JP4559553B2 - Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film - Google Patents

Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film Download PDF

Info

Publication number
JP4559553B2
JP4559553B2 JP05838399A JP5838399A JP4559553B2 JP 4559553 B2 JP4559553 B2 JP 4559553B2 JP 05838399 A JP05838399 A JP 05838399A JP 5838399 A JP5838399 A JP 5838399A JP 4559553 B2 JP4559553 B2 JP 4559553B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
sintered body
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05838399A
Other languages
Japanese (ja)
Other versions
JP2000256059A (en
Inventor
一吉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP05838399A priority Critical patent/JP4559553B2/en
Publication of JP2000256059A publication Critical patent/JP2000256059A/en
Application granted granted Critical
Publication of JP4559553B2 publication Critical patent/JP4559553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置用透明導電膜の素材として有用性の高い透明導電材料と、透明導電膜のスパッタリング用ターゲット、透明導電膜を有する透明導電ガラスおよび透明導電フィルムに関する。
【0002】
【従来の技術】
近年、表示装置の発展はめざましく、液晶表示装置やエレクトロルミネッセンス表示装置、フィールドエミッションディスプレイなどが、パーソナルコンピュータやワードプロセッサなどの事務機器や、工場における制御システム用に開発されている。そして、これら表示装置は、いずれも表示素子を透明導電膜により挟み込んだサンドイッチ構造を有している。
【0003】
これら表示装置に使用される透明導電膜としては、インジウム錫酸化物膜が主流を占めている。これは、インジウム錫酸化物膜が、透明性や導電性に優れるほか、強酸によるエッチング加工が可能であり、さらに基板との密着性にも優れているからである。そして、このインジウム錫酸化物膜は、一般にはスパッタリング法やイオンプレーティング法、蒸着法によって製膜されている。このように、インジウム錫酸化物は、透明導電膜の材料として優れた性能を有するのであるが、主原料がインジウムであることから高価であるという難点がある。
【0004】
そこで、例えば、特開平3−50148号公報や特開平8−171824号公報においては、酸化亜鉛や酸化錫を主原料とする透明導電膜を提案している。しかしながら、この酸化亜鉛を主原料とする透明導電膜においては、導電性が充分でない他、耐湿熱性についても充分な性能が得られないという問題がある。また、酸化錫を主原料とする透明導電膜においては、耐熱性は良好であるが、エッチング加工性において充分な性能が得られないことから、高精細なディスプレイ用の透明電極としては不向きであるという難点がある。
【0005】
また、インジウム錫酸化物は、上記の性質に関しては優れた性能を有するのであるが、このもの自体は結晶性の金属酸化物であることから、インジウム錫酸化物のターゲットを用いてスパッタリング法などにより製膜する際、インジウム錫酸化物の結晶化が進行し、その結晶が成長すると、透明導電膜の表面に結晶粒が生成し、膜の表面精度が低下するという問題がある。
【0006】
さらに、このインジウム錫酸化物が結晶性を有することから、エッチング加工に際し、透明導電膜の結晶粒の界面の部位からエッチングされる。そうすると、透明導電膜のエッチング部位に、この結晶粒子が取り残され、表示素子とした場合に導通による表示不良の原因になるという問題もある。
【0007】
【発明が解決しようとする課題】
本発明は、このような状況から、安価で、導電性と透明性に優れるとともに、製膜したときの透明導電膜が表面精度と、エッチング加工性に優れた透明導電材料と、製膜に用いるスパッタリング用ターゲット、その透明導電膜を有する透明導電ガラスおよび透明導電フィルムの提供を目的とするものである。
【0008】
【課題を解決するための手段】
本発明者は、上記課題の解決のため鋭意研究を重ねた結果、酸化錫と酸化インジウムおよび酸化亜鉛を特定の割合で含有し、かつ酸化インジウムと酸化亜鉛が特定化学構造の六方晶層状化合物の形態で存在する組成物からなる透明導電材料を用いることにより、上記課題が解決できることを見出し、これら知見に基づいて本発明を完成するに至った。
【0009】
すなわち、本発明の要旨は、下記のとおりである。
(1)酸化錫、酸化インジウムおよび酸化亜鉛が、それらの金属原子比において、Sn/(Sn+In+Zn)=0.500〜0.950In/(Sn+In+Zn)=0.025〜0.475Zn/(Sn+In+Zn)=0.025〜0.225の組成を有し、かつIn2 O3 (ZnO)m 〔ただし、mは2〜20の整数である〕で表される六方晶層状化合物を含有する組成物からなるスパッタリング、エレクトロンビーム、イオンプレーティング用焼結体
(2)酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、Sn/(Sn+In+Zn)=0.550〜0.900In/(Sn+In+Zn)=0.050〜0.400Zn/(Sn+In+Zn)=0.050〜0.200である前記(1)に記載の焼結体
(3)酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、Sn/(Sn+In+Zn)=0.650〜0.900In/(Sn+In+Zn)=0.050〜0.300Zn/(Sn+In+Zn)=0.050〜0.200である前記(1)に記載の焼結体
(4)酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、Sn/(Sn+In+Zn)=0.700〜0.900In/(Sn+In+Zn)=0.050〜0.250Zn/(Sn+In+Zn)=0.050〜0.200である前記(1)に記載の焼結体
(5)酸化錫、酸化インジウムおよび酸化亜鉛を、それらの金属原子比において、Sn/(Sn+In+Zn)=0.500〜0.950In/(Sn+In+Zn)=0.025〜0.475Zn/(Sn+In+Zn)=0.025〜0.225の割合で含有する原料粉末を、1400℃以上の温度で焼結する前記(1)に記載の焼結体の製造法。
(6)前記(1)〜(4)のいずれかに記載の焼結体からなるスパッタリング用ターゲット。
(7)焼結体の比抵抗が5mΩ・cm未満である前記(6)に記載のスパッタリング用ターゲット。
(8)ガラス基板表面に、前記(1)に記載の焼結体を用いて製膜した非晶質透明導電膜を有する透明導電ガラス。
(9)ガラス基板表面に、前記(6)または(7)に記載のスパッタリング用ターゲットを用いて製膜した非晶質透明導電膜を有する透明導電ガラス。
(10)前記非晶質透明導電膜における、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である前記(8)または(9)に記載の透明導電ガラス。
(11)透明樹脂フィルム表面に、前記(1)に記載の焼結体を用いて製膜した非晶質透明導電膜を有する透明導電フィルム。
(12)透明樹脂フィルム表面に、前記(6)または(7)に記載のスパッタリング用ターゲットを用いて製膜した非晶質透明導電膜を有する透明導電フィルム。
(13)前記非晶質透明導電膜における、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である前記(11)または(12)に記載の透明導電フィルム。
【0010】
【発明の実施の形態】
本発明の透明導電材料は、酸化錫、酸化インジウムおよび酸化亜鉛が、それらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の組成を有し、かつ、In2 3 (ZnO)m 〔ただし、mは2〜20の整数である〕で表される六方晶層状化合物を含有する組成物からなる透明導電材料である。
【0011】
そして、この透明導電材料の構成成分である酸化錫、酸化インジウムおよび酸化亜鉛の組成については、酸化錫成分の金属原子比を0.500未満とすると、透明導電材料の価格が高価となり、この酸化錫成分の金属原子比が0.950を超えると、エッチング加工性の低下を招くことから好ましくない。また、酸化インジウム成分については、その金属原子比を0.025未満とすると、得られる透明導電材料の導電性が低下し、この値が0.475を超えるものでは、透明導電材料の価格が高価になることから好ましくない。さらに、酸化亜鉛成分については、その金属原子比を0.025未満とすると、エッチング加工性の低下を招くことがあり、この値が0.225を超えるものでは、透明導電材料の耐熱性の低下を招くことから好ましくない。したがって、本発明の透明導電材料における構成成分の組成比は、上記の数値範囲内で、この透明導電膜を有する透明導電ガラスや透明導電フィルムの使途に要求される性能に応じた組成比に適宜選択すればよい。
【0012】
そして、これら構成成分の組成比は、酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.550〜0.900
In/(Sn+In+Zn)=0.050〜0.400
Zn/(Sn+In+Zn)=0.050〜0.200
の範囲内のものが、透明性および導電性においてより優れた性能を発現することから好ましい。
【0013】
さらに、酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.650〜0.900
In/(Sn+In+Zn)=0.050〜0.300
Zn/(Sn+In+Zn)=0.050〜0.200
の範囲内のものが同様の理由から好ましく、酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.700〜0.900
In/(Sn+In+Zn)=0.050〜0.250
Zn/(Sn+In+Zn)=0.050〜0.200
の範囲内のものが、低価格であるとともに透明性および導電性に優れた性能を発現することができることから特に好ましい。
【0014】
つぎに、これら透明導電材料の構成成分のうち、酸化インジウムと酸化亜鉛がIn2 3 (ZnO)m 〔ただし、mは2〜20の整数である〕で表される六方晶層状化合物の形態で存在させる必要がある。
この酸化インジウムと酸化亜鉛との六方晶層状化合物については、上記一般式におけるmの値が2〜20であるものであればよいが、その中でも、mの値が3〜8の六方晶層状化合物が特に好ましい。そして、上記透明導電材料中に、これら酸化インジウムと酸化亜鉛のそれぞれの単なる金属酸化物の混合物として存在させる場合に比し、この六方晶層状化合物の形態において存在させることにより、この材料からなるスパッタリング用ターゲットを形成した際にその密度が高く、かつ導電性が向上して、このターゲットをRFマグネトロンスパッタリング装置やDCマグネトロンスパッタリング装置に装着してスパッタリングを行う際の安定性を高めることができる。さらに、このスパッタリング法における製膜に際してノジュールの発生が抑制され、異物の発生も抑えられることから、液晶表示素子やエレクトロルミネッセンス表示素子などに用いるのに適した高品質の透明導電膜を歩留りよく得ることができる。
【0015】
つぎに、本発明の透明導電材料の製造方法については、その原料として、酸化錫、酸化インジウムおよび酸化亜鉛をそれらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の割合で含有する原料粉末を、1400℃以上の温度で焼結する方法によることができる。
【0016】
ここで用いる原料の金属酸化物は、上記の金属原子比の範囲内で、さらに透明導電膜の使途に応じた配合組成を適宜選択して原料粉末を混合し、これを混合粉砕機、例えば湿式ボールミルやビーズミル、超音波などにより、均一に混合・粉砕する。ここでの原料粉末の混合粉砕は、微細に粉砕するほどよいが、通常、平均粒径1μm以下となるように混合粉砕処理をしたものが望ましい。
【0017】
そして、得られた微粉末を造粒した後、プレス成形により所望の形状に整形し、焼成により焼結すればよい。この場合の焼成条件は、通常、1,400〜1,600℃、好ましくは1,430〜1,550℃において、4〜72時間、好ましくは10〜48時間焼成すればよい。また、この場合の昇温速度は、1〜50℃/分間とすればよい。ここでの焼結温度は、1400℃以上の温度とする必要があり、この焼結温度が1400℃未満であると、酸化インジウムと酸化亜鉛との六方晶層状化合物の形成が充分でなく、焼結体の密度や導電性の向上効果が得られないことがある。
【0018】
そして、ここで得られた焼結体よりスパッタリング用ターゲットを形成するには、スパッタリング装置への装着に適した形状に切削加工し、また装着用治具の取付をすればよい。
このようにして得られるスパッタリング用ターゲットは、原料の配合組成に応じた金属原子比での各金属酸化物成分から構成され、これら構成成分のうちの酸化インジウムと酸化亜鉛とが、上記一般式で表される六方晶層状化合物の形態で含有される透明導電材料からなり、かつ、その比抵抗が5mΩ・cm未満の高い導電性を有している。
【0019】
つぎに、このスパッタリング用ターゲットを用いて透明導電膜を成膜する際に用いる透明基材としては、従来から用いられているガラス基板や、高い透明性を有する合成樹脂製のフィルム、シートが用いられる。この合成樹脂としては、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂などが好適である。
【0020】
また、上記スパッタリング用ターゲットを用いて、透明導電膜を透明基材上にスパッタリング法により成膜するにあたっては、マグネトロンスパッタリング装置が好適に用いられる。そして、この装置を用いてスパッタリングにより成膜する際の条件としては、ターゲットの表面積や透明導電膜の膜厚によりプラズマの出力は変動するが、通常、このプラズマ出力を、ターゲットの表面積1cm2 あたり0.3〜4Wの範囲とし、成膜時間を5〜120分間とすることにより、所望の膜厚を有する透明導電膜が得られる。この透明導電膜の膜厚は、表示装置の種類によって異なるが、通常、200〜6,000オングストローム、好ましくは300〜2,000オングストロームである。
【0021】
なお、前記焼結体からなるターゲットは、エレクトロンビーム装置やイオンプレーティング装置により成膜する場合にも使用することができる。これら装置を用いて成膜する際にも、上記のスパッタリング装置による場合と同様な成膜条件下において、透明導電膜の成膜を行うことができる。このようにして得られる本発明の透明導電ガラスは、ガラス基材表面に、酸化錫、酸化インジウムおよび酸化亜鉛がそれらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の組成を有する組成物からなる非晶質透明導電膜を有している。そして、この非晶質透明導電膜は、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である。
【0022】
また、上記で得られる透明導電フィルムは、透明樹脂フィルム表面に、酸化錫、酸化インジウムおよび酸化亜鉛がそれらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の組成を有する組成物からなる非晶質透明導電膜を有するものであり、この非晶質透明導電膜は、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である。
【0023】
したがって、本発明の透明導電ガラスや透明導電フィルムは、液晶表示素子や有機エレクトロルミネッセンス表示素子をなどの各種表示装置の透明電極として好適に用いることができる。
【0024】
【実施例】
以下、本発明の実施例により、本発明をさらに詳しく説明する。
〔実施例1〕
(1)透明導電材料の製造
原料として、酸化錫の粉末、酸化インジウムの粉末および酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(In+Zn+Sn)=0.90
In/(In+Zn+Sn)=0.05
Zn/(In+Zn+Sn)=0.05
となるように混合して、湿式ボールミルに供給し、72時間にわたり混合粉砕して、原料微粉末を得た。
【0025】
ここで得られた原料微粉末を造粒した後、直径4インチ、厚さ5mmの寸法にプレス整形して、これを焼成炉に装入し、1450℃において、36時間加圧焼成して、透明導電材料からなる焼結体を得た。
この焼結体は、その密度が6.5g/cm3 であり、4探針法により測定したバルク電気抵抗値は、4.8mΩ・cmであった。また、この焼結体から採取した試料について、X線回折法により透明導電材料中の金属酸化物の状態を観察した結果、この焼結体には、酸化錫の結晶およびIn2 3 (ZnO)3 で表される酸化インジウムと酸化亜鉛からなる六方晶層状化合物が存在していることが確認された。
この透明導電材料の組成と物性の測定結果を第1表に示す。
【0026】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を切削加工して、直径約4インチ、厚さ約5mmのスパッタリング用ターゲットを作製した。ついで、このターゲットをDCマグネトロンスパッタリング装置に装着し、室温において、ガラス基板上に透明導電膜を製膜した。
ここでのスパッタ条件としては、雰囲気はアルゴンガスに適量の酸素ガスを混入して用い、スパッタ圧力3×10-1Pa、到達圧力5×10-4Pa、基板温度25℃、投入電力100W、成膜時間20分間として行った。このようにして、膜厚1,200オングストロームの透明導電膜を有する透明導電ガラス〔A〕を得た。
【0027】
(3)透明導電ガラスの評価
上記(2)で得られた透明導電ガラス上の透明導電膜の導電性については、4探針法により透明導電膜の比抵抗を測定したところ、0.67mΩ・cmであり、導電性に優れたものであった。また、この透明導電膜中の金属酸化物は非晶質であり、膜表面の平滑性に優れたものであった。さらに、この透明導電膜の透明性については、分光光度計により波長500nmの光線についての光線透過率が82%であり、透明性においても優れたものであった。
【0028】
つぎに、この透明導電膜のエッチング加工性については、透明導電ガラス上の透明導電膜の一部を希塩酸によりエッチングし、エッチング部と非エッチング部との境界部分の断面を電子顕微鏡により観察した結果、エッチング部に透明導電膜が残存するようなことはなく、非エッチング部に残存する透明導電膜のエッジ部が、エッチング部に向けて滑らかに傾斜した断面形状をなしていることが確認され、優れたエッチング性を有することが判明した。
この透明導電ガラスの評価結果を第2表に示す。
【0029】
〔実施例2〕
(1)透明導電材料の製造
原料として、酸化錫の粉末、酸化インジウムの粉末および酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(In+Zn+Sn)=0.75
In/(In+Zn+Sn)=0.05
Zn/(In+Zn+Sn)=0.20
となるように混合したものを用いた他は、実施例1の(1)と同様にした。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0030】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔B〕を作製し、このターゲット〔B〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0031】
〔実施例3〕
(1)透明導電材料の製造
原料として、酸化錫の粉末、酸化インジウムの粉末および酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(In+Zn+Sn)=0.80
In/(In+Zn+Sn)=0.10
Zn/(In+Zn+Sn)=0.10
となるように混合したものを用いた他は、実施例1の(1)と同様にした。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0032】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔C〕を作製し、このターゲット〔C〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0033】
〔実施例4〕
(1)透明導電ガラスの製造
実施例3の(2)で得られたスパッタリング用ターゲット〔C〕を用い、スパッタリング装置に装着したガラス基板の温度を215℃に加熱した状態においてスパッタリングすることにより、透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0034】
〔実施例5〕
(1)透明導電フィルムの製造
実施例3の(2)で得られたスパッタリング用ターゲット〔C〕を用い、ガラス基板に代えて、ポリカーボネート樹脂フィルムをスパッタリング装置に装着してスパッタリングすることにより、透明導電フィルムを製造した。
得られた透明導電フィルムの評価結果を第2表に示す。
【0035】
〔実施例6〕
(1)透明導電材料の製造
原料として、酸化錫の粉末、酸化インジウムの粉末および酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(In+Zn+Sn)=0.70
In/(In+Zn+Sn)=0.20
Zn/(In+Zn+Sn)=0.10
となるように混合したものを用いた他は、実施例1の(1)と同様にした。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0036】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔D〕を作製し、このターゲット〔D〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0037】
〔実施例7〕
(1)透明導電材料の製造
原料として、酸化錫の粉末、酸化インジウムの粉末および酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(In+Zn+Sn)=0.60
In/(In+Zn+Sn)=0.30
Zn/(In+Zn+Sn)=0.10
となるように混合したものを用いた他は、実施例1の(1)と同様にした。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0038】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔E〕を作製し、このターゲット〔E〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0039】
〔比較例1〕
(1)透明導電材料の製造
原料として、酸化錫の粉末のみを用いた他は、実施例1の(1)と同様にして透明導電材料を得た。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0040】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔F〕を作製し、このターゲット〔F〕を用いて透明導電ガラスを製造した。
(3)透明導電ガラスの評価
上記(2)で得られた透明導電ガラス上の透明導電膜の導電性については、その比抵抗値が3.7mΩ・cmと若干高く、導電性にやや劣るものであった。また、この透明導電膜中の金属酸化物は結晶質であり、膜表面の平滑性にやや劣るものであった。さらに、透明性については、光線透過率が80%であり、充分に高いものであった。
【0041】
つぎに、この透明導電膜のエッチング加工性につき、実施例1と同様にして評価した結果、非エッチング部に残存する透明導電膜のエッジ部が、エッチング部との境界領域において、凹凸の大きい断面形状をなしていることが確認され、エッチング加工性が不充分であることが判明した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0042】
〔比較例2〕
(1)透明導電材料の製造
原料として、酸化亜鉛の粉末のみを用いた他は、実施例1の(1)と同様にして透明導電材料を得た。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔G〕を作製し、このターゲット〔G〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0043】
〔比較例3〕
(1)透明導電材料の製造
原料として、酸化錫と酸化亜鉛の粉末を、これら金属の原子比が、
Sn/(Sn+Zn)=0.75
Zn/(Sn+Zn)=0.25
となるように混合したものを用いた他は、実施例1の(1)と同様にして透明導電材料を得た。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0044】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔H〕を作製し、このターゲット〔H〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0045】
〔比較例4〕
(1)透明導電材料の製造
原料として、酸化錫と酸化インジウムの粉末を、これら金属の原子比が、
Sn/(Sn+In)=0.10
In/(Sn+In)=0.90
となるように混合したものを用いた他は、実施例1の(1)と同様にして透明導電材料を得た。
得られた透明導電材料の組成と物性の測定結果を第1表に示す。
【0046】
(2)透明導電ガラスの製造
上記(1)で得られた焼結体を用いた他は、実施例1の(2)と同様にして、スパッタリング用ターゲット〔I〕を作製し、このターゲット〔I〕を用いて透明導電ガラスを製造した。
得られた透明導電ガラスの評価結果を第2表に示す。
【0047】
〔比較例5〕
(1)透明導電ガラスの製造
比較例4の(2)で得られたスパッタリング用ターゲット〔I〕を用い、スパッタリング装置に装着したガラス基板の温度を215℃に加熱した状態においてスパッタリングすることにより、透明導電ガラスを製造した。
【0048】
得られた透明導電ガラスの評価結果を第2表に示す。
【0049】
【表1】

Figure 0004559553
【0050】
【表2】
Figure 0004559553
【0051】
【表3】
Figure 0004559553
【0052】
【発明の効果】
本発明の透明導電材料は、その主たる構成成分として酸化錫を用いることから安価に製造することができ、導電性および透明性に優れる。そして、これをガラス基板や透明樹脂フィルム上に製膜して得られる透明導電膜は、膜表面の平滑性およびエッチング加工性に優れているという効果を有している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive material highly useful as a material for a transparent conductive film for a display device, a sputtering target for the transparent conductive film, a transparent conductive glass having a transparent conductive film, and a transparent conductive film.
[0002]
[Prior art]
In recent years, the development of display devices has been remarkable, and liquid crystal display devices, electroluminescence display devices, field emission displays, and the like have been developed for office equipment such as personal computers and word processors, and control systems in factories. Each of these display devices has a sandwich structure in which a display element is sandwiched between transparent conductive films.
[0003]
As the transparent conductive film used in these display devices, an indium tin oxide film dominates. This is because the indium tin oxide film is excellent in transparency and conductivity, can be etched with a strong acid, and has excellent adhesion to the substrate. The indium tin oxide film is generally formed by sputtering, ion plating, or vapor deposition. As described above, indium tin oxide has excellent performance as a material for the transparent conductive film, but has a drawback of being expensive because the main raw material is indium.
[0004]
Therefore, for example, Japanese Patent Laid-Open No. 3-50148 and Japanese Patent Laid-Open No. 8-171824 propose a transparent conductive film using zinc oxide or tin oxide as a main material. However, the transparent conductive film containing zinc oxide as a main raw material has problems that the conductivity is not sufficient and sufficient performance cannot be obtained with respect to moisture and heat resistance. In addition, the transparent conductive film mainly composed of tin oxide has good heat resistance but is not suitable as a transparent electrode for high-definition displays because sufficient performance in etching processability cannot be obtained. There is a difficulty.
[0005]
Indium tin oxide has excellent performance in terms of the above properties, but since this is a crystalline metal oxide itself, it can be obtained by sputtering using an indium tin oxide target. When the film is formed, when crystallization of indium tin oxide proceeds and the crystal grows, there is a problem that crystal grains are generated on the surface of the transparent conductive film and the surface accuracy of the film is lowered.
[0006]
Furthermore, since this indium tin oxide has crystallinity, it is etched from the site of the crystal grain interface of the transparent conductive film during the etching process. Then, the crystal particles are left behind in the etched portion of the transparent conductive film, and there is a problem that a display defect is caused by conduction when the display element is used.
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention is inexpensive, excellent in conductivity and transparency, and the transparent conductive film when formed into a film is used for forming a transparent conductive material having excellent surface accuracy and etching processability, and film formation. The object is to provide a sputtering target, a transparent conductive glass having the transparent conductive film, and a transparent conductive film.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has developed a hexagonal layered compound containing tin oxide, indium oxide and zinc oxide in a specific ratio, and indium oxide and zinc oxide having a specific chemical structure. It has been found that the above-mentioned problems can be solved by using a transparent conductive material composed of a composition present in the form, and the present invention has been completed based on these findings.
[0009]
That is, the gist of the present invention is as follows.
(1) Tin oxide, indium oxide and zinc oxide are Sn / (Sn + In + Zn) = 0.500-0.950In / (Sn + In + Zn) = 0.025-0.475Zn / (Sn + In + Zn) = Sputtering comprising a composition having a composition of 0.025 to 0.225 and containing a hexagonal layered compound represented by In2 O3 (ZnO) m (where m is an integer of 2 to 20) , Sintered body for electron beam and ion plating .
(2) The metal atomic ratio of tin oxide, indium oxide and zinc oxide is Sn / (Sn + In + Zn) = 0.550-0.900In / (Sn + In + Zn) = 0.50,000-0.400Zn / (Sn + In + Zn) = 0.050 The sintered body according to (1), which is ˜0.200.
(3) The metal atomic ratio of tin oxide, indium oxide and zinc oxide is Sn / (Sn + In + Zn) = 0.650-0.900In / (Sn + In + Zn) = 0.050-0.300Zn / (Sn + In + Zn) = 0.050 The sintered body according to (1), which is ˜0.200.
(4) The metal atomic ratio of tin oxide, indium oxide and zinc oxide is Sn / (Sn + In + Zn) = 0.700-0.900In / (Sn + In + Zn) = 0.050-0.250Zn / (Sn + In + Zn) = 0.050 The sintered body according to (1), which is ˜0.200.
(5) Sn / (Sn + In + Zn) = 0.500-0.950In / (Sn + In + Zn) = 0.025-0.475Zn / (Sn + In + Zn) = in the metal atomic ratio of tin oxide, indium oxide and zinc oxide The manufacturing method of the sintered compact as described in said (1) which sinters the raw material powder containing in the ratio of 0.025-0.225 at the temperature of 1400 degreeC or more.
(6) A sputtering target comprising the sintered body according to any one of (1) to (4).
(7) The sputtering target according to (6), wherein the specific resistance of the sintered body is less than 5 mΩ · cm.
(8) A transparent conductive glass having an amorphous transparent conductive film formed on the glass substrate surface using the sintered body according to (1) .
(9) A transparent conductive glass having an amorphous transparent conductive film formed on the glass substrate surface using the sputtering target according to (6) or (7).
(10) The transparent material according to (8) or (9), wherein the amorphous transparent conductive film has a light transmittance of 70% or more for light having a wavelength of 500 nm and a specific resistance of less than 1 mΩ · cm. Conductive glass.
(11) A transparent conductive film having an amorphous transparent conductive film formed on the surface of the transparent resin film using the sintered body according to (1) .
(12) A transparent conductive film having an amorphous transparent conductive film formed on the surface of the transparent resin film using the sputtering target according to (6) or (7).
(13) The transparency according to (11) or (12), wherein the amorphous transparent conductive film has a light transmittance of 70% or more for light having a wavelength of 500 nm and a specific resistance of less than 1 mΩ · cm. Conductive film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the transparent conductive material of the present invention, tin oxide, indium oxide and zinc oxide are in their metal atomic ratio,
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
And a transparent conductive material comprising a composition containing a hexagonal layered compound represented by In 2 O 3 (ZnO) m (where m is an integer of 2 to 20).
[0011]
As for the composition of tin oxide, indium oxide and zinc oxide, which are constituent components of this transparent conductive material, if the metal atomic ratio of the tin oxide component is less than 0.500, the price of the transparent conductive material becomes expensive. When the metal atomic ratio of the tin component exceeds 0.950, it is not preferable because the etching processability is lowered. In addition, for the indium oxide component, if the metal atomic ratio is less than 0.025, the conductivity of the obtained transparent conductive material is lowered. If this value exceeds 0.475, the price of the transparent conductive material is expensive. This is not preferable. Furthermore, with respect to the zinc oxide component, if the metal atomic ratio is less than 0.025, the etching processability may be lowered. If this value exceeds 0.225, the heat resistance of the transparent conductive material is lowered. This is not preferable. Therefore, the composition ratio of the constituent components in the transparent conductive material of the present invention is appropriately set to a composition ratio in accordance with the performance required for the use of the transparent conductive glass or transparent conductive film having the transparent conductive film within the above numerical range. Just choose.
[0012]
And the composition ratio of these components is the metal atomic ratio of tin oxide, indium oxide and zinc oxide,
Sn / (Sn + In + Zn) = 0.550-0.900
In / (Sn + In + Zn) = 0.50,000-0.400
Zn / (Sn + In + Zn) = 0.50,000-0.200
Those within the range are preferable because they exhibit more excellent performance in transparency and conductivity.
[0013]
Furthermore, the metal atomic ratio of tin oxide to indium oxide and zinc oxide is
Sn / (Sn + In + Zn) = 0.650-0.900
In / (Sn + In + Zn) = 0.50,000-0.300
Zn / (Sn + In + Zn) = 0.50,000-0.200
Is preferable for the same reason, the metal atomic ratio of tin oxide and indium oxide and zinc oxide is
Sn / (Sn + In + Zn) = 0.700-0.900
In / (Sn + In + Zn) = 0.050-0.250
Zn / (Sn + In + Zn) = 0.50,000-0.200
Those within the range are particularly preferred because they are inexpensive and can exhibit excellent performance in transparency and conductivity.
[0014]
Next, among the constituent components of these transparent conductive materials, the form of hexagonal layered compound in which indium oxide and zinc oxide are represented by In 2 O 3 (ZnO) m (where m is an integer of 2 to 20) Need to exist.
The hexagonal layered compound of indium oxide and zinc oxide may be any compound in which the value of m in the above general formula is 2 to 20, and among them, the hexagonal layered compound having a value of m of 3 to 8 Is particularly preferred. Then, compared with the case where the transparent conductive material is present as a simple metal oxide mixture of each of these indium oxide and zinc oxide, it is present in the form of this hexagonal layered compound so that the sputtering made of this material. When the target is formed, the density thereof is high and the conductivity is improved, so that stability can be improved when the target is mounted on an RF magnetron sputtering apparatus or a DC magnetron sputtering apparatus to perform sputtering. Furthermore, since nodule generation and film formation are suppressed during film formation in this sputtering method, a high-quality transparent conductive film suitable for use in liquid crystal display elements, electroluminescence display elements, and the like can be obtained with high yield. be able to.
[0015]
Next, for the method for producing the transparent conductive material of the present invention, as its raw material, tin oxide, indium oxide and zinc oxide in their metal atomic ratio,
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
The raw material powder contained in the ratio can be obtained by sintering at a temperature of 1400 ° C. or higher.
[0016]
The raw material metal oxide used here is mixed with a raw material powder by appropriately selecting a blending composition according to the use of the transparent conductive film within the above range of the metal atomic ratio, and this is mixed and pulverized, for example, wet Mix and grind evenly using a ball mill, bead mill, or ultrasonic wave. The mixing and pulverization of the raw material powder is preferably as finely pulverized as described above. However, it is usually desirable that the material powder is mixed and pulverized so as to have an average particle size of 1 μm or less.
[0017]
And after granulating the obtained fine powder, what is necessary is just to shape in a desired shape by press molding, and to sinter by baking. The firing conditions in this case are usually 1,400 to 1,600 ° C., preferably 1,430 to 1,550 ° C., for 4 to 72 hours, preferably 10 to 48 hours. Moreover, the temperature increase rate in this case should just be 1-50 degrees C / min. The sintering temperature here must be 1400 ° C. or higher. If the sintering temperature is lower than 1400 ° C., the hexagonal layered compound of indium oxide and zinc oxide is not sufficiently formed, The effect of improving the density and conductivity of the bonded body may not be obtained.
[0018]
And in order to form a sputtering target from the sintered body obtained here, it is only necessary to cut into a shape suitable for mounting on a sputtering apparatus and attach a mounting jig.
The sputtering target thus obtained is composed of each metal oxide component at a metal atomic ratio according to the composition of the raw materials, and indium oxide and zinc oxide among these components are represented by the above general formula. It consists of a transparent conductive material contained in the form of a hexagonal layered compound represented, and has a high conductivity with a specific resistance of less than 5 mΩ · cm.
[0019]
Next, as a transparent base material used when forming a transparent conductive film using the sputtering target, a conventionally used glass substrate, a highly transparent synthetic resin film, or sheet is used. It is done. As this synthetic resin, polycarbonate resin, polymethyl methacrylate resin, polyester resin, polyethersulfone resin, polyarylate resin and the like are suitable.
[0020]
Moreover, when forming a transparent conductive film on a transparent base material by sputtering method using the said sputtering target, a magnetron sputtering apparatus is used suitably. And as conditions at the time of film-forming by sputtering using this apparatus, although the output of plasma fluctuates with the surface area of a target or the film thickness of a transparent conductive film, this plasma output is usually used per 1 cm 2 of surface area of a target. A transparent conductive film having a desired film thickness can be obtained by adjusting the film formation time to 5 to 120 minutes in the range of 0.3 to 4 W. The film thickness of the transparent conductive film varies depending on the type of display device, but is usually 200 to 6,000 angstroms, preferably 300 to 2,000 angstroms.
[0021]
The target made of the sintered body can also be used when forming a film with an electron beam apparatus or an ion plating apparatus. Also when forming a film using these apparatuses, the transparent conductive film can be formed under the same film forming conditions as in the above sputtering apparatus. The transparent conductive glass of the present invention thus obtained has tin oxide, indium oxide and zinc oxide in their metal atomic ratio on the glass substrate surface.
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
It has the amorphous transparent conductive film which consists of a composition which has this composition. The amorphous transparent conductive film has a light transmittance of 70% or more for light with a wavelength of 500 nm and a specific resistance of less than 1 mΩ · cm.
[0022]
In addition, the transparent conductive film obtained above has tin oxide, indium oxide and zinc oxide on the surface of the transparent resin film, in their metal atomic ratio.
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
This amorphous transparent conductive film has a light transmittance of 70% or more for light having a wavelength of 500 nm and a specific resistance of 1 mΩ. -Less than cm.
[0023]
Therefore, the transparent conductive glass and transparent conductive film of the present invention can be suitably used as transparent electrodes for various display devices such as liquid crystal display elements and organic electroluminescence display elements.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples of the present invention.
[Example 1]
(1) As a raw material for producing a transparent conductive material, tin oxide powder, indium oxide powder, and zinc oxide powder have an atomic ratio of these metals,
Sn / (In + Zn + Sn) = 0.90
In / (In + Zn + Sn) = 0.05
Zn / (In + Zn + Sn) = 0.05
The mixture was fed to a wet ball mill and mixed and ground for 72 hours to obtain a raw material fine powder.
[0025]
After granulating the raw material fine powder obtained here, it was press-shaped into a size of 4 inches in diameter and 5 mm in thickness, charged in a firing furnace, and pressure fired at 1450 ° C. for 36 hours. A sintered body made of a transparent conductive material was obtained.
This sintered body had a density of 6.5 g / cm 3 and a bulk electric resistance value measured by a four-probe method was 4.8 mΩ · cm. Further, as a result of observing the state of the metal oxide in the transparent conductive material by the X-ray diffraction method for the sample collected from this sintered body, it was found that the sintered body contained tin oxide crystals and In 2 O 3 (ZnO It was confirmed that a hexagonal layered compound composed of indium oxide and zinc oxide represented by 3 was present.
The measurement results of the composition and physical properties of this transparent conductive material are shown in Table 1.
[0026]
(2) Production of transparent conductive glass The sintered body obtained in the above (1) was cut to produce a sputtering target having a diameter of about 4 inches and a thickness of about 5 mm. Next, this target was mounted on a DC magnetron sputtering apparatus, and a transparent conductive film was formed on a glass substrate at room temperature.
As sputtering conditions here, argon gas is mixed with an appropriate amount of oxygen gas, sputtering pressure is 3 × 10 −1 Pa, ultimate pressure is 5 × 10 −4 Pa, substrate temperature is 25 ° C., input power is 100 W, The film formation time was 20 minutes. Thus, a transparent conductive glass [A] having a transparent conductive film having a thickness of 1,200 angstroms was obtained.
[0027]
(3) Evaluation of transparent conductive glass As for the conductivity of the transparent conductive film on the transparent conductive glass obtained in (2) above, the specific resistance of the transparent conductive film was measured by the 4-probe method. cm, which was excellent in conductivity. Further, the metal oxide in the transparent conductive film was amorphous and had excellent film surface smoothness. Furthermore, regarding the transparency of this transparent conductive film, the light transmittance for light having a wavelength of 500 nm was 82% by a spectrophotometer, and the transparency was also excellent.
[0028]
Next, with respect to the etching processability of the transparent conductive film, a part of the transparent conductive film on the transparent conductive glass was etched with dilute hydrochloric acid, and the cross section of the boundary part between the etched part and the non-etched part was observed with an electron microscope. The transparent conductive film does not remain in the etched part, and it is confirmed that the edge part of the transparent conductive film remaining in the non-etched part has a smoothly inclined cross-section toward the etched part, It was found to have excellent etching properties.
The evaluation results of this transparent conductive glass are shown in Table 2.
[0029]
[Example 2]
(1) As a raw material for producing a transparent conductive material, tin oxide powder, indium oxide powder, and zinc oxide powder have an atomic ratio of these metals,
Sn / (In + Zn + Sn) = 0.75
In / (In + Zn + Sn) = 0.05
Zn / (In + Zn + Sn) = 0.20
Example 1 was performed in the same manner as in Example 1 except that the mixture was used.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0030]
(2) Production of transparent conductive glass A sputtering target [B] was prepared in the same manner as in (2) of Example 1 except that the sintered body obtained in (1) above was used. B] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0031]
Example 3
(1) As a raw material for producing a transparent conductive material, tin oxide powder, indium oxide powder, and zinc oxide powder have an atomic ratio of these metals,
Sn / (In + Zn + Sn) = 0.80
In / (In + Zn + Sn) = 0.10
Zn / (In + Zn + Sn) = 0.10
Example 1 was performed in the same manner as in Example 1 except that the mixture was used.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0032]
(2) Production of transparent conductive glass A sputtering target [C] was prepared in the same manner as (2) of Example 1 except that the sintered body obtained in (1) above was used. C] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0033]
Example 4
(1) Production of transparent conductive glass By using the sputtering target [C] obtained in (2) of Example 3 and performing sputtering in a state where the temperature of the glass substrate mounted on the sputtering apparatus is heated to 215 ° C, A transparent conductive glass was produced.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0034]
Example 5
(1) Production of transparent conductive film Using the sputtering target [C] obtained in (2) of Example 3 instead of a glass substrate, a polycarbonate resin film was attached to a sputtering apparatus and sputtered to obtain a transparent A conductive film was produced.
The evaluation results of the obtained transparent conductive film are shown in Table 2.
[0035]
Example 6
(1) As a raw material for producing a transparent conductive material, tin oxide powder, indium oxide powder, and zinc oxide powder have an atomic ratio of these metals,
Sn / (In + Zn + Sn) = 0.70
In / (In + Zn + Sn) = 0.20
Zn / (In + Zn + Sn) = 0.10
Example 1 was performed in the same manner as in Example 1 except that the mixture was used.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0036]
(2) Production of transparent conductive glass A sputtering target [D] was prepared in the same manner as in (2) of Example 1 except that the sintered body obtained in (1) above was used. D] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0037]
Example 7
(1) As a raw material for producing a transparent conductive material, tin oxide powder, indium oxide powder, and zinc oxide powder have an atomic ratio of these metals,
Sn / (In + Zn + Sn) = 0.60
In / (In + Zn + Sn) = 0.30
Zn / (In + Zn + Sn) = 0.10
Example 1 was performed in the same manner as in Example 1 except that the mixture was used.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0038]
(2) Production of transparent conductive glass A sputtering target [E] was prepared in the same manner as (2) of Example 1 except that the sintered body obtained in (1) above was used. E] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0039]
[Comparative Example 1]
(1) A transparent conductive material was obtained in the same manner as in (1) of Example 1 except that only tin oxide powder was used as a raw material for manufacturing the transparent conductive material.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0040]
(2) Production of transparent conductive glass A sputtering target [F] was prepared in the same manner as (2) of Example 1 except that the sintered body obtained in the above (1) was used. F] was used to produce a transparent conductive glass.
(3) Evaluation of transparent conductive glass As for the conductivity of the transparent conductive film on the transparent conductive glass obtained in the above (2), the specific resistance value is slightly high at 3.7 mΩ · cm, and the conductivity is slightly inferior. Met. Moreover, the metal oxide in this transparent conductive film was crystalline, and was somewhat inferior to the smoothness of the film surface. Furthermore, the transparency was sufficiently high with a light transmittance of 80%.
[0041]
Next, the etching processability of the transparent conductive film was evaluated in the same manner as in Example 1. As a result, the edge portion of the transparent conductive film remaining in the non-etched portion was a cross section with large irregularities in the boundary region with the etched portion. It was confirmed that the shape was formed, and it was found that the etching processability was insufficient.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0042]
[Comparative Example 2]
(1) A transparent conductive material was obtained in the same manner as in (1) of Example 1 except that only zinc oxide powder was used as a raw material for manufacturing the transparent conductive material.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
(2) Production of transparent conductive glass A sputtering target [G] was prepared in the same manner as (2) of Example 1 except that the sintered body obtained in (1) above was used. G] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0043]
[Comparative Example 3]
(1) As a raw material for producing a transparent conductive material, tin oxide and zinc oxide powder are used, and the atomic ratio of these metals is
Sn / (Sn + Zn) = 0.75
Zn / (Sn + Zn) = 0.25
A transparent conductive material was obtained in the same manner as in Example 1 (1) except that the mixture was used so that
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0044]
(2) Production of transparent conductive glass A sputtering target [H] was prepared in the same manner as (2) of Example 1 except that the sintered body obtained in the above (1) was used. H] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0045]
[Comparative Example 4]
(1) As a raw material for producing a transparent conductive material, tin oxide and indium oxide powder are used, and the atomic ratio of these metals is
Sn / (Sn + In) = 0.10
In / (Sn + In) = 0.90
A transparent conductive material was obtained in the same manner as in Example 1 (1) except that the mixture was used.
Table 1 shows the measurement results of the composition and physical properties of the obtained transparent conductive material.
[0046]
(2) Production of transparent conductive glass A sputtering target [I] was prepared in the same manner as in (2) of Example 1 except that the sintered body obtained in the above (1) was used. I] was used to produce a transparent conductive glass.
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0047]
[Comparative Example 5]
(1) Production of transparent conductive glass By using the sputtering target [I] obtained in (2) of Comparative Example 4 and performing sputtering in a state where the temperature of the glass substrate mounted on the sputtering apparatus is heated to 215 ° C, A transparent conductive glass was produced.
[0048]
Table 2 shows the evaluation results of the obtained transparent conductive glass.
[0049]
[Table 1]
Figure 0004559553
[0050]
[Table 2]
Figure 0004559553
[0051]
[Table 3]
Figure 0004559553
[0052]
【The invention's effect】
The transparent conductive material of the present invention can be manufactured at low cost because it uses tin oxide as its main component, and is excellent in conductivity and transparency. And the transparent conductive film obtained by forming this on a glass substrate or a transparent resin film has the effect that the film | membrane surface smoothness and etching processability are excellent.

Claims (13)

酸化錫、酸化インジウムおよび酸化亜鉛が、それらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の組成を有し、かつIn23(ZnO)m 〔ただし、mは2〜20の整数である〕で表される六方晶層状化合物を含有する組成物からなるスパッタリング、エレクトロンビーム、イオンプレーティング用焼結体
Tin oxide, indium oxide and zinc oxide, in their metal atomic ratio,
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
And a sputtering, electron beam, ion plate comprising a composition containing a hexagonal layered compound represented by In 2 O 3 (ZnO) m [wherein m is an integer of 2 to 20] Sintered body for casting .
酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.550〜0.900
In/(Sn+In+Zn)=0.050〜0.400
Zn/(Sn+In+Zn)=0.050〜0.200
である請求項1に記載の焼結体
The metal atomic ratio of tin oxide and indium oxide and zinc oxide is
Sn / (Sn + In + Zn) = 0.550-0.900
In / (Sn + In + Zn) = 0.50,000-0.400
Zn / (Sn + In + Zn) = 0.50,000-0.200
The sintered body according to claim 1, wherein
酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.650〜0.900
In/(Sn+In+Zn)=0.050〜0.300
Zn/(Sn+In+Zn)=0.050〜0.200
である請求項1に記載の焼結体
The metal atomic ratio of tin oxide and indium oxide and zinc oxide is
Sn / (Sn + In + Zn) = 0.650-0.900
In / (Sn + In + Zn) = 0.50,000-0.300
Zn / (Sn + In + Zn) = 0.50,000-0.200
The sintered body according to claim 1, wherein
酸化錫と酸化インジウムおよび酸化亜鉛の金属原子比が、
Sn/(Sn+In+Zn)=0.700〜0.900
In/(Sn+In+Zn)=0.050〜0.250
Zn/(Sn+In+Zn)=0.050〜0.200
である請求項1に記載の焼結体
The metal atomic ratio of tin oxide and indium oxide and zinc oxide is
Sn / (Sn + In + Zn) = 0.700-0.900
In / (Sn + In + Zn) = 0.050-0.250
Zn / (Sn + In + Zn) = 0.50,000-0.200
The sintered body according to claim 1, wherein
酸化錫、酸化インジウムおよび酸化亜鉛を、それらの金属原子比において、
Sn/(Sn+In+Zn)=0.500〜0.950
In/(Sn+In+Zn)=0.025〜0.475
Zn/(Sn+In+Zn)=0.025〜0.225
の割合で含有する原料粉末を、1400℃以上の温度で焼結する請求項1に記載の焼結体の製造法。
Tin oxide, indium oxide and zinc oxide in their metal atomic ratio
Sn / (Sn + In + Zn) = 0.500-0.950
In / (Sn + In + Zn) = 0.025 to 0.475
Zn / (Sn + In + Zn) = 0.025 to 0.225
The manufacturing method of the sintered compact of Claim 1 which sinters the raw material powder contained in the ratio of 1400 degreeC or more.
請求項1〜4のいずれかに記載の焼結体からなるスパッタリング用ターゲット。A sputtering target comprising the sintered body according to claim 1. 焼結体の比抵抗が5mΩ・cm未満である請求項6に記載のスパッタリング用ターゲット。The sputtering target according to claim 6, wherein the specific resistance of the sintered body is less than 5 mΩ · cm. ガラス基板表面に、請求項1に記載の焼結体を用いて製膜した非晶質透明導電膜を有する透明導電ガラス。The transparent conductive glass which has the amorphous transparent conductive film formed into a film on the glass substrate surface using the sintered compact of Claim 1 . ガラス基板表面に、請求項6または7に記載のスパッタリング用ターゲットを用いて製膜した非晶質透明導電膜を有する透明導電ガラス。  The transparent conductive glass which has the amorphous transparent conductive film formed into a film on the glass substrate surface using the sputtering target of Claim 6 or 7. 前記非晶質透明導電膜における、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である請求項8または9に記載の透明導電ガラス。  The transparent conductive glass according to claim 8 or 9, wherein the amorphous transparent conductive film has a light transmittance of 70% or more for light having a wavelength of 500 nm and a specific resistance of less than 1 mΩ · cm. 透明樹脂フィルム表面に、請求項1に記載の焼結体を用いて製膜した非晶質透明導電膜を有する透明導電フィルム。The transparent conductive film which has the amorphous transparent conductive film formed into a film on the transparent resin film surface using the sintered compact of Claim 1 . 透明樹脂フィルム表面に、請求項6または7に記載のスパッタリング用ターゲットを用いて製膜した非晶質透明導電膜を有する透明導電フィルム。  The transparent conductive film which has the amorphous transparent conductive film formed into a film using the sputtering target of Claim 6 or 7 on the transparent resin film surface. 前記非晶質透明導電膜における、波長500nmの光についての光線透過率が70%以上であり、かつ比抵抗が1mΩ・cm未満である請求項11または12に記載の透明導電フィルム。  The transparent conductive film according to claim 11 or 12, wherein the amorphous transparent conductive film has a light transmittance of 70% or more for light having a wavelength of 500 nm and a specific resistance of less than 1 mΩ · cm.
JP05838399A 1999-03-05 1999-03-05 Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film Expired - Lifetime JP4559553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05838399A JP4559553B2 (en) 1999-03-05 1999-03-05 Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05838399A JP4559553B2 (en) 1999-03-05 1999-03-05 Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film

Publications (2)

Publication Number Publication Date
JP2000256059A JP2000256059A (en) 2000-09-19
JP4559553B2 true JP4559553B2 (en) 2010-10-06

Family

ID=13082821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05838399A Expired - Lifetime JP4559553B2 (en) 1999-03-05 1999-03-05 Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film

Country Status (1)

Country Link
JP (1) JP4559553B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711244B2 (en) * 2003-11-25 2011-06-29 Jx日鉱日石金属株式会社 Sputtering target
KR100799073B1 (en) * 2004-02-17 2008-01-29 닛코킨조쿠 가부시키가이샤 Sputtering target, optical information recording medium and process for producing the same
EP1717335A4 (en) * 2004-02-17 2010-07-21 Nippon Mining Co Sputtering target, optical information recording medium and process for producing the same
JP4376868B2 (en) 2004-02-17 2009-12-02 日鉱金属株式会社 Sputtering target for optical information recording medium thin film manufacturing, optical information recording medium and manufacturing method thereof
JP5188182B2 (en) * 2005-09-27 2013-04-24 出光興産株式会社 Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP4730204B2 (en) * 2006-05-24 2011-07-20 住友金属鉱山株式会社 Oxide sintered compact target and method for producing oxide transparent conductive film using the same
JP5000937B2 (en) 2006-06-30 2012-08-15 三菱電機株式会社 Manufacturing method of semiconductor device
JP4745319B2 (en) * 2007-11-15 2011-08-10 Jx日鉱日石金属株式会社 Optical information recording medium
JP5329537B2 (en) 2008-06-03 2013-10-30 Jx日鉱日石金属株式会社 Sputtering target and amorphous optical thin film
KR101671543B1 (en) * 2008-11-20 2016-11-01 이데미쓰 고산 가부시키가이샤 -- ZnO-SnO-InOBASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
JP5389852B2 (en) * 2011-04-07 2014-01-15 Jx日鉱日石金属株式会社 Protective film for optical information recording media
JP5476636B2 (en) * 2011-05-23 2014-04-23 Jx日鉱日石金属株式会社 Sputtering target manufacturing method and sputtering target

Also Published As

Publication number Publication date
JP2000256059A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4560149B2 (en) Transparent conductive material, transparent conductive glass and transparent conductive film
EP1422312B1 (en) Sputtering target, transparent conductive film, and their manufacturing method
JP5188182B2 (en) Sputtering target, transparent conductive film, and transparent electrode for touch panel
JP4850378B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
JP4960244B2 (en) Oxide material and sputtering target
JP4234006B2 (en) Sputtering target and transparent conductive film
JP4933756B2 (en) Sputtering target
JP4947942B2 (en) Sputtering target
KR20110093949A (en) Sputtering target, transparent conductive film and transparent electrode
JP4559553B2 (en) Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film
JP4233641B2 (en) Target for transparent conductive film, transparent conductive glass and transparent conductive film
WO2018179595A1 (en) Sputtering target, sputtering target production method, amorphous film, amorphous film production method, crystalline film, and crystalline film production method
TW201823160A (en) Target material for forming transparent conductive film and manufacturing method thereof, and transparent conductive film and manufacturing method thereof capable of increasing relative density and suppressing arcing effect and particle generation
JP4851777B2 (en) SnO2-based sputtering target and manufacturing method thereof
JP2000256838A (en) Sputtering target, transparent electroconductive glass, and transparent electroconductive film
EP1422316A1 (en) Method for cleaning reaction container and film deposition system
JP3775344B2 (en) Oxide sintered body
JP4625558B2 (en) Transparent conductive film, method for producing the same, and use thereof
JP2001307553A (en) Transparent conductive film, its manufacturing method, and its application
JP4218230B2 (en) Sintered body target for transparent conductive film production
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2012126619A (en) Zinc oxide sintered compact and method for producing the same
JP2002161358A (en) Target of sintered body for manufacturing transparent conductive thin film, manufacturing method therefor, and transparent conductive thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

EXPY Cancellation because of completion of term