JP4745319B2 - Optical information recording medium - Google Patents

Optical information recording medium Download PDF

Info

Publication number
JP4745319B2
JP4745319B2 JP2007296272A JP2007296272A JP4745319B2 JP 4745319 B2 JP4745319 B2 JP 4745319B2 JP 2007296272 A JP2007296272 A JP 2007296272A JP 2007296272 A JP2007296272 A JP 2007296272A JP 4745319 B2 JP4745319 B2 JP 4745319B2
Authority
JP
Japan
Prior art keywords
recording medium
sputtering
information recording
optical information
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007296272A
Other languages
Japanese (ja)
Other versions
JP2008111193A (en
Inventor
英生 高見
政隆 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2007296272A priority Critical patent/JP4745319B2/en
Publication of JP2008111193A publication Critical patent/JP2008111193A/en
Application granted granted Critical
Publication of JP4745319B2 publication Critical patent/JP4745319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、SnO系酸化物を含む材料を採用することにより、隣接する反射層、記録層の劣化が生じ難く、密着性が良好で、尚且つ高速成膜可能である光情報記録媒体用薄膜(特に保護膜としての使用)に関する。 The present invention employs a material containing SnO 2 -based oxide, so that the adjacent reflective layer and recording layer are hardly deteriorated, have good adhesion, and can form a film at high speed . It relates to thin films (especially for use as protective films).

近年、磁気ヘッドを必要とせずに書き換え可能な高密度光情報記録媒体である高密度記録光ディスク技術が開発され、急速に関心が高まっている。この光ディスクはROM(read−only)、R(write−once)、RW(rewritable)の3種類に分けられるが、特にRW(RAM)型で使用されている相変化方式が注目されている。この相変化型光ディスクを用いた記録原理を以下に簡単に説明する。 In recent years, a high-density recording optical disk technology, which is a rewritable high-density optical information recording medium without requiring a magnetic head, has been developed, and interest is rapidly increasing. These optical discs are classified into three types, ROM (read-only), R (write-once), and RW (rewriteable). In particular, the phase change method used in the RW (RAM) type is attracting attention. The recording principle using this phase change optical disk will be briefly described below.

相変化型光ディスクは、基板上の記録薄膜をレーザー光の照射によって加熱昇温させ、その記録薄膜の構造に結晶学的な相変化(アモルファス⇔結晶)を起こさせて情報の記録・再生を行うものであり、より具体的にはその相間の光学定数の変化に起因する反射率の変化を検出して情報の再生を行うものである。
上記の相変化は数百nm〜数μm程度の径に絞ったレーザー光の照射によって行なわれる。この場合、例えば1μmのレーザービームが10m/sの線速度で通過するとき、光ディスクのある点に光が照射される時間は100nsであり、この時間内で上記相変化と反射率の検出を行う必要がある。
In a phase change optical disc, a recording thin film on a substrate is heated and heated by laser light irradiation, and information is recorded and reproduced by causing a crystallographic phase change (amorphous crystal) in the structure of the recording thin film. More specifically, information is reproduced by detecting a change in reflectance caused by a change in the optical constant between the phases.
The phase change is performed by laser light irradiation with a diameter of about several hundred nm to several μm. In this case, for example, when a 1 μm laser beam passes at a linear velocity of 10 m / s, the time during which light is irradiated to a certain point on the optical disk is 100 ns, and the phase change and reflectance are detected within this time. There is a need.

また、上記結晶学的な相変化すなわちアモルファスと結晶との相変化を実現する上で、記録層だけでなく周辺の誘電体保護層やアルミニウム合金の反射膜にも加熱と急冷が繰返されることになる。
このようなことから相変化光ディスクは、Ge−Sb−Te系等の記録薄膜層の両側を硫化亜鉛−ケイ酸化物(ZnS・SiO)系の高融点誘電体の保護層で挟み、さらにアルミニウム合金反射膜を設けた四層構造となっている。
In order to realize the crystallographic phase change, that is, the phase change between amorphous and crystal, heating and rapid cooling are repeated not only on the recording layer but also on the surrounding dielectric protective layer and the reflective film of the aluminum alloy. Become.
For this reason, the phase change optical disk is formed by sandwiching both sides of a Ge—Sb—Te-based recording thin film layer with a zinc sulfide-silicate (ZnS · SiO 2 ) -based high-melting-point dielectric protective layer, and further aluminum It has a four-layer structure with an alloy reflective film.

このなかで反射層と保護層は、記録層のアモルファス部と結晶部との反射率の差を増大させる光学的機能が要求されるほか、記録薄膜の耐湿性や熱による変形の防止機能、さらには記録の際の熱的条件制御という機能が要求される(非特許文献1参照)。
このように、高融点誘電体の保護層は昇温と冷却による熱の繰返しストレスに対して耐性をもち、さらにこれらの熱影響が反射膜や他の箇所に影響を及ぼさないようにし、かつそれ自体も薄く、低反射率でかつ変質しない強靭さが必要である。この意味において誘電体保護層は重要な役割を有する。
Among these, the reflective layer and the protective layer are required to have an optical function to increase the difference in reflectance between the amorphous portion and the crystalline portion of the recording layer, and also have a moisture resistance and a function to prevent deformation due to heat, Requires a function of thermal condition control during recording (see Non-Patent Document 1).
In this way, the protective layer of the high melting point dielectric is resistant to the repeated heat stress caused by heating and cooling, and further prevents these thermal effects from affecting the reflective film and other parts. The film itself must be thin, have low reflectivity, and do not deteriorate. In this sense, the dielectric protective layer has an important role.

上記誘電体保護層は、通常スパッタリング法によって形成されている。このスパッタリング法は正の電極と負の電極とからなる基板とターゲットを対向させ、不活性ガス雰囲気下でこれらの基板とターゲットの間に高電圧を印加して電場を発生させるものであり、この時電離した電子と不活性ガスが衝突してプラズマが形成され、このプラズマ中の陽イオンがターゲット(負の電極)表面に衝突してターゲット構成原子を叩きだし、この飛び出した原子が対向する基板表面に付着して膜が形成されるという原理を用いたものである。   The dielectric protective layer is usually formed by a sputtering method. In this sputtering method, a substrate composed of a positive electrode and a negative electrode is opposed to a target, and an electric field is generated by applying a high voltage between the substrate and the target in an inert gas atmosphere. Electrons that have been ionized and an inert gas collide to form a plasma. The cations in the plasma collide with the target (negative electrode) surface and knock out target constituent atoms, and the substrate that the ejected atoms face. This is based on the principle that a film is formed on the surface.

従来、主として書き換え型の光情報記録媒体の保護層に一般的に使用されているZnS−SiOは、光学特性、熱特性、記録層との密着性等において、優れた特性を有し、広く使用されている。
そして、このようなZnS−SiO等のセラミックスターゲットを使用して、従来は数百〜数千Å程度の薄膜が形成されている。
しかし、これらの材料は、ターゲットのバルク抵抗値が高いため、直流スパッタリング装置により成膜することができず、通常高周波スパッタリング(RF)装置が使用されている。
ところが、この高周波スパッタリング(RF)装置は、装置自体が高価であるばかりでなく、スパッタリング効率が悪く、電力消費量が大きく、制御が複雑であり、成膜速度も遅いという多くの欠点がある。
Conventionally, ZnS-SiO 2 generally used mainly for a protective layer of a rewritable optical information recording medium has excellent characteristics in optical characteristics, thermal characteristics, adhesion to the recording layer, etc. in use.
And, using such a ceramic target such as ZnS—SiO 2, a thin film of about several hundred to several thousand Å has been conventionally formed.
However, since these materials have a high bulk resistance value of the target, they cannot be formed by a direct current sputtering apparatus, and usually a high frequency sputtering (RF) apparatus is used.
However, this high-frequency sputtering (RF) apparatus has not only an expensive apparatus itself, but also has a number of disadvantages such as poor sputtering efficiency, large power consumption, complicated control, and slow film formation speed.

また、成膜速度を上げるため、高電力を加えた場合、基板温度が上昇し、ポリカーボネート製基板の変形を生ずるという問題がある。また、ZnS−SiOは膜厚が厚いためスループット低下やコスト増も問題となっていた。
Blue−Rayに代表される書き換え型のDVDは、レーザー波長の短波長化に加え書き換え回数の増加、大容量化、高速記録化が強く求められているが、上記ZnS−SiO材料には他にも問題がある。
それは、光情報記録媒体の書き換え回数等が劣化することである。その原因の一つとして、保護層であるZnS−SiOに挟まれるように配置された記録層材への、ZnS−SiOからの硫黄成分の拡散が上げられる。
In addition, when high power is applied to increase the deposition rate, there is a problem that the substrate temperature rises and the polycarbonate substrate is deformed. In addition, since ZnS—SiO 2 has a large film thickness, there has been a problem of a decrease in throughput and an increase in cost.
DVD rewritable typified by Blue-Ray, the increase in the number of times of rewriting in addition to the shortening of the wavelength of the laser wavelength, high capacity, although high-speed recording has been required strongly, the other is in the ZnS-SiO 2 material There is also a problem.
That is, the number of times of rewriting of the optical information recording medium is deteriorated. One of the causes is diffusion of the sulfur component from ZnS—SiO 2 to the recording layer material arranged so as to be sandwiched between ZnS—SiO 2 as the protective layer.

また、大容量化、高速記録化のため、高反射率で高熱伝導特性を有する純AgまたはAg合金が反射層材に使用されるようになったが、反射層も保護層材であるZnS−SiOと接するように配置されているため、ZnS−SiOからの硫黄成分の拡散により、同様に純AgまたはAg合金反射層材が腐食劣化して、光情報記録媒体の反射率等の特性劣化を引き起こす要因となっていた。
これら硫黄成分の拡散防止のため、反射層と保護層、記録層と保護層の間に、窒化物や炭化物を主成分とした中間層を設けた構成にしているが、積層数増加によるスループット低下、コスト増加が問題となった。
このようなことから、ZnSの使用すなわち硫黄成分を含有しない透明導電材料が提案されている(特許文献1及び2参照)。しかし、特許文献1は、光学特性及び非晶質性が劣る領域を含む問題があり、また特許文献2は、十分な成膜速度が得られず、非晶質性に劣る領域を含むという問題がある。
雑誌「光学」26巻1号頁9〜15 特開2000−256059号公報 特開2000−256061号公報
In addition, pure Ag or an Ag alloy having high reflectivity and high thermal conductivity has been used for the reflective layer material in order to increase the capacity and increase the recording speed, but the reflective layer is also a protective layer material ZnS- Since it is arranged so as to be in contact with SiO 2 , the diffusion of sulfur component from ZnS—SiO 2 causes the corrosion deterioration of pure Ag or Ag alloy reflective layer material, and the characteristics such as reflectance of the optical information recording medium. It was a factor causing deterioration.
In order to prevent diffusion of these sulfur components, an intermediate layer mainly composed of nitride or carbide is provided between the reflective layer and protective layer, and the recording layer and protective layer. Cost increase became a problem.
For this reason, the use of ZnS, that is, a transparent conductive material containing no sulfur component has been proposed (see Patent Documents 1 and 2). However, Patent Document 1 has a problem including a region having poor optical characteristics and amorphousness, and Patent Document 2 has a problem that a sufficient film formation rate cannot be obtained and includes a region having poor amorphous property. There is.
Magazine "Optical" Vol. 26, No. 1, pages 9-15 JP 2000-256059 A Japanese Patent Laid-Open No. 2000-256061

本発明は、SnO系酸化物を含む材料を採用するとともに、隣接する反射層、記録層の劣化が生じ難く、密着性が良好で、尚且つ高速成膜可能である光情報記録媒体用薄膜(特に保護膜としての使用)に関するものであり、これによって、光情報記録媒体の特性の向上及び生産性を大幅に改善することを目的とする。 The present invention employs a material containing SnO 2 -based oxide, and the adjacent reflective layer and recording layer are hardly deteriorated, have good adhesion, and can form a high-speed film. In particular, it is intended to improve the characteristics and productivity of the optical information recording medium.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、保護層材ZnS−SiOを、硫化物を含まない酸化物のみの材料へと置き換え、ZnS−SiOと同等の光学特性及び非晶質安定性を確保し、尚且つ高速成膜が可能であり、光情報記録媒体の特性改善、生産性向上が可能であるとの知見を得た。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the protective layer material ZnS—SiO 2 is replaced with a material containing only oxides not containing sulfide, and is equivalent to ZnS—SiO 2. The optical characteristics and amorphous stability of the optical information recording medium were ensured, high-speed film formation was possible, and the characteristics and productivity of the optical information recording medium could be improved.

本発明はこの知見に基づき、
1)酸化錫と酸化亜鉛と3価以上の元素の酸化物を主成分とし、酸化錫相(110)のピーク強度I1と酸化錫以外の酸化物あるいは複合酸化物相のX線回折図における2θ=15〜40°の範囲に存在する最大ピーク強度I2がI2/I1=0.1〜1であり、上記3価以上の元素をMとした場合、Sn/(Sn+Zn+M)=0.4〜0.9、Zn/(Sn+Zn+M)=0.1〜0.6、M/(Sn+Zn+M)=0.01〜0.5であり、MはAl、In、Ga、Snから選択した1種以上の元素であるスパッタリングにより形成された光情報記録媒体の保護膜であって、該保護膜は、記録層又は反射層と隣接して配置されていることを特徴とする光情報記録媒体、を提供する。
The present invention is based on this finding,
1) The main component is tin oxide, zinc oxide, and an oxide of a trivalent or higher element, and the peak intensity I1 of the tin oxide phase (110) and 2θ in an X-ray diffraction diagram of an oxide other than tin oxide or a composite oxide phase. The maximum peak intensity I2 existing in the range of 15 to 40 ° is I2 / I1 = 0.1 to 1 , and when the above trivalent element is M, Sn / (Sn + Zn + M) = 0.4 to 0 0.9, Zn / (Sn + Zn + M) = 0.1 to 0.6, M / (Sn + Zn + M) = 0.01 to 0.5, and M is one or more elements selected from Al, In, Ga, and Sn There is provided a protective film for an optical information recording medium formed by sputtering, wherein the protective film is disposed adjacent to a recording layer or a reflective layer.

2)Sn/(Sn+Zn+M)=0.5〜0.8、Zn/(Sn+Zn+M)=0.25〜0.4、M/(Sn+Zn+M)=0.01〜0.3であることを特徴とする1記載の光情報記録媒体、
3)M/(Zn+M)=0.1〜0.67であることを特徴とする1又は2記載の光情報記録媒体、
4)M/(Zn+M)=0.15〜0.4であることを特徴とする1又は2記載の光情報記録媒体を提供する。
2) Sn / (Sn + Zn + M) = 0.5 to 0.8, Zn / (Sn + Zn + M) = 0.25 to 0.4, M / (Sn + Zn + M) = 0.01 to 0.3 1. An optical information recording medium according to 1,
3) The optical information recording medium according to 1 or 2, wherein M / (Zn + M) = 0.1 to 0.67,
4) The optical information recording medium according to 1 or 2, wherein M / (Zn + M) = 0.15 to 0.4 .

保護層材ZnS−SiOを、硫化物を含まない酸化物のみの材料へと置き換えることによって、隣接する反射層、記録層等への硫黄による劣化を抑制すると共に、ZnS−SiOと同等の光学特性及び非晶質安定性を確保し、且つ高速成膜ができる。これにより、光情報記録媒体の特性改善及び生産性の向上が可能である。 By replacing the protective layer material ZnS-SiO 2 with an oxide-only material that does not contain sulfides, the adjacent reflective layer, recording layer, and the like are prevented from being deteriorated by sulfur, and equivalent to ZnS-SiO 2 . Optical characteristics and amorphous stability can be ensured and high-speed film formation can be achieved. As a result, it is possible to improve the characteristics and productivity of the optical information recording medium.

本発明のスパッタリングターゲットは、酸化錫相(110)のピーク強度I1と酸化錫以外の酸化物あるいは複合酸化物相のX線回折図における2θ=15〜40°の範囲に存在する最大ピーク強度I2がI2/I1=0.1〜1であることが、本発明の大きな特徴である。
SnOはスパッタリング時の成膜速度が通常の酸化物に比べて高いということが判った。そのSnOを含有し、光学特性、非晶質安定性を、現行ZnS−SiOと同等に調整するため、SnOとZnO及び3価以上の元素からなる酸化物の組成比を最適化した。
In the sputtering target of the present invention, the peak intensity I1 of the tin oxide phase (110) and the maximum peak intensity I2 existing in the range of 2θ = 15 to 40 ° in the X-ray diffraction diagram of the oxide or composite oxide phase other than tin oxide. It is a major feature of the present invention that I2 / I1 = 0.1-1.
It was found that SnO 2 has a higher film formation rate during sputtering than a normal oxide. Contain the SnO 2, the optical properties, the amorphous stability, to adjust equivalent to current ZnS-SiO 2, and optimizing the composition ratio of the oxide of SnO 2 and ZnO, and trivalent or more elements .

酸化錫相(110)のピーク強度I1とその他の酸化物及び複合酸化物相の最大ピーク強度I2の比がI2/I1が1よりも大きいと、成膜速度が低く、酸化錫添加の効果が得られ難い。逆に0.1よりも小さい場合は、光学特性、特に透過率が、ZnS−SiOと大きく異なってくる。
また、Sn以外の3価以上の元素をMとした場合、Sn/(Sn+Zn+M)が0.4未満、又はZn/(Sn+Zn+M)が0.6を超えると、十分な成膜速度が得られず、Sn/(Sn+Zn+M)が0.9を超え、又はZn/(Sn+Zn+M)が0.1未満の場合は、透過率が低下する。
望ましくは、Sn/(Sn+Zn+M)=0.5〜0.8、Zn/(Sn+Zn+M)=0.25〜0.4の範囲が良い。
When the ratio of the peak intensity I1 of the tin oxide phase (110) and the maximum peak intensity I2 of other oxides and composite oxide phases is larger than 1, the film formation rate is low and the effect of tin oxide addition is reduced. It is difficult to obtain. On the other hand, when it is smaller than 0.1, the optical characteristics, particularly the transmittance, are greatly different from those of ZnS—SiO 2 .
In addition, when M is a trivalent or higher element other than Sn, if Sn / (Sn + Zn + M) is less than 0.4 or Zn / (Sn + Zn + M) exceeds 0.6, a sufficient film formation rate cannot be obtained. When Sn / (Sn + Zn + M) exceeds 0.9 or Zn / (Sn + Zn + M) is less than 0.1, the transmittance decreases.
Desirably, Sn / (Sn + Zn + M) = 0.5 to 0.8 and Zn / (Sn + Zn + M) = 0.25 to 0.4 are preferable.

M/(Sn+Zn+M)が0.01未満の場合は、導電性が得られず、M/(Sn+Zn+M)が0.5を超えると、非晶質安定性に劣り、成膜速度も低下する。望ましくは、M/(Sn+Zn+M)が0.01〜0.3の範囲が良い。
さらに非晶質安定化を強化するために、M/(Zn+M)=0.1〜0.67に調整すると良い。望ましくは、M/(Zn+M)=0.15〜0.4が良い。
3価以上の元素Mとしては、特にAl、In 、Ga、Sbから選択した1種以上の元素を用いる。
When M / (Sn + Zn + M) is less than 0.01, conductivity cannot be obtained, and when M / (Sn + Zn + M) exceeds 0.5, the amorphous stability is inferior and the film formation rate is also reduced. Desirably, M / (Sn + Zn + M) is in the range of 0.01 to 0.3.
Furthermore, in order to strengthen amorphous stabilization, it is good to adjust to M / (Zn + M) = 0.1-0.67. Desirably, M / (Zn + M) = 0.15 to 0.4.
As the trivalent or higher element M, one or more elements selected from Al, In 2, Ga and Sb are used.

本発明は、このように酸化亜鉛を主成分とする化合物を添加することにより、ターゲットの導電性を保有させることができ、これによって直流スパッタ(DCスパッタ)によって薄膜を形成することができる。
DCスパッタリングはRFスパッタリングに比べ、成膜速度が速く、スパッタリング効率が良いという点で優れている。
また、DCスパッタリング装置は価格が安く、制御が容易であり、電力の消費量も少なくて済むという利点がある。保護膜自体の膜厚を薄くすることも可能となるため、生産性向上、基板加熱防止効果を発揮できる。
In the present invention, the conductivity of the target can be retained by adding the compound containing zinc oxide as a main component as described above, whereby a thin film can be formed by direct current sputtering (DC sputtering).
DC sputtering is superior to RF sputtering in that the deposition rate is high and sputtering efficiency is good.
Further, the DC sputtering apparatus is advantageous in that it is inexpensive, easy to control, and consumes less power. Since it is possible to reduce the thickness of the protective film itself, it is possible to improve productivity and prevent substrate heating.

本発明のスパッタリングターゲットは、上記の通り、相対密度が90%以上、バルク抵抗率が10−1Ωcm以下であり、このターゲットを使用することにより、生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
これによって、均一な成膜が可能であり、また特性に優れた光情報記録媒体用薄膜(保護膜)を形成することができる。
As described above, the sputtering target of the present invention has a relative density of 90% or more and a bulk resistivity of 10 −1 Ωcm or less. By using this target, productivity is improved and a material with excellent quality is obtained. Thus, the optical recording medium having the optical disk protective film can be manufactured stably at a low cost.
As a result, a uniform film can be formed, and a thin film (protective film) for optical information recording media having excellent characteristics can be formed.

さらに、本発明のスパッタリングターゲットを使用して形成された薄膜は、光情報記録媒体の構造の一部を形成し、記録層又は反射層と隣接して配置されるが、上記の通り、ZnSを使用していないので、Sによる汚染がなく、保護層に挟まれるように配置された記録層材への硫黄成分の拡散がなくなり、これによる記録層の劣化がなくなるという著しい効果がある。
また、大容量化、高速記録化のため、高反射率で高熱伝導特性を有する純AgまたはAg合金が反射層材に使用されるようになったが、この隣接する反射層への硫黄成分の拡散も無くなり、同様に反射層材が腐食劣化して、光情報記録媒体の反射率等の特性劣化を引き起こす原因が一掃されるという優れた効果を有する。
Furthermore, the thin film formed using the sputtering target of the present invention forms a part of the structure of the optical information recording medium and is arranged adjacent to the recording layer or the reflective layer. Since it is not used, there is no contamination due to S, and there is no significant diffusion of sulfur component into the recording layer material arranged so as to be sandwiched between protective layers, thereby eliminating the deterioration of the recording layer.
In addition, pure Ag or Ag alloy having high reflectivity and high thermal conductivity has been used for the reflective layer material in order to increase the capacity and increase the recording speed, but the sulfur component to the adjacent reflective layer has been used. Diffusion is also eliminated, and the reflective layer material is similarly corroded and has an excellent effect of eliminating the cause of deterioration of characteristics such as reflectance of the optical information recording medium.

本発明のスパッタリングターゲットは、平均粒径が5μm以下である各構成元素の酸化物粉末を、常圧焼結又は高温加圧焼結することによって製造することができる。これによって、相対密度が90%以上を有するスパッタリングターゲットが得られる。
この場合、焼結前に酸化亜鉛を主成分とした酸化物粉末を、800〜1300°Cで仮焼することが望ましい。この仮焼後、3μm以下に粉砕して焼結用の原料とする。
The sputtering target of the present invention can be produced by atmospheric pressure sintering or high temperature pressure sintering of oxide powders of each constituent element having an average particle size of 5 μm or less. Thereby, a sputtering target having a relative density of 90% or more is obtained.
In this case, it is desirable that the oxide powder containing zinc oxide as a main component is calcined at 800 to 1300 ° C. before sintering. After this calcination, it is pulverized to 3 μm or less to obtain a raw material for sintering.

さらに、本発明のスパッタリングターゲットを使用することにより、生産性が向上し、品質の優れた材料を得ることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
本発明のスパッタリングターゲットの密度向上は、空孔を減少させ結晶粒を微細化し、ターゲットのスパッタ面を均一かつ平滑にすることができるので、スパッタリング時のパーティクルやノジュールを低減させ、さらにターゲットライフも長くすることができるという著しい効果を有し、品質のばらつきが少なく量産性を向上させることができる。
Furthermore, by using the sputtering target of the present invention, productivity is improved, a material with excellent quality can be obtained, and an optical recording medium having an optical disk protective film can be manufactured stably at low cost. There is.
The improvement in the density of the sputtering target of the present invention can reduce the number of vacancies, refine the crystal grains, and make the sputtering surface of the target uniform and smooth, thereby reducing particles and nodules during sputtering, and further improving the target life. It has a remarkable effect that it can be lengthened, and there is little variation in quality, so that mass productivity can be improved.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1−5)
4N相当で5μm以下のIn粉、Ga粉、Sb粉、Al粉、4N相当で平均粒径5μm以下のZnO粉及び4N相当で平均粒径5μm以下のSnO粉を準備し、表1に示す組成となるように調合して、湿式混合し、乾燥後、1100°Cで仮焼した。
さらに、この仮焼粉を平均粒径1μm相当まで湿式微粉砕した後、バインダーを添加してスプレードライヤーで造粒した。この造粒粉を冷間で加圧成形し、酸素雰囲気、1300°Cで常圧焼結し、この焼結材を機械加工でターゲット形状に仕上げた。
このターゲットの組成(Mol%)、結晶相比、Sn/(Sn+Zn+M)、Zn/(Sn+Zn+M)、M/(Sn+Zn+M)、M/(Zn+M)、ターゲットの相対密度、バルク抵抗値はそれぞれ、表1に示すとおりである。
(Example 1-5)
In 2 O 3 powder, Ga 2 O 3 powder, Sb 2 O 3 powder, Al 2 O 3 powder, equivalent to 4N, ZnO powder with an average particle diameter of 5 μm or less, equivalent to 4N, and average particle diameter of 5 μm or less with 4N SnO 2 powder was prepared, prepared to have the composition shown in Table 1, wet-mixed, dried, and calcined at 1100 ° C.
Further, the calcined powder was wet pulverized to an average particle size equivalent to 1 μm, and then added with a binder and granulated with a spray dryer. This granulated powder was pressure-formed cold and sintered under normal pressure at 1300 ° C. in an oxygen atmosphere, and the sintered material was finished into a target shape by machining.
Table 1 shows the composition (Mol%), crystal phase ratio, Sn / (Sn + Zn + M), Zn / (Sn + Zn + M), M / (Sn + Zn + M), M / (Zn + M), target relative density, and bulk resistance value. As shown in

Figure 0004745319
Figure 0004745319

6インチφサイズに加工したターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー1000W、Arガス圧0.5Paとし、目標膜厚1500Åで成膜した。
ターゲットの組成(Mol%)、成膜サンプルの透過率(波長633nm)、屈折率(波長633nm)、非晶質性(成膜サンプルのアニール処理(600°C×30min、Arフロー)前後のXRD(Cu−Kα、40kV、30mA)による測定)、スパッタ方式及び成膜速度(Å/sec)を測定した結果をまとめて表2に示す。
Sputtering was performed using a target processed into a 6-inch φ size. The sputtering conditions were DC sputtering, sputtering power 1000 W, Ar gas pressure 0.5 Pa, and a target film thickness of 1500 mm.
XRD before and after target composition (Mol%), film sample transmittance (wavelength 633 nm), refractive index (wavelength 633 nm), amorphous (film sample annealing treatment (600 ° C. × 30 min, Ar flow)) (Measurement with Cu-Kα, 40 kV, 30 mA)), the results of measuring the sputtering method and the film formation rate (Å / sec) are shown together in Table 2.

Figure 0004745319
Figure 0004745319

以上の結果、実施例1−6のスパッタリングターゲットは、いずれもバルク抵抗値が0.07Ωcm以下であり、相対密度は90〜97%に達し、安定したDCスパッタができた。そして、成膜速度が5.5〜7.3Å/secが達成され、良好なスパッタ性を有した。
スパッタ膜の透過率は、SnOの量が増加すると低下する傾向にあるが、88〜95%(633μm)に達し、屈折率は2.2〜2.4であり、また特定の結晶ピークは見られず、安定した非晶質性(1.1〜1.5)を有していた。
本実施例のターゲットは、ZnSを使用していないので、硫黄の拡散・汚染による光情報記録媒体の特性劣化は生じない。また、後述する比較例に比べて、成膜サンプルの透過率、屈折率、非晶質の安定性、ターゲット密度、バルク低効率、成膜速度がいずれも良好な値を示し、DCスパッタが可能であった。
As a result, all of the sputtering targets of Example 1-6 had a bulk resistance value of 0.07 Ωcm or less, a relative density of 90 to 97%, and stable DC sputtering was achieved. And the film-forming speed | velocity of 5.5-7.3 liters / sec was achieved, and it had favorable sputter property.
The transmittance of the sputtered film tends to decrease as the amount of SnO 2 increases, but it reaches 88 to 95% (633 μm), the refractive index is 2.2 to 2.4, and the specific crystal peak is It was not seen and had a stable amorphous property (1.1 to 1.5).
Since the target of this example does not use ZnS, the characteristic deterioration of the optical information recording medium due to sulfur diffusion / contamination does not occur. Compared to the comparative examples described later, the film samples have good transmittance, refractive index, amorphous stability, target density, bulk low efficiency, and film formation speed, and can be DC sputtered. Met.

(比較例1−5)
表1に示すように、本願発明の条件とは異なる原料粉の成分及び組成比の材料、特に比較例5においてはZnS原料粉を準備し、これを実施例と同様の条件で、ターゲットを作製し、かつこのターゲットを用いてスパッタ膜を形成した。
この結果を、同様に表1に示す。
(Comparative Example 1-5)
As shown in Table 1, a raw material component and a composition ratio material different from the conditions of the present invention, in particular, a ZnS raw material powder is prepared in Comparative Example 5, and a target is produced under the same conditions as in the example. And a sputtered film was formed using this target.
The results are also shown in Table 1.

本発明から逸脱する比較例の成分・組成では、例えば比較例3、比較例5はバルク抵抗値が高いため、DCスパッタができないのでRFスパッタを行ったが、スパッタの制御性が悪く、成膜速度が遅延し、スパッタリング効率を向上させることができなかった。また、特に比較例5はZnSが多く含有されており、硫黄による汚染の危険のある材料であった。
比較例1、3は、成膜速度がそれぞれ3.9Å/sec、1.3Å/secであり、成膜速度が低く、スパッタリング効率を向上させることができなかった。また、比較例3はターゲット密度が低く、バルク抵抗値が100Ωcmを超えるという問題があった。
比較例2は透過率が低く、バルク抵抗値も高かった。比較例4は非晶質性が4.5であり、安定性に欠けていた。
With the components and compositions of the comparative example deviating from the present invention, for example, Comparative Example 3 and Comparative Example 5 have high bulk resistance values, so that DC sputtering cannot be performed, so RF sputtering was performed. The speed was delayed and the sputtering efficiency could not be improved. In particular, Comparative Example 5 contained a large amount of ZnS, and was a material having a risk of contamination with sulfur.
In Comparative Examples 1 and 3, the film formation rates were 3.9 Å / sec and 1.3 Å / sec, respectively, the film formation rate was low, and the sputtering efficiency could not be improved. Further, Comparative Example 3 has a problem that the target density is low and the bulk resistance value exceeds 100 Ωcm.
Comparative Example 2 had a low transmittance and a high bulk resistance value. Comparative Example 4 had an amorphous property of 4.5 and lacked stability.

本発明のスパッタリングターゲットを使用して形成された薄膜は、光情報記録媒体の構造の一部を形成し、ZnSを使用していないので、記録層材への硫黄成分の拡散がなくなり、これによる記録層の劣化がなくなるという著しい効果がある。また、隣接する高反射率で高熱伝導特性を有する純AgまたはAg合金を反射層に用いた場合には、該反射層への硫黄成分の拡散も無くなり、反射層が腐食劣化して特性劣化を引き起こす原因が一掃されるという優れた効果を有する。
さらに、非晶質性が安定化するとともにターゲットに導電性が付与され、相対密度を90%以上の高密度化によって安定したDCスパッタを可能とする。
そして、このDCスパッタリングの特徴である、スパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。さらにまた、成膜の際にスパッタ時に発生するパーティクル(発塵)やノジュールを低減し、品質のばらつきが少なく量産性を向上させることができ、光ディスク保護膜をもつ光記録媒体を低コストで安定して製造できるという著しい効果がある。
The thin film formed using the sputtering target of the present invention forms part of the structure of the optical information recording medium and does not use ZnS, so that there is no diffusion of the sulfur component into the recording layer material. There is a remarkable effect that the recording layer is not deteriorated. In addition, when pure Ag or Ag alloy having high heat conductivity and adjacent reflectivity is used for the reflection layer, diffusion of sulfur component to the reflection layer is eliminated, and the reflection layer is deteriorated due to corrosion deterioration. It has an excellent effect of causing the cause to be wiped out.
Furthermore, the amorphousness is stabilized and the target is provided with conductivity, and stable DC sputtering is enabled by increasing the relative density to 90% or higher.
And there is a remarkable effect that the controllability of sputtering, which is the feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. Furthermore, particles (dust generation) and nodules generated during sputtering during film formation can be reduced, quality variations can be reduced, and mass productivity can be improved. Optical recording media with an optical disc protective film can be stably manufactured at low cost. There is a remarkable effect that it can be manufactured.

Claims (4)

酸化錫と酸化亜鉛と3価以上の元素の酸化物を主成分とし、酸化錫相(110)のピーク強度I1と酸化錫以外の酸化物あるいは複合酸化物相のX線回折図における2θ=15〜40°の範囲に存在する最大ピーク強度I2がI2/I1=0.3〜0.5、バルク抵抗率が0.01〜0.07Ωcm、上記3価以上の元素をMとした場合、Sn/(Sn+Zn+M)=0.4〜0.9、Zn/(Sn+Zn+M)=0.1〜0.6、M/(Sn+Zn+M)=0.01〜0.5であり、MはAl、In、Ga、Sbから選択した1種以上の元素であるターゲットを用いてスパッタリング成膜した保護膜であって、該保護膜は、記録層又は反射層と隣接して配置されていることを特徴とする光情報記録媒体。 The main component is an oxide of tin oxide, zinc oxide, and a trivalent or higher element, the peak intensity I1 of the tin oxide phase (110), and 2θ = 15 in the X-ray diffraction diagram of an oxide other than tin oxide or a composite oxide phase. When the maximum peak intensity I2 existing in the range of ˜40 ° is I2 / I1 = 0.3-0.5, the bulk resistivity is 0.01-0.07 Ωcm , and the above trivalent or higher element is M, Sn /(Sn+Zn+M)=0.4 to 0.9, Zn / (Sn + Zn + M) = 0.1 to 0.6, M / (Sn + Zn + M) = 0.01 to 0.5, where M is Al, In, Ga , A protective film formed by sputtering using a target that is one or more elements selected from Sb, wherein the protective film is disposed adjacent to the recording layer or the reflective layer Information recording medium. Sn/(Sn+Zn+M)=0.5〜0.8、Zn/(Sn+Zn+M)=0.25〜0.4、M/(Sn+Zn+M)=0.01〜0.3であることを特徴とする請求項1記載の光情報記録媒体。 Sn / (Sn + Zn + M) = 0.5 to 0.8, Zn / (Sn + Zn + M) = 0.25 to 0.4, M / (Sn + Zn + M) = 0.01 to 0.3 1. The optical information recording medium according to 1. M/(Zn+M)=0.1〜0.67であることを特徴とする請求項1又は2記載の光情報記録媒体。 3. The optical information recording medium according to claim 1, wherein M / (Zn + M) = 0.1 to 0.67. M/(Zn+M)=0.15〜0.4であることを特徴とする請求項1又は2記載の光情報記録媒体。 3. The optical information recording medium according to claim 1, wherein M / (Zn + M) = 0.15 to 0.4.
JP2007296272A 2007-11-15 2007-11-15 Optical information recording medium Expired - Fee Related JP4745319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296272A JP4745319B2 (en) 2007-11-15 2007-11-15 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296272A JP4745319B2 (en) 2007-11-15 2007-11-15 Optical information recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003394028A Division JP4711244B2 (en) 2003-11-25 2003-11-25 Sputtering target

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011085033A Division JP5389852B2 (en) 2011-04-07 2011-04-07 Protective film for optical information recording media

Publications (2)

Publication Number Publication Date
JP2008111193A JP2008111193A (en) 2008-05-15
JP4745319B2 true JP4745319B2 (en) 2011-08-10

Family

ID=39443865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296272A Expired - Fee Related JP4745319B2 (en) 2007-11-15 2007-11-15 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP4745319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168893A (en) * 2011-04-07 2011-09-01 Jx Nippon Mining & Metals Corp Protective film of optical information recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677058B2 (en) * 2016-03-04 2020-04-08 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185294A (en) * 1997-12-17 1999-07-09 Ricoh Co Ltd Phase transition optical recording medium
JP3636914B2 (en) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ High resistance transparent conductive film, method for producing high resistance transparent conductive film, and sputtering target for forming high resistance transparent conductive film
JP2000195101A (en) * 1998-12-28 2000-07-14 Japan Energy Corp Optical disk protective film and sputtering target for formation of that protective film
JP4560149B2 (en) * 1999-03-05 2010-10-13 出光興産株式会社 Transparent conductive material, transparent conductive glass and transparent conductive film
JP4559553B2 (en) * 1999-03-05 2010-10-06 出光興産株式会社 Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film
JP2000268408A (en) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd Optical recording medium
JP3686776B2 (en) * 1999-03-30 2005-08-24 日立バッテリー販売サービス株式会社 Overdischarge prevention device for storage battery
JP2001306258A (en) * 2000-02-18 2001-11-02 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film for touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168893A (en) * 2011-04-07 2011-09-01 Jx Nippon Mining & Metals Corp Protective film of optical information recording medium

Also Published As

Publication number Publication date
JP2008111193A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4699504B2 (en) Sputtering target, thin film for optical information recording medium, and manufacturing method thereof
JP4260801B2 (en) Method for producing thin film for optical information recording medium
TWI293067B (en)
JP4711244B2 (en) Sputtering target
JP4793773B2 (en) Manufacturing method of sputtering target
JP4417913B2 (en) Sputtering target, optical information recording medium and manufacturing method thereof
JP4628685B2 (en) Sputtering target for optical information recording medium and optical information recording medium
JP4376868B2 (en) Sputtering target for optical information recording medium thin film manufacturing, optical information recording medium and manufacturing method thereof
JP4745319B2 (en) Optical information recording medium
JP5329537B2 (en) Sputtering target and amorphous optical thin film
JP4642494B2 (en) Sputtering target and optical information recording medium
JP5389852B2 (en) Protective film for optical information recording media
JP5337016B2 (en) Sintered sputtering target, method for producing thin film for optical recording medium, and thin film for optical recording medium
JP4817137B2 (en) Sputtering target and optical recording medium
JP5476636B2 (en) Sputtering target manufacturing method and sputtering target
JP4279533B2 (en) Sputtering target and optical recording medium
JP5172868B2 (en) Sputtering target, optical information recording medium and manufacturing method thereof
JP4642833B2 (en) Optical recording medium having a phase change optical disc protective film mainly composed of zinc sulfide formed using a sputtering target composed mainly of zinc sulfide
JP4685177B2 (en) Sputtering target for forming phase change optical disc protective film and optical recording medium having phase change optical disc protective film formed using the target
JP2005251236A (en) Sputtering target, protective film for optical information recording medium, and its manufacturing method
KR20070017503A (en) Sputtering target, optical information recording medium and process for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees