotometer is 96% or more. 2 system sputtering target. 請求項1〜4のいずれか一項に記載の製造方法により製造された、請求項5〜8のいずれか一項に記載のSnO系スパッタリングターゲット。 Claimed manufactured by the method according to any one of claims 1 to 4, SnO 2 based sputtering target according to any one of claims 5-8.
JP2005324837A 2005-11-09 2005-11-09 SnO2-based sputtering target and manufacturing method thereof Active JP4851777B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005324837A JP4851777B2 (en) 2005-11-09 2005-11-09 SnO2-based sputtering target and manufacturing method thereof
CNA2006800062355A CN101128618A (en) 2005-11-09 2006-11-08 SnO2 sputtering target and process for producing same
PCT/JP2006/322253 WO2007055231A1 (en) 2005-11-09 2006-11-08 SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME
TW095141372A TW200718797A (en) 2005-11-09 2006-11-08 SnO2 sputtering target and process for producing the same
KR1020077018540A KR100948557B1 (en) 2005-11-09 2006-11-08 ???2 sputtering target and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324837A JP4851777B2 (en) 2005-11-09 2005-11-09 SnO2-based sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007131891A JP2007131891A (en) 2007-05-31
JP4851777B2 true JP4851777B2 (en) 2012-01-11

Family

ID=38023233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324837A Active JP4851777B2 (en) 2005-11-09 2005-11-09 SnO2-based sputtering target and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP4851777B2 (en)
KR (1) KR100948557B1 (en)
CN (1) CN101128618A (en)
TW (1) TW200718797A (en)
WO (1) WO2007055231A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
US7452488B2 (en) 2006-10-31 2008-11-18 H.C. Starck Inc. Tin oxide-based sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
JP5437919B2 (en) * 2010-06-04 2014-03-12 三井金属鉱業株式会社 ITO sputtering target and manufacturing method thereof
JP5947413B1 (en) * 2015-02-13 2016-07-06 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP2018206467A (en) * 2017-05-30 2018-12-27 株式会社アルバック Transparent conductive film
KR20240046818A (en) 2021-09-01 2024-04-09 미쓰이금속광업주식회사 Oxide sintered body and its manufacturing method and sputtering target material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256506A (en) * 1985-05-08 1986-11-14 工業技術院長 Low resistance transparent conductive film and generation thereof
JPH03101202A (en) * 1989-06-13 1991-04-26 Hitachi Maxell Ltd Soft magnetic thin film and manufacture thereof
JP3616128B2 (en) * 1994-03-27 2005-02-02 グンゼ株式会社 Method for producing transparent conductive film
JPH11106217A (en) * 1997-09-30 1999-04-20 Sumitomo Chem Co Ltd Production of high-density ito sintered compact and high-density ito sintered compact, and ito sputter target using the same
JP3636914B2 (en) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ High resistance transparent conductive film, method for producing high resistance transparent conductive film, and sputtering target for forming high resistance transparent conductive film
JP3957917B2 (en) * 1999-03-26 2007-08-15 三井金属鉱業株式会社 Thin film forming materials
JP4018839B2 (en) * 1999-03-30 2007-12-05 三井金属鉱業株式会社 SnO2-based sintered body, thin film forming material and conductive film

Also Published As

Publication number Publication date
CN101128618A (en) 2008-02-20
TWI336731B (en) 2011-02-01
KR100948557B1 (en) 2010-03-18
JP2007131891A (en) 2007-05-31
KR20070096017A (en) 2007-10-01
TW200718797A (en) 2007-05-16
WO2007055231A1 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP4560149B2 (en) Transparent conductive material, transparent conductive glass and transparent conductive film
JP5170009B2 (en) Indium oxide sputtering target and method for producing the same
JP4851777B2 (en) SnO2-based sputtering target and manufacturing method thereof
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
JPWO2007142330A1 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
WO2019176552A1 (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
JP5334246B2 (en) Ion plating target for zinc oxide thin film production
JP4859726B2 (en) SnO2-based sputtering target and sputtered film
JP4559553B2 (en) Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film
JP2005347215A (en) Transparent conductive film, sintered target for manufacturing transparent conductive film, transparent conductive base material, and display device using the transparent base material
JP6064895B2 (en) Indium oxide-based oxide sintered body and method for producing the same
KR101583124B1 (en) Sintered compact of conductive oxide and method for manufacturing the same
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP2011063866A (en) Compound oxide sintered compact, oxide transparent conductive film, and method for producing the same
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
JP5878045B2 (en) Zinc oxide-based sintered body and method for producing the same
JP5999049B2 (en) Deposition tablet, method for producing the same, and method for producing oxide film
TWI710650B (en) Spattering target for transparent conductive film
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP6280737B2 (en) Manufacturing method of ZnO target material and transparent conductive film
KR20080001034A (en) Mgo vapor deposition material and method for preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4851777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250