JP4625558B2 - Transparent conductive film, method for producing the same, and use thereof - Google Patents

Transparent conductive film, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4625558B2
JP4625558B2 JP2000127633A JP2000127633A JP4625558B2 JP 4625558 B2 JP4625558 B2 JP 4625558B2 JP 2000127633 A JP2000127633 A JP 2000127633A JP 2000127633 A JP2000127633 A JP 2000127633A JP 4625558 B2 JP4625558 B2 JP 4625558B2
Authority
JP
Japan
Prior art keywords
film
resistivity
sputtering
thin film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127633A
Other languages
Japanese (ja)
Other versions
JP2001307554A (en
Inventor
弘実 中澤
健太郎 内海
裕一 長崎
聡 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Geomatec Co Ltd
Original Assignee
Tosoh Corp
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Geomatec Co Ltd filed Critical Tosoh Corp
Priority to JP2000127633A priority Critical patent/JP4625558B2/en
Publication of JP2001307554A publication Critical patent/JP2001307554A/en
Application granted granted Critical
Publication of JP4625558B2 publication Critical patent/JP4625558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面平坦性が改善された低抵抗透明導電膜に関する。
【0002】
【従来の技術】
ITO(Indium Tin Oxide)薄膜は高導電性、高透過率といった特徴を有し、更に微細加工も容易に行えることから、フラットパネルディスプレイ用表示電極、抵抗膜方式のタッチパネル、太陽電池用窓材、帯電防止膜、電磁波防止膜、防曇膜、センサ等の広範囲な分野に渡って用いられている。
【0003】
このようなITO薄膜の製造方法はスプレー熱分解法、CVD法等の化学的成膜法と電子ビーム蒸着法、イオンプレーティング法、スパッタリング法等の物理的成膜法に大別することができる。これら中でもスパッタリングは、大面積への均一成膜が容易でかつ高性能の膜が得られる成膜法であることから、様々な分野で使用されている。
【0004】
近年の情報化社会の発展にともない、前記フラットパネルディスプレイ等に要求される技術レベルが高まっている。無機Electro Luminescence(EL)パネルは、図1に示すような絶縁層2によって挟持された発光層3に透明電極1と金属製の背面電極4を通して10E8V/cmという強電界を発光層に印加して発光させる構造となっている。自発光のため視認性が高く、全固体であるため振動に強いといった優れた特徴を有している。パネル構造は、帯状の直交させた透明電極と背面電極からなるX−Yのマトリクス構造となっている。このため、パネルの大型化および高精細化にともない、特に透明電極に使用される透明導電膜の低抵抗率化が要求されている。
【0005】
ITO薄膜の抵抗率を低下させると同時に透過率を高めることを目的として、例えば、特開平04−272612号に酸化インジウムをマトリックストして酸化スズ1〜20重量%、酸化ガリウム0.1〜20重量%を含む膜が提案されている。
【0006】
また、発光層を発光させる際に10E8v/cmという強電界が印加されることから、透明電極1の表面に大きな凸凹の部分があると、この部分で電界集中が起こり、絶縁破壊を発生しやすくなる。 絶縁破壊が生じると当該画素部での表示が不可能となりディスプレイとしての表示品質の劣化を招くため、電極の表面の凸凹を低下させる必要がある。
ところで、ITO薄膜を室温で成膜すると、特別な条件を除きアモルファスな膜が得られる。しかし、薄膜の抵抗率を低下させるには、膜を結晶化させることが好ましい。ITOの結晶化温度は150℃前後(成膜条件により異なる)であり、結晶膜を得るにはこの温度以上の成膜温度で成膜する必要がある。しかし、スパッタリング法を用いて結晶性ITO薄膜を形成した場合、ITO薄膜に特徴的な膜の突起およびドメイン構造が形成される。
【0007】
一般にITO膜をスパッタリング法で形成する場合には、スパッタリングガスとしてアルゴンと酸素が用いられる。ガス中の酸素量を変化させることにより得られる薄膜の抵抗率は変化し、ある酸素分圧値で最小の値を示す。そして、このような薄膜の抵抗率が最小の値を示すような酸素分圧値で形成した場合、上述の薄膜表面の突起およびドメイン構造が顕著となり、平坦性の悪い表面状態となる。このような膜の場合、膜厚200nmでの表面凹凸の最大高低差(Z−max)は、100nmにも達する場合がある。
【0008】
一方、薄膜の平坦性を追求するには、上記最適酸素分圧値からはずれたところで成膜するか、成膜時の基板温度を低下させてアモルファス化する手法が考えられる。しかし、いずれの手法を用いた場合においても、薄膜の平坦性は確保されるものの抵抗率が増加してしまう。
【0009】
このようなことから平坦性と低抵抗率との両特性を満足する透明導電膜の開発が望まれていた。
【0010】
【発明が解決しようとする課題】
本発明の課題は、大型高精細ELパネルに好適な、膜表面が平坦で抵抗率の低い透明導電膜を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らはITOに異種元素をドープした導電性金属酸化物に関して鋭意検討を重ねた結果、抵抗率を250μΩ・cm以下、かつZ−max/tを10%以下とすることにより、パネルの大型化および高精細化に対応し強電界が印加されるELパネルにおいても高い信頼性が得られる透明導電膜が得られることを見いだした。また、このような薄膜はガリウムをドーパントとして含有するITO薄膜において達成できることを見いだし、本発明を完成した。
【0012】
即ち、本発明は、不可避不純物を除いてインジウム、スズ、ガリウムおよび酸素からなり、ガリウムがGa/(In+Sn+Ga)の原子比で2%〜9%の割合で含有され、スズがSn/(Sn+In)の原子比で10%〜14%の割合で含有され、抵抗率が250μΩ・cm以下、かつZ−max/t(t:膜厚)が10%以下であることを特徴とする透明導電膜に関するものである。また本発明は、そのような透明導電膜を含んでなる機器に関するものである。さらに本発明は、不可避不純物を除いてインジウム、スズ、ガリウムおよび酸素からなり、ガリウムがGa/(In+Sn+Ga)の原子比で2%〜9%の割合で含有され、スズがSn/(Sn+In)の原子比で10%〜14%の割合で含有されるスパッタリングターゲットを、dcにrfを重畳したスパッタ電力でスパッタすることを特徴とする、抵抗率が250μΩ・cm以下、かつZ−Max/tが10%以下を満足する透明導電膜の製造方法に関するものである。
【0013】
なお、本発明でいうZ−maxとは、物質表面の凹凸の度合いを数値的に表すパラメータであり、表面のあるエリア内で最も高い山の頂上と最も低い谷の底との高さの差を意味する。その測定方法としては、原子間力顕微鏡(AFM:Atomic Force Microscopy)による測定が一般的である。原子間力顕微鏡は微小なてこを物質表面に近づけ、縦横方向にあるエリア内で走査し、その際生じるてこのたわみを試料面垂直方向の高さに換算して表面の凹凸を測定する装置である。本発明では、セイコ−電子工業株式会社製の原子間力顕微鏡(商品名「SPI3700」)を用いて、てこを3μm×3μmのエリアを走査させて測定した。
【0014】
以下、本発明を詳細に説明する。
【0015】
本発明に関わる薄膜およびこの薄膜を含んでなる機器は、例えば、以下の方法で製造することができる。
【0016】
始めに、薄膜形成用のスパッタリングターゲットを製造する。スパッタリングターゲットに用いるための焼結体としては、得られる焼結体の焼結密度が95%以上であることが好ましい。より好ましくは98%以上である。
【0017】
焼結密度が上記密度未満となると、スパッタリング中に異常放電が発生しやすくなり、この時発生するスプラッツを核とした異常成長粒子が形成されるため、平坦な膜を得にくくなるからである。
【0018】
なお、本発明でいう相対密度(D)とは、 In23、SnO2およびGa23の真密度の相加平均から求められる理論密度(d)に対する相対値を示している。相加平均から求められる理論密度(d)とは、ターゲット組成において、In23、SnO2およびGa23粉末の混合量をそれぞれa,b,c(g)とした時、それぞれの真密度7.179,6.95,5.95(g/cm3)を用いて、d=(a+b+c)/((a/7.179)+(b/6.95)+(c/5.95))により求められる。焼結体の測定密度をd1とすると、その相対密度は、
式:D=d1/d×100(%)で求められる。
【0019】
焼結密度が95%以上となるような焼結体は、例えば、以下のような方法で製造することができる。
【0020】
原料粉末としては、例えば、酸化インジウム粉末、酸化スズ粉末および酸化ガリウム粉末を混合する。酸化インジウム粉末と酸化スズ粉末の代わりに酸化スズ固溶酸化インジウム粉末を用いることも可能である。この際、使用する粉末の平均粒径が大きいと焼結後の密度が充分に上がらず相対密度95%以上の焼結体を得難くなることがあるので、使用する粉末の平均粒径は1.5μm以下であることが望ましく、更に好ましくは0.1〜1.5μmである。粉末の混合は、ボールミルなどにより乾式混合あるいは湿式混合して行えばよい。
【0021】
ここで、酸化スズの混合量は、Sn/(Sn+In)の原子比で5〜20%とすることが好ましい。より好ましくは8〜17%、さらに好ましくは10〜14%である。これは、本発明のターゲットを用いてITO薄膜を製造した際に、膜の抵抗率が最も低下する組成であるからである。
【0022】
酸化ガリウムの混合量は、Ga/(In+Sn+Ga)の原子比で2〜9%が好ましい。より好ましくは3〜8%、更に好ましくは、4〜7%である。酸化ガリウムの添加量が前記範囲より少ないと、薄膜の平坦化の効果が薄れ凸凹の大きな膜となることがあり、また前記範囲を超えると、抵抗率が高くなりすぎる場合がある。
【0023】
前述のようにして得られた混合粉末にバインダー等を加え、プレス法或いは鋳込法等の成形方法により成形して成形体を製造する。プレス法により成形体を製造する場合には、所定の金型に混合粉末を充填した後、粉末プレス機を用いて100〜300kg/cm2の圧力でプレスを行う。粉末の成形性が悪い場合には、必要に応じてパラフィンやポリビニルアルコール等のバインダーを添加してもよい。
【0024】
鋳込法により成形体を製造する場合には、ITO混合粉末にバインダー、分散剤、イオン交換水を添加し、ボールミル等により混合することにより鋳込成形体製造用スラリーを作製する。続いて、得られたスラリーを用いて鋳込を行う。鋳型にスラリーを注入する前に、スラリーの脱泡を行うことが好ましい。脱泡は、例えばポリアルキレングリコール系の消泡剤をスラリーに添加して真空中で脱泡処理を行えばよい。続いて、鋳込み成形体の乾燥処理を行う。
【0025】
次に、得られた成形体に必要に応じて、冷間静水圧プレス(CIP)等の圧密化処理を行う。この際CIP圧力は充分な圧密効果を得るため1ton/cm2以上、好ましくは2〜5ton/cm2であることが望ましい。ここで始めの成形を鋳込法により行った場合には、CIP後の成形体中に残存する水分およびバインダー等の有機物を除去する目的で脱バインダー処理を施してもよい。また、始めの成形をプレス法により行った場合でも、成型時にバインダーを使用したときには、同様の脱バインダー処理を行うことが望ましい。
【0026】
このようにして得られた成形体を焼結炉内に投入して焼結を行う。焼結方法としては、いかなる方法でも適応可能であるが、生産設備のコスト等を考慮すると大気中焼結が望ましい。しかしこの他ホットプレス(HP)法、熱間静水圧プレス(HIP)法および酸素加圧焼結法等の従来知られている他の焼結法を用いることができることは言うまでもない。また焼結条件についても適宜選択することができるが、充分な密度上昇効果を得るため、また酸化スズの蒸発を抑制するため、焼結温度が1450〜1650℃であることが望ましい。また焼結時の雰囲気としては大気或いは純酸素雰囲気であることが好ましい。また焼結時間についても充分な密度上昇効果を得るために5時間以上、好ましくは5〜30時間であることが望ましい。このようにしてガリウム含有ITO焼結体を製造することができる。
【0027】
次に、得られた焼結体を所望の形状に加工した後、必要に応じて無酸素銅からなるバッキングプレートにインジウム半だ等を用いて接合することにより、スパッタリングターゲットが製造される。
【0028】
得られたスパッタリングターゲットを用いて、ガラス基板やフィルム基板等の基板上に本発明の透明導電性薄膜を得ることができる。製膜手段としては、薄膜の低抵抗率化および平坦化のためには、dcにrfを重畳させた、50〜500Wの電力(但し、カソードのサイズによっても異なる)を使用したスパッタリング法を採用することが好ましい。この際、dcに重畳させるrfの割合は、印加電力でrf/dcで50〜100%とすることが好ましい。また、rfとしては、13.56MHz±0.05%の高周波が好ましい。
【0029】
また、酸化インジウム、酸化スズおよび酸化ガリウムの3種類、あるいは前記の3種の内の2種の混合酸化物と残りの酸化物の2種類として用意されたスパッタリングターゲットを用いて多元同時スパッタリングにより製膜してもよい。さらに、個々のスパッタリングターゲットの一部あるいは全部を金属あるいは合金に置き換えて用いてもよい。
【0030】
成膜時は、スパッタリングガスとしてアルゴンと酸素を真空装置内に導入してスパッタリングを行う。膜の低抵抗率化を達成するためには、これら導入ガスの流量を制御して抵抗率が低下する値に適宜設定する。
【0031】
このようにして得られた薄膜は、抵抗率が250μΩ・cm以下、好ましくは、220μΩ・cm以下であり、かつZ−max/tが10%以下、好ましくは、6%以下であり、極めて平坦で低抵抗率となる。また、形成する膜の厚さは100〜500nmとするのが好ましい。
【0032】
また、基板上に形成された薄膜は、必要に応じて所望のパターンにエッチングされた後、本願請求項3の発明である機器を構成することができる。
【0033】
本発明による薄膜に付加機能を持たせることを目的として第4の元素を添加しても有効である。第4元素としては、例えば、Mg、Al、Si、Ti、Zn、Y、Zr、Nb、Hf、Ta等を例示することができる。これら元素の添加量は、特に限定されるものではないが、本発明による薄膜の優れた電気特性および平坦性を劣化させないため、(第4元素の酸化物の総和)/(In23+SnO2+Ga23+第4元素の酸化物の総和)/100で0%を超え20%以下(重量比)とすることが好ましい。
【0034】
【実施例】
以下、本発明を実施例をもって更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0035】
実施例1
酸化インジウム粉末440g、酸化スズ粉末60gおよび所定量の酸化ガリウム粉末をポリエチレン製のポットに入れ、乾式ボールミルにより72時間混合し、混合粉末を製造した。
【0036】
この粉末を金型に入れ、300kg/cm2の圧力でプレスして成形体とした。この成形体を3ton/cm2の圧力でCIPによる緻密化処理を行った。次にこの成形体を純酸素雰囲気焼結炉内に設置して、以下の条件で焼結した。
【0037】
(焼結条件)
焼結温度:1500℃、昇温速度:25℃/時間、焼結時間:6時間、酸素圧:50mmH2O(ゲージ圧)、酸素線速:2.7cm/分
得られた焼結体の密度をアルキメデス法により測定したところ全て95%以上であった。この焼結体を湿式加工法により直径4インチ厚さ6mmの焼結体に加工し、インジウム半田を用いて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。
【0038】
このターゲットを以下のスパッタリング条件でスパッタリングして薄膜の評価を行った。
【0039】
(スパッタリング条件)
基板:ガラス基板、印加電力:dc150W+rf100W、ガス圧:1.1mTorr、スパッタリングガス:Ar+O2、O2/Ar:抵抗率が最小となる値に制御、基板温度:200℃、膜厚:200nm。
【0040】
得られた膜の組成をEPMA(Electron Prove Micro Analysis)で分析するとともに、薄膜の抵抗率およびZ−max/tを測定した。得られた結果を図2に示す。Ge/(In+Sn+Ge)含有量2〜9%で良好な結果が得られた。
【0041】
実施例2
酸化インジウム粉末450g、酸化スズ粉末50gおよび所定量の酸化ガリウム粉末をポリエチレン製のポットに入れ、乾式ボールミルにより72時間混合し、混合粉末を製造した。
【0042】
この粉末を用いて実施例1と同様の方法でターゲットを製造した。得られたターゲットを用いて実施例1と同様の条件で薄膜を製造した。
【0043】
得られた膜の組成をEPMAで分析するとともに、薄膜の抵抗率およびZ−max/tを測定した。得られた結果を図3に示す。Ga/(In+Sn+Ga)含有量2〜9%で良好な結果が得られた。
【0044】
実施例3
実施例1で製造したターゲットのうち、薄膜のGa組成が4原子%ととなったターゲットを用いて、スパッタリング時間以外は実施例1と同じ条件でスパッタリングを行い、膜厚500nmの薄膜を作成した。得られた膜の抵抗室およびZ−max/tを測定したところ、抵抗率=198μΩ・cm、Z−max/t=7.8%であった。
【0045】
比較例1
実施例1で製造したターゲットのうち、薄膜のGa組成が4原子%となったターゲットを用いて、以下のスパッタリング条件でスパッタリングして薄膜の評価を行った。
【0046】
(スパッタリング条件)
基板:ガラス基板、印加電力:dc200W、ガス圧:1.1mTorr、スパッタリングガス:Ar+O2、O2/Ar:抵抗率が最小となる値に制御、基板温度:200℃、膜厚:200nm。
【0047】
得られた膜の抵抗室およびZ−max/tを測定したところ、抵抗率=280μΩ・cm、Z−max/t=28%であった。
【0048】
比較例2
実施例2で製造したターゲットのうち、薄膜のGa組成が5原子%となったターゲットを用いて、以下のスパッタリング条件でスパッタリングして薄膜の評価を行った。
【0049】
(スパッタリング条件)
基板:ガラス基板、印加電力:dc200W、ガス圧:1.1mTorr、スパッタリングガス:Ar+O2、O2/Ar:抵抗率が最小となる値に制御、基板温度:200℃、膜厚:200nm。
【0050】
得られた膜の抵抗室およびZ−max/tを測定したところ、抵抗率=270μΩ・cm、Z−max/t=35%であった。
【0051】
【発明の効果】
本発明により、大型高精細ELパネルに好適な、膜表面が平坦で抵抗率の低い透明導電膜を得ることが可能となる。
【図面の簡単な説明】
【図1】 無機ELパネルの構造を示す図である。
【図2】 実施例1で得られた膜の抵抗率およびZ−max/tを示す図である。
【図3】 実施例2で得られた膜の抵抗率およびZ−max/tを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low resistance transparent conductive film with improved surface flatness.
[0002]
[Prior art]
ITO (Indium Tin Oxide) thin film has characteristics such as high conductivity and high transmittance, and can be easily finely processed. Therefore, display electrodes for flat panel displays, resistive touch panels, solar cell window materials, It is used in a wide range of fields such as antistatic films, electromagnetic wave preventing films, antifogging films, and sensors.
[0003]
Such ITO thin film production methods can be broadly divided into chemical film formation methods such as spray pyrolysis and CVD, and physical film formation methods such as electron beam evaporation, ion plating, and sputtering. . Among these, sputtering is used in various fields because it is a film forming method that facilitates uniform film formation over a large area and provides a high-performance film.
[0004]
With the development of the information society in recent years, the technical level required for the flat panel display and the like is increasing. An inorganic Electro Luminescence (EL) panel applies a strong electric field of 10E8 V / cm to the light emitting layer through the transparent electrode 1 and the metal back electrode 4 to the light emitting layer 3 sandwiched between the insulating layers 2 as shown in FIG. It has a structure that emits light. It has excellent characteristics such as high visibility due to self-emission and resistance to vibration because it is all solid. The panel structure is an XY matrix structure composed of strip-shaped orthogonal transparent electrodes and back electrodes. For this reason, with the increase in size and definition of the panel, there is a demand for lowering the resistivity of the transparent conductive film used particularly for the transparent electrode.
[0005]
In order to reduce the resistivity of the ITO thin film and at the same time increase the transmittance, for example, JP-A 04-272612 matrixes indium oxide and tin oxide is 1 to 20% by weight, gallium oxide is 0.1 to 20%. Membranes containing weight percent have been proposed.
[0006]
Further, since a strong electric field of 10E8 v / cm is applied when the light emitting layer emits light, if there is a large uneven portion on the surface of the transparent electrode 1, electric field concentration occurs at this portion, and dielectric breakdown is likely to occur. Become. When dielectric breakdown occurs, display on the pixel portion becomes impossible and deterioration of display quality as a display is caused. Therefore, it is necessary to reduce unevenness on the surface of the electrode.
By the way, when the ITO thin film is formed at room temperature, an amorphous film can be obtained except for special conditions. However, to reduce the resistivity of the thin film, it is preferable to crystallize the film. The crystallization temperature of ITO is around 150 ° C. (depending on the film formation conditions), and it is necessary to form a film at a film formation temperature higher than this temperature in order to obtain a crystal film. However, when a crystalline ITO thin film is formed by sputtering, film protrusions and domain structures characteristic of the ITO thin film are formed.
[0007]
In general, when an ITO film is formed by sputtering, argon and oxygen are used as sputtering gases. The resistivity of the thin film obtained by changing the amount of oxygen in the gas changes, and shows a minimum value at a certain oxygen partial pressure value. And when it forms with the oxygen partial pressure value in which the resistivity of such a thin film shows the minimum value, the processus | protrusion and domain structure of the above-mentioned thin film surface become remarkable, and it will be a surface state with poor flatness. In the case of such a film, the maximum height difference (Z-max) of the surface unevenness at the film thickness of 200 nm may reach 100 nm.
[0008]
On the other hand, in order to pursue the flatness of the thin film, a method of forming an amorphous film by deviating from the optimum oxygen partial pressure value or lowering the substrate temperature during film formation can be considered. However, in any case, the resistivity increases although the flatness of the thin film is ensured.
[0009]
For this reason, it has been desired to develop a transparent conductive film that satisfies both flatness and low resistivity.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent conductive film having a flat film surface and low resistivity, which is suitable for a large high-definition EL panel.
[0011]
[Means for Solving the Problems]
As a result of intensive studies on conductive metal oxides in which ITO is doped with different elements, the inventors have made the resistivity of the panel less than 250 μΩ · cm and Z-max / t less than 10%. It was found that a transparent conductive film with high reliability can be obtained even in an EL panel to which a strong electric field is applied in response to an increase in size and definition. In addition, the inventors have found that such a thin film can be achieved in an ITO thin film containing gallium as a dopant, thereby completing the present invention.
[0012]
That is, the present invention is composed of indium, tin, gallium and oxygen excluding inevitable impurities, gallium is contained in an atomic ratio of Ga / (In + Sn + Ga) in a ratio of 2% to 9%, and tin is Sn / (Sn + In). And a resistivity of 250 μΩ · cm or less and a Z-max / t (t: film thickness) of 10% or less. Is. The present invention also relates to a device comprising such a transparent conductive film. Further, the present invention is composed of indium, tin, gallium and oxygen excluding inevitable impurities, gallium is contained at a ratio of 2% to 9% by atomic ratio of Ga / (In + Sn + Ga), and tin is Sn / (Sn + In). Sputtering targets containing an atomic ratio of 10% to 14% are sputtered with a sputtering power in which rf is superimposed on dc, and has a resistivity of 250 μΩ · cm or less and a Z-Max / t of The present invention relates to a method for producing a transparent conductive film satisfying 10% or less.
[0013]
In the present invention, Z-max is a parameter that numerically represents the degree of unevenness on the surface of the material, and the difference in height between the highest peak and the lowest valley in the surface area. Means. As a measuring method thereof, measurement by an atomic force microscope (AFM) is common. The atomic force microscope is a device that measures the surface irregularities by moving a small lever close to the surface of the material and scanning it in an area in the vertical and horizontal directions, converting the deflection generated at that time into a height in the direction perpendicular to the sample surface. is there. In the present invention, the lever was measured by scanning an area of 3 μm × 3 μm using an atomic force microscope (trade name “SPI3700”) manufactured by Seiko Denshi Kogyo Co., Ltd.
[0014]
Hereinafter, the present invention will be described in detail.
[0015]
The thin film according to the present invention and the device comprising the thin film can be manufactured, for example, by the following method.
[0016]
First, a sputtering target for forming a thin film is manufactured. As a sintered body for use in a sputtering target, the sintered density of the obtained sintered body is preferably 95% or more. More preferably, it is 98% or more.
[0017]
If the sintered density is less than the above density, abnormal discharge is likely to occur during sputtering, and abnormally grown particles with splats generated at this time are formed, making it difficult to obtain a flat film.
[0018]
The relative density in the present invention and (D) shows the relative value to the theoretical density determined from the true density of the arithmetic mean of In 2 O 3, SnO 2 and Ga 2 O 3 (d). The theoretical density (d) obtained from the arithmetic mean is the target composition, when the mixing amounts of In 2 O 3 , SnO 2 and Ga 2 O 3 powders are a, b and c (g), respectively. Using true density of 7.179, 6.95, 5.95 (g / cm 3 ), d = (a + b + c) / ((a / 7.179) + (b / 6.95) + (c / 5) .95)). When the measured density of the sintered body is d1, the relative density is
It is calculated by the formula: D = d1 / d × 100 (%).
[0019]
A sintered body having a sintered density of 95% or more can be produced, for example, by the following method.
[0020]
As the raw material powder, for example, indium oxide powder, tin oxide powder and gallium oxide powder are mixed. It is also possible to use tin oxide solid solution indium oxide powder instead of indium oxide powder and tin oxide powder. At this time, if the average particle size of the powder used is large, the density after sintering may not be sufficiently increased, and it may be difficult to obtain a sintered body having a relative density of 95% or more. It is desirable that it is 0.5 μm or less, more preferably 0.1 to 1.5 μm. The powder may be mixed by dry mixing or wet mixing using a ball mill or the like.
[0021]
Here, the mixing amount of tin oxide is preferably 5 to 20% in terms of an atomic ratio of Sn / (Sn + In). More preferably, it is 8-17%, More preferably, it is 10-14%. This is because when the ITO thin film is produced using the target of the present invention, the composition has the lowest resistivity of the film.
[0022]
The mixing amount of gallium oxide is preferably 2 to 9% in terms of an atomic ratio of Ga / (In + Sn + Ga). More preferably, it is 3-8%, More preferably, it is 4-7%. If the amount of gallium oxide added is less than the above range, the effect of flattening the thin film may be reduced, resulting in a film with large unevenness. If the amount exceeds this range, the resistivity may be too high.
[0023]
A binder or the like is added to the mixed powder obtained as described above, and is molded by a molding method such as a press method or a casting method to produce a molded body. In the case of producing a molded body by the pressing method, after a predetermined mold is filled with the mixed powder, pressing is performed at a pressure of 100 to 300 kg / cm 2 using a powder pressing machine. When the moldability of the powder is poor, a binder such as paraffin or polyvinyl alcohol may be added as necessary.
[0024]
In the case of producing a molded body by a casting method, a binder, a dispersant, and ion-exchanged water are added to the ITO mixed powder and mixed by a ball mill or the like to prepare a slurry for producing a molded body. Subsequently, casting is performed using the obtained slurry. It is preferable to defoam the slurry before injecting the slurry into the mold. Defoaming may be performed, for example, by adding a polyalkylene glycol antifoaming agent to the slurry and performing defoaming treatment in a vacuum. Subsequently, the cast molding is dried.
[0025]
Next, the obtained compact is subjected to consolidation treatment such as cold isostatic pressing (CIP) as necessary. Here CIP pressure is sufficient for obtaining a consolidation effect 1 ton / cm 2 or more, it is desirable that preferably is 2~5ton / cm 2. Here, when the first molding is performed by a casting method, a binder removal treatment may be performed for the purpose of removing moisture remaining in the molded body after CIP and organic substances such as a binder. Even when the first molding is performed by the press method, it is desirable to perform the same debinding process when a binder is used during molding.
[0026]
The molded body thus obtained is put into a sintering furnace and sintered. As a sintering method, any method can be applied, but considering the cost of production facilities and the like, sintering in the atmosphere is desirable. However, it goes without saying that other conventionally known sintering methods such as a hot press (HP) method, a hot isostatic pressing (HIP) method and an oxygen pressure sintering method can be used. The sintering conditions can be selected as appropriate, but the sintering temperature is preferably 1450 to 1650 ° C. in order to obtain a sufficient density increasing effect and to suppress the evaporation of tin oxide. The atmosphere during sintering is preferably air or a pure oxygen atmosphere. The sintering time is preferably 5 hours or more, preferably 5 to 30 hours in order to obtain a sufficient density increasing effect. In this way, a gallium-containing ITO sintered body can be produced.
[0027]
Next, after processing the obtained sintered body into a desired shape, a sputtering target is manufactured by bonding to a backing plate made of oxygen-free copper, if necessary, using an indium half or the like.
[0028]
By using the obtained sputtering target, the transparent conductive thin film of the present invention can be obtained on a substrate such as a glass substrate or a film substrate. As a means for film formation, a sputtering method using 50 to 500 W of electric power with rf superimposed on dc (depending on the size of the cathode) is adopted to reduce the resistivity and flatten the thin film. It is preferable to do. At this time, the ratio of rf superimposed on dc is preferably 50 to 100% in terms of applied power and rf / dc. Further, rf is preferably a high frequency of 13.56 MHz ± 0.05%.
[0029]
In addition, three types of indium oxide, tin oxide, and gallium oxide, or two-way mixed sputtering of the above three types and the remaining two types of oxides are used to produce by multi-source simultaneous sputtering. A film may be formed. Furthermore, some or all of the individual sputtering targets may be replaced with metals or alloys.
[0030]
During film formation, sputtering is performed by introducing argon and oxygen as sputtering gases into a vacuum apparatus. In order to achieve a low resistivity of the film, the flow rate of the introduced gas is controlled and appropriately set to a value at which the resistivity decreases.
[0031]
The thin film thus obtained has a resistivity of 250 μΩ · cm or less, preferably 220 μΩ · cm or less, and Z-max / t of 10% or less, preferably 6% or less, and is extremely flat. With low resistivity. The thickness of the film to be formed is preferably 100 to 500 nm.
[0032]
In addition, the thin film formed on the substrate can be etched into a desired pattern as necessary, and then the device according to the third aspect of the present invention can be configured.
[0033]
It is also effective to add a fourth element for the purpose of imparting an additional function to the thin film according to the present invention. Examples of the fourth element include Mg, Al, Si, Ti, Zn, Y, Zr, Nb, Hf, and Ta. The addition amount of these elements is not particularly limited, but in order not to deteriorate the excellent electrical characteristics and flatness of the thin film according to the present invention, (total of oxides of fourth element) / (In 2 O 3 + SnO 2 + Ga 2 O 3 + the sum of the oxides of the fourth element) / 100, and preferably over 0% and 20% or less (weight ratio).
[0034]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
[0035]
Example 1
440 g of indium oxide powder, 60 g of tin oxide powder and a predetermined amount of gallium oxide powder were put in a polyethylene pot and mixed for 72 hours by a dry ball mill to produce a mixed powder.
[0036]
This powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This compact was subjected to densification treatment with CIP at a pressure of 3 ton / cm 2. Next, this compact was placed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.
[0037]
(Sintering conditions)
Sintering temperature: 1500 ° C., heating rate: 25 ° C./hour, sintering time: 6 hours, oxygen pressure: 50 mmH 2 O (gauge pressure), oxygen linear velocity: 2.7 cm / min When the density was measured by the Archimedes method, all were 95% or more. This sintered body was processed into a sintered body having a diameter of 4 inches and a thickness of 6 mm by a wet processing method, and was bonded to a backing plate made of oxygen-free copper using indium solder to obtain a target.
[0038]
The target was sputtered under the following sputtering conditions to evaluate the thin film.
[0039]
(Sputtering conditions)
Substrate: glass substrate, applied power: dc150W + rf100W, gas pressure: 1.1 mTorr, sputtering gas: Ar + O 2 , O 2 / Ar: controlled to values at which resistivity is minimized, substrate temperature: 200 ° C., film thickness: 200 nm.
[0040]
The composition of the obtained film was analyzed by EPMA (Electron Probe Micro Analysis), and the resistivity and Z-max / t of the thin film were measured. The obtained results are shown in FIG. Good results were obtained with a Ge / (In + Sn + Ge) content of 2-9%.
[0041]
Example 2
450 g of indium oxide powder, 50 g of tin oxide powder and a predetermined amount of gallium oxide powder were put in a polyethylene pot and mixed for 72 hours by a dry ball mill to produce a mixed powder.
[0042]
Using this powder, a target was produced in the same manner as in Example 1. A thin film was produced under the same conditions as in Example 1 using the obtained target.
[0043]
The composition of the obtained film was analyzed by EPMA, and the resistivity and Z-max / t of the thin film were measured. The obtained results are shown in FIG. Good results were obtained with a Ga / (In + Sn + Ga) content of 2-9%.
[0044]
Example 3
Of the targets manufactured in Example 1, sputtering was performed under the same conditions as in Example 1 except for the sputtering time, using a target whose Ga composition of the thin film was 4 atomic%, and a thin film having a thickness of 500 nm was formed. . When the resistance chamber and Z-max / t of the obtained film were measured, the resistivity was 198 μΩ · cm, and Z-max / t = 7.8%.
[0045]
Comparative Example 1
Of the targets manufactured in Example 1, the thin film was evaluated by sputtering under the following sputtering conditions using the target having a Ga composition of 4 atomic%.
[0046]
(Sputtering conditions)
Substrate: glass substrate, applied power: dc 200 W, gas pressure: 1.1 mTorr, sputtering gas: Ar + O 2 , O 2 / Ar: controlled to values with minimum resistivity, substrate temperature: 200 ° C., film thickness: 200 nm.
[0047]
When the resistance chamber and Z-max / t of the obtained film were measured, the resistivity was 280 μΩ · cm and Z-max / t = 28%.
[0048]
Comparative Example 2
Of the targets manufactured in Example 2, the thin film was evaluated by sputtering under the following sputtering conditions using the target having a Ga composition of 5 atomic%.
[0049]
(Sputtering conditions)
Substrate: glass substrate, applied power: dc 200 W, gas pressure: 1.1 mTorr, sputtering gas: Ar + O 2 , O 2 / Ar: controlled to values with minimum resistivity, substrate temperature: 200 ° C., film thickness: 200 nm.
[0050]
When the resistance chamber and Z-max / t of the obtained film were measured, the resistivity was 270 μΩ · cm and Z-max / t was 35%.
[0051]
【The invention's effect】
According to the present invention, it is possible to obtain a transparent conductive film having a flat film surface and low resistivity, which is suitable for a large high-definition EL panel.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of an inorganic EL panel.
2 is a graph showing the resistivity and Z-max / t of the film obtained in Example 1. FIG.
3 is a graph showing the resistivity and Z-max / t of the film obtained in Example 2. FIG.

Claims (3)

不可避不純物を除いてインジウム、スズ、ガリウムおよび酸素からなり、ガリウムがGa/(In+Sn+Ga)の原子比で2%〜9%の割合で含有され、スズがSn/(Sn+In)の原子比で10%〜14%の割合で含有され、抵抗率が250μΩ・cm以下、かつ表面凹凸の最大高低差(Z−max)/膜厚(t)が10%以下であることを特徴とする透明導電膜。 It consists of indium, tin, gallium and oxygen, excluding inevitable impurities , gallium is contained in a ratio of 2% to 9% by atomic ratio of Ga / (In + Sn + Ga), and tin is 10% by atomic ratio of Sn / (Sn + In) A transparent conductive film characterized by being contained at a ratio of ˜14%, having a resistivity of 250 μΩ · cm or less and a maximum surface roughness (Z-max) / film thickness (t) of 10% or less. 請求項1に記載の透明導電膜を含んでなる機器。A device comprising the transparent conductive film according to claim 1. 不可避不純物を除いてインジウム、スズ、ガリウムおよび酸素からなり、ガリウムがGa/(In+Sn+Ga)の原子比で2%〜9%の割合で含有され、スズがSn/(Sn+In)の原子比で10%〜14%の割合で含有されるスパッタリングターゲットを、dcにrfを重畳したスパッタ電力でスパッタすることを特徴とする、抵抗率が250μΩ・cm以下、かつ表面凹凸の最大高低差(Z−Max)/膜厚(t)が10%以下を満足する透明導電膜の製造方法。 It consists of indium, tin, gallium and oxygen, excluding inevitable impurities , gallium is contained in a ratio of 2% to 9% by atomic ratio of Ga / (In + Sn + Ga), and tin is 10% by atomic ratio of Sn / (Sn + In) Sputtering target contained at a ratio of ˜14% is sputtered by sputtering power with rf superimposed on dc, and has a resistivity of 250 μΩ · cm or less and the maximum height difference of surface irregularities (Z-Max) / The manufacturing method of the transparent conductive film which film thickness (t) satisfies 10% or less.
JP2000127633A 2000-04-24 2000-04-24 Transparent conductive film, method for producing the same, and use thereof Expired - Fee Related JP4625558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127633A JP4625558B2 (en) 2000-04-24 2000-04-24 Transparent conductive film, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127633A JP4625558B2 (en) 2000-04-24 2000-04-24 Transparent conductive film, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2001307554A JP2001307554A (en) 2001-11-02
JP4625558B2 true JP4625558B2 (en) 2011-02-02

Family

ID=18637199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127633A Expired - Fee Related JP4625558B2 (en) 2000-04-24 2000-04-24 Transparent conductive film, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4625558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893144B2 (en) 2001-05-10 2011-02-22 3M Innovative Properties Company Polyoxyalkylene ammonium salts and their use as antistatic agents

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120114133A (en) * 2011-04-06 2012-10-16 삼성코닝정밀소재 주식회사 Indium tin oxide sputtering target and method of forming phase-transition transparent conductive film using the same
JP2017082317A (en) * 2015-10-30 2017-05-18 出光興産株式会社 Novel laminate
WO2023091330A1 (en) * 2021-11-22 2023-05-25 Corning Incorporated Amorphous transparent conductive oxide films and methods of fabricating the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465023A (en) * 1990-07-03 1992-03-02 Tonen Corp Transparent conductive film and manufacture thereof
JPH04272612A (en) * 1991-02-26 1992-09-29 Kojundo Chem Lab Co Ltd Transparent electrode
JPH09314729A (en) * 1996-05-24 1997-12-09 Toyobo Co Ltd Transparent conductive film and manufacture thereof
JPH1012059A (en) * 1996-06-27 1998-01-16 Sharp Corp Manufacture of transparent conductive film and thin film solar battery using the same
JPH10265953A (en) * 1997-03-27 1998-10-06 Canon Inc Sputter film, liquid crystal element and their production
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body
JPH1161398A (en) * 1997-08-12 1999-03-05 Tdk Corp Production of electrode and electrode
JPH1167460A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JPH11158620A (en) * 1997-11-28 1999-06-15 Canon Inc Deposition method and film produced by the deposition method
JP2000034564A (en) * 1998-07-13 2000-02-02 Ricoh Co Ltd Thin film forming device and formation of thin film
JP2000077358A (en) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd Transparent conductive film, sputtering target and basic body with transparent conductive film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465023A (en) * 1990-07-03 1992-03-02 Tonen Corp Transparent conductive film and manufacture thereof
JPH04272612A (en) * 1991-02-26 1992-09-29 Kojundo Chem Lab Co Ltd Transparent electrode
JPH09314729A (en) * 1996-05-24 1997-12-09 Toyobo Co Ltd Transparent conductive film and manufacture thereof
JPH1012059A (en) * 1996-06-27 1998-01-16 Sharp Corp Manufacture of transparent conductive film and thin film solar battery using the same
JPH10265953A (en) * 1997-03-27 1998-10-06 Canon Inc Sputter film, liquid crystal element and their production
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body
JPH1161398A (en) * 1997-08-12 1999-03-05 Tdk Corp Production of electrode and electrode
JPH1167460A (en) * 1997-08-12 1999-03-09 Tdk Corp Organic electroluminescent element and its manufacture
JPH11158620A (en) * 1997-11-28 1999-06-15 Canon Inc Deposition method and film produced by the deposition method
JP2000034564A (en) * 1998-07-13 2000-02-02 Ricoh Co Ltd Thin film forming device and formation of thin film
JP2000077358A (en) * 1998-08-27 2000-03-14 Asahi Glass Co Ltd Transparent conductive film, sputtering target and basic body with transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893144B2 (en) 2001-05-10 2011-02-22 3M Innovative Properties Company Polyoxyalkylene ammonium salts and their use as antistatic agents

Also Published As

Publication number Publication date
JP2001307554A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
US11753702B2 (en) Molybdenum containing targets
US8920683B2 (en) Sputtering target, transparent conductive film and transparent electrode
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
US8637124B2 (en) Oxide material and sputtering target
JP2007314364A (en) Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
WO2010018707A1 (en) Gallium oxide-tin oxide based oxide sintered body and oxide film
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
JP3215392B2 (en) Metal oxide sintered body and its use
JP4917725B2 (en) Transparent conductive film, method for producing the same, and use thereof
KR20120112716A (en) Oxide film, process for producing same, target, and process for producing sintered oxide
JP4559553B2 (en) Sputtering, electron beam, sintered body for ion plating, transparent conductive glass and transparent conductive film
JP4625558B2 (en) Transparent conductive film, method for producing the same, and use thereof
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
US7850876B2 (en) Tin oxide-based sputtering target, transparent and conductive films, method for producing such films and composition for use therein
JP5167575B2 (en) Oxide sintered body, sputtering target, and transparent conductive film
JP2002050231A (en) Transparent conductive film, its manufacturing method and its application
KR100628542B1 (en) The sinter of metal oxide compound and use thereof
JP2001307553A (en) Transparent conductive film, its manufacturing method, and its application
JP2000169220A (en) Metal oxide sintered compact and its use
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
KR101512819B1 (en) ZnO BASED SPUTTERING TARGET, METHOD OF FABRICATING THEREOF AND THIN FILM TRANSISTOR HAVING SHIELDING LAYER DEPOSITED BY THE SAME
JP2000169219A (en) Metal oxide sintered compact and its use
JP2002030429A (en) Ito sputtering target and manufacturing method
JP2007231381A (en) Ito sputtering target and production method therefor
JP2000185968A (en) Electroconductive metal oxide sintered compact and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees